• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    核殼結(jié)構(gòu)的Co3O4@δ-MnO2/Pt作為鋰氧電池高效催化正極

    2018-06-06 05:50:35曹高劭趙新兵
    關(guān)鍵詞:核殼杭州學(xué)報(bào)

    成 浩 謝 ?。?, 陳 振 涂 健 曹高劭 趙新兵,

    (1浙江大學(xué)材料科學(xué)與工程學(xué)院,杭州 310027)(2浙江省電池新材料與應(yīng)用技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,杭州 310027)(3湖南立方新能源科技有限責(zé)任公司,株洲 412000)

    Lithium-oxygen(Li-O2)batteries now have captured a world-wide attention due to the extremely high theoretical energy density of 3 505 Wh·kg-1,showing promising applications in electric vehicles[1-10].In nonaqueous Li-O2batteries,during discharge,oxygen is reduced to O2-which reacts with Li+to form Li2O2at cathode.Upon the subsequent recharge,Li2O2can be electrochemically decomposed to release oxygen and Li+[4].Unlike the shuttle mechanism in Li-ion batteries,the deposition of insulating/insoluble Li2O2will cause sluggish oxygen reduction/evolution reaction(ORR/OER)kinetics,leading to high polarization,low yieldable capacity and poor cycling stability[11-12].It is widely acknowledged that the electrode kinetics can be enhanced by using efficient catalysts.Besides the components,the architecture of catalytic electrode should also be specially designed to adapt the Li2O2deposition without drastically changing the structure of the electrodes[13-17].

    Carbon materials have been widely used as the catalysts for Li-O2batteries due to the low cost,high electronic conductivity,light weight and easy manipulation of the porosity[18-23].However,carbon materials suffer from decomposition chemically or electrochemically in contact with Li2O2or LiO2[24-25].In addition,the catalytic performance of carbon materials for OER is not satisfactory.Although noble metals provide the best catalytic activity for both ORR and OER[26-33],the high cost limits their large-scale applications.Transition metals oxides,such as MnO2,Co3O4,NiO,and CoOOH,are suitable due to low cost,structural stability and relatively high catalytic activity for ORR/OER[34-42].Thus,a compromise can be made by combining transition metals oxides and noble metals.However,unlike carbon materials,it is difficult to allocate free space for Li2O2deposition in oxides.

    Array-type electrode prepared by direct growth route is desirable since the voids between the arrays could be used to storeCui et al.[37]first report a Co3O4-array-catalyzed Li-O2cell with low polarization and high capacity.The work by Chang et al.[43]show that Li-O2cell could sustain stable cycling up to 300 times at 500 mAh·g-1when using a carbon/binder-free RuOx/TiN nanotube arrays cathode.Recent report by Liu et al.[44]show that Li-O2batteries with TiO2-array cathode demonstrate long cycle life,superior rate capability,high round-trip efficiency,and good recoverability of the catalytic electrode.For the array-type electrode,realizing conformal growth of Li2O2on the arrays is desirable to retain the voids between the arrays and keep intimate contact between Li2O2and catalyst.Nevertheless,as previously reported,conformalgrowth ofinsulating Li2O2willeasily deactivate the catalyst with low capacity due to blocked electron transport[47-50].

    In this work,we design a unique core-shell Co3O4@δ-MnO2/Pt arrays-type electrode on nickel foam by a controllable,facile route as binder-free electrodes for Li-O2cells,where the Co3O4acts as the “core” and ultrathin δ-MnO2nanosheets with Pt as the “shell”.MnO2was selected because of its high catalytic activity for ORR/OER[34-36,51].Co3O4acts both as the catalytically active component and as the substrate for MnO2deposition.The decoration of Pt not only enhances the catalytic activity butalso guides conformal growth of Li2O2.The advantages of this electrode design include:(1)the array-type structure facilitates the electrode wetting by electrolyte and O2transport and supplies large room for Li2O2loading;(2)the conformalgrowth of thin-layered Li2O2on Co3O4@δ-MnO2/Pt enables its easy decomposition upon charge;(3)the porous structure of δ-MnO2assures high Li2O2loading despite the conformal growth mode;(4)the side reactions related to binder and conductive agent are totally precluded or largely reduced due to binder-and conductive-agent-free electrode configuration.As a result,Li-O2cells with core-shell Co3O4@δ-MnO2/Pt arrays exhibit high capacity and long cycle life.

    1 Experimental

    1.1 Electrode preparation

    Co3O4@δ-MnO2/Ptarrays-type electrodes were synthesized by three steps.First,Co3O4nanowire arrays on Ni foam substrate were prepared by a facile hydrothermal route.Co(NO3)2·6H2O(1.2 mmol),NH4F(1.2 mmol),and urea(3 mmol)were dissolved into 50 mL of deionized (DI)water under vigorous stirring.The solution was then transferred into a Teflon-lined stainless steel autoclave with a piece of Ni foam immersed.The autoclave was sealed and heated in an electric oven at 120℃for 5 h.After being cooled to room temperature,the Ni foam piece with a pink deposit was collected,washed with DI water and absolute ethanol several times,and dried at 60℃in air overnight.The product was further heated at 400℃for 2 h in air to obtain Ni-supported Co3O4(Co3O4/Ni).For the growth of δ-MnO2in the second step,a piece of Co3O4/Ni was first immersed into a 0.04 mol·L-1aqueous solution of glucose for 24 h,followed by carbonization at 450℃in Ar for 2 h.After that,80 mg KMnO4(99.5%,Sinopharm Chemical Reagent Co.,Ltd.)was dissolved in 60 mL of DI water with vigorous stirring to form a homogeneous solution.The carbon modified Co3O4/Ni was soaked in the above solution for 1.5 h.Afterwards,the mixture was transferred into a Teflon-lined stainless steel autoclave and heated at 85℃for 2.5 h.After cooling down to room temperature naturally,the Ni foam with a brown deposit was collected and washed repeatedly with DI water and absolute ethanol.The electrode was then dried at 60℃in air overnight followed by heating at 300℃in Ar for 2 h to obtain Ni-supported core-shell Co3O4/δ-MnO2.Finally,for the platinum deposition,H2PtCl6·6H2O was dispersed in DI water at a concentration of 0.24 mg·mL-1under stirring,a piece of Ni-supported Co3O4@δ-MnO2was soaked in the above solution overnight.The electrode was then dried at 60℃in air for 5 h followed by heating at 300℃in Ar for 2 h to get Ni-supported Co3O4@δ-MnO2/Pt.The total loading of Co3O4@δ-MnO2/Pt on Ni substrate is around 1.4 mg·cm-2and Pt loading is around 0.2 mg·cm-2.

