• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于 2-(4′-羧基苯基)咪唑-4,5-二羧酸構(gòu)筑的三個鎘/鋅配位聚合物的合成、拓撲結(jié)構(gòu)、熒光光譜及DNA作用

    2018-06-06 05:50:26嚴世承武大令張敏芝管全銀趙國良
    無機化學(xué)學(xué)報 2018年6期
    關(guān)鍵詞:二羧酸碩士論文浙江師范大學(xué)

    嚴世承 武大令 張敏芝 管全銀 趙國良*,,

    (1浙江師范大學(xué)行知學(xué)院,金華 321004)(2浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華 321004)

    Coordination polymers,as a type of important materials,exhibits attractive application prospects in the fields of gas adsorption,storage and separation,adsorption of dyes,electrical conductivity,optical materials,magnetic materials,catalyzer,and so on[1-14].Those applications bring the new dawn for the porous materials science.Multifunctionalorganic ligands,especially the N-heterocyclic carboxylates,contain multi-oxygen and nitrogen atoms,and possess the ability to coordinate with metal ions in versatile ways.These building blocks lead to the formations of various coordination polymers with specific topologies and useful properties[16-17].

    Imidazole-4,5-dicarboxylic acid (H3IDC),which can be partially or fully deprotonated to generate H2IDC-,HIDC2-,IDC3-at different pH values and afford various coordination modes,is favored by multitudinous research groups.According to the reported coordination polymers[18-23]constructed from H3IDC,this kinds of ligand still remain extremely widely researched.Recently,according to purposefully changing the substituent group on the 2-position of imidazole-4,5-dicarboxylicacid,excellentligandshasbeen obtained,which can be used to construct coordination polymers with rapidly changing topological structures and useful properties,such as 2-methyl-1H-imidazole-4,5-dicarboxylic acid,2-ethyl-1H-imidazole-4,5-dicarboxylic acid,2-propyl-1H-imidazole-4,5-dicarboxylic acid,2-phenyl-1H-imidazole-4,5-dicarboxylic acid,2-hydroxymethyl-1H-imidazole-4,5-dicarboxylic acid and 2-(pyridyl)-1H-imidazole-4,5-dicarboxylic acid.

    Herein,taking into account the factors mentioned above,a new H3IDC derivative,2-(4′-carboxyphenyl)-1H-imidazole-4,5-dicarboxylic acid (H4CPhIDC),was purposely synthesized by condensation and oxidation reactions.Three coordination polymers of cadmium and zinc{[Cd2(CPhIDC)(bimb)]·H2O}n(1),{[Cd2(CPhIDC)(phen)2]·3H2O}n(2),{[Zn2(CPhIDC)(bpp)]·1.5H2O}n(3),(bimb=1,4-bis(imidazol-1-yl)butane,phen=1,10-phenanthroline,bpp=1,3-di(pyridin-4-yl)propane)have been synthesized by solvothermal reaction and characterized.The carboxyl containing group on the 2-position[24]of H4CPhIDC is successfully applied to construct coordination polymers.Its fully deprotonated motifs of CPhIDC4-can exhibit very flexible coordination modes(Scheme 1),and form a large diversity of supramolecular architectures.

    Scheme 1 Coordination modes of CPhIDC4-for the three polymers

    1 Experimental

    1.1 Materials and measurements

    H4CPhIDC was prepared according to literature[25-28]with some proper modification.The other reagents were of analytical grade and used without further purification.Calf thymus DNA(ct-DNA)was prepared with 0.1 mol·L-1NaCl.The concentration of ct-DNA was 200 μg·mL-1(cDNA=0.372 mmol·L-1).The ct-DNA solutions were stored at 4℃and gave a ratio of UVVis absorbance at 260 and 280 nm,A260/A280=1.8,indicating that DNA was sufficiently free of protein.The buffer solution,0.01 mol·L-1Tris-HCl(tris(hydroxymethyl)aminomethane hydrochloride,pH=7.4),was prepared with double-distilled water.

    Elemental analysis was performed on C,H,N elemental analyzer,Elementar Vario ELⅢ.FTIR spectra were recorded on a Nicolet NEXUS 670 FTIR spectrophotometer using KBr discs in the range of 4 000~400 cm-1.A Mettler Toledo thermal analyzer TGA/SDTA 851ewas used to carry out the thermogravimetric analysis with a heating rate of 10℃·min-1from 30~800 ℃ in air atomsphere.Powder X-ray diffraction(PXRD)data were collected on a PW 3040/60 Focus X-ray diffractometer using Cu Kα radiation(λ=0.154 06 nm,2θ=2°~60°)at room temperature with acceleration voltage of 40 kV and current of 40 mA.Fluorescence spectra were measured at room temperature with an Edinburgh FL-FS920 TCSPC system.

    1.2 Synthesis of the polymers

    1.2.1 Synthesis of{[Cd2(CPhIDC)(bimb)]·H2O}n(1)

    A mixture of H4CPhIDC (0.140 g,0.5 mmol),bimb(0.147 g,0.75 mmol),CdCl2·2.5H2O (0.170 g,0.75 mmol),and H2O/EtOH (15 mL,4∶1,V/V)with the pH value of 8 adjusted by 0.5 mol·L-1NaOH was sealed in a 20 mL Teflon-lined stainless steel vessel and heated at 160℃for 3 d.After the mixture was cooled to room temperature at a rate of 10 ℃·h-1,colorless crystals suitable for single-crystal analysis and physical measurements were obtained,washed with distilled water,and dried in air.Yield:41%(based on CdCl2·2.5H2O).Anal.Calcd.for C44H40N12O13Cd4(%):C 37.46,H 2.86,N 11.92;Found(%):C 37.71,H 2.83,N 11.98.IR(KBr,cm-1):3 538(m),2 943(w),2 860(w),1 588(s),1 542(s),1 525(s),1 440(s),1 405(s),1 375(m),1350(m),1 293(s),1 229(s),1 113(s),1 097(s),941(s),862(s),823(s),789(s),785(s),652(s),570(m),499(m),462(s).

    1.2.2 Synthesis of{[Cd2(CPhIDC)(phen)2]·3H2O}n(2)

    The synthesis method is similar to 1,where the metal source is Cd(OH)2,the auxiliary ligand is changed to phen,the pH value is not adjusted,the solvents are H2O/i-PrOH/acetone(15 mL,2∶1∶1,V/V).Yield:36%(based on Cd(OH)2).Anal.Calcd.for C36H26N6O9Cd2(%):C 47.44,H 2.88,N 9.22;Found:C 47.28,H 2.83,N 9.29.IR(KBr,cm-1):3 499(m),1 603(s),1 588(s),1 542(s),1 514(s),1 429(s),1 392(s),1 279(m),1 223(w),1 145(m),1 013(w),970(m),859(s),842(s),792(m),727(s),547(m),506(m),457(m).

