• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電解液成分、厚度及表面改性對(duì)旋涂法制備的BiVO4膜層光電化學(xué)性能的影響

    2018-06-06 05:50:36隋美蓉顧修全時(shí)梅林劉琳琳倪中海
    關(guān)鍵詞:中國(guó)礦業(yè)大學(xué)化工學(xué)院醫(yī)學(xué)影像

    隋美蓉 顧修全 時(shí)梅林 劉琳琳 倪中海

    (1中國(guó)礦業(yè)大學(xué)化工學(xué)院,徐州 221116)(2徐州醫(yī)科大學(xué)醫(yī)學(xué)影像學(xué)院,徐州 221004)(3中國(guó)礦業(yè)大學(xué)材料科學(xué)與工程學(xué)院,徐州 221116)

    0 Introduction

    During the last few years,much attention has been paid to solar-driven water splitting,which is a low-cost technique for the utilization of solar energy to produce chemical fuels (such as H2)[1-2].There are three main ways for solar water splitting:photocatalysis,photoelectrochemical(PEC)cells,and the photovoltaic(PV)driven PEC cells[3].Of them,the PEC method(i.e.,the PEC cell)owns the most ideal cost performance,thus it might be one of the most promising techniques for a large-scale application in near future.It is known that the photoanode is a key component of the PEC cell,which is always a semiconductor and can realize a conversion of solar energy to electricity.

    As early as in 1967,Fujishima and Honda discovered that H2can be generated from a PEC cell which is consisted of a TiO2photoanode under an ultraviolet(UV)illumination[4].Nevertheless,TiO2is a wide bandgap semiconductor(Eg=3.2~3.4 eV),which can only respond to UV light that accounts for 4%of incoming solar energy.Thus,it is necessary to either reduce the bandgap of TiO2,modify with narrow-gap semiconductors or look for a new alternative photoanode[5-6].Up to now,a number of semiconductor photoanodes have been developed to replace TiO2for operating under a visible light irradiation,including α-Fe2O3,WO3,BiOBr,Ag3PO4,BiVO4,NiNb2O6,and so on[7-12].Of them,BiVO4represents one of the most promising photoanode candidates due to a plenty of advantages like non-toxicity,stability,low cost,narrow band gap of~2.4 eV,as well as the suitable levels of the conduction band (CB)and valence band (VB)[13].Fortunately,in a latest report,it has been demonstrated that a PEC device made of modified BiVO4and α-Fe2O3as dual photoanodes shows an unbiased water splitting efficiency (or said,solar to hydrogen efficiency)of 7.7%[14].Moreover,it is relatively easy to obtain a BiVO4porous thin film with controllable thicknessdue tothe accessibility ofa Bi-V-O precursor with good fluidity and dispersity[15].Based on the above merits,similar with TiO2,it has been demonstrated feasible to fabricate a BiVO4photoanode with both an inverse opal network structure and a considerable average pore size by using a dilute Bi-VO precursor[16-17].

    Theoretically,the maximum water oxidation photocurrent density(Jmax)for BiVO4photoanodes under Air-mass 1.5 Global(AM 1.5G)solar illumination is 7.5 mA·cm-2[18].Nevertheless,to the best of our knowledge,the reported photocurrent density(J)are much lower than the theoretical value(7.5 mA·cm-2),owing to a serous carrier recombination occurred at the electrolyte/electrolyte interface[19].In other words,only a small part of photoexcited holes take part in the water oxidation reaction and make a contribution to the photocurrent output.So far,much effort has been devoted to improve the performance of BiVO4photoanodes,including the doping of hetero-ions (such as Mo6+,W6+,P5+),surface modification and forma-tion of a heterostructure with other semiconductors[20-22],but few work is focused on the effect of layer thickness or electrolyte component on the PEC performance of BiVO4.Surely,fewer attention is paid towards the mechanism why the performance of BiVO4porous thin film is improved.

    In the present work,we will investigate the effect of preparation and characterization conditions on the PEC properties of porous BiVO4thin films which were synthesized on the fluorine doped tin oxide(FTO,also named as SnO2∶F)substrates through a facile spincoating deposition method.After optimizing the preparation procedure,a photocurrent density of~4.3 mA·cm-2was achieved in the cobalt phosphate(Co-Pi)modified BiVO4layers undera visible-light irradiation intensity of 100 mW·cm-2.The mechanism for the performance improvement was analyzed by combining LSV plots with electrochemical impedance spectra(EIS).

    1 Experimental

    All the chemical reagents including bismuth nitrate pentahydrate(Bi(NO3)3·5H2O,≥98%),vanadyl acetylacetonate(VO(acac)2,≥98%), cobaltnitrate hexahydrate(Co(NO3)2·6H2O,≥98%),glacial acetic acid(CH3CO2H,≥99.7%)and acetylacetone(≥99%)were analytically pure (AR)and purchased from ShanghaiCiviCo.,Ltd.Conductive FTO glass substrates (2.2 mm thick,15 Ω·□-1)were obtained from Yinkou OPV Tech Co.,Ltd.

    1.1 Preparation of porous BiVO4thin films

    The actual concentration of precursor solution was determined by adding the Bi and V based salts(solute).For example,in order to prepare a 45 mmol·L-1precursor solution for synthesizing BiVO4porous thin films,two different solutions were prepared by dissolving 0.131 g(0.27 mmol)of Bi(NO3)3·5H2O in 1 mL of acetic acid and 0.072 g(0.27 mmol)of VO(acac)2in 5 mL methanol.After pouring the solution containing Bi into that containing V slowly (or said,drop by drop),the mixture (nBi/nV=1)was subjected to ultrasonicate robustly for 30 min,after which a stable,clear and straw-yellow precursor solution was obtained.This precursor was then employed in the following spincoating procedure.Different concentrations (nBi/nV=1)of precursor solution were obtained with the same methods.