    1.2 Electrode characterization

    X-ray diffraction(XRD)patterns of the electrodes were acquired using a Rigaku D/Max-2550pc powder diffractometer equipped with Cu Kα radiation(λ=0.154 1 nm).The operating voltage and current were 40 kV and 250 mA,respectively,and 2θ=10°~80°.The morphologies of the pristine and cycled electrodes were observed by field-emission scanning electron microscopy (SEM)usingan S-4800 microscope(Hitachi,Japan)at an accelerating voltage of 5 kV.Transmission electron microscopy (TEM)and highresolution TEM (HRTEM)were conducted on a JEM 2100F microscope at an accelerating voltage of 200 kV.X-ray photoelectron spectra (XPS)ofthe discharged and charged electrodes were collected on a KRATOS AXIS ULTRA-DLD spectrometer with Al Kα radiation(hν=1 486.6 eV).To analyze the cycled electrodes by SEM,TEM and XPS,the electrodes or electrode components were carefully handled before the various ex-situ characterizations[52].

    1.3 Electrochemical measurements

    Coin-type Li-O2cells were assembled in the Arfilled glovebox using lithium foil as the anode,Nisupported Co3O4@δ-MnO2/Ptasthe cathode,and Celgard C480 membrane as the separator.The electrolyte was 1 mol·L-1LiClO4(≥99.99%,Sigma-Aldrich)in tetraethylene glycol dimethyl ether(TEGDME).The cathodes were dried at 80℃in vacuum overnight before cell assembly.The assembled cells were purged with pure O2for 20 min and stayed at open voltage circuit(OCV)for 5 h before the electrochemical tests.Charge and discharge cycling was performed on a Neware battery cycler(Shenzhen,China)in a voltage window of 2.0~4.5 V(vs Li/Li+).The specific capacity(mAh·g-1)and current density (mA·g-1)of the cells were calculated based on the weight of Co3O4@δ-MnO2/Pt.For the cells using Co3O4and Co3O4@δ-MnO2catalysts,the specific capacity and current density were calculated based on the weight of Co3O4and Co3O4@δ-MnO2,respectively.Electrochemical impedance spectroscopy(EIS)measurements were conducted on the VersaSTAT3 electrochemistry workstation by applying an AC signal of 5 mV amplitude over the frequency range 10-2to 105Hz.All of the electrochemical tests were performed at 25℃.

    2 Results and discussion

    Fig.1 (a)XRD patterns of Co3O4and Co3O4@δ-MnO2/Pt on Ni foam;(b)Enlarged view in(a);(c)XPS survey spectrum and(d)Pt4f XPS spectrum of Co3O4@δ-MnO2/Pt

    Fig.1a and the enlarged view (Fig.1b)show the XRD patterns of Co3O4and Co3O4@δ-MnO2/Ptsupported on Ni foam.The three strong diffraction peaks at 44.5°,51.8°,and 76.4°(2θ)are from the nickel substrate,and the presence of Co3O4and Co3O4@δ-MnO2/Pt is confirmed by XRD patterns in Fig.1b,while the presence of Pt is not detected in XRD due to the low content.The XRD shows that the MnO2is δ-MnO2.In order to further confirm the existence of Pt,XPS analysis was performed.The survey spectrum in Fig.1c reveals the presence of the expected O,Co,Mn and Pt elements.In Fig.1d,the bands at 69.3 and 72.7 eV correspond to the binding energy of Pt4f7/2and Pt4f5/2,respectively[53].In Fig.S1a,the peaks at 778.6 and 794.1 eV are the Co2p spectra of Co3+,and the peaks at 780.3 and 796.0 eV are Co2p of Co2+[54].The bands at 639.8 and 651.4 eV (Fig.S1b)correspond to the binding energy of Mn2p3/2and Mn2p1/2,in good accordance with the previous report[55].

    The morphology and structural features of the prepared electrodes were characterized by SEM and TEM.Fig.2 shows the SEM images of Co3O4,Co3O4@δ-MnO2,and Co3O4@δ-MnO2/Pt at different magnifications.Note that Co3O4nanowires grow uniformly on the skeletons of the Ni foam.The Co3O4nanowires have a diameter below 200 nm and a length of several microns(Fig.2(a,b)).After the MnO2growth,thin MnO2nanosheets are uniformly covered on the whole surface of the Co3O4nanowires,forming a core-shell porous structure as shown in Fig.2(c,d).As seen in Fig.2(e,f),the introduction of Pt does not change the morphology of core-shell Co3O4@δ-MnO2obviously with the array structure maintained.The pores in Pt/δ-MnO2and the voids between the arrays are beneficial to the electrolyte infiltration and oxygen gas transportation and provide the space for Li2O2deposition.The Co3O4@δ-MnO2/Pt was further characterized by TEM,HRTEM and energy dispersive X-ray spectroscopy (EDS)mapping as shown in Fig.3.The results confirm that Co3O4,δ-MnO2and Pt construct a uniform electrode,where Co3O4exhibits a polycrystalline nanowire structure,δ-MnO2has a sheet-like shape and Pd nanocrystals have a small size below 20 nm.In Fig.3f,the lattice spacings of 0.46,0.22 and 0.21 nm correspond to the planes of Co3O4(111),Pt(111)and δ-MnO2(112),respectively.The above characterizations confirm the formation of Co3O4@δ-MnO2/Pt.