    1.2.3 Synthesis of{[Zn2(CPhIDC)(bpp)]·1.5H2O}n(3)

    The synthesis method is roughly the same as 1,where the metal source is changed to zinc acetate,the auxiliary ligand is changed to bpp,the pH value is adjusted to close to 6.5,the solvents are H2O/EtOH(15 mL,3∶2,V/V).Yield:44%(based on Zn(CH3COO)2).Anal.Calcd.for C25H21N4O7.5Zn2(%):C 47.79,H 3.37,N 8.92;Found(%):C 47.72,H 3.25,N 9.17.IR(KBr,cm-1):3 480(m),2 936(w),2 874(w),1 608(s),1 590(s),1 550(s),1 430(s),1 403(s),1 381(s),1 352(m),1 271(s),1 224(m),1 175(m),1 122(s),1 068(m),1 028(s),872(m),830(s),813(s),796(s),789(s),749(s),727(s),664(w),634(w),574(w),525(m),489(m),463(s).

    1.3 X-ray diffraction analysis

    The single crystals of the polymers with approximate dimensions were mounted on a Bruker Smart ApexⅡCCD diffractometer.The diffraction data were collected using a graphite monochromated Mo Kα radiation(λ=0.071 073 nm)at 296(2)K.Absorption corrections were applied using SADABS[29].The structure was solved by using the SHELXS-97[30]program package and refined with the full-matrix least-squares technique based on F2using the SHELXL-97[31]program package.Remaining hydrogen atoms were added in calculated positons and refined as riding atoms with a common fixed isotropic thermal parameter.Hydrogen atoms on water molecules were located in a difference Fourier map and included in the subsequent refinement using restrains (dO-H=0.085 nm,dH…H=0.130 nm)with Uiso(H)=0.15Ueq(O).Other hydrogen atoms were added theoretically.The detail about the crystal data is summarized in Table 1.Selected bond distances and bond angles are given in Table S1 to Table S3(Supporting information).

    CCDC:969814,1;937738,2;937741,3.

    1.4 DNA binding

    1.0 mL of 200 μg·mL-1DNA solution,1.0 mL of 200 μg·mL-1EB solution and 2.0 mL of Tris-HCl buffer solution with pH=7.40 were added to a 10 mL colorimetrictubeand allowed tostand atroom temperature for 2 h.Then,a solution of 0.50 or 0.10 mmol·L-1compound was added to the mixed solutionand diluted to a scale with distilled water.After 4 h at room temperature,the fluorescence spectra of the composite system in 520~700 nm range are recorded by exciting at 251 nm.

    Table 1 Crystal data and structure refinement parameters for polymers 1~3

    2 Results and discussion

    2.1 Crystal structures of the complexes

    2.1.1 Crystal structure of{[Cd2(CPhIDC)(bimb)]·H2O}n(1)

    Single-crystal analysis shows polymer 1 crystallizes in the monoclinic system with space group P21/n and the asymmetric unit cell contains two Cd2+ions,one CPhIDC4-anion,one 1,4-bis(imidazol-1-yl)butane molecule and one lattice water molecule.As shown in Fig.1a,the Cd(2)adopts distorted octahedral geometry with a six-coordinated mode by four oxygen atoms(O5,O1#3,O2#3,O5#4,dCd-O=0.223 6(2)~0.251 9(3)nm)and one nitrogen atom(N2,dCd-N=0.227 4(3)nm)from three CPhIDC4-ligands and one nitrogen atom(N3,dCd-N=0.225 2(3)nm)from one bimb molecule.The Cd(1)adopts distorted trigonal bipyramid coordinated with three oxygen atoms(O3,O6,O4#1,dCd-O=0.221 0(2)~0.236 3(2)nm),one nitrogen atom(N1#1,dCd-N=0.221 2(3)nm)from two CPhIDC4-ligands and one nitrogen atom(N6#2,dCd-N=0.223 3(3)nm)from one bimb molecule.From Cd-O,Cd-N bond distances and O3-Cd1-N6#2,O3-Cd1-O4#1,N6#2-Cd1-O4#1 bond angles for 1,we could know that the five atoms are practically in the same plane while the O1 and N3 atoms are at the side of it.Thus the two Cd2+ions are bridged by the ends of one bimb molecule respectively.The CPhIDC4-ligand adopt conformations with μ5-κO∶κ2O′,N∶κ2O″,N′∶κ2O?,O″″∶κO″?.The two Cd2+ions are bridged by the ends of one bimb molecule respectively.The CPhIDC4-ligand adopts conformations with μ5-κO ∶κ2O′,N ∶κ2O″,N′∶κ2O? ,O″″∶κO″?coordination fashion(Scheme 1a)to connect Cd(1)and Cd(2)ions.The selected distances and bond angles fall in the normal regions which are comparable to the values reported in literatures[32].For 1,the Cd2+ion is bridged by the imidazole ring to form a 2D plane ellipsoid lattice(0.785 6(4)nm×0.922 3(3)nm)(Fig.1b).The 2D surface adopts staggered conformations connected with bimb molecules and CPhIDC4-anions to build up a 3D[Cd2(CPhIDC)(bimb)]framework(Fig.1c).Both bimb molecules reside in the tunnels and the extensive hydrogen bonds (Table S4)contribute themselves to stabilize the crystal structure.

    Fig.1 (a)Ball-and-stick structural view of 1;(b)2D plane structure for 1 viewed along a axis;(c)3D framework for 1 viewed along b axis;(d)(3,4,5)-topological connected for 1

    In the 3D[Cd2(CPhIDC)(bimb)]frameworks,from the topological point of view,CPhIDC4-anions ligand are each bonded to five Cdギions(three Cd(1)and two Cd(2)),while Cd(1)ions are each coordinated to five atoms(O1,O2,O3,O3#2,N2)from three CPhIDC4-anions in a κO∶κ2O′,N∶κO″coordination fashion and one nitrogen atom (N3)from bimb molecule in κN coordination fashion.Cd(2)ions are each coordinated to four atoms (O6,O4,O5,N1)from two CPhIDC4-ligand anions in a κ2O,O′∶κ2O″,N and one atom from one bimb ligand in κN coordination fashion.From topological point of view the 3D framework can be simplified in some underlying net,where Cd(1)and Cd(2)atoms,CPhIDC4-anions and bridge bimb ligands are presented by 4-coordinated,3-coordinated,5-coordinated nodes,respectively.