    The film deposition process involved a small amount(~125 μL)of precursor solution being spread over the whole FTO substrate (2 cm×2 cm)and the substrate was then spin-coated at 1 500 r·min for 20 s,as displayed in Fig.1.Afterwards,the film samples were transferred into an oven and dried at 150℃for 5 min,followed by a further 400℃annealing treatment for 2 h.The processes of spin-coating deposition and air-annealing were repeated several times to obtain a target thickness of the BiVO4porous thin film.

    Fig.1 Schematic procedure for preparing BiVO4porous thin films

    1.2 Photo-assisted Co-Pi electrodeposition

    This technique was chosen for the deposition of Co-Pi because it provides a more efficient route of coupling Co-Pi to the BiVO4electrode than the common electrodeposition[20].This technique involved a porous BiVO4thin film(working electrode,WE),an saturated calomel(reference electrode,RE)and a Pt foil(counter electrode,CE)being immersed in a 0.1 mol·L-1sodium phosphate buffer(pH=7.0)containing 0.5 mmol·L-1of Co2+ions (from cobalt nitrate).A constant potential of 1.32 V versus saturated calomel electrode(SCE)was then applied for a certain period of time using an electrochemical workstation(CHI660D).In addition,the visible light(100 mW·cm-2)from a 500 W Xe lamp was used to irradiate the BiVO4electrodes during the whole deposition process(lasting for 15 min).

    1.3 Material characterization

    The cross-sectional morphology and phase structure were characterized by a field emission scanning electron microscopy (FESEM,Sirion 200)operating at 5 kV and an X-ray diffraction(XRD,Haoyuan DX-2700)with a Cu Kα source(λ=0.154 06 nm).X-ray tube voltage,current and scanning range were set at 45 kV,40 mA and 2θ=10°~80°,respectively.In addition,the diffuse absorption spectra of BiVO4porous thin films were measured on a Cary 300 UV-Visspectrophotometerwith integrating sphere(Varian,USA).The composition of a Co-Pi modified BiVO4film was characterized by an electron probe micro-analyzer(EPMA-8050G,Shimadzu,Japan).

    1.4 PEC measurements

    The PEC performance was measured by an electrochemical workstation(CHI660D)under irradiation.The visible-light irradiation was provided by a 500 W Xe lamp (Beijing Trusttech Technology Co.,Ltd.)with using a UV cut-off filter.The BiVO4porous thin films were employed as the working electrode(WE),and they were coated with a non-conductive epoxy,leaving an active area of 1 cm×1 cm.Additionally,a Pt foil and a SCE were used as the counter electrode (CE)and reference electrode (RE),respectively.The electrolyte is a mixed aqueous solution of Na2SO4and Na2SO3.

    Linear sweep voltammogram (LSV)plots were gained under visible light irradiation,while the Mott-Schotty plots were measured in dark at a constant frequency of 1 kHz.The Nyquist plots were obtained at a potential of 0 V (vs SCE)by a choice of alternating current impedance technology at a frequency range from 10-2to 105Hz.For all the PEC measurements,a front-side illumination of the BiVO4working electrodes was employed.On the basis of this,the fabricated BiVO4electrode was further adopted as a PEC bio-sensing platform (also said,the bio-sensor)for detecting the glutathione(GSH).The bioanalysis of the GSH concentration was examined by performing the transient photocurrent(J-t)plots at a bias of 0 V(vs SCE)and under irradiation.

    2 Results and discussion

    Fig.2 shows the typical XRD pattern,crosssectional SEM image and UV-Vis spectrum.It is clearly seen that the BiVO4film exhibits a monoclinic structure,since that all the peaks can be assigned to PDF No.14-688 and except those from a FTO layer(Fig.2a).It is also found that the BiVO4porous thin film displays a good visible light response,while the film thickness is around 120 nm (Fig.2b).An abrupt absorption edge appears around 500 nm,which is consistent with the bandgap of BiVO4(~2.4 eV).

    Fig.2 Typical XRD pattern(a)and optical absorption spectra(b)of BiVO4porous thin films which were deposited on FTO substrates(5 cycles)directly

    2.1 Effect of electrolyte composition

    Fig.3 shows the influence of electrolyte component on the actual PEC performance of the BiVO4films.It is found that the photocurrent density is independent on the electrolyte concentration while strongly dependent on the electrolyte composition.In details,no obvious changes are observed in the LSV or J-t plots with only increasing the concentration of Na2SO4from 0.1 to 1.0 mol·L-1,while the photocurrent is enhanced significantly after adding 0.1 molinto the 0.1 molsolution.It suggests that the performance of a photoanode is very sensitive to the hole scavenger Na2SO3in the electrolyte.Namely,the anion SO32-could react with the photoexcited holes more easily than OH-in the water,leading to a large enhancementofthe photocurrent density.

