• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    2017-11-20 12:07:49GouYiyongLiHongboDongXinminLiuZongcheng
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Gou Yiyong,Li Hongbo,Dong Xinmin,Liu Zongcheng

    Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi’an 710038,China

    Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    Gou Yiyong,Li Hongbo,Dong Xinmin*,Liu Zongcheng

    Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi’an 710038,China

    Aeroelastic system;Constrained control;Flutter suppression;Input nonlinearities;RBFNNs

    A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO)aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of input saturation and dead-zone.In regard to the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,which simplifies the input nonlinearities into an equivalent input saturation.To deal with the equivalent input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Meanwhile,uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered,and radial basis function neural networks(RBFNNs)are applied to approximate the system uncertainties.In combination with the designed auxiliary error system and the backstepping control technique,a constrained adaptive neural network controller is designed,and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method.Finally,extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust,system uncertainties,and input nonlinearities.

    1.Introduction

    In the past,aeroelasticity has attracted increasing concern in aircraft design.Aeroelastic systems exhibit a variety of unstable phenomena as a result of the mutual interaction of structural,inertia and aerodynamic forces.1Divergence,flutter,and limit-cycle oscillation are typical unstable phenomena which can degrade an aircraft’s flight performance,and even cause flight mission failure.1,2Thus,a reliable and effective control strategy becomes one of the key issues in aeroelastic system control design.In previous studies,researchers have analyzed the nonlinear responses of aeroelastic systems,and various control schemes have been extensively studied.Based on the l method,Lind and Brenner3have analyzed the unstable responses of aeroelastic systems and studied robust stability margins.To study different aeroelastic phenomena,the NASA Langley Research Center has developed a benchmark active control technology(BACT)wind-tunnel model.4For this BACT wind-tunnel model,several control laws for fluttersuppression have been developed.4–6Considering nonlinear structural stiffness,a model equipped with a single trailingedge(TE)control surface has been developed at Texas A&M University.7Based on this model,a wide variety of control schemes have been designed.8–11Inspired by the limited effectiveness of a single TE control surface,a wing section equipped with a leading-edge(LE)control surface and a TE control surface has been designed,and a large number of control schemes has been proposed.12–16For this wing section with uncertainties,adaptive control has been widely used to suppress flutter.13–15Neural network control and adaptive control have been developed in this filed and compared in control performance.13With respect to external disturbance and uncertainties,Wang et al.14designed an output feedback adaptive controller coupled with an SDU decomposition which avoids the singularity problem arising from estimation of the input matrix.Accounting on the input saturation problem,Lee and Singh15used an auxiliary dynamic system to compensate for the input saturation and proposed a novel control scheme.In addition,a sliding mode control method was also applied to flutter suppression,and Lee and Singh16have designed a higher-order sliding mode controller which accomplished the finite-time flutter suppression of the aeroelastic system.

    It is well known that input nonlinearities exist in a real control system,and an aeroelastic control system is no exception.Both input dead-zone and saturation are considered for the uncertain aeroelastic system in this paper.Input saturation and dead-zone may induce deterioration of the aeroelastic control system performance,and even make the aeroelastic control system fail.Consequently,input saturation and deadzone have attracted much attention.Input dead-zone could induce a zero input against a range of set values.17An adaptive dead-zone inverse approach was proposed to tackle a system with input dead-zone.18An adaptive fuzzy output feedback control law,which treats dead-zone inputs as system uncertainties,has been developed.19For the input saturation problem,Chen et al.20designed an auxiliary system,whose input was the error between the saturation input and the desired control input,to compensate for the impact of the input saturation.Li et al.21proposed an adaptive fuzzy output feedback control for output constrained nonlinear systems.In general,some researchers have also studied in integrating input deadzone with saturation.For uncertain multi-input and multioutput(MIMO)nonlinear systems with input nonlinearities,a robust adaptive neural network control was developed.17Yang and Chen22regarded input dead-zone and saturation nonlinearities as a new input saturation problem through a dead-zone inverse approach,and proposed an adaptive neural prescribed performance control law for near-space vehicles.