    Viewed along a axis for 1 without bimb and benzeneedge,respectively (Fig.1d),topology of the 3,4,5-coordinated trinodalunderlying netcan be described with point symbol(5·6·7)(4·52·6·74·82)(4·52·6·7).The structure of 1 is completely different from the reported(3,4,5)-connected frameworks with(6·8·10)(6·82)(63)4(64·102)(64·84·102),(63)2(66)(68·82),(4·62)2(43·67)2(44·62),(42·6)(44·62)(44·63·83),(5·6·7)(54·6·8)(54·63·83),(4·6·8)2(4·82)(4·64·85)(42·62·82),(4·62)(42·6)(42·84)(43·6·86)(42·65·83),(4·6·8)2(42·62·82)(42·65·83)2,and(4·62)2(4·67·82)2(65·10)topologies[33-34],which presents a new trinodal (3,4,5)-connected 3D network topology.

    2.1.2 Crystal structure of{Cd2(CPhIDC)(phen)2]·3H2O}n(2)

    Fig.2 (a)Ball-and-stick structural view of 2;(b)3D stacking structure for 2 with hydrogen bond and π…π from phen molecules;(c)Single-screw structure of 2 and the double-helix structure for DNA;(d)(4,4)-topological connected for 2

    Single-crystal analysis shows polymer 2 crystallizes in the monoclinic system with space group P21/n and the asymmetric unit cell contains two Cd2+ions,one CPhIDC4-anion,two 1,10-phenanthroline molecules and three lattice waters.As shown in Fig.2a,polymer 2 is a double-core structure bridged by the CPhIDC4-anions and adopt six-coordinated with two Cd2+ions(Cd1 and Cd2).The Cd1 is connected with three oxygen atoms(O3#1,O4,O6,dCd-O=0.222 0(3)~0.235 1(3)nm), one nitrogen atom(N1#1,dCd-N=0.223 0(3)nm)from two CPhIDC4-ligands and two nitrogen atoms(N5,N6,dCd-N=0.236 9(4)~0.238 8(4)nm)from one 1,10-phenanthroline molecule to form a distorted octahedralgeometry.Cd2 ispractically identical to Cd1,but the six-coordinated atoms form a different severe flattening octahedral geometry.Cd-O distances,Cd-N distances and bond angles for 2(Table S2)fall in the normal regions which are comparable to the values reported in literatures[35].The CPhIDC4-anions adopt conformations with each bridging four Cd2+ions in μ4-κ2O,O′∶κ2N,O″∶κ2N′,O?∶κ2O″″,O″? coordination fashion (Scheme 1b)to form a ternary-chelate ring,two five-chelate rings and a seven-chelate ring.

    Viewed along c axis without phen molecular,the Cd2+ion is bridged by the CPhIDC4-to form a 2D plane grid.Viewed along b axis only,the Cd2+ions bridging by ligands to form a bent long chain with phen molecules connected in the two sides of it.Meanwhile,the two adjacent chains stack with the function of π…π from phen molecules to form a 3D network (Fig.2b).In addition,the hydrogen bonds(O2B-H2C…O3W#1)connected by the oxygen atom from free water molecules and hydrogen bond (O2WH2A…O3,O2B-H2C…O3W#1,O2B-H2D…O1#2,O3W-H3C…O2),which is shown in Table S5,connected by oxygen atom from carboxylic acid and free water and thus contribute themselves to stabilize the crystal structure.

    Interestingly,comparing the space filling figure for 2 with the structure of DNA,the single-screw structure of 2 is quite similar to the double-helix structure for DNA (Fig.2c).The inner hydrogen bond from the spiral chain and the phen molecules reside in the tunnel contribute the framework to stabilize the spiral chain structure.From the topological point of view,each CPhIDC4-ligand,linked to four Cd2+ions(two Cd1 and two Cd2),represents a 4-connected node while each Cdギion connects to two CPhIDC4-anions as an edge of underlying net.Thus the chelating effect in 2 leads to 4-coordinated 2D underlying net with point symbol(44)(62)and vertex symbol(4·4·4·4)(Fig.2d).

    2.1.3 Crystal structure of{[Zn2(CPhIDC)(bpp)]·1.5H2O}n(3)

    Single-crystal analysis shows polymer 3 crystallizes in the monoclinic system with space group P21/n and the asymmetric unit cell contains two Zn2+ions(Zn(1)and Zn(2)),one CPhIDC4-anion,one bpp molecule,one and a half lattice water.As shown in Fig.3a,Zn(1)is five-coordinated by three oxygen atoms(O2#1,O3#2,O3,dZn-O=0.199 4(2)~0.213 7(2)nm)and one nitrogen atom(N2,dZn-N=0.210 8(2)nm)from three imidazole carboxylic acid ligands and one nitrogen atom(N3,dZn-N=0.205 3(3)nm)from one bpp molecule.Zn(1)is only 0.000 03 nm away from the O2#1,O3 and N3 plane,whereas the N2,O3#2 are at the side of the plane with the N2-Zn1-O3#2 bond angle of 149.28(8)°,which deviates from the straight line about 30.72°and thus the six atoms form a distorted trigonal bipyramid geometry.Zn(2)adopts the five-coordinated mode to form a distorted trigonal bipyramid geometry by three oxygen atoms(O6,O4,O5#4,dZn-O=0.203 5(3)~0.209 1(2)nm)and one nitrogen atom(N1#4,dZn-N=0.209 8(3)nm)from one CPhIDC4-ligand and one nitrogen atom(N4#3,dZn-N=0.208 9(3)nm)from one bpp molecule.The bond angles of O6-Zn2-N4#3,O6-Zn2-O5#4,N4#3-Zn2-O5#4 are 117.31(13)°,117.69(11)°,124.90(13)°,respectively,and the sum of the three is 359.90°,which shows that O6,N4#3,O5#4 and Zn(2)are almost in the same plane,the bond angle(N1#4-Zn2-O4)is 169.54(10)°.In addition,two Zn2+ions are linked by the two sides of the bpp molecule.The ligand adopts conformations with μ5-κO∶κ2O′,N∶κ2O″,N′∶κ2O?,O″″∶κO″? coordination fashion (Scheme 1c)to connect Zn1 and Zn2 to form a five-member chelate ring and a seven-member chelate ring,respectively.The imidazole carboxylic acid ligand in the 3 adopt single dentate and bidentate chelate coordination mode connected to the metal ions.The Zn-O distances and the Zn-N distances and bond angles fall in the normal regions which are comparable to the values reported in literatures[36].

    Viewed along c axis without bpp,the Zn2+ion is bridged by the imidazole ring to form a 2D-grid sheet structure(Fig.3b).The 2D-grid sheet staggered conby the CPhIDC4-anions, bpp molecules expands to 3D Zn2(CPhIDC)(bpp)framework(Fig.3c).The3D Zn2(CPhIDC)(bpp)framework is found to be stabilized by the bpp padding molecules and the abundant hydrogen bonds(Table S6).