    Fig.3 LSV plots(a)and J-t plots under a chopped irradiation(b)of BiVO4thin porous films laid in different electrolytes containing of Na2SO3and Na2SO4

    2.2 Effect of precursor concentrations

    Fig.4 Cross-sectional FESEM images of BiVO4porous thin films fabricated in different precursor concentrations of(a)15,(b)30,(c)45 and(d)60 mmol·L-1with a constant cycle number of 5

    Fig.4 displays the cross-sectional SEM images of BiVO4synthesized byusing the precursorswith various concentrations.Apparently,the thicker the precursor solution,the larger thickness is the BiVO4layer.It is reasonable that the films are thickened from ~30 to ~210 nm with increasing the precursor concentration from 15 to 60 mmol·L-1,while they display a porous structure due to the evaporation of organic components.Of these samples,the one deposited at a precursor concentration of 45 mmol·L-1displays a film thickness of~120 nm.

    Fig.5 displays the UV-Vis absorption spectra of the BiVO4films with different precursor concentrations.Apparently,the visible-light harvesting of the photoanode gets enhanced a lot with increasing the precursor concentration,which is a result of the improved film thickness.Besides,it is also found that the optical bandgap (Eg)is reduced slightly due to a larger influence of the BiVO4in the entire BiVO4/FTO bilayered films.It is known that BiVO4owns a narrower bandgap(Eg=2.4 eV)than FTO(Eg=3.6~4.0 eV),thus a larger content ratio of BiVO4/FTO would result in a narrower bandgap of the sample.

    Fig.5 UV-Vis diffusion absorption spectra of BiVO4 porous thin films fabricated in different concentrations of the precursor solution(from 15 to 60 mmol·L-1)using a constant cycle number of 5

    Fig.6 also displays the LSV plots of BiVO4films with differentconcentrations ofprecursor.Itis observed that the highest photocurrent density(1.49 mA·cm-2at 0.6 V(vs SCE))appears in the BiVO4film deposited using a 45 mmol·L-1precursor solution.It is easily understood that an increase of film thickness facilitates enhancing the lightharvesting ofa photoanode.However,the actual photocurrent is also limited by the poor carrier diffusion lengths of BiVO4polycrystalline films,which results in a decrease of the photocurrentas the precursorconcentration increases from 45 to 60 mmol·L-1.

    Fig.6 LSV plots under a continuous irradiation of BiVO4porous thin films which were prepared using different concentrations of precursor solution

    2.3 Effect of deposition cycles

    Fig.7 indicates the cross-sectional SEM images of BiVO4films deposited with various layer numbers.As expected,both the thickness and porosity are enhanced significantly afterincreasing the layer number from 2 to 10.Apparently,it can reach the identical effect with an increase of precursor concentration.Accordingly,the effect of deposition cycles(namely,layer numbers)on the PEC activity is also examined in Fig.8.It is clearly observed that the BiVO4sample with 5 deposition cycles displays the highest photocurrent value at 0.6 V(vs SCE)of all.In other words,when the layer number exceeds 5,the photocurrent is reduced accordingly due to a limitation of the charge carrier diffusion length.That is to say,the optimal PEC performance is achieved in the BiVO4films with a layer number of 5 or thickness of~120 nm.

    Fig.7 Cross-sectional FESEM images of BiVO4porous thin films fabricated using a precursor concentration of 45 mmol·L-1and different layer number of(a)2,(b)5,(c)7 and(d)10

    Fig.8 LSV plots under a continuous irradiation of BiVO4 porous thin films prepared using different layer numbers

    Fig.9 Amperometric J-t plots(a)and linear relationship between photocurrent density and GSH concentration(b)of a BiVO4PEC bio-sensor with an addition of GSH to reach the concentrations of 0~1 000 μmmol·L-1in the electrolyte;(c)Selectivity experiment by testing in the solutions containing different organic interferents including PBS,L-Cystenine,L-Tyrosine,Glucose,Cystine,L-Glutamic Acid,AA,where the concentrations of these interferents are 20 μmol·L-1while that of GSH is 100 μmol·L-1;(d)Possible mechanism for the PEC detection of GSH

    Further,we also assembled a PEC sensor by using a porous BiVO4film electrode,and the biosensing performance of this device was measured at zero bias(0 V vs SCE),as indicated in Fig.9.Herein,the BiVO4film was fabricated under the optimal condition(45 mmol·L-1and 5 layers).At first,a series of sharp peaks in the J-t plots(similar with the phenomenon appeared in references[23-24]),suggesting that there is an instability in the photocurrent(Fig.9a).Such a behavior may be due to the poor charge separation on BiVO4surfaces or interfaces under zero bias.Besides,with increasing the GSH concentration(from 0 to 1 000 μmol·L-1),the photo-response is enhanced significantly,which displays an acceptable sensitivity for detecting the GSH (Fig.9b).And also,this BiVO4biosensor also exhibits much higher photoresponse towards detection ofGSH than other additives(Fig.9c),which was attributed to the higher redox capability of GSH.Namely,it was easy to realize a conversion of GSH to the oxidized glutathione(GSSG)through the following reaction[25]:2GSH+2h++2OH-→GSSG+2H2O.The possible mechanism for the PEC detection of GSH is shown in Fig.9d.Apparently,under a visible light irradiation,a number of electron-hole pairs are produced inside a porous BiVO4film.The existence of the GSH species in an electrolyte acceleratesthe consumption ofholes,leading to a faster migration of the electron towards the opposite direction(i.e.,the photocurrent).In other words,the GSH plays a role of the hole sacrificial agent,leadingtoan acceleration ofthe carrier separation and an enhancement of the photocurrent output.