    Motivated by the above discussion,a constrained adaptive neural network control scheme is proposed for an MIMO aeroelastic system with wind gust,system uncertainties,and input nonlinearities.Different from the previous references,it is especially noted that uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered.Inspired by Ref.22,the right inverse function block of the dead-zone is added before the input nonlinearities,by which the input nonlinearities can be regarded as a new input saturation.22To handle the new input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Radial basis function neural networks(RBFNNs)are also applied to approximate the system uncertainties.A novel constrained adaptive control law is developed by using the backstepping control technique.The simulation results of the MIMO aeroelastic control system are presented to verify that the proposed control scheme can accomplish flutter suppression despite the effects of wind gust,system uncertainties,and input nonlinearities.

    2.Nonlinear aeroelastic model and preliminary

    2.1.Nonlinear aeroelastic model

    A two-degree-of-freedom(2-DOF)wing section equipped with LE and TE control surfaces is presented in Fig.1.15The second-order differential equations signifying the dynamic of this aeroelastic system are given by13,14

    In Eq.(1),MandLrepresent the aerodynamic moment and lift in a quasi-steady form expressed by13

    Fig.1 Aeroelastic system with LE and TE control surfaces.15

    whereCma,CmbandCmcare the moment derivatives due to a,b and c,respectively;andCmacan be approximately regarded to be zero.13The moment and lift arose by wind gust can be given by14

    wherets?Ut=b,and xgetsT denotes the disturbance velocity.

    wherevimaxandvimindenote the known saturation values of the control inputvi(i?1;2).

    Fig.2 Structural diagram of input nonlinearity

    Fig.3 Saturation function

    Fig.4 Dead-zone function

    whereluiandldiare the breakpoints of the dead-zone;kui>0 andkdi>0 are the right and left slope parameters,respectively.

    In this paper,the control objective is to design a constrained adaptive neural network controller for the MIMO aeroelastic system in Eq.(6)to ensure the output y can track the desired output signal ydby appropriately choosing design parameters.

    Lemma 320.No eigenvalue of matrixAexceeds any of its norm in its absolute value,that is,

    2.2.Analysis of input nonlinearity

    Base on the analysis of the characteristics of the new construction of input nonlinearity in Ref.26,uican be described as

    Fig.5 Right inverse function

    Fig.6 Structural diagram of input nonlinearity

    The above equation means that the input saturation and dead-zone coupled with the right inverse function block of the dead-zone can be regarded as an equivalent input saturation.

    2.3.RBF neural networks

    3.Design of a constrained adaptive control scheme based on RBFNNs

    3.1.Design of a constrained adaptive control scheme

    In this section,the backstepping method is used to construct a constrained adaptive neural network controller for the nonlinear system in Eq.(6).Define the error variables as

    During the constrained adaptive neural network controller design,the backstepping control technique is employed and the detailed design process is described as follows.

    Step 1.Considering the system in Eq.(6)and differentiating z1,we obtain

    To proceed with the design of the constrained adaptive neural network control scheme,we define

    Then,we obtain

    Consider the Lyapunov function candidate

    Step 2.Differentiating z2yields

    Consider the Lyapunov function candidate

    As shown in Section 2.3,the RBFNNs will be employed to approximate the system uncertainties DFexT,and the optimal approximation can be written as

    Substituting Eq.(29)into Eq.(28)yields

    Considering Assumptions 1 and 2,we obtain

    In view of Young’s inequality,20and invoking Lemma 1,Eq.(31)can be rewritten as

    From Eq.(13),the control inputs u can be regarded as an input saturation problem.To compensate for the impact of the input saturation,the auxiliary error system is presented as follows20

    Define20

    Invoking Lemma 2 and taking the input saturation into consideration,choose the control law as follows

    3.2.Stability analysis

    In this section,the main results will be stated,and the semiglobal boundedness of all the signals in the closed-loop system will be proven by two cases.