    Fig.3 (a)Ball-and-stick structural view of 3;(b)2D plane structure for 3 viewed along a axis;(c)3D framework for 3 viewed along b axis;(d)(3,4,5)-topological connected for 3

    As the 3D topological connected for 3 in Fig.3d,the CPhIDC4-anions are each bonded to four Znギions(two Zn1 and two Zn2).The Zn(1)ions are each coordinated to six atoms(O3#2,O2#1,O1#1,O3,N2,N3)from three CPhIDC4-anions in a κO∶κ2O′,N∶κ2O″,O? coordination fashion and one bpp molecule in κN coordination fashion.The Zn(2)ions are each coordinated to four atoms(O6,O4,O5,N1)from two CPhIDC4-ligand anions in κ2O,O′∶κ2O″,N coordination fashion and one nitrogen atom from one bpp ligand in κN coordination fashion.Therefore,each Zn1 ion,Zn2 ion and CPhIDC4-anion can now be viewed as 4-connected nodes,3-connected nodes and 5-connected nodes,respectively and leads to trinodal net with point symbol(4·52·6·72)(5·6·7)(4·52·6·74·82),which is same as 1(Fig.3d).

    2.2 Analysis of FTIR spectra and PXRD

    A broad absorption peak at 3 435 cm-1in the free ligand can be assigned to the stretching vibration of phenolic hydroxyl group νO-Hin the carboxyl group.The absorption peak at 3 012~3 109 cm-1is the stretching vibration peak of νN-Hon the imidazole ring.The stretching vibration peak of the carbonyl group νC=Oappears at 1 716 cm-1,and the stretching vibration peak of νC=Nin imidazole ring is located at 1 614 cm-1.The infrared spectra of polymers 1~3 are similar,indicating that they have similar coordination modes.The broad peaks appear from 3 403 to 3 538 cm-1in the three polymers due to the O-H stretching vibration ofwater.Thecharacteristic absorption peaksof carboxyl groups at 1 716 cm-1disappear in polymers.The asymmetric stretching vibration νas(-COO-)peaks appear at 1 542~1 550 cm-1,and symmetrical stretching vibration peaks νs(-COO-)appear at 1 428~1 440 cm-1and 1 375~1 395 cm-1,indicating that the carboxyl group of ligand are in the form of bidentate chelating,bridging and monodentate coordination[19,37].νC=Nstretching vibration of imidazole ring in ligand has redshift from 1 614 to 1 588~1 590 cm-1.Two vibration peaks at 2 943 cm-1(1),2 936 cm-1(3)and 2 860 cm-1(1),2 874 cm-1(3)are C-H stretching vibration of-CH2-group in auxiliary ligands bimp and bpp.However,polymer 2 don′t have these two peaks.Another two absorption peaks at 499~506 cm-1and 457~463 cm-1can be attributed to the stretching vibration of νM-Oand νM-N.All of above are consistent with the results of single crystals structure analysis.

    The simulated and experimental PXRD patterns of coordination polymers 1~3 are given in Fig.S1~S3.The results suggest that the crystal structures are truly representative of the bulk materials.The differences in intensity are due to the preferred orientation of the powder samples.

    2.3 Luminescent properties

    There are few reports about the strong luminescent properties in imidazole-4,5-dicarboxylic acid.However,2-(4′-carboxyphenyl)-1H-imidazole-4,5-dicar-rboxylic acid (H4CPhIDC)has strong luminescent property at room temperature.

    As illustrated in Fig.4,the solid-state luminescence spectra at room temperature for H4CPhIDC ligand,polymers 1,2 and 3 are observed to have their main emission at 524,527,526 and 524 nm(609 nm)(λex=467 nm),respectively.The imidazole ligand,1 and 2 can emit a certain intensity green luminescent while 3 can not only emit green but also emit orange luminescent.The green luminescent for 1,2 and 3 are from imidazole ligand and stronger than the free ligand,which can be ascribed to the luminescent of H4CPhIDC ligand sensitized by metalions.In addition,we can presume that the emission for 3 is neither metal-to-ligand charge transfer (MLCT)nor ligand-to-metal transfer(LMCT)in nature,because the Znギion is difficult to be oxidized or reduced due to its d10configuration.Thus,emissions observed at 609 nm for 3 may be assigned the band to an intra-ligandfluorescent emission of bpp anxiliary ligand[38].

    Fig.4 Fluorescence spectra for the H4CPhIDC ligand and polymers 1~3

    2.4 DNA binding

    The interaction of ligand and polymers with calf thymus DNA(CT-DNA)was studied by an EB fluorescent probe.Fig.5 shows the emission spectra of EB bonded to DNA with compounds or not.As the increasing concenof the compounds,the emission intensity at 592 nm of EB-DNA system changed in different degrees.According to the classical Stern-Volmer equation[39]:I0/I=1+Ksqr,where I0and I represent the fluorescence intensities in the absence or presence of the compounds,respectively;r is the concentration ratio of the compounds to DNA;Ksqis a linear Stern-Volmer quenching constant,the Ksqvalue was obtained as the slope of I0/I versus r linear plot.

    From the inset in Fig.5,the Ksqvalue were 16.53,0.88,21.77 and 1.07 for H4CPhIDC ligand,polymers 1,2 and 3.It suggested that the interaction of the ligand with DNA are strong and can release more free EB molecules from EB-DNA,because of the present of benzene and imidazole rings.Especially,polymer 2 has the strongest interaction with the DNA,which is attributed to not only big planar molecules phen but also its similar double-helix structure with DNA(Fig.2c).Thus,its molecules are more likely to enter the double helix structure of the DNA molecules.While the other two polymers are weaker than that of H4CPhIDC ligand,which could be ascribed to that the planarity of molecules of 1 and 3 is not as good as H4CPhIDC ligand and 2.

    Fig.5 Emission spectra of EB-DNA system in the absence and presence of the H4CPhIDC ligand(a),polymers 1(b),2(c)and 3(d)

    3 Conclusions

    H4CPhIDC was purposely synthesized by condensation and oxidation reactions and successfully applied to constructing three novel coordination polymers{[Cd2(CPhIDC)(bimb)]·H2O}n(1),{[Cd2(CPhIDC)(phen)2]·3H2O}n(2),{[Zn2(CPhIDC)(bpp)]·1.5H2O}n(3).Complexes 1 and 3 exhibit analogous 3D[Cd2(CPhIDC)(bimb)]and 3D[Zn2(CPhIDC)(bpp)]frameworks with(5·6·7)(4·52·6·72)(4·52·6·74·82)topology,but the metal ions and auxiliary ligands are different.Complex 2 is 2D wave-like fishing net structure with 44·62topology.Moreover,the luminescent properties shows that polymer 3 can emit green and orange luminescence,while the imidazole ligand and the other two polymers can emit a certain intensity green luminescence.In addition,the interaction of the ligands with DNA is strong and could release more free EB molecules from EB-DNA,because of the present of benzene and imidazole rings.Among the four compounds,the polymer 2 has the strongest interaction with the DNA due to the addition of the big planar molecules phen and the particularity of its structure.This class of materials provides a new impetus to the construction ofnovelmultifunctionalcoordination polymers materials.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Weston M H,Colón Y J,Bae Y S,et al.J.Mater.Chem.A,2014,2(2):299-302