    Fig.2 SEM images of(a,b)Co3O4,(c,d)Co3O4@δ-MnO2,and(e,f)Co3O4@δ-MnO2/Pt

    Fig.3 (a)Dark-field TEM image,(b~e)EDS mappings in the selected area and(f)HRTEM images of Co3O4@δ-MnO2/Pt

    The electrocatalytic activity of Co3O4@δ-MnO2/Pt was investigated in Li-O2cells and compared with that of Co3O4and Co3O4@δ-MnO2.The current density and specific capacity were calculated by the total mass of catalyst on the Ni substrate.The cycling performance of the Co3O4,Co3O4@δ-MnO2and Co3O4@δ-MnO2/Ptcatalyzed Li-O2cells was evaluated by galvanostatic cycling at 200 mA·g-1between 2.0~4.5 V with a limited capacity of 500 mAh·g-1.As shown in Fig.4(a,b),the cell with Co3O4@δ-MnO2/Pt catalyst can sustain stable cycling for 65 cycles.While for the cells with Co3O4and Co3O4@δ-MnO2catalytic cathodes,the cycling can last only 10 cycles and 28 cycles,respectively(Fig.4a and Fig.S2).To demonstrate the high catalytic activity of Co3O4@δ-MnO2/Pt,the cell was also cycled at a higher limited capacity of 1 000 mAh·g-1at a current density of 200 mA·g-1.In this case,the stable cycling can still last 32 cycles(Fig.S3).It should noted that the electrode has a relatively high catalyst loading of about 1.4 mg·cm-2.The cycling performance of the cell is better than or comparable with those with similar catalysts and same limited capacity[56-57].The better cycle performance of the Li-O2cell with Co3O4@δ-MnO2/Pt catalyst can be attributed to the unique microstructure and components of the cathode.Pt nanoparticles are highly efficient in catalyzing the ORR/OER in the air cathode[58],leading to enhanced formation/decomposition of Li2O2and thereby long cycle life.In addition,the binder-free electrode design also contributes to good cycling stability of the cell with Co3O4@δ-MnO2/Pt catalyst.Of note is that,the cell shows performance degradation after 60 cycles.This may result from factors such as decomposition of electrolyte or Li corrosion.A previous report show that Pt shows no selectivity in its catalytic activity toward Li2O2oxidationreaction and electrolyte decomposition[31],which is also partly responsible for the limited cycle life.

    Fig.4 (a)Terminal voltages of Co3O4,Co3O4@δ-MnO2andCo3O4@δ-MnO2/Pt-catalyzed Li-O2cells at a limited capacity of 500 mAh·g-1;(b)Voltage profiles of Co3O4@δ-MnO2/Pt-catalyzed Li-O2cell;Discharge profiles of(c)Co3O4@δ-MnO2 and(d)Co3O4@δ-MnO2/Pt-catalyzed Li-O2cells at various current densities

    Fig.4(c,d)show the discharge profiles of the Co3O4@δ-MnO2and Co3O4@δ-MnO2/Pt-catalyzed Li-O2cells at various current densities.In the figures,Erevis the reversible potential of Li-O2cells,namely,2.96 V vs Li/Li+.At 100 mA·g-1,the cell with Co3O4@δ-MnO2/Pt yields a capacity of 2 480 mAh·g-1and exhibits a high discharge plateau of 2.71 V.When the current density increases from 100 to 800 mA·g-1,the discharge capacity and plateaus decrease gradually.But even at 800 mA·g-1,the cell could still deliver a capacity of 492 mAh·g-1due to the excellent catalytic activity offor ORR.In comparison,the cell withcatalyst shows a lower capacity of 1 693 mAh·g-1and a lower discharge plateau of 2.59 V at 100 mA·g-1.The discharge capacity decreases rapidly to 83 mAh·g-1when the current density increases to 800 mA·g-1.The low capacity of the Co3O4@δ-MnO2-catalyzed cell indicates its poor ORR catalytic activity.The obviously enhanced catalytic activity of Co3O4@δ-MnO2/Pt is closely related to the introduction of Pt.It is expected that the presence of Pt will alter the crystallization behavior of Li2O2by supplying catalytically active sites.

    To clarify the superior catalytic activity of Co3O4@δ-MnO2/Pt and the role that it plays in increasing the cycle performance of the cell,the electrodes after discharge were observed by SEM and TEM.The loading of the SEM/TEM holders to the chamber was finished as soon as possible to minimize the exposure of the samples to air.As shown in Fig.5(a,b),no large Li2O2particles can be found on the discharged Co3O4electrode,and the pristine array-type structure ofwas generally preserved after discharge to 500 mAh·g-1.To reveal the growth position of Li2O2on the electrode,the morphologies were observed and compared to the original Co3O4@δ-MnO2/Pt.In the discharged electrodes,it seems that the Li2O2forms inside the porous δ-MnO2and a fluffy substance grows conformally along the surface of thearrays,where the original array structure with voids is clearly visible.Namely,the pores in the pristinewere filled by the Li2O2.This form of Li2O2is usually rich in defects and poorly crystallized and thus easily to be decomposed[59].The fluffy substance is further characterized by TEM (Fig.5c)and is confirmed to be Li2O2by selected area electron diffraction(SAED,Fig.5d).From these results,it can be concluded thatPt arrays catalyzes the conformal growth of thinlayered Li2O2along the surface of electrode.

    Fig.5 (a,b)SEM images,(c)TEM image and(d)SAED pattern of Co3O4@δ-MnO2/Pt after the first discharge;(e,f)SEM images of Co3O4@δ-MnO2/Pt after the first charge

    For theelectrode, after recharge,the porous structure is visible again,indicative of sufficient decomposition of the discharge product(Fig.5e).Besides,the array-type structure of Co3O4@δ-MnO2/Pt remains intact(Fig.5f).The reversible formation/decomposition of Li2O2is confirmed by Li1s XPS (Fig.6a)and further supported by EIS measurements(Fig.6b and Table 1).In the Nyquist plots,the fitted curves are obtained by using the equivalent circuit in the inset,where Rerepresents ohm resistance of cell components,Rfand Q1represent surface film resistance and relaxation capacitance,Rctand Q2correspond to the charge transfer resistance and double-layer capacitance,and Zwis associated with the bulk diffusion of Li ions.In the table,Y is admittance response of constant phase element Q1and Q2and n is index of the angular frequency[60].The remarkable increase in Rct(from 331.9 to 767.1 Ω)after discharge indicates the deposition of insulating Li2O2which passivates the electrode,whereas the decrease in Rct(from 767.1 to 301.6 Ω)denotes the sufficient removal of Li2O2after recharge.From these results,it can be seen that the Ni-supported Co3O4@δ-MnO2/Pt electrode is highly efficient in catalyzing ORR/OER by controlling the Li2O2growth,which can explain the high discharge capacity and long cycle life of the cells.