    2.4 Effect of Co-Pi modification

    In this section,the effect a Co-Pi modification was investigated on the PEC activity of a BiVO4electrode.Table 1 displays the actual composition of the Co-Pi/BiVO4film sample.The elements of Co and P are clearly identified with considerable contents,which demonstrates a success in the Co-Pi modification.Note that all the elements(Bi,V,Co,etc.)could be viewed as the oxides exist in the sample,where the elements Na,Si and Ca are from the glass substrate.

    Table 1 Composition analysis of the Co-Pi modified BiVO4thin film via an electron microprobe

    Fig.10 displays a comparison of the LSV plots of BiVO4films before and after Co-Pi modification.Apparently,the photocurrent of a BiVO4electrode is enhanced a lot after coating with a co-catalyst Co-Pi,reaching to a value of 4.3 mA·cm-2at a bias of 0.6 V(vs SCE).Such a value is comparable to several previous reports.Further,the mechanism for the performance enhancement is also revealed through an EIS analysis,including the Nyquist and Mott-Schotty plots displayed in Fig.11a and 11b,respectively.Typically,during an equivalent circuit model displayed in the inset of Fig.11a,RSrepresents the series resistance from the solid electrode,electrolyte and wires,while RCTrepresents the charge transfer resistance occurred atthe electrode/electrolyte interface.As indicated in Table 2,the parameters Ndand Vfbrepresent the donor concentration and flat-band potential of a BiVO4film electrode, respectively. Both of them can be determined from a linear fitting of the Mott-Schotty plots in Fig.11b.Herein,Ndis inversely proportional to the slope of the fitted curve,while Vfbcorresponds to the intercept of the fitted plot on the X-axis.Notably,after a Co-Pi modification,RCTgets smaller while Vfbbecomes more positive,implying that the charge transfer resistance is reduced a lot.That is to say,the PEC performance enhancement is attributed to a more efficient interfacial charge transfer process.

    Fig.10 LSV plots under a continuous irradiation of BiVO4porous thin films with and without the Co-Pi modification

    Fig.11 Comparison on the Nyquist(a)and Mott-Schotty plots(b)of BiVO4porous thin films with and without the Co-Pi modification

    Table 2 Calculated electronic parameters from Nyquist plots under illumination and Mott-Schotty plots measured in dark of BiVO4electrodes by terms of the corresponding model or formula[24]

    3 Conclusions

    BiVO4porous thin films have been prepared through a facile spin-coating route,followed by an airannealing treatment process for PEC applications.The effects of electrolyte composition and preparation parameters(layer thickness)were investigated,too.The PEC activity of BiVO4could be enhanced efficiently by adding the hole scavenger SO32-into the electrolyte.Otherwise,it was also found that the BiVO4film exhibit the optimal PEC performance (~4.3 mA·cm-2)after using a 45 mmol·L-1precursor,depositing for 5 layers(with a thickness of~120 nm)and modifying with Co-Pi thin layer,and using a 0.1 mol·L-1Na2SO4+0.1 mol·L-1Na2SO3solution as the electrolyte.Finally,a PEC bio-sensor based on BiVO4has been fabricated for detecting the GSH,leading to an acceptable sensitivity.

    [1]Chen X B,Li C,Grtzel M,et al.Chem.Soc.Rev.,2012,41:7909-7937

    [2]Ma Y,Wang X L,Jia Y S,et al.Chem.Soc.Rev.,2014,114(19):9987-10043

    [3]Zhang X F,Zhang B Y,Cao K,et al.J.Mater.Chem.A,2015,3:21630-21636

    [4]Fujishima H,Honda K.Nature,1972,238:37-38

    [5]YUAN Su-Jun(袁素珺),ZHANG Qing-Hong(張青紅),LEI Fang(雷芳),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2015,31(6):1099-1104

    [6]XU Zhen(許貞),LI Juan(李娟),LI Xin-Jun(李新軍).Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2013,29(3):429-436

    [7]Mayer M T,Lin Y,Yuan G,et al.Acc.Chem.Res.,2013,46(7):1558-1566

    [8]Hong S J,Lee S,Jang J S,et al.Energy Environ.Sci.,2011,4:1781-1787

    [9]Li K,Zhang H B,Tang Y P,et al.Appl.Catal.B,2015,164:82-91

    [10]Sui M R,Han C P,Wang Y,et al.J.Mater.Sci.-Mater.Electron.,2016,27:4290-4296

    [11]Zhang S,Gu X Q,Zhao Y L,et al.Mater.Sci.Eng.B,2015,201:57-65

    [12]ZHANG Yan(張妍),YU Jian-Qiang(于建強(qiáng)),GAO Xing-Long(高行龍),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2011,27(1):141-144

    [13]Li J T,Wu N Q.Catal.Sci.Technol.,2015,5:1360-1384

    [14]Kim J H,Jang J W,Jo Y H,et al.Nat.Commun.,2016,7:13380(9 Pages)