    [2]Kumar K V,Preuss K,Titirici M,et al.Chem.Rev.,2017,117(3):1796-1825

    [3]Lin J Y S.Science,2016,353(6295):121-122

    [4]Rodenas T,Luz I,Prieto G,et al.Nat.Mater.,2015,14(1):48-55

    [5]Haque E,Lo V,Minett A,et al.J.Mater.Chem.A,2014,2(1):193-203

    [6]Sun L,Park S S,Sheberla D,et al.J.Am.Chem.Soc.,2016,138(44):14772-14782

    [7]Sakamoto R,Iwashima T,Kogel J F,et al.J.Am.Chem.Soc.,2016,138(17):5666-5677

    [8]Medishetty R,Nalla V,Nemec L,et al.Adv.Mater.,2017,29(17):1605637

    [9]Ricco R,Malfatti L,Takahashi M,et al.J.Mater.Chem.A,2013,1(42):13033-13045

    [10]WANG Li-Ping(王麗蘋),WANG Gong-Ying(王公應(yīng)).Journal of Molecular Catalysis(China)(分子催化),2015,29(3):275-287

    [11]CHEN Xiao-Qian(陳曉倩).Thesis for the Master of Minnan Normal University(閩南師范大學(xué)碩士論文).2015.

    [12]HAO Li-Min(郝 麗 敏).Thesis for the Master of Chang′an University(長安大學(xué)碩士論文).2015.

    [13]Hermes S,Schr?ter M K,Schmid R,et al.Angew.Chem.Int.Ed.,2005,44(38):6237-6241

    [14]Bradshaw D,Garai A,Huo J.Chem.Soc.Rev.,2012,41(6):2344-2381

    [15]Tanabe K K,Cohen S M.Inorg.Chem.,2010,49(14):6766-6774

    [16]Miao Y R,Su Z,Suslick K S.J.Am.Chem.Soc.,2017,139(13):4667-4670

    [17]Stock N,Biswas S.Chem.Rev.,2012,112(2):933-969

    [18]Arstad B,Fjellvg H,Kongshaug K O,et al.Adsorption,2008,14(6):755-762

    [19]Janiak C,Vieth J K.New J.Chem.,2010,34(11):2366-2388[20]Henninger S K,Habib H A,Janiak C.J.Am.Chem.Soc.,2009,131(8):2776-2777

    [21]Torrisi A,Bell R G,Mellot-Draznieks C.Cryst.Growth Des.,2010,10(7):2839-2841

    [22]Li K,Olson D H,Lee J Y,et al.Adv.Funct.Mater.,2008,18(15):2205-2214

    [23]Lee C Y,Farha O K,Hong B J,et al.J.Am.Chem.Soc.,2011,133(40):15858-15861

    [24]Wang W,Niu X,Gao Y,et al.Cryst.Growth Des.,2010,10(9):4050-4059

    [25]Sharghi H,Asemani O,Khalifeh R.Synth.Commun.,2008,38(6):1128-1136

    [26]Coppola G M.Synth.Commun.,2008,38(20):3500-3507

    [27]Wang F Q,Zheng X J,Wan Y H,et al.Inorg.Chem.,2007,46(8):2956-2958

    [28]Tan C,Wang Q.Inorg.Chem.,2011,50(8):2953-2956

    [29]Sheldrick G M.SADABS,Program for Empirical Absorption Correction of Area Detector Data,University of G?ttingen,Germany,1997.

    [30]Sheldrick G M.SHELXS-97,Program for Crystal Structure Solution,University of G?ttingen,Germany,1997.

    [31]Sheldrick G M.SHELXL-97,Program for Crystal Structure Refinement,University of G?ttingen,Germany,1997.

    [32]ZHAN Pei-Ying(戰(zhàn)佩英).Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2014,30(7):1629-1634

    [33]Xue M,Zhu G,Ding H,et al.Cryst.Growth Des.,2009,9(3):1481-1488

    [34]Han Z B,Zhang G X.CrystEngComm,2010,12(2):348-351

    [35]DU Fang-Yuan(杜芳園),LI Shi-Kun(李士坤),LIN Qiu-Yue(林秋月),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2015,31(4):813-823

    [36]Tao J,Shi J X,Tong M L,et al.Inorg.Chem.,2001,40(24):6328-6330

    [37]Nakamoto K,Translated by HUANG De-Ru(黃德如),WANG Ren-Qing(汪仁慶).Infrared and Raman Spestra of Inorganic and Coordination Compounds(無機和配位化合物的紅外和拉曼光譜).Bejing:Chemistry Industry Press,1986.