    Fig.6 (a)Li1s XPS after the first cycle and(b)Nyquist plots and corresponding fittings of Li-O2cells with Co3O4@δ-MnO2/Pt electrode at the initial state and discharged/recharged to 2.2 V/4.3 V

    Table 1 Fitting results of the Nyquist plots using the equivalent circuit

    3 Conclusions

    In summary,we propose a unique design of a core-shellarrays-type electrode with a controllable,facile route.In this design,the arraytype structure facilitates the electrode wetting and oxygen gas transport and supplies free volume for Li2O2loading.The presence ofPtsuppliesthe catalytically active centers and guides the conformal growth of thin-layered Li2O2.The conformal,thinlayered growth of Li2O2on Co3O4@δ-MnO2/Pt enables its easy decomposition upon charge.The porous structure of δ-MnO2makes high Li2O2loading possible even though it has a conformal growth mode.As a result,Li-O2cell catalyzed by Co3O4@δ-MnO2/Pt arrays delivers high discharge capacity (2 480 mAh·g-1at 100 mA·g-1)and shows good cycling stability(65 cycles at 200 mA·g-1with a limited capacity of 500 mAh·g-1).This work provides a new design of efficient catalytic cathode for Li-O2cells.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Abraham K M,Jiang Z.J.Electrochem.Soc.,1996,143(1):1-5

    [2]Ogasawara T,Débart A,Holzapfel M,et al.J.Am.Chem.Soc.,2006,128(4):1390-1393

    [3]Girishkumar G,McCloskey B,Luntz A C,et al.J.Phys.Chem.Lett.,2010,1(14):2193-2203

    [4]Park M,Sun H,Lee H,et al.Adv.Energy Mater.,2012,2(7):780-800

    [5]Bruce P G,Freunberger S A,Hardwick L J,et al.Nat.Mater.,2012,11(1):19-29

    [6]Luntz A C,McCloskey B D.Chem.Rev.,2014,114(23):11721-11750

    [7]Aurbach D,McCloskey B D,Nazar L F,et al.Nat.Energy,2016,1:16128

    [8]Geng D S,Ding N,Hor T S A,et al.Adv.Energy Mater.,2016,6(9):UNSP 1502164

    [9]Yi J,Guo S H,He P,et al.Energy Environ.Sci.,2017,10(4):860-884

    [10]Feng N N,He P,Zhou H S.Adv.Energy Mater.,2016,6(9):1502303

    [11]Viswanathan V,Thygesen K S,Hummelshj J S,et al.J.Chem.Phys.,2011,135(21):214704

    [12]Gerbig O,Merkle R,Maier J.Adv.Mater.,2013,25(22):3129-3133

    [13]Shao Y Y,Ding F,Xiao J,et al.Adv.Funct.Mater.,2013,23(8):987-1004

    [14]YANG Feng-Yu(楊鳳玉),ZHANG Lei-Lei(張蕾蕾),XU Jie-Jing(徐吉靜),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2013,29(8):1563-1573

    [15]Chang Z W,Xu J J,Liu Q C,et al.Adv.Energy Mater.,2015,5(21):1500633

    [16]Ma Z,Yuan X X,Li L,et al.Energy Environ.Sci.,2015,8(8):2144-2198

    [17]Wen Z Y,Shen C,Lu Y.ChemPlusChem,2015,80(2):270-287

    [18]Mitchell R R,Gallant B M,Thompson C V,et al.Energy Environ.Sci.,2011,4(8):2952-2958

    [19]Jung H G,Hassoun J,Park J B,et al.Nat.Chem.,2012,4(7):579-585

    [20]Zhang M,Xu Q,Sang L,et al.Chin.Sci.Bull.,2014,59(24):2973-2979

    [21]Guo Z Y,Zhou D D,Dong X L,et al.Adv.Mater.,2013,25(39):5668-5672

    [22]Yu M Z,Zhou S,Liu Y,et al.Sci.China Mater.,2017,60(5):415-426

    [23]Liu T,Leskes M,Yu W J,et al.Science,2015,350(6260):530-533

    [24]McCloskey B D,Speidel A,Scheffler R,et al.J.Phys.Chem.Lett.,2012,3(8):997-1001

    [25]Ottakam Thotiyl M M,Freunberger S A,Peng Z Q,et al.J.Am.Chem.Soc.,2013,135(1):494-500

    [26]Lu Y C,Xu Z C,Gasteiger H A,et al.J.Am.Chem.Soc.,2010,132(35):12170-12171

    [27]Peng Z Q,Freunberger S A,Chen Y H,et al.Science,2012,337(6094):563-566

    [28]Xu J J,Wang Z L,Xu D,et al.Nat.Commun.,2013,4:2438(10 Pages)

    [29]Li C C,Zhang W Y,Ang H X,et al.J.Mater.Chem.A,2014,2(27):10676-10681

    [30]Sun B,Chen S Q,Liu H,et al.Adv.Funct.Mater.,2015,25(28):4436-4444

    [31]Jeong Y S,Park J B,Jung H G,et al.Nano Lett.,2015,15(7):4261-4268

    [32]Luo W B,Gao X W,Chou S L,et al.Adv.Mater.,2015,27(43):6862-6869

    [33]Jiang J,He P,Tong S F,et al.NPG Asia Mater.,2016,8:e239(7 Pages)