    [15]Sayama K,Nomura A,Zou Z,et al.Chem.Commun.,2003(23):2908-2909

    [16]Ma M,Kim J K,Zhang K,et al.Chem.Mater.,2014,26:5592-5597

    [17]Zhang L W,Reisner E,Baumberg J J.Energy Environ.Sci.,2014,7:1402-1408

    [18]Park Y,McDonald K J,Choi K S.Chem.Soc.Rev.,2013,42:2321-2337

    [19]Zhong D K,Choi S,Gamelin D R.J.Am.Chem.Soc.,2011,133:18370-18377

    [20]Thalluri S M,Hernández S,Bensaid S,et al.Appl.Catal.,B,2016,180:630-636

    [21]Jo W J,Jang J W,Kong K,et al.Angew.Chem.Int.Ed.,2012,51(13):3147-3151

    [22]Rao P M,Cai L L,Liu C,et al.Nano Lett.,2014,14(2):1099-1105

    [23]Ng Y H,Iwase A,Kudo A,et al.J.Phys.Chem.Lett.,2010,1(17):2607-2612

    [24]Zhang S,Gu X Q,Zhao Y L,et al.J.Electron.Mater.,2016,45(1):648-653

    [25]Zhao K,Yan X Q,Gu Y S,et al.Small,2016,12(2):245-251

    猜你喜歡
    中國(guó)礦業(yè)大學(xué)化工學(xué)院醫(yī)學(xué)影像
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    醫(yī)學(xué)影像技術(shù)在醫(yī)學(xué)影像診斷中的合理運(yùn)用
    《當(dāng)代醫(yī)學(xué)影像誤診學(xué)》出版
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    《當(dāng)代醫(yī)學(xué)影像誤診學(xué)》正式出版
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    《化工學(xué)報(bào)》贊助單位
    高校學(xué)生評(píng)教的問(wèn)題與對(duì)策——以中國(guó)礦業(yè)大學(xué)為例
    中國(guó)礦業(yè)大學(xué)教育培訓(xùn)工作簡(jiǎn)介
    醫(yī)學(xué)影像專業(yè)放射物理教學(xué)改革與實(shí)踐
    国产黄片美女视频| 日本色播在线视频| 午夜福利在线在线| 色哟哟·www| 亚洲高清免费不卡视频| 亚洲图色成人| 日韩国内少妇激情av| 亚洲第一区二区三区不卡| 欧美精品一区二区免费开放| 18禁裸乳无遮挡动漫免费视频| 久久青草综合色| 春色校园在线视频观看| 直男gayav资源| 大香蕉久久网| 2022亚洲国产成人精品| 日本猛色少妇xxxxx猛交久久| 日韩欧美精品免费久久| 观看免费一级毛片| 寂寞人妻少妇视频99o| 少妇人妻久久综合中文| 久久国产亚洲av麻豆专区| 亚洲成人一二三区av| 美女中出高潮动态图| 成年美女黄网站色视频大全免费 | 亚洲欧美日韩东京热| 国产极品天堂在线| 男女边吃奶边做爰视频| 国产精品熟女久久久久浪| 日日啪夜夜爽| 一个人看的www免费观看视频| 免费人妻精品一区二区三区视频| 亚洲国产欧美人成| 人人妻人人添人人爽欧美一区卜 | 国产免费又黄又爽又色| 老熟女久久久| 国产 一区 欧美 日韩| 免费看日本二区| 青春草国产在线视频| 国产亚洲精品久久久com| 久久国内精品自在自线图片| 韩国av在线不卡| 亚洲美女搞黄在线观看| 精品亚洲成国产av| 亚洲在久久综合| 亚洲国产高清在线一区二区三| 国产极品天堂在线| 草草在线视频免费看| 精品久久久久久久久av| 午夜免费鲁丝| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区国产| 中文字幕亚洲精品专区| 成年女人在线观看亚洲视频| 国产成人精品福利久久| 我的女老师完整版在线观看| 简卡轻食公司| 久久亚洲国产成人精品v| 国产极品天堂在线| av国产精品久久久久影院| 蜜桃亚洲精品一区二区三区| 久久国产精品大桥未久av | 国产一区亚洲一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 丝袜喷水一区| 免费看不卡的av| 大话2 男鬼变身卡| 日本vs欧美在线观看视频 | 久久99热这里只频精品6学生| 国产精品免费大片| 97在线视频观看| 王馨瑶露胸无遮挡在线观看| 精品一区二区三区视频在线| 在线免费观看不下载黄p国产| 