    Choose the Lyapunov function as follows

    Following from Eqs.(25)and(32)and invoking Lemma 3,the time derivative ofVis

    Invoking Eq.(36),we obtain

    Substituting Eq.(40)into Eq.(39)yields

    Substituting Eq.(42)into Eq.(41),we obtain

    The structure diagram of the whole control system can be seen in Fig.7.

    4.Example results and discussion

    Fig.7 Structural diagram of whole control system.

    For the purpose of examining the effectiveness of the proposed constrained adaptive neural network control scheme at different freestream velocities,simulations at three different freestream velocitiesUc,1:5Ucand 2Ucare undertaken.The results are presented in Fig.11,which shows that the closedloop system is stable despite different freestream velocities,and for a higher freestream velocity,the responses are quicker.To examine that the LCOs can be suppressed,the aeroelastic system at a freestream velocity of 12 m/s is held in an open loop for 10 s and then the loop is closed.In Fig.12,we can observe that the pitch LCO is suppressed in about 5 s and the plunge LCO is suppressed in about 1 s;in terms of control surface,the TE control surface deflection converges to zero in less than 6 s,and the LE control surface deflection converges to zero in about 2 s.

    Table 1 Model parameters.13–15

    Fig.8 Real part of eigenvalues in open-loop system.

    Fig.9 Aeroelastic system phase diagrams at different freestream velocities.

    Fig.10 Aeroelastic system LCO frequency spectra at different freestream velocities.

    To verify the applicability and robustness of the aeroelastic control system,based on four types of wind gust,four sets of simulations are done as follows.

    The mathematical model of sinusoidal gust is given by14

    Fig.11 Constrained control at different freestream velocities.

    Fig.12 Constrained control,controller active at t=10 s.

    Fig.13 Constrained control for sinusoidal gust,U?12 m=s.

    For the triangular gust,one has14

    For the exponential gust,the mathematical model can be described as15

    Figure 14 Constrained control for random gust,

    Fig.15 Constrained control for triangular gust,

    Fig.16 Constrained control for exponential gust,

    Fig.17 Constrained controlagainstsystem uncertainties,

    Fig.18 Constrained control with LE control surface failure,

    Fig.19 Constrained control with TE control surface failure,

    5.Conclusions

    (1)An effective constrained adaptive neural network control scheme has been developed for an MIMO aeroelastic system with wind gust,system uncertainties,and input nonlinearities.

    (2)In order to handle the system uncertainties,RBFNNs have been employed to approximate the system uncertainties effectively,and simulation results demonstrate the effectiveness of the proposed control scheme against the system uncertainties.

    (3)To deal with the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,and the input nonlinearities can be treated as a single input saturation nonlinearity.Moreover,an auxiliary error system is designed to compensate for the impact of the input saturation.

    (4)By using the Lyapunov stability theory and the backstepping control technique,all signals of the closedloop system based on the proposed constrained adaptive neural network control scheme are semi-globally uniformly bounded.

    (5)Digital simulation results illustrate the effectiveness of the proposed control scheme which can accomplish flutter suppression quickly at different freestream velocities.Moreover,in terms of wind gust,the simulation results verify the applicability and robustness of the proposed control scheme.In addition,considering the failure of a control surface,we find that the proposed control method can be applied to the aeroelastic system with only the TE control surface.

    Acknowledgements

    This research was supported by the National Natural Science Foundation of China(Nos.61473307 and 61304120),and the AeronauticalScience Foundation of China (No.20155896026).

    1.Mukhopadhyay V.Historical perspective on analysis and control of aeroelastic responses.J Guidance,Control,Dyn2003;26(5):673–84.

    2.Li DC,Xiang JW,Guo SJ.Adaptive control of a nonlinear aeroelastic system.Aerospace Sci Technol2011;15(5):343–52.

    3.Lind R,Brenner M.Robust aeroservoelastic stability analysis.London:Springer-Verlag;1999.p.117–52.

    4.Waszak MR.Robust multivariable flutter suppression for benchmark active control technology wind-tunnel model.J Guidance,Control,Dyn2001;24(1):147–53.

    5.Mukhopadhyay V.Transonic flutter suppression control law design and wind-tunnel test results.J Guidance,Control,Dyn2000;23(5):930–7.