    [34]Cao Y,Wei Z K,He J,et al.Energy Environ.Sci.,2012,5(12):9765-9768

    [35]Hu X F,Han X P,Hu Y X,et al.Nanoscale,2014,6(7):3522-3525

    [36]Hu Y X,Zhang T R,Cheng F Y,et al.Angew.Chem.Int.Ed.,2015,54(14):4338-4343

    [37]Cui Y M,Wen Z Y,Liu Y.Energy Environ.Sci.,2011,4(11):4727-4734

    [38]Black R,Lee J H,Adams B,et al.Angew.Chem.Int.Ed.,2013,52(1):392-396

    [39]Wang S F,Sha Y J,Zhu Y L,et al.J.Mater.Chem.A,2015,3(31):16132-16141

    [40]Tong S F,Zheng M B,Lu Y,et al.J.Mater.Chem.A,2015,3(31):16177-16182

    [41]Liu W M,Gao T T,Yang Y,et al.Phys.Chem.Chem.Phys.,2013,15(38):15806-15810

    [42]CAI Sheng-Rong(蔡生容),WANG Xiao-Fei(王曉飛),ZHU Ding(朱丁),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32(12):2082-2087

    [43]Chang Y Q,Dong S M,Ju Y H,et al.Adv.Sci.,2015,2(8):1500092

    [44]Liu Q C,Xu J J,Xu D,et al.Nat.Commun.,2015,6:7892(8 Pages)

    [45]Zhao G Y,Mo R W,Wang B Y,et al.Chem.Mater.,2014,26(8):2551-2556

    [46]Kim S T,Choi N S,Park S,et al.Adv.Energy Mater.,2015,5(3):1401030

    [47]Aetukuri N B,McCloskey B D,García J M,et al.Nat.Chem.,2015,7(1):50-56

    [48]Lau S,Archer L A.Nano Lett.,2015,15(9):5995-6002

    [49]Radina M D,Siegel D J.Energy Environ.Sci.,2013,6(8):2370-2379

    [50]Wang J W,Zhang Y L,Guo L M,et al.Angew.Chem.Int.Ed.,2016,55(17):1-6

    [51]Qin Y,Lu J,Du P,et al.Energy Environ.Sci.,2013,6(2):519-531

    [52]Wang G Q,Tu F F,Xie J,et al.Adv.Sci.,2016,3(10):1500339

    [53]He G Q,Song Y,Liu K,et al.ACS Catal.,2013,3(5):831-838

    [54]Song W Q,Poyraz A S,Meng Y T,et al.Chem.Mater.,2014,26(15):4629-4639

    [55]Trahey L,Karan N K,Chan M K Y,et al.Adv.Energy Mater.,2013,3(1):75-84

    [56]Cao J Y,Liu S Y,Xie J,et al.ACS Catal.,2015,5(1):241-245

    [57]Wu F,Zhang X X,Zhao T L,et al.J.Mater.Chem.A,2015,3(34):17620-17626

    [58]Zahoor A,Christy M,Kim Y,et al.J.Solid State Electrochem.,2016,20(5):1397-1404

    [59]HUANG Jun(黃俊),PENG Zhang-Quan(彭章泉).Energy Storage Science and Technology(儲(chǔ)能科學(xué)與技術(shù)),2018,7(2):167-174