    [38]He K H,Li Y W,Chen Y Q,et al.Cryst.Growth Des.,2012,12(6):2730-2735

    [39]Lakowicz J R,Weber G.Biochemistry,1973,12(21):4161-4170

    猜你喜歡
    二羧酸碩士論文浙江師范大學(xué)
    浙江師范大學(xué)行知學(xué)院手繪作品選登
    LiBa0.95-yBO3∶0.05Tb3+,yBi3+熒光粉的制備及熒光性質(zhì)
    于昕卉作品
    Application of “Process Approach” in Middle School English Writing-Teaching
    Next-Generation Materials for Cutting Tools: Superhard Materials
    漢語國際教育專業(yè)泰國來華留學(xué)生碩士論文語言特征分析及教學(xué)啟示
    “雙一流”視域下導(dǎo)師學(xué)術(shù)品質(zhì)對研究生培養(yǎng)質(zhì)量的影響——基于安徽省四屆優(yōu)秀碩士論文評選的實證研究
    聚丙烯成核劑雙環(huán)[2.2.1]-庚烷-2,3-二羧酸鈉的合成
    化工進展(2015年6期)2015-11-13 00:27:25
    兩個基于2,2’-聯(lián)吡啶-3,3’-二羧酸的稀土配合物的晶體結(jié)構(gòu)和熒光性質(zhì)
    吡啶-3,5-二羧酸鎳(Ⅱ)配合物的合成、結(jié)構(gòu)、性質(zhì)及密度泛函研究
    欧美成人午夜免费资源| 一级毛片aaaaaa免费看小| 中文字幕制服av| av专区在线播放| .国产精品久久| 美女大奶头视频| 天堂√8在线中文| 国产精品久久久久久av不卡| 欧美成人免费av一区二区三区| 亚洲丝袜综合中文字幕| 身体一侧抽搐| 一边亲一边摸免费视频| 毛片女人毛片| 啦啦啦观看免费观看视频高清| 国语自产精品视频在线第100页| 男女啪啪激烈高潮av片| 国产精品一区二区三区四区久久| 最近手机中文字幕大全| 国产日韩欧美在线精品| 一区二区三区高清视频在线| 久久人人爽人人爽人人片va| 1024手机看黄色片| 日韩一区二区视频免费看| 欧美三级亚洲精品| 免费播放大片免费观看视频在线观看 | 色综合站精品国产| 国产片特级美女逼逼视频| 最近最新中文字幕大全电影3| 国产白丝娇喘喷水9色精品| 日产精品乱码卡一卡2卡三| 亚洲欧洲日产国产| 一级黄片播放器| 级片在线观看| 午夜福利成人在线免费观看| 婷婷六月久久综合丁香| 精品国产一区二区三区久久久樱花 | 97在线视频观看| 国产精品精品国产色婷婷| 69av精品久久久久久| 国产成人精品婷婷| 99九九线精品视频在线观看视频| 校园人妻丝袜中文字幕| 国模一区二区三区四区视频| 免费黄色在线免费观看| 又爽又黄a免费视频| 免费人成在线观看视频色| 精品久久久噜噜| 成人午夜精彩视频在线观看| 国产一区亚洲一区在线观看| 22中文网久久字幕| 亚洲精品乱码久久久久久按摩| 久久久成人免费电影| 久久99热这里只有精品18| 美女黄网站色视频| 99在线人妻在线中文字幕| 中文字幕熟女人妻在线| 日日干狠狠操夜夜爽| 亚洲va在线va天堂va国产| 国产精品一区www在线观看| 亚洲人与动物交配视频| 国产精品伦人一区二区| 99久久成人亚洲精品观看| 可以在线观看毛片的网站| 18+在线观看网站| 白带黄色成豆腐渣| 亚洲av日韩在线播放| 国产午夜精品一二区理论片| 久久久久久九九精品二区国产| 久久欧美精品欧美久久欧美| 欧美日韩精品成人综合77777| 免费观看a级毛片全部| 免费看a级黄色片| 91av网一区二区| 国产伦精品一区二区三区视频9| 国产私拍福利视频在线观看| 成人特级av手机在线观看| 国产黄片视频在线免费观看| 禁无遮挡网站| 久久久久性生活片| 亚洲国产精品国产精品| 国产伦精品一区二区三区四那| 国产又色又爽无遮挡免| 国产黄片美女视频| 2022亚洲国产成人精品| 久久久久久久久久黄片| 深爱激情五月婷婷| 亚洲成人久久爱视频| 国产日韩欧美在线精品| 秋霞伦理黄片| 联通29元200g的流量卡| 成人亚洲精品av一区二区| 中文字幕精品亚洲无线码一区| 91精品国产九色| 欧美人与善性xxx| av天堂中文字幕网| 久久久久久久久久久免费av| 国产精品.久久久| 亚洲精品aⅴ在线观看| 午夜福利在线观看免费完整高清在| 日韩av在线免费看完整版不卡| 2021天堂中文幕一二区在线观| 汤姆久久久久久久影院中文字幕 | 精品久久久久久久人妻蜜臀av| 伦精品一区二区三区| 在线a可以看的网站| 亚洲av中文av极速乱| 26uuu在线亚洲综合色| 精品久久久久久久久av| 一级毛片久久久久久久久女| 亚洲高清免费不卡视频| 麻豆乱淫一区二区| av在线老鸭窝| 九草在线视频观看| 色吧在线观看| 免费在线观看成人毛片| 一个人看视频在线观看www免费| 久久久久精品久久久久真实原创| 日本一二三区视频观看| 亚洲成av人片在线播放无| 美女大奶头视频| 亚洲精品影视一区二区三区av| 国产在视频线在精品| 亚洲av日韩在线播放| 国产亚洲最大av| 欧美3d第一页| 亚洲中文字幕一区二区三区有码在线看| 九色成人免费人妻av| 亚洲成人久久爱视频| 91狼人影院| 黄片wwwwww| 一级毛片我不卡| 午夜精品一区二区三区免费看| 日韩欧美 国产精品| 狂野欧美激情性xxxx在线观看| 嘟嘟电影网在线观看| 国产高清不卡午夜福利| 久久精品影院6| 国产中年淑女户外野战色| 免费看光身美女| 黄片无遮挡物在线观看| 97人妻精品一区二区三区麻豆| 国产亚洲一区二区精品| 久久精品夜色国产| 国产在线一区二区三区精 | 一级黄色大片毛片| 国产精品国产三级专区第一集| 丰满人妻一区二区三区视频av| 日本av手机在线免费观看| 天堂中文最新版在线下载 | 久久久久国产网址| 亚洲国产欧美在线一区| 久热久热在线精品观看| 亚洲av日韩在线播放| 青春草亚洲视频在线观看| 中文字幕免费在线视频6| 九九在线视频观看精品| 九九热线精品视视频播放| 欧美成人免费av一区二区三区| 国产熟女欧美一区二区| 免费大片18禁| 日本一本二区三区精品| 少妇人妻一区二区三区视频| 国内精品宾馆在线| 亚洲欧美日韩东京热| 久久久久久久久大av| 精品一区二区三区视频在线| 亚洲在久久综合| 