    6.Kelkar AG,Joshi SM.Passivity-based robust control with application to benchmark controls technology wing.J Guidance,Control,Dyn2000;23(5):938–47.

    7.Ko J,Kurdila AJ,Strganac TW.Nonlinear control of a prototypical wing section with torsional nonlinearity 1997.J Guidance,Control,Dyn1997;20(6):1181–9.

    8.Ko J,Strganac TW,Kurdila AJ.Adaptive feedback linearization for the control of a typical wing section with structural nonlinearity.Nonlinear Dyn1999;18(3):289–301.

    9.Xing W,Singh SN.Adaptive output feedback control of a nonlinear aeroelastic structure.J Guidance,Control,Dyn2000;23(6):1109–16.

    10.Lee KW,Singh SN.Global robust control of an aeroelastic system using output feedback.J Guidance,Control,Dyn2007;30(1):271–5.

    11.Beha A,Marzocca P,Rao VM,Gnann A.Nonlinear adaptive control of an aeroelastic two-dimensional lifting surface.J Guidance,Control,Dyn2006;29(2):382–90.

    12.Platanitis G,Strganac TW.Control of a nonlinear wing section using leading-and trailing-edge surfaces.J Guidance,Control,Dyn2004;27(1):52–8.

    13.Gujjula S,Singh SN,Yim W.Adaptive and neural control of a wing section using leading-and trailing-edge surfaces.Aerospace Sci Technol2005;9(2):161–71.

    14.Wang Z,Behal A,Marzocca P.Model-free control design for multi-input multi-output aeroelastic system subject to external disturbance.J Guidance,Control,Dyn2011;34(2):446–58.

    15.Lee KW,Singh SN.Adaptive control of multi-Input aeroelastic system with constrained inputs.J Guidance,Control,Dyn2015;38(12):2337–50.

    16.Lee KW,Singh SN.Robust higher-order sliding-mode finite-time control of aeroelastic systems.J Guidance,Control,Dyn2014;37(5):1664–70.

    17.Chen M,Ge SS,Eehow BV.Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities.IEEE Trans Neural Netw2010;21(5):796–812.

    18.Zhou J,Wen C,Zhang Y.Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity.IEEE Trans Autom Control2006;51(3):504–10.

    19.Tong S,Li Y.Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs.IEEE Trans Fuzzy Sys2013;21(1):134–46.

    20.Chen M,Ge SS,Ren BB.Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints.Automatica2011;47(3):452–65.

    21.Li Y,Tong S,Li T.Adaptive fuzzy output feedback control for output constrained nonlinear systems in the presence of input saturation.Fuzzy Sets Syst2014;248(1):138–55.

    22.Yang QY,Chen M.Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity.Neurocomputing2016;174:780–9.

    23.Liu ZC,Dong XM,Xue JP,Chen Y.Adaptive neural control for a class of time-delay systems in the presence of backlash or deadzone nonlinearity.IET Control Theory Appl2014;8(11):1009–22.

    24.Zhang TP,Ge SS.Adaptive dynamic surface control of nonlinear systems with unknown dead-zone in pure feedback form.Automatica2008;44(7):1895–903.

    25.Polycarpou MM,Ioannou PA.A robust adaptive nonlinear control design.Automatica1996;32(3):423–7.

    26.Ma DCRL,Heath WP.Controller structure for plants with combined saturation and deadzone/backlash.2012 IEEE international conference on control application;2012 Oct 18–20;Dubrovnik.Piscataway(NJ):IEEE Press;2012.p.1394–9.

    27.Chen M,Yu J.Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer.Chin J Aeronautics2015;28(3):853–64.

    20 April 2016;revised 2 September 2016;accepted 28 November 2016

    Available online 16 February 2017

    *Corresponding author.

    E-mail addresses:gouyiyong@139.com(Y.Gou),dongxinmin@139.com(X.Dong).

    Peer review under responsibility of Editorial Committee of CJA.