    [60]Piao T,Park S M,Doh C H,et al.J.Electrochem.Soc.,2009,146(8):2794-2798

    猜你喜歡
    核殼杭州學(xué)報(bào)
    杭州
    幼兒畫刊(2022年11期)2022-11-16 07:22:36
    核殼型量子點(diǎn)(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    致敬學(xué)報(bào)40年
    G20 映像杭州的“取勝之鑰”
    核殼型含氟硅丙烯酸酯無(wú)皂拒水劑的合成及應(yīng)用
    杭州
    汽車與安全(2016年5期)2016-12-01 05:21:55
    杭州舊影
    看天下(2016年24期)2016-09-10 20:44:10
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點(diǎn)的水熱法合成及其光致發(fā)光性能
    學(xué)報(bào)簡(jiǎn)介
    學(xué)報(bào)簡(jiǎn)介
    在线观看av片永久免费下载| 久久这里有精品视频免费| 九九爱精品视频在线观看| 久久久久九九精品影院| 狠狠狠狠99中文字幕| 色播亚洲综合网| 日韩强制内射视频| 99在线人妻在线中文字幕| 亚洲最大成人av| 男女视频在线观看网站免费| 丝袜美腿在线中文| 亚洲18禁久久av| 国产精品无大码| 国产毛片a区久久久久| 亚洲精品国产av成人精品| 日韩强制内射视频| 91久久精品国产一区二区三区| 欧美日韩综合久久久久久| 熟妇人妻久久中文字幕3abv| 国产视频内射| 在线观看美女被高潮喷水网站| 美女大奶头视频| 午夜免费男女啪啪视频观看| 成人一区二区视频在线观看| 国产精品麻豆人妻色哟哟久久 | 国产高清有码在线观看视频| 国产精品,欧美在线| 免费无遮挡裸体视频| 欧美丝袜亚洲另类| 欧美色视频一区免费| 99国产精品一区二区蜜桃av| 观看美女的网站| 草草在线视频免费看| 成人永久免费在线观看视频| 一级毛片aaaaaa免费看小| 给我免费播放毛片高清在线观看| 亚洲七黄色美女视频| 有码 亚洲区| 久久久久久久午夜电影| 亚洲欧洲国产日韩| 国内揄拍国产精品人妻在线| 亚洲国产高清在线一区二区三| 欧美区成人在线视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品蜜桃在线观看 | 国产老妇伦熟女老妇高清| 亚洲国产欧美人成| 男女做爰动态图高潮gif福利片| 自拍偷自拍亚洲精品老妇| 全区人妻精品视频| 中文字幕久久专区| 日韩一区二区视频免费看| 亚洲最大成人中文| 51国产日韩欧美| 性欧美人与动物交配| 久久精品夜色国产| 如何舔出高潮| 国产中年淑女户外野战色| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩卡通动漫| 一级毛片电影观看 | 亚洲天堂国产精品一区在线| 中出人妻视频一区二区| 蜜桃久久精品国产亚洲av| 精品久久久久久久久久久久久| 国产真实乱freesex| 久99久视频精品免费| 简卡轻食公司| 久99久视频精品免费| 成人二区视频| 国产精品蜜桃在线观看 | 亚洲欧美成人精品一区二区| 国产伦精品一区二区三区四那| 美女被艹到高潮喷水动态| 日韩,欧美,国产一区二区三区 | 狂野欧美白嫩少妇大欣赏| 两个人视频免费观看高清| 国产精品久久视频播放| 国产日本99.免费观看| 真实男女啪啪啪动态图| 国产高清三级在线| 欧美人与善性xxx| 欧美三级亚洲精品| 三级男女做爰猛烈吃奶摸视频| 日本免费一区二区三区高清不卡| 亚洲精品日韩在线中文字幕 | 成人特级av手机在线观看| 一夜夜www| 国产精品久久视频播放| 免费在线观看成人毛片| 晚上一个人看的免费电影| 男人狂女人下面高潮的视频| 色尼玛亚洲综合影院| 精品久久久久久久久久免费视频| 免费人成在线观看视频色| 亚洲在久久综合| 真实男女啪啪啪动态图| 午夜久久久久精精品| 人人妻人人看人人澡| 中文在线观看免费www的网站| 老女人水多毛片| 夜夜夜夜夜久久久久| 真实男女啪啪啪动态图| 亚洲欧美日韩东京热| 插逼视频在线观看| 成人毛片60女人毛片免费| 久久亚洲精品不卡| 国产高清激情床上av| 我的女老师完整版在线观看| 精品久久国产蜜桃| 国国产精品蜜臀av免费| 99久久无色码亚洲精品果冻| 成人美女网站在线观看视频| 久久精品久久久久久久性| 国产视频内射| 日韩一区二区视频免费看| 白带黄色成豆腐渣| 女同久久另类99精品国产91| 亚洲精品自拍成人| 精品一区二区三区人妻视频| 不卡一级毛片| 日韩一本色道免费dvd| 少妇人妻一区二区三区视频| 日韩精品有码人妻一区| 哪个播放器可以免费观看大片| 高清日韩中文字幕在线| 嫩草影院新地址| 1024手机看黄色片| 久久精品国产亚洲网站| 久久久久久久亚洲中文字幕| 在线播放无遮挡| 在线播放无遮挡| 亚洲经典国产精华液单| 变态另类成人亚洲欧美熟女| av福利片在线观看| 午夜福利在线观看免费完整高清在 | 高清毛片免费看| 国产一级毛片在线| 熟女人妻精品中文字幕| 成人二区视频| 亚洲精品456在线播放app| 成人欧美大片| 国产在线男女| 日本熟妇午夜| 寂寞人妻少妇视频99o| 最好的美女福利视频网| 国产伦精品一区二区三区视频9| 亚洲欧美日韩卡通动漫| 免费看美女性在线毛片视频| 国产精品嫩草影院av在线观看| 免费看日本二区| 中文字幕av在线有码专区| 插逼视频在线观看| av天堂在线播放| 人人妻人人澡欧美一区二区| 国产高潮美女av| 午夜福利在线观看免费完整高清在 | 国产精品免费一区二区三区在线| a级毛片a级免费在线| 我要搜黄色片| 日韩强制内射视频| 亚洲欧美清纯卡通| 日韩 亚洲 欧美在线| 国产综合懂色| 99久久精品一区二区三区| 特级一级黄色大片| 在线天堂最新版资源| av国产免费在线观看| 国产精品人妻久久久影院| 亚洲精品色激情综合| 中文字幕熟女人妻在线| 性色avwww在线观看| 久久九九热精品免费| 蜜桃久久精品国产亚洲av| 亚洲性久久影院| 三级经典国产精品| 欧美精品一区二区大全| 久久亚洲精品不卡| 精品久久久久久久久av| 