• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一維CdTe@C@TiO2-Au異質(zhì)結(jié)納米線的制備及其光催化性能

    2018-06-06 05:50:31陳素清梁華定金燕仙
    關(guān)鍵詞:鳳林李亮納米線

    陳素清 梁華定 金燕仙 沈 茂

    (臺州學(xué)院醫(yī)藥化工學(xué)院,臺州 318000)

    0 Introduction

    In the past two decades,titanium dioxide(TiO2),as an excellent photocatalyst,has been widely studied in various degradation of environmental pollutants.In spite of its high chemical stability,nontoxicity,low cost,and excellent degradation for organic pollutants,it can′t effectively utilize visible light in solar energy due to its large band gap (about 3.2 eV).In order to improve utilization rate of visible-light region and the photocatalytic activity of TiO2,many studies have been performed by photosensitizing TiO2structures with narrow band gap semiconductors such as CdS,CdSe,CdTe et al.[1-5],carbonaceous materials and deposition of noble metals on the surface of TiO2[6-9].Among various small band gap semiconductors,CdTe(Eg=1.5 eV)is considered to be one of the most likely candidates due to its unique electrochemical properties,and has been used in photo-electronchemical process.For example,Li has reported an efficient way to synthesize the CdTe quantum dots (QDs)-doped TiO2photocatalysts,which exhibits much higher photocatalytic activities than both controlled TiO2(without doped CdTe QDs)and P25(TiO2,Degussa)[4].Liu has reported an efficient way to synthesize the samenvatting reduced graphene oxide and CdTe nanoparticlesco-decorated TiO2nanotube array as a visible light photocatalyst[10].On the other hand,the noble metal nanoparticle based on photocatalysts can assist the electrons transfer and the efficient harvesting of visible-light[11-12].In addition,carbonaceous materials,due to their wide visible light absorption and high adsorption of organic pollutants,which facilitate the interface reaction of photocatalysis,have received particular attention[13-14].But so far,there are limited reports about using CdTe-Carbon-TiO2-Noble metal system as photocatalyst for degradation of dye.In particular,the CdTe nanowires based on plasmonic photocatalysts has not been reported.Therefore,it is critical to develop a novel onedimensional structured CdTe@C@TiO2-Au heteronanowires for enhanced photocatalytic properties.

    In the present study,efficient strategy for the synthesis of 1D CdTe@C@TiO2-Au heteronanowires for enhanced photocatalytic properties by a facile,efficient and controllable approach is proposed.The preparation procedure is shown in Scheme 1.First,CdTe@C nanowires are synthesized by one-step hydrothermal process.Next,the CdTe@C@TiO2nanowires are prepared by the solvothermal method using TIP as titanium source.Finally,Au nanoparticles,which are dispersed on the CdTe@C@TiO2nanowires by in situ reduction of HAuCl4.Then,this prepared photocatalyst is studied for the photocatalytic degradation rate of RhB under the simulated sunlight irradiation.

    Scheme 1 Preparation procedure of the CdTe@C@TiO2-Au core-shell heteronanowires

    1 Experimental

    1.1 Reagents and materials

    Ascorbic acid (C6H8O6),cetyltrimethy-lammoniumbromide(CTAB),sodium tellurite(Na2TeO3),cadmiumchloride (CdCl2·2.5H2O),anhydrous ethanol,and isopropanol were purchased from Guangfu Fine Chemical Research Institute (Tianjin,China);Titanium isopropoxide (TIP,97%),diethylenetriamine(DETA)and chloroauric acid (HAuCl4·4H2O)were purchased from Sigma-Aldrich.

    1.2 Instruments

    TEM images were obtained on a JEM-2100 TEM(JEOL Ltd.,Tokyo,Japan,200 kV).XRD analysis was performed using a Dmax-2500 (Rigaku Corporation,Tokyo,Japan,Cu Kα,λ=0.154 06 nm,U=40 kV,I=40 mA),analyzed samples were scanned from 10°to 80°at a scanning rate of 10℃·min-1.SEM was carried out on a Philips XL30 microscope (Philips,Amsterdam,Netherlands)coupled to an EDAX DX4i analyzer for energy-dispersiveX-rayanalysisat20 kV.XPS analysis was recorded by Thermo ESCALAB 250XI X-ray photoelectron spectrometer(Thermo Fisher Scientific Inc.,Waltham,MA,USA)with a monochromatized Al Kα X-ray source (1 486.6 eV)at a constant dwell time of 50 ms and a pass-energy of 50 eV.The UV-Vis absor-ption spectra of all the samples were obtained using a U-4100 spectro-photometer(Shimadzu,Tokyo,Japan).

    1.3 Synthesis and preparation

    1.3.1 Synthesis of CdTe@C core-shell nanowires

    The core-shell CdTe@C nanowires were synthesised according to previously reported[15].1.0 g ascorbic acid(C6H8O6)and 0.3 g CTAB were dissolved in 70 mL of deionized water,0.5 g Na2TeO3and 0.52 g CdCl2·2.5H2O were added to the above solution in order;a white TeO2was precipitated immediately upon the addition of the Na2TeO3then,the above solution was transferred into a 100 mL Teflon-lined stainless steel autoclave.Finally,the reaction was maintained at 180℃for 36 h in a preheated electric oven.The black products were collected and washed repeatedly with deionized water and ethanol,then dried at 60℃for 12 h.

    1.3.2 Synthesis of CdTe@C@TiO2one-dimensional nanowires

    First,0.1 g CdTe@C nanowires were dispersed into 70 mL isopropanol,and then 0.03 mL DETA and 1.5 mL TIP were added into the obtained solution.The above solution was subsequently transferred into a 100 mL Teflon-lined stainless steel autoclave and kept in an electric oven at 200℃for 24 h.When the reaction kettle was leftto cooldown to room temperature,the black products were collected after washing,centrifugation,and drying.Finally,the prepared CdTe@C@TiO2was treated at 450℃in N2for 2 h with a heating rate of 1℃·min-1to obtain highly crystalline phase.