亚洲精品成人av观看孕妇| 如何舔出高潮| 观看免费一级毛片| 小蜜桃在线观看免费完整版高清| 内射极品少妇av片p| 亚洲电影在线观看av| 免费观看av网站的网址| 自拍偷自拍亚洲精品老妇| 菩萨蛮人人尽说江南好唐韦庄| 久久久国产一区二区| 亚洲欧美日韩卡通动漫| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久成人av| 午夜福利视频精品| 日本欧美国产在线视频| 午夜老司机福利剧场| 亚洲精品国产成人久久av| 午夜福利视频精品| 亚洲va在线va天堂va国产| av不卡在线播放| 午夜福利影视在线免费观看| 青春草亚洲视频在线观看| 午夜老司机福利剧场| 国产精品国产三级国产专区5o| 亚洲精品日本国产第一区| 国产69精品久久久久777片| 最近2019中文字幕mv第一页| 在线观看人妻少妇| 国产成人freesex在线| 在线观看av片永久免费下载| 久久久久久久久大av| 综合色丁香网| 人妻系列 视频| 又黄又爽又刺激的免费视频.| 18+在线观看网站| h日本视频在线播放| av在线蜜桃| 又大又黄又爽视频免费| 精品一区在线观看国产| av国产久精品久网站免费入址| 美女高潮的动态| 国产乱人偷精品视频| 久久久久久久久久成人| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩在线观看h| 一边亲一边摸免费视频| 国产成人a∨麻豆精品| 国内少妇人妻偷人精品xxx网站| 看非洲黑人一级黄片| 国内揄拍国产精品人妻在线| 青春草亚洲视频在线观看| 老司机影院成人| 亚洲美女搞黄在线观看| 国产午夜精品一二区理论片| 欧美一级a爱片免费观看看| 午夜福利影视在线免费观看| 久久久久网色| 在线观看人妻少妇| 亚洲经典国产精华液单| 亚洲激情五月婷婷啪啪| 亚洲av福利一区| 色视频在线一区二区三区| 久久久久网色| 中文字幕人妻熟人妻熟丝袜美| 国产探花极品一区二区| 91久久精品电影网| 亚州av有码| 久久97久久精品| 秋霞在线观看毛片| 成人一区二区视频在线观看| 大陆偷拍与自拍| 26uuu在线亚洲综合色| 一级毛片电影观看| 一区二区三区乱码不卡18| 纯流量卡能插随身wifi吗| av视频免费观看在线观看| 久久精品人妻少妇| 亚洲成人手机| 久久久欧美国产精品| 国产午夜精品久久久久久一区二区三区| 亚洲欧美日韩卡通动漫| 日韩一区二区视频免费看| av播播在线观看一区| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片| 国产精品一及| 亚洲精品中文字幕在线视频 | 人人妻人人看人人澡| 久久国产乱子免费精品| 国产精品熟女久久久久浪| 国产精品人妻久久久久久| 五月伊人婷婷丁香| 久久久久网色| 网址你懂的国产日韩在线| 日韩三级伦理在线观看| 蜜桃亚洲精品一区二区三区| 国产成人精品久久久久久| 亚洲av电影在线观看一区二区三区| 在线亚洲精品国产二区图片欧美 | 五月开心婷婷网| 欧美bdsm另类| 国产黄色视频一区二区在线观看| 久久国产精品大桥未久av | 97精品久久久久久久久久精品| 一个人看视频在线观看www免费| 色吧在线观看| 如何舔出高潮| 男人舔奶头视频| 国产精品久久久久久av不卡| 国产精品国产av在线观看| 日韩精品有码人妻一区| 下体分泌物呈黄色| 国产探花极品一区二区| 欧美国产精品一级二级三级 | 国产白丝娇喘喷水9色精品| 美女国产视频在线观看| 国产视频内射| 1000部很黄的大片| 精品久久久久久久末码| 国产欧美日韩精品一区二区| 美女国产视频在线观看| 国产精品一二三区在线看| 久久国产精品大桥未久av | 韩国av在线不卡| 波野结衣二区三区在线| 人人妻人人添人人爽欧美一区卜 | 视频区图区小说| 久久久久网色| 欧美区成人在线视频| 久久久精品94久久精品| 精品亚洲成a人片在线观看 | 精品亚洲成a人片在线观看 | 丝袜喷水一区| 日产精品乱码卡一卡2卡三| 97在线视频观看| 内地一区二区视频在线| 欧美精品一区二区免费开放| 男人和女人高潮做爰伦理| 高清视频免费观看一区二区| 麻豆国产97在线/欧美| 午夜精品国产一区二区电影| 日产精品乱码卡一卡2卡三| 精品久久久精品久久久| 国产一区二区三区综合在线观看 | 亚洲在久久综合| 在线观看三级黄色| 高清在线视频一区二区三区| 深夜a级毛片| 日韩亚洲欧美综合| 久久婷婷青草| 免费av不卡在线播放| tube8黄色片| 午夜福利在线在线| 欧美日韩视频精品一区| 天堂8中文在线网| 男人狂女人下面高潮的视频| 十八禁网站网址无遮挡 | 少妇裸体淫交视频免费看高清| 视频区图区小说| 最近手机中文字幕大全| 精品久久久噜噜| 我的老师免费观看完整版| 免费不卡的大黄色大毛片视频在线观看| 免费久久久久久久精品成人欧美视频 | av在线播放精品| 美女cb高潮喷水在线观看| 99久国产av精品国产电影| av线在线观看网站| 久久鲁丝午夜福利片| 久久精品国产自在天天线| 黑人高潮一二区| 国产亚洲91精品色在线| 国精品久久久久久国模美| 蜜桃亚洲精品一区二区三区| 久久国产精品男人的天堂亚洲 | 视频区图区小说| 青春草亚洲视频在线观看| 