    男插女下体视频免费在线播放| 又粗又爽又猛毛片免费看| 天堂网av新在线| 久久人妻av系列| 在线播放国产精品三级| 制服人妻中文乱码| 亚洲在线自拍视频| 久久久精品大字幕| 91在线观看av| 麻豆久久精品国产亚洲av| 他把我摸到了高潮在线观看| 久久久久九九精品影院| 校园春色视频在线观看| 欧美乱色亚洲激情| 国产真人三级小视频在线观看| 久久久精品欧美日韩精品| 欧美日韩一级在线毛片| 中文字幕久久专区| 大型黄色视频在线免费观看| 午夜福利免费观看在线| 男人和女人高潮做爰伦理| 级片在线观看| 亚洲中文字幕一区二区三区有码在线看| 黄色女人牲交| 最后的刺客免费高清国语| 欧美一级毛片孕妇| 激情在线观看视频在线高清| 亚洲激情在线av| 欧美黑人巨大hd| 欧美极品一区二区三区四区| 在线观看66精品国产| 少妇丰满av| 性色av乱码一区二区三区2| 亚洲成a人片在线一区二区| 丁香六月欧美| 精品人妻1区二区| 亚洲精品国产精品久久久不卡| 亚洲最大成人手机在线| 国产av麻豆久久久久久久| 成人国产综合亚洲| 一个人看视频在线观看www免费 | 欧美黑人巨大hd| a在线观看视频网站| 麻豆国产av国片精品| 亚洲一区高清亚洲精品| 99久久成人亚洲精品观看| 午夜视频国产福利| 亚洲色图av天堂| 一区二区三区高清视频在线| av国产免费在线观看| 亚洲av免费在线观看| 偷拍熟女少妇极品色| 俺也久久电影网| 免费在线观看成人毛片| 亚洲不卡免费看| 一区二区三区国产精品乱码| 老司机在亚洲福利影院| 伊人久久大香线蕉亚洲五| 91麻豆精品激情在线观看国产| 亚洲精华国产精华精| 高清在线国产一区| 很黄的视频免费| 俄罗斯特黄特色一大片| 欧美极品一区二区三区四区| 欧美不卡视频在线免费观看| 国产私拍福利视频在线观看| 禁无遮挡网站| 人妻丰满熟妇av一区二区三区| 成年女人看的毛片在线观看| 丰满乱子伦码专区| 狂野欧美激情性xxxx| 特级一级黄色大片| 国产免费av片在线观看野外av| 久久久久国内视频| 窝窝影院91人妻| 国产高潮美女av| 变态另类丝袜制服| 在线免费观看不下载黄p国产 | 亚洲av电影不卡..在线观看| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| 操出白浆在线播放| 国产亚洲精品一区二区www| 伊人久久大香线蕉亚洲五| 国产精品爽爽va在线观看网站| 99热6这里只有精品| 久久精品国产综合久久久| 国产男靠女视频免费网站| 香蕉丝袜av| 精品午夜福利视频在线观看一区| 亚洲av五月六月丁香网| 亚洲国产欧洲综合997久久,| 一级黄片播放器| 久久精品亚洲精品国产色婷小说| av欧美777| 欧美在线一区亚洲| 99热这里只有是精品50| 日韩免费av在线播放| 国产欧美日韩一区二区三| 亚洲激情在线av| 制服人妻中文乱码| 精品99又大又爽又粗少妇毛片 | 国产毛片a区久久久久| 国产老妇女一区| 国产午夜精品论理片| 日本熟妇午夜| 身体一侧抽搐| 精华霜和精华液先用哪个| 哪里可以看免费的av片| 男女视频在线观看网站免费| 很黄的视频免费| xxx96com| 岛国在线观看网站| 国产乱人视频| 国产精品影院久久| 欧美一区二区国产精品久久精品| 久久久久九九精品影院| 蜜桃久久精品国产亚洲av| 中文资源天堂在线| 国产毛片a区久久久久| 精品福利观看| 婷婷精品国产亚洲av| 久久国产精品影院| 亚洲在线观看片| 