    1.3.3 Synthesis of CdTe@C@TiO2-Au onedimensional heteronanowires

    0.1 g CdTe@C@TiO2heteronanowires and 1 mL(0.01 g·mL-1)HAuCl4were dispersed into 100 mL deionized water,the solution was heated and kept boiling under vigorous stirring for 10 minutes.Then 5 mL (0.01 g·mL-1)aqueous solution of sodium citrate were injected into the above solution,the reaction proc-eeded for 15 min.Finally,the CdTe@C@TiO2-Au heteronanowires were collected after washing,centrifugation and drying.

    Pure TiO2nanoparticles were obtained using a similar procedure to the above without CdTe@C nanowires.

    1.4 Photocatalytic activity of the CdTe@C@TiO2-Au heteronanowires

    Photocatalytic activity of the CdTe@C@TiO2-Au heteronanowires was evaluated by the degradation of RhB under the simulated sunlight irradiation by a 500 W Xe arc lamp.The experiments were as follows:0.03 g the prepared photocatalyst was dispersed in a 150 mL(25 mg·L-1)RhB aqueous solution.After reaching the adsorption-desorption equilibrium among the photocatalyst,RhB,and water,the reaction began under light irradiation,the RhB solution was filtrated to measure for every 30 min.The absorption of RhB was determined by an UV-Visible spectrophotometer(UV-4510,Shimadzu,Japan).Total organic carbon(TOC)of the RhB solution was measured with a Shimadzu TOC-VCPH analyzer.

    2 Results and discussion

    2.1 Characterization of CdTe@C@TiO2-Au heteronanowires

    XRD patterns of the synthesized CdTe@C@TiO2-Au,CdTe@C,CdTe@C@TiO2nanowires are shown in Fig.1.As shown in Fig.1,the five diffraction peaks of CdTe are clearly seen at 23.9°,39.5°,46.5°,57.1°and 62.6°of all the samples,which are indexed to the(111),(220),(311),(331)and(400)planes of the zincblende CdTe(PDF No.15-0770).As shown in Fig.1b,after deposition of TiO2nanoparticles onto the CdTe@C nanowires,the additional diffraction peaks at 2θ=25.5°,38.1°,48.2°,54.3°,and 55.0°assigned to the(101),(004),(200),(211)and(204)planes(PDF No.89-4921)are obviously observed[16].In comparison with the CdTe@C@TiO2nanowires,after grafting of Au nanoparticles on the surface,the typical diffraction peaks of Au nanoparticles can be detected(Fig.1c),which are in agreement with the standard values of gold(PDF No.04-0784).

    Fig.1 XRD patterns of(a)CdTe@C,(b)CdTe@C@TiO2 and(c)CdTe@C@TiO2-Au

    The morphology of synthesized CdTe@C,CdTe@C@TiO2,and CdTe@C@TiO2-Au nanowires are characterized by SEM and TEM.As can be seen in Fig.2(a,d),the as-prepared CdTe@C nanowires exhibit the average diameter of one-dimensional morphology is about 50 nm and the lengths is longer than 1 μm,which is consistent with the previous reports[15,17].Moreover,it is obvious that the carbon shell of CdTe@C nanowires is about 10 nm.As can be seen in Fig.2(b,e),after deposition of TiO2nanoparticles onto the CdTe@C nanowires,the average diameter of the CdTe@C@TiO2is about 150 nm.It is obvious that the uniformly TiO2nanoparticles are densely coated on the surface of CdTe@C nanowires forming the onedimensional CdTe@C@TiO2nanowires.As can be seen in Fig.2(c,f),after loading Au nanoparticles on the surface of CdTe@C@TiO2nanowires,the average diameter of Au nanoparticles(10 nm)(inset of Fig.2f)is successfully coated on the surface of CdTe@C@TiO2nanowires.

    Fig.2 SEM and TEM images of(a,d)CdTe@C nanowires,(b,e)CdTe@C@TiO2nanowires and(c,f)CdTe@C@TiO2-Au nanowires

    In order to analyze the chemical composition of the synthesized CdTe@C,CdTe@C@TiO2,and CdTe@C@TiO2-Au nanowires,the EDX spectrum was obtained for the above one-dimensional structure.As can be seen in Fig.3a,the spectrum reveals the presence of Cd,Te,and C peaks in the CdTe@C nanowires structure.After deposition of TiO2onto the CdTe@C nanowires,the presence of Cd,Te,C,Ti and O peaks in the CdTe@C@TiO2nanowires structure is confirmed(Fig.3b).After loading Au nanoparticles on the surface of CdTe@C@TiO2nanowires,it is clearly seen that the additional Au element appears (Fig.3c),which indicates that the Au nanoparticles have been loaded successfully.Furthermore,the spatial distribution of each element in these structures is investigated by the electron mapping image analysis as shown in Fig.4(a~f).

    XPS spectra are collected to determine the chemical composition and identify the chemical states of the as-prepared CdTe@C@TiO2-Au samples in Fig.5.Fig.5a shows the fully XPS spectra,it reveals the presence of Cd,Te,C,Ti,O and Au elements in the CdTe@C@TiO2-Au,which isconsistentwith the analysis of EDX and elemental mappings.As shown in Fig.5b,the Cd3d spectrum displays two peaks at 405.3 and 412.0 eV,which are attributed to the Cd in the CdTe[18].The Te3d spectrum appears at 571.8 and 582.2 eV,which are corresponded to the Cd-Te bonding states in Fig.5c[18].In the Au4f spectrum(Fig.5d),the binding energies of the peaks at 87.7 and 84.1 eV are Au4f5and Au4f7[19],respectively.Fig5(e,f)displays the C1s and O1s spectra,respectively.The peaks with binding energy of 284.8 and 531.7 eV are correspond to the C-C skeleton and an-OH group[18,20].Fig.5g displays the Ti spectrum,the two peaks at 464.1 and 458.4 eV can be attributed to the Ti2p1/2and Ti2p3/2,respectively,which are assigned to the Ti4+oxidation state according to reported XPS data[21].