久久久久性生活片| 亚洲精品一区蜜桃| 欧美变态另类bdsm刘玥| 亚洲欧美成人精品一区二区| 亚洲电影在线观看av| 一区在线观看完整版| 国产男女内射视频| 久久6这里有精品| 日日摸夜夜添夜夜爱| 日本一二三区视频观看| 亚洲美女搞黄在线观看| 尾随美女入室| 黄色一级大片看看| 看十八女毛片水多多多| 成年美女黄网站色视频大全免费 | 国产成人a区在线观看| 亚洲在久久综合| 寂寞人妻少妇视频99o| 99久久中文字幕三级久久日本| 欧美zozozo另类| 午夜福利视频精品| 国产片特级美女逼逼视频| 欧美极品一区二区三区四区| 国产一级毛片在线| 国产毛片在线视频| 纵有疾风起免费观看全集完整版| 精品午夜福利在线看| 在线观看美女被高潮喷水网站| 国产免费一区二区三区四区乱码| 性色avwww在线观看| 亚洲美女搞黄在线观看| 色综合色国产| 婷婷色麻豆天堂久久| 日本av手机在线免费观看| 男人狂女人下面高潮的视频| 99国产精品免费福利视频| 少妇丰满av| 成人亚洲精品一区在线观看 | 婷婷色综合大香蕉| 嫩草影院新地址| 欧美3d第一页| 麻豆成人av视频| 男女下面进入的视频免费午夜| 丰满少妇做爰视频| 亚洲丝袜综合中文字幕| 久久99蜜桃精品久久| 国产成人免费无遮挡视频| 精品一品国产午夜福利视频| 五月伊人婷婷丁香| 亚洲综合精品二区| 男女无遮挡免费网站观看| 91午夜精品亚洲一区二区三区| 日韩成人av中文字幕在线观看| 在线 av 中文字幕| 免费黄频网站在线观看国产| 免费观看在线日韩| 成人国产麻豆网| 亚洲四区av| 欧美老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 国产久久久一区二区三区| 观看av在线不卡| 熟女人妻精品中文字幕| 日本黄大片高清| 成人无遮挡网站| 国产毛片在线视频| 人人妻人人添人人爽欧美一区卜 | 日韩av免费高清视频| 一个人免费看片子| 亚洲精品色激情综合| 亚洲精品乱码久久久v下载方式| 日本色播在线视频| 亚洲av不卡在线观看| 国产精品成人在线| 啦啦啦啦在线视频资源| 欧美日韩在线观看h| 麻豆乱淫一区二区| 2022亚洲国产成人精品| 天堂俺去俺来也www色官网| 亚洲精品自拍成人| 狂野欧美白嫩少妇大欣赏| 国产免费一级a男人的天堂| 一本久久精品| 成年美女黄网站色视频大全免费 | 男男h啪啪无遮挡| 国产探花极品一区二区| 久久97久久精品| 亚洲在久久综合| 一级毛片久久久久久久久女| 不卡视频在线观看欧美| 久久97久久精品| 国产成人freesex在线| 综合色丁香网| www.av在线官网国产| 欧美少妇被猛烈插入视频| 国产精品一区www在线观看| 性色avwww在线观看| 联通29元200g的流量卡| 国产精品国产三级专区第一集| 一级毛片我不卡| 免费黄频网站在线观看国产| 在线看a的网站| 亚洲国产欧美在线一区| 毛片一级片免费看久久久久| 日韩一区二区三区影片| 少妇精品久久久久久久| 这个男人来自地球电影免费观看 | 自拍偷自拍亚洲精品老妇| 久久6这里有精品| 国产成人午夜福利电影在线观看| 美女主播在线视频| 人妻少妇偷人精品九色| 人人妻人人澡人人爽人人夜夜| 免费av中文字幕在线| 久久精品国产鲁丝片午夜精品| 男人舔奶头视频| 夜夜骑夜夜射夜夜干| 一个人看视频在线观看www免费| 啦啦啦在线观看免费高清www| 蜜桃亚洲精品一区二区三区| 久久久久久九九精品二区国产| 18禁在线无遮挡免费观看视频| 在线播放无遮挡| 日韩中文字幕视频在线看片 | 国产精品福利在线免费观看| 免费观看的影片在线观看| 亚洲在久久综合| 久久人人爽人人爽人人片va| 狠狠精品人妻久久久久久综合| 男的添女的下面高潮视频| 在线免费十八禁| 国产永久视频网站| 建设人人有责人人尽责人人享有的 | 国产精品人妻久久久影院| 一级爰片在线观看| 日韩av免费高清视频| h视频一区二区三区| 97在线视频观看| 午夜免费男女啪啪视频观看| 18禁在线播放成人免费| 国产在线免费精品| 最后的刺客免费高清国语| 一级毛片黄色毛片免费观看视频| 亚洲av免费高清在线观看| 在线看a的网站| 下体分泌物呈黄色| 2022亚洲国产成人精品| 欧美 日韩 精品 国产| 3wmmmm亚洲av在线观看| 极品少妇高潮喷水抽搐| 又粗又硬又长又爽又黄的视频| 免费人成在线观看视频色| 亚洲内射少妇av| 久久久精品免费免费高清| 成人影院久久| 亚洲最大成人中文| 嫩草影院入口| 肉色欧美久久久久久久蜜桃| 亚洲欧美中文字幕日韩二区| 亚洲激情五月婷婷啪啪| 亚洲精品中文字幕在线视频 | 中文精品一卡2卡3卡4更新| 欧美97在线视频| 一级a做视频免费观看| 国产精品国产av在线观看| 美女xxoo啪啪120秒动态图| 国产精品99久久久久久久久| 美女福利国产在线 | 最近中文字幕高清免费大全6| 亚洲中文av在线| 欧美日韩国产mv在线观看视频 | 三级国产精品片| 中文欧美无线码| 午夜激情福利司机影院| 亚洲国产高清在线一区二区三| 黄色怎么调成土黄色| 精品人妻一区二区三区麻豆| 国产亚洲5aaaaa淫片| 成人影院久久| 香蕉精品网在线| 国产精品一区二区三区四区免费观看| 亚洲精品,欧美精品| 久久久精品94久久精品| 