我的女老师完整版在线观看| 国产亚洲一区二区精品| 日本黄大片高清| 久久久精品欧美日韩精品| 亚洲av不卡在线观看| 国产一级毛片七仙女欲春2| 欧美性猛交╳xxx乱大交人| 中文字幕免费在线视频6| 寂寞人妻少妇视频99o| 中文字幕熟女人妻在线| 国产一区有黄有色的免费视频 | 成人国产麻豆网| 毛片女人毛片| www.av在线官网国产| 美女黄网站色视频| 美女高潮的动态| 色网站视频免费| 淫秽高清视频在线观看| 日韩欧美国产在线观看| 日韩av不卡免费在线播放| 91在线精品国自产拍蜜月| 丝袜喷水一区| 五月伊人婷婷丁香| 在线免费观看不下载黄p国产| 不卡视频在线观看欧美| 精品久久国产蜜桃| 久久精品国产鲁丝片午夜精品| 精品人妻偷拍中文字幕| 能在线免费看毛片的网站| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看 | 三级国产精品片| 国产白丝娇喘喷水9色精品| 九色成人免费人妻av| 中文字幕亚洲精品专区| 欧美精品一区二区大全| 18禁在线无遮挡免费观看视频| 成人欧美大片| 久久99热这里只有精品18| 最近的中文字幕免费完整| 亚洲成色77777| 亚洲欧洲日产国产| 老女人水多毛片| 亚洲成人精品中文字幕电影| 免费观看人在逋| 非洲黑人性xxxx精品又粗又长| 18禁动态无遮挡网站| 精品久久久久久久末码| 秋霞在线观看毛片| 国产精品麻豆人妻色哟哟久久 | 精品国内亚洲2022精品成人| 欧美又色又爽又黄视频| 99国产精品一区二区蜜桃av| 99热这里只有是精品在线观看| 一个人看视频在线观看www免费| 欧美bdsm另类| 噜噜噜噜噜久久久久久91| 一级毛片我不卡| 国产在线一区二区三区精 | 精华霜和精华液先用哪个| 欧美性感艳星| 人妻系列 视频| 国产在线男女| 精品人妻偷拍中文字幕| 久久久久久久午夜电影| 男插女下体视频免费在线播放| 精品久久久久久成人av| 欧美激情国产日韩精品一区| 深夜a级毛片| 综合色丁香网| 亚洲丝袜综合中文字幕| 黑人高潮一二区| 国产乱来视频区| 一级黄色大片毛片| 国产私拍福利视频在线观看| 少妇丰满av| 夫妻性生交免费视频一级片| 一区二区三区高清视频在线| 亚洲av男天堂| 亚洲精品国产av成人精品| 日韩欧美国产在线观看| 亚洲无线观看免费| 亚洲精品久久久久久婷婷小说 | 综合色丁香网| 国产中年淑女户外野战色| 国产午夜精品一二区理论片| 国产爱豆传媒在线观看| 国产亚洲91精品色在线| 国产精品一区www在线观看| 国产伦精品一区二区三区四那| 日本免费一区二区三区高清不卡| 又粗又硬又长又爽又黄的视频| 国产精品熟女久久久久浪| 黄色欧美视频在线观看| 一区二区三区高清视频在线| 欧美一区二区国产精品久久精品| 亚洲欧美中文字幕日韩二区| 国产精品电影一区二区三区| 日本五十路高清| 99九九线精品视频在线观看视频| 午夜福利成人在线免费观看| 国产精品人妻久久久久久| 国产精品伦人一区二区| kizo精华| 久久99精品国语久久久| 国产视频首页在线观看| 99在线视频只有这里精品首页| 成人亚洲精品av一区二区| 国产精品电影一区二区三区| 日韩av不卡免费在线播放| 久久久久久久午夜电影| 三级国产精品片| 网址你懂的国产日韩在线| 国产精品一及| 2021少妇久久久久久久久久久| 黄色欧美视频在线观看| 寂寞人妻少妇视频99o| 嫩草影院精品99| 国产免费又黄又爽又色| 国产私拍福利视频在线观看| 国产乱人偷精品视频| 国产真实伦视频高清在线观看| 日韩 亚洲 欧美在线| 精品不卡国产一区二区三区| 一区二区三区免费毛片| 成人高潮视频无遮挡免费网站| 99久久精品热视频| 日本黄色片子视频| 午夜日本视频在线| 精品一区二区三区视频在线| 麻豆久久精品国产亚洲av| 性插视频无遮挡在线免费观看| 91狼人影院| 欧美一区二区国产精品久久精品| 国产激情偷乱视频一区二区| 成年女人永久免费观看视频| 99热精品在线国产| 少妇的逼好多水| 女的被弄到高潮叫床怎么办| 午夜日本视频在线| 韩国av在线不卡| 欧美一区二区精品小视频在线| 免费观看的影片在线观看| 国产精品.久久久| 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 91久久精品国产一区二区三区| 国产探花在线观看一区二区| 亚洲国产欧美在线一区| 夜夜爽夜夜爽视频| 国产三级在线视频| 亚洲国产精品sss在线观看| 亚洲性久久影院| 日韩制服骚丝袜av| a级毛色黄片| 一个人看的www免费观看视频| 爱豆传媒免费全集在线观看| 久99久视频精品免费| 人妻制服诱惑在线中文字幕| 长腿黑丝高跟| 欧美极品一区二区三区四区| 亚洲精品aⅴ在线观看| 久久精品久久精品一区二区三区| 久久久a久久爽久久v久久| 婷婷色麻豆天堂久久 | 蜜桃亚洲精品一区二区三区| 网址你懂的国产日韩在线| 亚州av有码| 51国产日韩欧美| 亚洲国产精品合色在线| 最近最新中文字幕免费大全7| 精品人妻熟女av久视频| 特级一级黄色大片| 色综合亚洲欧美另类图片| 欧美色视频一区免费| 久久亚洲国产成人精品v| 在线观看一区二区三区| 最近手机中文字幕大全| 久久久久免费精品人妻一区二区| 精品久久久久久久久亚洲| 毛片女人毛片| 免费看光身美女| 亚洲av成人av| 亚洲av不卡在线观看| 高清午夜精品一区二区三区| 国产精品女同一区二区软件| 久久久a久久爽久久v久久| 亚洲在线观看片| 你懂的网址亚洲精品在线观看 | 乱码一卡2卡4卡精品| 亚洲精品久久久久久婷婷小说 | 国产日韩欧美在线精品| 国产真实伦视频高清在线观看| 男人的好看免费观看在线视频| 久久久久久久久久成人| 久久久久久久久大av| 精品无人区乱码1区二区| av福利片在线观看| 国产高清国产精品国产三级 | 91久久精品电影网| 午夜老司机福利剧场| 91精品一卡2卡3卡4卡| 日韩制服骚丝袜av| 久久精品国产亚洲网站| 一个人看的www免费观看视频| 亚洲国产欧美人成| 亚洲久久久久久中文字幕| 日本免费一区二区三区高清不卡| 午夜老司机福利剧场| 亚洲在久久综合| 国产高清视频在线观看网站| 国产精品久久久久久久久免| 亚洲精品aⅴ在线观看| 亚洲精品影视一区二区三区av| 日韩欧美在线乱码| 99热网站在线观看| 99热6这里只有精品| 国内精品一区二区在线观看| 有码 亚洲区| 午夜福利成人在线免费观看| 国产精品综合久久久久久久免费| 好男人视频免费观看在线| 看片在线看免费视频| 