    Fig.3 EDX spectra of(a)CdTe@C nanowires,(b)CdTe@C@TiO2nanowires and(c)CdTe@C@TiO2-Au nanowires

    Fig.4 Elemental mappings of Au,C,Cd,Te,O and Ti in the CdTe@C@TiO2-Au nanowires

    Fig.5 XPS spectra of CdTe@C@TiO2-Au nanowires

    To investigate the optical property of the asprepared CdTe@C nanowires, the samples are characterized by absorption spectra.The spectrum((Fig.6a)reveals that the CdTe@C nanowires have low absorption in the NIR(near infrared reflection)region,whereas the absorption is high in the UV-Vis regions.Based on their absorption spectra,the variation in the absorption coefficient as a function of photon energy for allowed direct transitions is given by:

    αhν=A(hν-Eg)1/2(1)where α is the absorption coefficient,A is a constant,h is Planck′s constant,ν is the frequency,and Egis the band gap energy.The Egvalue is obtained by extrapolating the linear part to intercept with the energy axis(Fig.6b)and is found to be 2.25 eV.

    Furthermore,the optical properties of the asprepared(a)pure TiO2nanoparticles,(b)CdTe@C@TiO2nanowires and(c)CdTe@C@TiO2-Au nanowires are investigated by UV-Vis diffuse reflectance spectra(Fig.7).As shown in Fig.7a,the absorption peak of the pure TiO2nanoparticles is around 315 nm,and there is almost no absorption of visible light.In contrast to the pure TiO2,after coating a layer of porous TiO2shell on the surface of CdTe@C,the strong absorption in visible light region was appeared due to the synergistic effect of CdTe@C@TiO2nanowires(Fig.7b).As shown in Fig.7c,it is evident that the absorption in visible light region is further improved due to the surface plasmon of Au nanoparticles.

    Fig.6 (a)Optical absorption spectrum of CdTe@C nanowires and(b)(αhν)2versus hν plot

    Fig.7 UV-Vis spectroscopy of(a)pure TiO2nanoparticles,(b)CdTe@C@TiO2nanowires and(c)CdTe@C@TiO2-Au nanowires

    2.2 Photocatalytic activities of the CdTe@C@TiO2-Au nanowires

    The photocatalytic activities of CdTe@C@TiO2-Au nanowires are evaluated through the RhB degradation under the simulated sunlight irradiation.Fig.8(a~c)display the absorption spectra of RhB solutions by different photocatalyst,respectively.It is clearly seen that the absorption peak at 552.5 nm diminishes gradually as time go on for all the samples.Furthermore,it is also clearly seen that the degradation activities of CdTe@C@TiO2-Au nanowires are higher than CdTe@C@TiO2nanowires and pure TiO2.

    Fig.8 Absorption spectra of photocatalytic degradation of RhB solution under different photocatalysts of(a)CdTe@C@TiO2-Au nanowires,(b)CdTe@C@TiO2nanowires and(c)pure TiO2

    Fig.9 (a)Degradation rate of RhB solution under different photocatalysts;(b)TOC removal rates under different photocatalysts after 270 min simulated sunlight illumination

    In addition,as shown in Fig.9a,it can be clearly observed that the degradation rates reach 95.3%for CdTe@C@TiO2-Au nanowires,68.3%for CdTe@C@TiO2,and 43.1%for pure after 270 min of simulated sunlight illumination,where C is the initial concentration before the dark reaction and Ctis a concentration of reaction time.The outstanding photocatalytic degradation activities of the CdTe@C@TiO2-Au nanowires are mainly due to the following advantages:(1)the LSPR of Au metals enhances plasmonic absorption in visible light region;(2)Au nanoparticles effectively improve the separation of photogenerated e-/h+pairs in the TiO2shell;(3)The CdTe@C nanowires offere more pronounced photon absorption due to the photosensi-tization of TiO2structures[10].Meanwhile,the TOC removal in the catalytic process is also measured.As shown in Fig.9b,CdTe@C@TiO2-Au nanowires exhibit the best catalytic performance for RhB mineralization.The initial TOC value of RhB is 24.29 mg·L-1,and the results show that the TOC removal(2.85 mg·L-1)rates reach 88.3%for CdTe@C@TiO2-Au nanowires,53.6%(11.27 mg·L-1)for CdTe@C@TiO2,and 31.49%(16.64 mg·L-1)for pure TiO2after 270 min of simulated sunlight illumination.The results of TOC removal are consistent with Fig.9a.However,the TOC measurements show thatcomplete mineralization(conversion of all carbon atoms to CO or CO2)cannot be achieved.This indicates that some small organic compounds (aldehydes,carboxylic acids etc.)still remain when the chromophores (aromatic rings)are completely broken.

    On the other hand,the kinetics of catalytic degradation of RhB in different samples is used to quantify the catalytic efficiency with the following equation:

    Where C0is the initial concentration after the dark reaction,k is a rate constant,t is time,R2is coefficient of determination.

    Linear relationships between ln(C0/Ct)and the reaction time are displayed in Fig.10(a~c),which matched well with the first-order reaction kinetics.When the system is performed with the CdTe@C@TiO2-Au nanowires as catalysts,the rate constant k(Fig.10a)is calculated to be 0.010 07 min-1,which is higher than CdTe@C@TiO2nanowires(k=0.003 97 min-1,in Fig.10b)and pure TiO2(k=0.001 79 min-1,in Fig.10c).