狠狠狠狠99中文字幕| 久久久国产成人免费| 99久久人妻综合| 特级一级黄色大片| 国产高潮美女av| 国产伦精品一区二区三区视频9| or卡值多少钱| av女优亚洲男人天堂| 美女高潮的动态| 久久鲁丝午夜福利片| 日韩精品有码人妻一区| 亚洲最大成人手机在线| 国产亚洲精品av在线| 国产真实伦视频高清在线观看| 国产成人a∨麻豆精品| 中文字幕人妻熟人妻熟丝袜美| 国产女主播在线喷水免费视频网站 | 精品熟女少妇av免费看| 最近视频中文字幕2019在线8| 免费看av在线观看网站| 在线天堂最新版资源| 亚洲欧洲日产国产| 日本在线视频免费播放| 国产高潮美女av| 免费看美女性在线毛片视频| 日本一本二区三区精品| 少妇人妻一区二区三区视频| 久久午夜亚洲精品久久| 国产成人一区二区在线| 国产精品免费一区二区三区在线| 欧美xxxx性猛交bbbb| 国产成人freesex在线| 久久精品国产清高在天天线| 久久99热6这里只有精品| 成年版毛片免费区| 久久人人爽人人爽人人片va| 国产日本99.免费观看| 成年版毛片免费区| 综合色av麻豆| 国产乱人偷精品视频| 身体一侧抽搐| 亚洲国产精品成人综合色| 一本精品99久久精品77| 亚洲欧美日韩无卡精品| 国产精品久久视频播放| 日韩欧美在线乱码| 国产蜜桃级精品一区二区三区| 久久午夜亚洲精品久久| 国产探花极品一区二区| 国产精品一区二区三区四区久久| 免费看日本二区| 九九在线视频观看精品| 欧美日韩乱码在线| 亚洲三级黄色毛片| 久久精品久久久久久噜噜老黄 | 老师上课跳d突然被开到最大视频| 人妻夜夜爽99麻豆av| 国产一区二区在线av高清观看| 成人鲁丝片一二三区免费| 精品不卡国产一区二区三区| 听说在线观看完整版免费高清| 欧美成人精品欧美一级黄| 一个人看的www免费观看视频| 免费av毛片视频| 久久久久久国产a免费观看| 久久精品久久久久久久性| 在线观看免费视频日本深夜| 超碰av人人做人人爽久久| 亚洲第一电影网av| 亚洲精品乱码久久久久久按摩| 亚洲av熟女| 欧美一级a爱片免费观看看| av天堂在线播放| 嫩草影院入口| 美女被艹到高潮喷水动态| 少妇被粗大猛烈的视频| 午夜激情欧美在线| 亚洲国产高清在线一区二区三| av在线天堂中文字幕| 乱码一卡2卡4卡精品| 亚洲精品自拍成人| 毛片女人毛片| 国产成人一区二区在线| АⅤ资源中文在线天堂| 亚洲图色成人| 深夜a级毛片| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 成年女人永久免费观看视频| 亚洲精品456在线播放app| 国产一级毛片七仙女欲春2| 欧美性猛交黑人性爽| 日本在线视频免费播放| 国产真实伦视频高清在线观看| 99久久精品国产国产毛片| 国产成人一区二区在线| 天堂√8在线中文| 老司机福利观看| 亚洲欧美精品自产自拍| 丝袜美腿在线中文| 国产亚洲精品av在线| 国产精品一及| 夜夜夜夜夜久久久久| 全区人妻精品视频| 免费搜索国产男女视频| 久久久久久久亚洲中文字幕| www日本黄色视频网| 99久久精品国产国产毛片| 亚洲精华国产精华液的使用体验 | 久久久久久久亚洲中文字幕| avwww免费| 久久精品夜色国产| 夜夜看夜夜爽夜夜摸| 一个人免费在线观看电影| 精品国内亚洲2022精品成人| 久久精品久久久久久噜噜老黄 | 一级毛片aaaaaa免费看小| avwww免费| 久99久视频精品免费| 国产毛片a区久久久久| 精品久久国产蜜桃| 男女那种视频在线观看| 婷婷六月久久综合丁香| 干丝袜人妻中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲av第一区精品v没综合| 国产综合懂色| 黄片wwwwww| 美女 人体艺术 gogo| 一级黄色大片毛片| 亚洲精品粉嫩美女一区| 精品人妻一区二区三区麻豆| eeuss影院久久| 三级毛片av免费| 成人特级黄色片久久久久久久| 一个人免费在线观看电影| 啦啦啦韩国在线观看视频| 久久这里只有精品中国| 欧美丝袜亚洲另类| 99国产极品粉嫩在线观看| 午夜精品在线福利| 国产高清不卡午夜福利| 亚洲av熟女| 亚洲精华国产精华液的使用体验 | 欧美日韩国产亚洲二区| 变态另类丝袜制服| 色尼玛亚洲综合影院| 亚洲成人精品中文字幕电影| 欧美色视频一区免费| 欧美最新免费一区二区三区| 欧美zozozo另类| kizo精华| 一级毛片电影观看 | 久久久欧美国产精品| 亚洲欧美成人综合另类久久久 | 国产 一区 欧美 日韩| av在线观看视频网站免费| 久久午夜亚洲精品久久| 欧美最新免费一区二区三区| 色播亚洲综合网| 看黄色毛片网站| 99热只有精品国产| 国产精品永久免费网站| www日本黄色视频网| 免费在线观看成人毛片| 又粗又爽又猛毛片免费看| 亚洲欧美清纯卡通| 女同久久另类99精品国产91| 亚洲国产精品成人综合色| 在线国产一区二区在线| 国产成人福利小说| 日韩欧美国产在线观看| 久久久成人免费电影| 蜜桃亚洲精品一区二区三区| 日韩精品青青久久久久久| 午夜福利视频1000在线观看| 在线观看66精品国产| 搡老妇女老女人老熟妇| av在线亚洲专区| 久久精品综合一区二区三区| 成人欧美大片| 变态另类丝袜制服| 国产乱人偷精品视频| 国产精品一区二区性色av| 夜夜爽天天搞| 国产精品国产高清国产av| 国产精品女同一区二区软件| 中文资源天堂在线| 听说在线观看完整版免费高清| 成人欧美大片| 国产成人福利小说| 日韩欧美国产在线观看| 草草在线视频免费看| 蜜桃亚洲精品一区二区三区| 国产一区二区三区av在线 | 最新中文字幕久久久久| 国产精品久久久久久久久免| 人人妻人人澡欧美一区二区| 青春草国产在线视频 | 插阴视频在线观看视频| av天堂中文字幕网| 一区二区三区免费毛片| 三级男女做爰猛烈吃奶摸视频| 成人午夜高清在线视频| 搞女人的毛片| 日本爱情动作片www.