亚洲精品成人av观看孕妇| 国产精品一区二区三区四区免费观看| 少妇丰满av| 99久久精品国产国产毛片| 欧美高清成人免费视频www| av国产免费在线观看| 国产淫片久久久久久久久| 国产成人一区二区在线| 有码 亚洲区| 一级爰片在线观看| 日日撸夜夜添| 亚洲美女搞黄在线观看| 成人黄色视频免费在线看| 三级国产精品片| 亚洲精品视频女| a 毛片基地| 男女免费视频国产| 国产精品熟女久久久久浪| 夫妻性生交免费视频一级片| 久久6这里有精品| 亚洲,欧美,日韩| 亚洲av电影在线观看一区二区三区| 午夜免费观看性视频| 亚洲国产欧美在线一区| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人综合另类久久久| 亚洲av不卡在线观看| 亚洲精品亚洲一区二区| 久久精品久久久久久久性| 精品国产三级普通话版| 夜夜爽夜夜爽视频| 亚洲精品国产色婷婷电影| 少妇的逼水好多| av又黄又爽大尺度在线免费看| 亚洲第一av免费看| 亚洲精品乱久久久久久| 国产男人的电影天堂91| 色婷婷久久久亚洲欧美| 亚洲国产毛片av蜜桃av| 国产爱豆传媒在线观看| 美女内射精品一级片tv| 中文资源天堂在线| 精品久久久久久久久av| 国产精品99久久99久久久不卡 | 免费观看a级毛片全部| 啦啦啦啦在线视频资源| 交换朋友夫妻互换小说| 中文字幕精品免费在线观看视频 | av网站免费在线观看视频| 插阴视频在线观看视频| 亚洲色图av天堂| 男男h啪啪无遮挡| 看免费成人av毛片| 日本爱情动作片www.在线观看| 熟女av电影| 亚洲国产欧美人成| 久久婷婷青草| 中国三级夫妇交换| 精品亚洲成国产av| 最近最新中文字幕免费大全7| 国产日韩欧美在线精品| 日本vs欧美在线观看视频 | 一个人免费看片子| 97超视频在线观看视频| 亚洲av在线观看美女高潮| 又大又黄又爽视频免费| 美女高潮的动态| 午夜福利高清视频| 黄色视频在线播放观看不卡| 精品国产一区二区三区久久久樱花 | 激情 狠狠 欧美| 在线播放无遮挡| 日日撸夜夜添| 直男gayav资源| 国内揄拍国产精品人妻在线| 久热久热在线精品观看| 国产精品无大码| 国产亚洲一区二区精品| 91午夜精品亚洲一区二区三区| 麻豆成人午夜福利视频| 国产免费福利视频在线观看| 亚洲成人手机| 久久国产精品大桥未久av | 日韩亚洲欧美综合| 免费观看av网站的网址| 99久国产av精品国产电影| 男的添女的下面高潮视频| 亚洲精品成人av观看孕妇| 亚洲精品久久久久久婷婷小说| 国产黄色视频一区二区在线观看| 日韩欧美 国产精品| 热99国产精品久久久久久7| 精品国产露脸久久av麻豆| 亚洲精品国产av成人精品| av在线蜜桃| 秋霞在线观看毛片| 午夜福利在线在线| 久久久久性生活片| av免费观看日本| 国产爽快片一区二区三区| 在线观看免费高清a一片| 国产有黄有色有爽视频| 国产在视频线精品| 国产熟女欧美一区二区| 丰满迷人的少妇在线观看| 黄色配什么色好看| 成人亚洲欧美一区二区av| 久久韩国三级中文字幕| 一级毛片黄色毛片免费观看视频| 热99国产精品久久久久久7| 久久精品人妻少妇| 最近2019中文字幕mv第一页| 日日啪夜夜撸| 国产精品一二三区在线看| 亚洲精品日韩av片在线观看| 国产深夜福利视频在线观看| 国产一区二区在线观看日韩| 免费看av在线观看网站| 蜜臀久久99精品久久宅男| 亚洲精品456在线播放app| 亚洲精品自拍成人| 免费黄色在线免费观看| 日韩av不卡免费在线播放| 最近的中文字幕免费完整| 国产极品天堂在线| 欧美3d第一页| 26uuu在线亚洲综合色| 久久久久久人妻| 日日撸夜夜添| 国产色婷婷99| 国国产精品蜜臀av免费| 国产又色又爽无遮挡免| 青春草亚洲视频在线观看| 熟女av电影| 黄色怎么调成土黄色| 网址你懂的国产日韩在线| 婷婷色综合www| 交换朋友夫妻互换小说| 久久久久性生活片| 国产 一区精品| 晚上一个人看的免费电影| 亚洲av成人精品一二三区| 免费黄频网站在线观看国产| 免费久久久久久久精品成人欧美视频 | 成人二区视频| 九色成人免费人妻av| 波野结衣二区三区在线| 成年免费大片在线观看| 精品午夜福利在线看| 五月开心婷婷网| 日韩 亚洲 欧美在线| 国产精品一及| 免费看光身美女| 欧美xxxx性猛交bbbb| 九九久久精品国产亚洲av麻豆| 久久国产精品男人的天堂亚洲 | 老熟女久久久| 一级毛片电影观看| 亚洲国产高清在线一区二区三| 晚上一个人看的免费电影| 成人特级av手机在线观看| 日韩,欧美,国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 在线看a的网站| 欧美成人午夜免费资源| 青春草亚洲视频在线观看| 亚洲经典国产精华液单| 亚洲国产精品成人久久小说| 国产精品无大码| av专区在线播放| 能在线免费看毛片的网站| 亚洲成人中文字幕在线播放| 小蜜桃在线观看免费完整版高清| 最后的刺客免费高清国语| 亚洲欧美日韩无卡精品| 成人一区二区视频在线观看| 亚洲国产最新在线播放| 久久国产乱子免费精品| 免费人成在线观看视频色| 好男人视频免费观看在线| 亚洲天堂av无毛| 人人妻人人看人人澡|