    Fig.10 Kinetics of catalytic degradation of RhB under different photocatalysts of(a)CdTe@C@TiO2-Au nanowires,(b)CdTe@C@TiO2nanowires and(c)pure TiO2

    In order to investigate the stability of CdTe@C@TiO2-Au nanowires in the photocatalytic RhB system,the CdTe@C@TiO2-Au is reused by centrifugalization.As presented in Fig.11,the catalytic activity of CdTe@C@TiO2-Au decreases slightly obviously after recycling for four times.This may be due to the agglomeration and the loss of Au nanoparticles during repeated reuse.

    Fig.11 (a)Degradation rate of RhB in 270 min by CdTe@C@TiO2-Au for four cycles;(b)TEM image of CdTe@C@TiO2-Au after four cycles

    2.3 Photocatalysis mechanism

    In general,the band structure of the photocatalyst is responsible for the efficient generation and separation process of the electron-hole pairs.The band positions of CdTe@C nanowires can be calculated by the following empirical formulas[22]:

    where EVBis the valence band (VB)potentials,ECBis the conduction band(CB)potential,X is the electronegativity of the semiconductor(which is the geometric mean of the electronegativity of the constituent atoms),Eeis the energy of free electrons on the hydrogen scale(~4.5 eV),X is the electronegativity of the semiconductor(5.3 eV for CdTe@C).Therefore,EVBof CdTe@C is 1.93 eV,ECBof CdTe@C is-0.32 eV,EVBof TiO2is 3.0 eV,ECBof TiO2is-0.2 eV.In addition,the Au nano-particles decorated on the surface of semiconductor can act as electron trap to promote the separation of photogenerated charge carriers,absorb visible light and generate electrons due to the LSPR effect as well.

    Based on the above discussion,we proposed a complete photocatalytic mechanism for the 1D CdTe@C@TiO2-Au nanowires under the simulated sunlight irradiation as illustrated by formulae(5~11).

    Existing literatures show that CdTe has a high optical absorption capacity for visible light as a narrow band gap energy semiconductor at room temperature[23].By controlling the morphological parameters of CdTe from quantum dot to nanowires,a wide range of band gap energies in the visible spectrum can be formed[24-25].In addition,CdTe nanowires with carbon can not only make itself more stable,but also improve the visible light photocatalytic activity[13].When the CdTe@C@TiO2-Au catalyst was exposed to an Xe lamp,the materials of CdTe nanowires and TiO2are excited(formula 5).Then,the photoexcited electron migrates from the conduction band of CdTe (CBCdTe)to the conduction band of TiO2(CBTiO2),leaving the photogenerated holes in the valence band of CdTe(VBCdTe),and the photogenerated holes of TiO2move from thethe VBCdTe,which can hinder the recombination of electron and holes (formula 6)[18].In addition,the Au nanoparticles decorated on the surface of 1D CdTe@C@TiO2can not only act as electron trap to promote the separation ofphotogenerated charge carriers,but also can absorb visible light and generate electrons due to the surface plasmon resonance effect(formulae 7 and 8).At last,the photogenerated holes react with H2O to form·OH (formula 9).Meanwhile,the photogenerated electrons react with the O2on the surface of catalyst or in the solution to form·O2-(formula 10).Finally,the Rhodamine B are degraded by·OH and·O2-radicals (formula 11).In order to intuitively understand the charge separation and transfer between CdTe@C,TiO2and Au under the simulated sunlight irradiation,the synergetic mechanism of the electron-hole separation is illustrated in Scheme 2.

    Scheme 2 Mechanism of charge separation and transfer between CdTe@C,TiO2and Au nanoparticles under the simulated sunlight irradiation

    3 Conclusions

    In conclusion,we have successfully synthesized a novel 1D structured TiO2-coated CdTe@C nanowires support for Au nanoparticles.The characterization results confirm that the 1D morphology of CdTe@C@TiO2-Au nanowires with an average diameter of about 150 nm(the lengths>1 μm)combines the strong light harvesting capability.This ternary design can not only enhance the absorption in visible region,but also promote the photogenerated electron/hole separation.Consequently,itisfound thattheresultant1D CdTe@C@TiO2-Au heteronanowires have much higher photocatalytic effect of RhB than that of CdTe@C@TiO2nanowires and pure TiO2,and the degradation rates can reach 95.3%for CdTe@C@TiO2-Au with 270 min of irradiation time.

    Acknowledgments:This study is funded by the National Natural Science Fund(Grant No.21403150),the General research project of Zhejiang Provincial Department of Education(Grant No.Y201636639)and the Scientific Research Fund of Zhejiang Provincial Education Department(Grant No.Y201224099).

    [1]Banerjee S,Mohapatra S K,Das P P,et al.Chem.Mater.,2015,20(21):6784-6791

    [2]Kim J C,Choi J,Lee Y B,et al.Chem.Commun.,2006,48(48):5024-5026

    [3]Ho W,Yu J C.J.Mol.Catal.A:Chem.,2006,247(1):268-274

    [4]Li Y S,Jiang F L,Xiao Q,et al.Appl.Catal.,B,2010,101(1):118-129

    [5]XIANG Yu(向宇),FU Ji-Jiang(付繼江),HE Na(赫娜),et al.Chinese J.Inorg.Chem.(無 機(jī) 化 學(xué) 學(xué) 報(bào)),2013,29(6):1215-1221

    [6]Li H X,Bian Z F,Zhu J,et al.J.Am.Chem.Soc.,2007,129(15):4538-4539

    [7]LIU Li-Fen(柳麗芬),DONG Xiao-Yan(董曉艷),YANG Feng-Lin(楊鳳林),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2008,24(2):211-217