在线观看| 亚洲无线观看免费| 嫩草影院精品99| 小蜜桃在线观看免费完整版高清| 欧美性猛交黑人性爽| 国产亚洲av片在线观看秒播厂 | 日韩欧美三级三区| 日韩av在线大香蕉| 联通29元200g的流量卡| 久久精品国产自在天天线| 国内精品宾馆在线| 亚洲丝袜综合中文字幕| 久久精品国产自在天天线| 在线免费十八禁| 成人高潮视频无遮挡免费网站| 99在线人妻在线中文字幕| 午夜精品国产一区二区电影 | 日日撸夜夜添| 午夜激情欧美在线| 亚洲成人av在线免费| 我要看日韩黄色一级片| 国产在线精品亚洲第一网站| av在线观看视频网站免费| 一区二区三区免费毛片| 97超碰精品成人国产| av免费在线看不卡| 日本黄色片子视频| 亚洲成人久久性| 卡戴珊不雅视频在线播放| 国产精品电影一区二区三区| 国产高清激情床上av| 美女 人体艺术 gogo| 插逼视频在线观看| 乱人视频在线观看| 亚洲av成人精品一区久久| 91aial.com中文字幕在线观看| 男人和女人高潮做爰伦理| 国产精品国产高清国产av| 欧美性猛交黑人性爽| 精品久久久久久久久久久久久| 欧美又色又爽又黄视频| 欧美成人a在线观看| 国产伦精品一区二区三区四那| 美女国产视频在线观看| 欧美色欧美亚洲另类二区| 我的老师免费观看完整版| 夜夜爽天天搞| 在线国产一区二区在线| 97超视频在线观看视频| 欧美另类亚洲清纯唯美| 日本五十路高清| 插阴视频在线观看视频| 欧美激情国产日韩精品一区| 日本色播在线视频| 久久国内精品自在自线图片| 久久久久久久久中文| 搡女人真爽免费视频火全软件| 精品人妻熟女av久视频| 人体艺术视频欧美日本| 午夜亚洲福利在线播放| 一边摸一边抽搐一进一小说| 欧美一级a爱片免费观看看| 日产精品乱码卡一卡2卡三| 18禁在线无遮挡免费观看视频| av在线亚洲专区| 亚洲熟妇中文字幕五十中出| 国产91av在线免费观看| 神马国产精品三级电影在线观看| 中国国产av一级| 国产在视频线在精品| 欧美bdsm另类| 搡老妇女老女人老熟妇| 最近2019中文字幕mv第一页| 搞女人的毛片| 美女黄网站色视频| 麻豆成人午夜福利视频| 婷婷亚洲欧美| 亚洲自偷自拍三级| 成人av在线播放网站| 高清午夜精品一区二区三区 | 国产精品久久电影中文字幕| 男女啪啪激烈高潮av片| 免费人成视频x8x8入口观看| 日韩在线高清观看一区二区三区| 精品久久久久久久久av| 欧美3d第一页| av在线播放精品| 精品一区二区三区视频在线| 高清毛片免费看| av天堂中文字幕网| 男人舔女人下体高潮全视频| 听说在线观看完整版免费高清| 最近最新中文字幕大全电影3| 看十八女毛片水多多多| 日日撸夜夜添| 久久午夜亚洲精品久久| 麻豆一二三区av精品| 最好的美女福利视频网| 久久久久久国产a免费观看| 国模一区二区三区四区视频| 免费人成在线观看视频色| 天堂影院成人在线观看| 国产精品一区二区在线观看99 | 欧美丝袜亚洲另类| 亚洲在线观看片| 亚洲欧美日韩无卡精品| 国产精品久久视频播放| 美女被艹到高潮喷水动态| 国产一区二区三区av在线 | 日本熟妇午夜| 哪里可以看免费的av片| 亚洲一区高清亚洲精品| 黄色日韩在线| 久久精品影院6| 欧美色欧美亚洲另类二区| 国产激情偷乱视频一区二区| 欧美潮喷喷水| 国内揄拍国产精品人妻在线| 一本久久精品| 亚洲av中文字字幕乱码综合| 看非洲黑人一级黄片| 午夜精品在线福利| 麻豆成人av视频| 日日撸夜夜添| 啦啦啦啦在线视频资源| 亚洲人成网站在线播放欧美日韩| 舔av片在线| 最近最新中文字幕大全电影3| 国产真实伦视频高清在线观看| 亚洲高清免费不卡视频| 啦啦啦观看免费观看视频高清| 日韩欧美 国产精品| 午夜亚洲福利在线播放| 亚洲美女搞黄在线观看| 天天躁夜夜躁狠狠久久av| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美精品综合久久99| 九九在线视频观看精品| 欧美性猛交╳xxx乱大交人| 中文字幕人妻熟人妻熟丝袜美| 亚洲激情五月婷婷啪啪| videossex国产| 在线国产一区二区在线| 26uuu在线亚洲综合色| 精品一区二区三区视频在线| 国产伦一二天堂av在线观看| 色吧在线观看| 精品人妻熟女av久视频| 欧美激情久久久久久爽电影| 亚洲精品色激情综合| 少妇人妻精品综合一区二区 | 18禁黄网站禁片免费观看直播| 午夜老司机福利剧场| 麻豆一二三区av精品| 久久婷婷人人爽人人干人人爱| 亚洲人与动物交配视频| 精品不卡国产一区二区三区| 国产一区二区激情短视频| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 亚洲欧洲日产国产| 欧美丝袜亚洲另类| 成人毛片60女人毛片免费| 精品久久久久久久末码| 久久久久久久久中文| www.色视频.com| 51国产日韩欧美| 国产av一区在线观看免费| 男的添女的下面高潮视频| 国产精品久久久久久av不卡| kizo精华| 国产精品,欧美在线| 亚洲成a人片在线一区二区| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 简卡轻食公司| 久久久久国产网址| 亚洲国产欧美人成| 国产大屁股一区二区在线视频| 少妇人妻一区二区三区视频| 成人av在线播放网站| 三级经典国产精品| 舔av片在线| 麻豆一二三区av精品| 亚洲18禁久久av| 欧美成人精品欧美一级黄| 日韩人妻高清精品专区| 日本一二三区视频观看| 大香蕉久久网| 听说在线观看完整版免费高清| 联通29元200g的流量卡| 久久精品国产清高在天天线| 极品教师在线视频| 人体艺术视频欧美日本| 一区二区三区四区激情视频 | 亚洲av免费在线观看| 国产91av在线免费观看| 人人妻人人澡欧美一区二区| 1024手机看黄色片| 在线观看免费视频日本深夜| 免费观看人在逋| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 又爽又黄a免费视频| 一区福利在线观看| 免费看av在线观看网站| 亚洲精品乱码久久久久久按摩| 久99久视频精品免费| 国产高潮美女av| 亚洲av免费高清在线观看| h日本视频在线播放| 日日干狠狠操夜夜爽| 啦啦啦观看免费观看视频高清| 亚洲欧美成人综合另类久久久 | 国产69精品久久久久777片| 亚洲精品乱码久久久久久按摩| 亚洲最大成人手机在线| 亚洲电影在线观看av| 舔av片在线| 啦啦啦观看免费观看视频高清| 日韩欧美三级三区| 丝袜喷水一区| 99久久精品热视频| 老司机福利观看| 五月伊人婷婷丁香| 国产精品一二三区在线看| 日日啪夜夜撸| 最近的中文字幕免费完整| 国产精品综合久久久久久久免费| 男人和女人高潮做爰伦理| 1000部很黄的大片|