免费av毛片视频| 精品无人区乱码1区二区| 99视频精品全部免费 在线| 欧美性猛交╳xxx乱大交人| 十八禁国产超污无遮挡网站| 亚洲自拍偷在线| 男人和女人高潮做爰伦理| www.av在线官网国产| 丰满乱子伦码专区| 国产精品永久免费网站| 国产精品无大码| 99在线视频只有这里精品首页| 国产毛片a区久久久久| 国产精品日韩av在线免费观看| 午夜精品国产一区二区电影 | 淫秽高清视频在线观看| 久久精品国产亚洲av天美| 免费看a级黄色片| 亚洲最大成人手机在线| 亚洲在久久综合| 久久久久久久午夜电影| 99热这里只有是精品50| 日韩精品有码人妻一区| 日韩一区二区三区影片| 大话2 男鬼变身卡| 丝袜美腿在线中文| 欧美日本视频| 日韩三级伦理在线观看| 国产在线一区二区三区精 | 97热精品久久久久久| 亚洲,欧美,日韩| 国产精品久久久久久精品电影| 午夜激情欧美在线| 国产午夜福利久久久久久| 亚洲国产精品成人综合色| 看黄色毛片网站| 又粗又硬又长又爽又黄的视频| 国产在线一区二区三区精 | 亚洲高清免费不卡视频| 国产探花极品一区二区| 综合色av麻豆| 久久这里有精品视频免费| 日韩大片免费观看网站 | 亚洲,欧美,日韩| 九色成人免费人妻av| 亚洲久久久久久中文字幕| 亚洲成人精品中文字幕电影| 成人av在线播放网站| 中文亚洲av片在线观看爽| 最近中文字幕高清免费大全6| 国产又色又爽无遮挡免| 欧美精品国产亚洲| 日韩欧美国产在线观看| 男人舔女人下体高潮全视频| 久久久久九九精品影院| 国产免费又黄又爽又色| 久久这里只有精品中国| 久久草成人影院| 欧美又色又爽又黄视频| 久久久国产成人免费| 国产熟女欧美一区二区| 天天躁日日操中文字幕| 欧美日本视频| 一级毛片电影观看 | 91午夜精品亚洲一区二区三区| 亚洲最大成人手机在线| 欧美日韩综合久久久久久| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 一边亲一边摸免费视频| 男女那种视频在线观看| 国产精品久久久久久精品电影| 欧美极品一区二区三区四区| 国产午夜精品久久久久久一区二区三区| 亚洲人与动物交配视频| 纵有疾风起免费观看全集完整版 | 中国国产av一级| 赤兔流量卡办理| 国产国拍精品亚洲av在线观看| 国产高清三级在线| 日日撸夜夜添| 亚洲图色成人| 男人舔女人下体高潮全视频| 国产精品伦人一区二区| 2021天堂中文幕一二区在线观| 午夜激情欧美在线| 欧美一区二区精品小视频在线| 日韩亚洲欧美综合| 熟女电影av网| 亚洲va在线va天堂va国产| 老司机影院毛片| 少妇猛男粗大的猛烈进出视频 | 久久99热6这里只有精品| 日韩人妻高清精品专区| 午夜爱爱视频在线播放| 边亲边吃奶的免费视频| 午夜精品在线福利| 亚洲中文字幕一区二区三区有码在线看| 午夜免费激情av| 小说图片视频综合网站| 欧美成人一区二区免费高清观看| 国产精品.久久久| 免费搜索国产男女视频| 看十八女毛片水多多多| 久久韩国三级中文字幕| 国产精品国产高清国产av| 69av精品久久久久久| 伦理电影大哥的女人| 狠狠狠狠99中文字幕| 少妇熟女aⅴ在线视频| 精品免费久久久久久久清纯| 熟妇人妻久久中文字幕3abv| 在线观看美女被高潮喷水网站| 18+在线观看网站| 听说在线观看完整版免费高清| 中国美白少妇内射xxxbb| 淫秽高清视频在线观看| 少妇的逼水好多| 日韩强制内射视频| 亚洲av中文字字幕乱码综合| 国产精品日韩av在线免费观看| 99久久精品一区二区三区| 国产亚洲午夜精品一区二区久久 | 一区二区三区免费毛片| 一级黄色大片毛片| 亚洲va在线va天堂va国产| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线观看吧| 国产老妇女一区| 亚洲欧美清纯卡通| 永久网站在线| 中文乱码字字幕精品一区二区三区 | 国产大屁股一区二区在线视频| 七月丁香在线播放| 乱码一卡2卡4卡精品| 97超视频在线观看视频| av在线老鸭窝| 国产亚洲91精品色在线| 免费一级毛片在线播放高清视频| 欧美一区二区国产精品久久精品| 亚洲人成网站在线观看播放| 男女国产视频网站| 久久久欧美国产精品| 国产毛片a区久久久久| 日韩成人av中文字幕在线观看| 亚洲在久久综合| 69av精品久久久久久| 免费av不卡在线播放| 69人妻影院| 秋霞伦理黄片| 综合色av麻豆| 91狼人影院| av在线播放精品| h日本视频在线播放| 18禁在线无遮挡免费观看视频| 亚洲成人av在线免费| 99久久精品国产国产毛片| 亚洲欧美精品自产自拍| 久久久久网色| 亚洲精品自拍成人| 麻豆乱淫一区二区| 亚洲精品日韩av片在线观看| 亚洲av电影不卡..在线观看| 久久这里只有精品中国| 老女人水多毛片| АⅤ资源中文在线天堂| 小蜜桃在线观看免费完整版高清| 美女xxoo啪啪120秒动态图| 天天一区二区日本电影三级| 久久6这里有精品| 亚洲av二区三区四区| 男人的好看免费观看在线视频| av在线蜜桃| 少妇熟女欧美另类| 中文欧美无线码| 99热这里只有精品一区| 99久久中文字幕三级久久日本| 国产免费又黄又爽又色| 日本猛色少妇xxxxx猛交久久| 亚洲av中文字字幕乱码综合| 99九九线精品视频在线观看视频| 亚洲欧美日韩东京热| av国产久精品久网站免费入址| 熟女电影av网| 国产真实乱freesex| 久久99精品国语久久久| 老司机福利观看| 国产精品,欧美在线| 亚洲av中文字字幕乱码综合| 嫩草影院新地址| 亚洲成人av在线免费| 亚洲欧美中文字幕日韩二区| 精品欧美国产一区二区三| 久久热精品热| 欧美3d第一页| 热99在线观看视频| 丝袜喷水一区| 国国产精品蜜臀av免费| 熟妇人妻久久中文字幕3abv| 性插视频无遮挡在线免费观看| 免费观看在线日韩| 热99re8久久精品国产| 亚洲欧美精品专区久久| 亚洲不卡免费看| 国产欧美另类精品又又久久亚洲欧美| 国产探花在线观看一区二区| 青春草亚洲视频在线观看| 免费无遮挡裸体视频| 久久国内精品自在自线图片| 男的添女的下面高潮视频| 免费看av在线观看网站| 精品人妻视频免费看| 99久久人妻综合| 男女边吃奶边做爰视频| 国产伦一二天堂av在线观看| 日韩av在线大香蕉| 国产午夜福利久久久久久| 久久久久性生活片| 久久精品夜夜夜夜夜久久蜜豆| 国产大屁股一区二区在线视频| 国产精品三级大全| 亚洲最大成人中文| 99久久精品国产国产毛片| 日日啪夜夜撸| 日本三级黄在线观看|