    [8]KOU Shu-Fang(寇書芳),FENG Zhen-Yu(封振宇),WANG Chun-Xing(王春省),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2017,33(8):1390-1396

    [9]Wang R H,Wang X W,Xin J H.ACS Appl.Mater.Interface,2014,2(1):82-85

    [10]Liu M J,Lei H,Liu X N,et al.J.Mater.Sci.,2014,49(5):2263-2269

    [11]Zhang N,Liu S Q,Fu X Z,et al.J.Phys.Chem.C,2011,115(18):9136-9145

    [12]Chen S F,Li J P,Qian K.Nano Res.,2010,3(4):244-255

    [13]Zhuang J D,Tian Q F,Zhou H,et al.J.Mater.Chem.,2012,22(14):7036-7042

    [14]Wang D H,Jia L,Wu X L,et al.Nanoscale,2012,4(2):576-584

    [15]Hadia N M,Awad M A,Mohamed S H.Appl.Phys.A,2016,122(10):889-893

    [16]LI Liang(李亮),LIU Li-Fen(柳麗芬),YANG Feng-Lin(楊鳳林).Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2017,33(4):637-643

    [17]Yong S M,Muralidharan P,Jo S H.Mater.Lett.,2014,64(14):1551-1554

    [18]Zhu W F,Pan S G,Wang W W,et al.New J.Chem.,2013,37(9):2751-2757

    [19]Shen M,Chen S Q,Jia W P,et al.Gold Bull.,2016,9(3/4):103-109

    [20]Zheng Y Z,Xu Y Y,Fang H B,et al.RSC Adv.,2015,5(126):103790-103796

    [21]Dong Q S,Yu H C,Jiao Z B,et al.RSC Adv.,2014,4(103):59114-59117

    [22]Guan M L,Ma D K,Hu S W,et al.Inorg.Chem.,2011,50(3):800-805

    [23]Zhang W G,Liu J,Guo Z Y,et al.J.Mater.Sci.:Mater.Electron.,2017,28(13):9505-9513

    [24]Fang J,Xu L,Zhang Z Y,et al.ACS Appl.Mater.Interface,2013,5(16):8088-8092

    [25]Liang X R,Tan S S,Tang Z Y.Langmuir,2004,20(4):1016-1020

    猜你喜歡
    鳳林李亮納米線
    改天請你喝酒
    故事會(2022年3期)2022-02-10 21:13:35
    白磷燃燒實(shí)驗(yàn)的改進(jìn)
    3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
    高鳳林:平靜握住那桿焊槍
    中國工人(2018年11期)2018-12-19 05:23:00
    高鳳林 航天火箭的“金手天焊”
    從唐詩看“一代有一代之文學(xué)”理論之失
    溫度對NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    人 物
    軍工文化(2016年4期)2016-06-22 16:27:21
    必修1復(fù)習(xí)測試題一
    国产黄色视频一区二区在线观看 | 99久久精品国产国产毛片| 成年女人永久免费观看视频| 高清日韩中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄 | 久久久色成人| 国产片特级美女逼逼视频| 成年女人毛片免费观看观看9| 直男gayav资源| 亚洲人成网站在线播| 午夜福利成人在线免费观看| 精品久久久久久久久久久久久| 国产在视频线在精品| 国产探花在线观看一区二区| 欧美激情久久久久久爽电影| 91久久精品电影网| 此物有八面人人有两片| 久久久精品大字幕| 人妻久久中文字幕网| 成人二区视频| 久久精品国产亚洲网站| 成人鲁丝片一二三区免费| 亚洲精品乱码久久久v下载方式| 亚洲精品456在线播放app| 蜜桃久久精品国产亚洲av| 国产大屁股一区二区在线视频| 级片在线观看| 九九爱精品视频在线观看| 精品99又大又爽又粗少妇毛片| 在线免费十八禁| 免费大片18禁| а√天堂www在线а√下载| 精品欧美国产一区二区三| 成熟少妇高潮喷水视频| 成人美女网站在线观看视频| 麻豆一二三区av精品| 欧美人与善性xxx| 级片在线观看| 男人狂女人下面高潮的视频| 在线免费十八禁| 少妇的逼好多水| 变态另类成人亚洲欧美熟女| 在线免费观看不下载黄p国产| 久久99热这里只有精品18| 国产一级毛片七仙女欲春2| 免费看日本二区| 国产av不卡久久| 伦理电影大哥的女人| 熟女人妻精品中文字幕| 亚洲婷婷狠狠爱综合网| 免费观看的影片在线观看| 亚洲av熟女| 最近中文字幕高清免费大全6| 国产片特级美女逼逼视频| 午夜精品在线福利| 一个人免费在线观看电影| 中文字幕熟女人妻在线| 久久久久久大精品| 床上黄色一级片| 国产精品一及| 亚洲美女视频黄频| 亚洲av中文av极速乱| 在线观看av片永久免费下载| 久久人人精品亚洲av| 成人国产麻豆网| 成人漫画全彩无遮挡| 非洲黑人性xxxx精品又粗又长| 欧美潮喷喷水| 日韩一本色道免费dvd| АⅤ资源中文在线天堂| 国产精品一区www在线观看| 国产探花在线观看一区二区| 日本五十路高清| 九九热线精品视视频播放| 亚洲国产精品成人久久小说 | 国产激情偷乱视频一区二区| 免费看a级黄色片| 国产精品精品国产色婷婷| 久久精品国产亚洲网站| 久久久久国产精品人妻aⅴ院| 久久国产乱子免费精品| 日本免费a在线| 亚洲成a人片在线一区二区| 国产亚洲精品综合一区在线观看| 国产 一区精品| 最近中文字幕高清免费大全6| 亚洲欧美精品综合久久99| 成人精品一区二区免费| av在线观看视频网站免费| 国产一区二区三区在线臀色熟女| 麻豆乱淫一区二区| 不卡视频在线观看欧美| 99热网站在线观看| 国产亚洲av嫩草精品影院| 亚洲av成人精品一区久久| 欧美日韩一区二区视频在线观看视频在线 | 一级毛片aaaaaa免费看小| 三级国产精品欧美在线观看| 一级毛片电影观看 | 亚洲最大成人av| 午夜激情福利司机影院| 又黄又爽又免费观看的视频| 色吧在线观看| 午夜爱爱视频在线播放| 国产精品人妻久久久久久| 国产高潮美女av| 亚洲美女黄片视频| 三级国产精品欧美在线观看| 国产成人一区二区在线| 亚洲欧美日韩东京热| 三级经典国产精品| 日韩一本色道免费dvd| 久久精品久久久久久噜噜老黄 | 看黄色毛片网站| 亚洲经典国产精华液单| 精品一区二区三区人妻视频| 国产真实伦视频高清在线观看| 美女免费视频网站| 免费看a级黄色片| 国产高清视频在线观看网站| 插逼视频在线观看| 在线天堂最新版资源| 一个人看视频在线观看www免费| 亚洲中文日韩欧美视频| 三级男女做爰猛烈吃奶摸视频| 午夜福利18| 两个人视频免费观看高清| 色av中文字幕| 亚洲成人av在线免费| 亚洲av美国av| 97超级碰碰碰精品色视频在线观看| 一个人看视频在线观看www免费| 精华霜和精华液先用哪个| 91久久精品国产一区二区成人| 色尼玛亚洲综合影院| 一级黄色大片毛片| 一级毛片电影观看 | 少妇人妻一区二区三区视频| 五月玫瑰六月丁香| 少妇的逼好多水| 日本黄大片高清| av在线观看视频网站免费| 免费av毛片视频| 日韩强制内射视频| 岛国在线免费视频观看| 一区二区三区免费毛片| 亚洲欧美精品综合久久99| 天堂影院成人在线观看| 小蜜桃在线观看免费完整版高清| 黄色一级大片看看| 在线天堂最新版资源| 欧美日韩综合久久久久久| 伦精品一区二区三区| 婷婷精品国产亚洲av| 国产高潮美女av| 国产男靠女视频免费网站| 黄片wwwwww| 乱人视频在线观看| 久久人人爽人人片av| 国产精品一区二区免费欧美| 一级黄色大片毛片| 婷婷色综合大香蕉| 最近视频中文字幕2019在线8| 性色avwww在线观看| 国产精品一二三区在线看| 午夜精品一区二区三区免费看| 在线播放无遮挡| 你懂的网址亚洲精品在线观看 | 久久韩国三级中文字幕| 国产成人影院久久av| 最近2019中文字幕mv第一页| 国产淫片久久久久久久久| 韩国av在线不卡| 亚洲av成人精品一区久久| 免费看光身美女| 日本成人三级电影网站| 日本黄大片高清| 日本色播在线视频| 97在线视频观看| 色播亚洲综合网| 免费看日本二区| 十八禁国产超污无遮挡网站| 亚洲av中文av极速乱| 女人十人毛片免费观看3o分钟| 久久久久久久久久久丰满| 悠悠久久av| 深爱激情五月婷婷| 天堂网av新在线| 自拍偷自拍亚洲精品老妇| 一区二区三区四区激情视频 | 一级毛片aaaaaa免费看小| 亚洲欧美日韩无卡精品| 老司机影院成人| 成人永久免费在线观看视频| 亚洲18禁久久av| 中文字幕精品亚洲无线码一区| 免费看光身美女| 国产一区亚洲一区在线观看| 极品教师在线视频| 国产高清视频在线播放一区| 69人妻影院| 真实男女啪啪啪动态图| 美女免费视频网站| 少妇人妻精品综合一区二区 | 高清午夜精品一区二区三区 | 中文字幕精品亚洲无线码一区| 亚洲最大成人中文| 97在线视频观看| 亚洲久久久久久中文字幕| 日韩欧美 国产精品| 一夜夜www| 真实男女啪啪啪动态图| avwww免费| 久久久国产成人免费| 欧美激情国产日韩精品一区| 亚洲国产欧洲综合997久久,| 日本在线视频免费播放| 少妇人妻一区二区三区视频| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看 | 神马国产精品三级电影在线观看| 亚洲精品亚洲一区二区| av在线天堂中文字幕| 晚上一个人看的免费电影| 黄色一级大片看看| 18禁黄网站禁片免费观看直播| 国产高清三级在线| 日本熟妇午夜| 淫妇啪啪啪对白视频| 最新在线观看一区二区三区| 成年免费大片在线观看| 成年免费大片在线观看| av专区在线播放| 精品熟女少妇av免费看| 久久久成人免费电影| 高清毛片免费观看视频网站| 精品久久久噜噜| 亚洲中文字幕日韩| avwww免费| 观看美女的网站| 国产黄色视频一区二区在线观看 | 婷婷六月久久综合丁香| av在线播放精品| 精品人妻熟女av久视频| 精品久久久久久久久久免费视频| 国产一级毛片七仙女欲春2| 3wmmmm亚洲av在线观看| 亚洲av成人av| av卡一久久| 又爽又黄无遮挡网站| 久久久久久久亚洲中文字幕| 特级一级黄色大片| av福利片在线观看| 成人av一区二区三区在线看| 免费看光身美女| 婷婷精品国产亚洲av| 亚洲欧美日韩无卡精品| 十八禁网站免费在线| 美女内射精品一级片tv| 秋霞在线观看毛片| 精品一区二区三区av网在线观看| 18+在线观看网站| 亚洲中文字幕一区二区三区有码在线看| 美女免费视频网站| av在线播放精品| 非洲黑人性xxxx精品又粗又长| 久久久久精品国产欧美久久久| 亚洲国产精品久久男人天堂| 露出奶头的视频| 天堂√8在线中文| 天天躁日日操中文字幕| 简卡轻食公司| 亚洲图色成人| h日本视频在线播放| 精品国产三级普通话版| 欧美xxxx黑人xx丫x性爽| 99久久成人亚洲精品观看| 久久久久久久久久成人| 中文字幕av成人在线电影| 丰满人妻一区二区三区视频av| 免费大片18禁| 国产精品美女特级片免费视频播放器| 亚洲av成人精品一区久久| 一级黄色大片毛片| 深夜a级毛片| 少妇的逼好多水| 亚洲av第一区精品v没综合| 国产精品久久视频播放| 欧美色视频一区免费| 色哟哟·www| 色播亚洲综合网| 人妻少妇偷人精品九色| 久久久久久久久久久丰满| 大香蕉久久网| 欧美日本亚洲视频在线播放| 美女黄网站色视频| 毛片一级片免费看久久久久| 国产精品久久电影中文字幕| 日韩欧美在线乱码| 欧美日韩一区二区视频在线观看视频在线 | 色噜噜av男人的天堂激情| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产精品成人综合色| 日韩 亚洲 欧美在线| 久久精品国产亚洲av天美| 又黄又爽又免费观看的视频| 久久国产乱子免费精品| 国产精品女同一区二区软件| 国产真实乱freesex| 久久久a久久爽久久v久久| 在线a可以看的网站| 日本五十路高清| 亚洲av免费在线观看| 国产精品久久视频播放| 91精品国产九色| 亚洲精品一卡2卡三卡4卡5卡| 国产高清视频在线播放一区| 日韩精品有码人妻一区| а√天堂www在线а√下载| 国产精品一二三区在线看| 色5月婷婷丁香| 亚洲精品在线观看二区| 天堂动漫精品| 日韩高清综合在线| 蜜桃亚洲精品一区二区三区| 国内精品久久久久精免费| 精品人妻偷拍中文字幕| 变态另类丝袜制服| 午夜激情欧美在线| 成人综合一区亚洲| 亚洲av二区三区四区| 日本黄大片高清| 免费看a级黄色片| 日韩成人av中文字幕在线观看 | 熟女人妻精品中文字幕| 中文字幕免费在线视频6| 欧美最新免费一区二区三区| 亚洲自偷自拍三级| 国产片特级美女逼逼视频| 人人妻人人澡人人爽人人夜夜 | 国产成人福利小说| 午夜激情福利司机影院| 色综合色国产| 国产高清视频在线观看网站| 欧美中文日本在线观看视频| 悠悠久久av| 午夜免费激情av| 精品福利观看| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看| 一夜夜www| 欧美人与善性xxx| 舔av片在线| 在线国产一区二区在线| a级毛片a级免费在线| 欧美最黄视频在线播放免费| 亚洲熟妇熟女久久| 日韩一区二区视频免费看| 亚洲精品色激情综合| 老女人水多毛片| 久久精品国产清高在天天线| 中文字幕人妻熟人妻熟丝袜美| 最新中文字幕久久久久| 亚洲久久久久久中文字幕| 日本免费一区二区三区高清不卡| 噜噜噜噜噜久久久久久91| 午夜免费激情av| 亚洲图色成人| 日韩精品青青久久久久久| av在线播放精品| 天堂av国产一区二区熟女人妻| 国产精品,欧美在线| 午夜激情福利司机影院| 在线天堂最新版资源| 69人妻影院| 免费观看精品视频网站| 欧美日韩精品成人综合77777| 最近手机中文字幕大全| 国产精品不卡视频一区二区| 在线观看一区二区三区| 18禁在线无遮挡免费观看视频 | 亚洲一级一片aⅴ在线观看| av女优亚洲男人天堂| h日本视频在线播放| 亚洲国产欧美人成| 国产精品永久免费网站| 亚洲第一区二区三区不卡| 国产黄a三级三级三级人| 欧美xxxx性猛交bbbb| 两性午夜刺激爽爽歪歪视频在线观看| 国产高清激情床上av| 熟女人妻精品中文字幕| 国产精品1区2区在线观看.| 十八禁网站免费在线| 亚洲av不卡在线观看| 一区二区三区高清视频在线| 狠狠狠狠99中文字幕| 国产高清三级在线| 国产三级中文精品| 日韩高清综合在线| 中文资源天堂在线| 日韩欧美一区二区三区在线观看| 在现免费观看毛片| 成年版毛片免费区| 九九热线精品视视频播放| 欧美3d第一页| .国产精品久久| 少妇的逼好多水| 欧美中文日本在线观看视频| 在线a可以看的网站| 在线观看美女被高潮喷水网站| 成熟少妇高潮喷水视频| 国产熟女欧美一区二区| 国产高清视频在线观看网站| 美女高潮的动态| av福利片在线观看| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久免费视频| 97人妻精品一区二区三区麻豆| 亚洲最大成人手机在线| 欧美绝顶高潮抽搐喷水| 免费电影在线观看免费观看| 能在线免费观看的黄片| 国产白丝娇喘喷水9色精品| 国产av不卡久久| 特大巨黑吊av在线直播| 一进一出抽搐gif免费好疼| 两个人视频免费观看高清| 国产欧美日韩精品一区二区| 久久这里只有精品中国| 能在线免费观看的黄片| 精品福利观看| 天美传媒精品一区二区| 亚洲人成网站高清观看| 自拍偷自拍亚洲精品老妇| 一区二区三区免费毛片| av专区在线播放| 亚洲欧美成人综合另类久久久 | 国产爱豆传媒在线观看| 亚洲精品影视一区二区三区av| 波多野结衣巨乳人妻| 久久久久久久久大av| 免费在线观看成人毛片| 老熟妇乱子伦视频在线观看| 免费看美女性在线毛片视频| 亚洲av中文字字幕乱码综合| 亚洲av美国av| 直男gayav资源| www日本黄色视频网| 成年免费大片在线观看| 国产高潮美女av| 男人的好看免费观看在线视频| 亚洲av五月六月丁香网| 舔av片在线| av专区在线播放| 国产一区亚洲一区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩无卡精品| 狂野欧美白嫩少妇大欣赏| 永久网站在线| 嫩草影院入口| 天堂av国产一区二区熟女人妻| 亚洲真实伦在线观看| 男人和女人高潮做爰伦理| 人人妻人人看人人澡| 日韩精品有码人妻一区| 成人鲁丝片一二三区免费| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 不卡视频在线观看欧美| 精品国产三级普通话版| 99热6这里只有精品| 黄色日韩在线| 九九热线精品视视频播放| 国产综合懂色| 3wmmmm亚洲av在线观看| 久久人人爽人人片av| 人妻久久中文字幕网| 国产精品一区二区性色av| 99riav亚洲国产免费| 亚洲av五月六月丁香网| 91在线精品国自产拍蜜月| 免费av观看视频| 99热网站在线观看| 国产69精品久久久久777片| 高清午夜精品一区二区三区 | 欧美激情在线99| 真人做人爱边吃奶动态| 久久精品影院6| 亚洲图色成人| 欧美bdsm另类| 三级毛片av免费| 亚洲av五月六月丁香网| 国国产精品蜜臀av免费| 国产大屁股一区二区在线视频| 久久精品国产自在天天线| 久久久久性生活片| 成年女人看的毛片在线观看| 中国美女看黄片| 在线观看66精品国产| 亚洲精品国产成人久久av| 精品久久久久久久久久免费视频| 久久精品夜夜夜夜夜久久蜜豆| 51国产日韩欧美| 人妻夜夜爽99麻豆av| 欧美xxxx黑人xx丫x性爽| av在线亚洲专区| 久久久久久久午夜电影| 午夜精品一区二区三区免费看| 国产高清激情床上av| 三级毛片av免费| 久久精品91蜜桃| 在线观看美女被高潮喷水网站| 国产伦精品一区二区三区四那| 亚洲美女视频黄频| 欧美中文日本在线观看视频| 97碰自拍视频| 高清毛片免费观看视频网站| 欧美激情久久久久久爽电影| 日本爱情动作片www.在线观看 | 久久人人爽人人爽人人片va| 尤物成人国产欧美一区二区三区| 日日啪夜夜撸| 成人av在线播放网站| 成人av一区二区三区在线看| 久久九九热精品免费| 日本黄大片高清| 欧美成人一区二区免费高清观看| 亚洲国产精品合色在线| 久久久精品94久久精品| 真人做人爱边吃奶动态| 淫秽高清视频在线观看| 午夜免费男女啪啪视频观看 | 老女人水多毛片| 高清日韩中文字幕在线| 99热这里只有精品一区| 美女大奶头视频| 成熟少妇高潮喷水视频| 色噜噜av男人的天堂激情| 久久精品国产99精品国产亚洲性色| 国产三级中文精品| 亚洲婷婷狠狠爱综合网| 特级一级黄色大片| 91久久精品国产一区二区三区| 免费一级毛片在线播放高清视频| 亚洲自偷自拍三级| 国产高清三级在线| 婷婷六月久久综合丁香| 高清毛片免费看| 亚洲精品成人久久久久久| 中文字幕免费在线视频6| 一区二区三区高清视频在线| 好男人在线观看高清免费视频| 亚洲欧美精品自产自拍| 国产淫片久久久久久久久| 国产精品一区二区性色av| 一个人观看的视频www高清免费观看| 少妇熟女aⅴ在线视频| 精品免费久久久久久久清纯| 国产精品亚洲美女久久久| 欧美性猛交╳xxx乱大交人| 不卡视频在线观看欧美| 毛片一级片免费看久久久久| 老熟妇乱子伦视频在线观看| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| www日本黄色视频网| 99在线视频只有这里精品首页| 又粗又爽又猛毛片免费看| 欧美色欧美亚洲另类二区| 村上凉子中文字幕在线| 99热全是精品| 自拍偷自拍亚洲精品老妇| 国产精品伦人一区二区| 亚洲自拍偷在线| 性欧美人与动物交配| 美女大奶头视频| 亚洲精品456在线播放app| 久久人人精品亚洲av| 午夜福利成人在线免费观看| 在线观看一区二区三区| 久久久久久久久久久丰满| 高清日韩中文字幕在线| 国产aⅴ精品一区二区三区波| 99热网站在线观看| 国产成人a区在线观看| 国产一区二区亚洲精品在线观看| 亚洲美女搞黄在线观看 | 成人鲁丝片一二三区免费| 一a级毛片在线观看| 中文在线观看免费www的网站| 国产精品免费一区二区三区在线| 老女人水多毛片| 国产高清激情床上av| 一本精品99久久精品77| 亚洲自偷自拍三级| 日韩欧美国产在线观看| 天堂动漫精品| 99热精品在线国产| 校园人妻丝袜中文字幕| 赤兔流量卡办理| 岛国在线免费视频观看| 九九在线视频观看精品| 毛片女人毛片| 22中文网久久字幕| 成人鲁丝片一二三区免费| av国产免费在线观看| 校园春色视频在线观看| 一a级毛片在线观看| 亚洲精品乱码久久久v下载方式| 日韩制服骚丝袜av| 可以在线观看毛片的网站| 国产一区二区亚洲精品在线观看| 日韩欧美在线乱码| 一夜夜www|