尤物成人国产欧美一区二区三区| 99精品在免费线老司机午夜| 色综合婷婷激情| 成人永久免费在线观看视频| 久久精品国产亚洲av涩爱 | 久9热在线精品视频| 久久久色成人| 狂野欧美激情性xxxx| 久久久久久久亚洲中文字幕 | 99久久99久久久精品蜜桃| 欧美区成人在线视频| 2021天堂中文幕一二区在线观| 国产精品,欧美在线| 国内毛片毛片毛片毛片毛片| 日本 欧美在线| 99精品久久久久人妻精品| 亚洲人成电影免费在线| 亚洲欧美精品综合久久99| 精品99又大又爽又粗少妇毛片 | 国产精品一区二区三区四区久久| 免费高清视频大片| 亚洲狠狠婷婷综合久久图片| 一区二区三区免费毛片| 人妻久久中文字幕网| 中文在线观看免费www的网站| 亚洲在线自拍视频| 国产伦一二天堂av在线观看| 波野结衣二区三区在线 | av国产免费在线观看| 国产欧美日韩一区二区三| 99热只有精品国产| 久久久国产精品麻豆| 午夜福利在线观看吧| 很黄的视频免费| 黄色丝袜av网址大全| av专区在线播放| 伊人久久精品亚洲午夜| 午夜福利在线观看免费完整高清在 | 免费观看精品视频网站| 国产探花在线观看一区二区| 99国产精品一区二区三区| 亚洲精品亚洲一区二区| 91麻豆精品激情在线观看国产| 欧美性猛交黑人性爽| 精品免费久久久久久久清纯| 亚洲五月婷婷丁香| 成人性生交大片免费视频hd| bbb黄色大片| 亚洲第一欧美日韩一区二区三区| 亚洲国产精品久久男人天堂| 午夜日韩欧美国产| 神马国产精品三级电影在线观看| 搡女人真爽免费视频火全软件 | 一区二区三区激情视频| 国产精品综合久久久久久久免费| 国产成人系列免费观看| 亚洲精品粉嫩美女一区| 搡老妇女老女人老熟妇| 男插女下体视频免费在线播放| 久久久久性生活片| 美女被艹到高潮喷水动态| www日本在线高清视频| 国产精品久久久久久久电影 | 非洲黑人性xxxx精品又粗又长| 国产成人欧美在线观看| 亚洲在线自拍视频| 国产免费男女视频| 亚洲成人久久性| 十八禁网站免费在线| 丝袜美腿在线中文| 精品一区二区三区视频在线 | 午夜免费成人在线视频| 免费av毛片视频| 听说在线观看完整版免费高清| 男女视频在线观看网站免费| 国产麻豆成人av免费视频| 国产久久久一区二区三区| 午夜福利成人在线免费观看| 免费看日本二区| 一进一出抽搐动态| 99久久精品国产亚洲精品| 高清在线国产一区| 国产亚洲精品av在线| 亚洲电影在线观看av| 国产野战对白在线观看| 天堂√8在线中文| 亚洲人成电影免费在线| 免费一级毛片在线播放高清视频| 国产精品国产高清国产av| 亚洲成人久久性| 国产精品av视频在线免费观看| 亚洲国产欧美人成| 欧美黑人巨大hd| 国产真实乱freesex| 国产69精品久久久久777片| 真实男女啪啪啪动态图| 久久香蕉精品热| av欧美777| 香蕉丝袜av| 精品欧美国产一区二区三| 亚洲精品456在线播放app | 成人av一区二区三区在线看| 精品久久久久久,| 亚洲熟妇熟女久久| 18禁黄网站禁片午夜丰满| 色综合婷婷激情| 久久精品91蜜桃| 午夜福利欧美成人| 国产精品日韩av在线免费观看| 色播亚洲综合网| 国产精品美女特级片免费视频播放器| 国产精品久久电影中文字幕| a级一级毛片免费在线观看| 亚洲成人免费电影在线观看| 国产一区在线观看成人免费| 床上黄色一级片| 国产精品嫩草影院av在线观看 | 国产主播在线观看一区二区| 99国产综合亚洲精品| 麻豆国产av国片精品| 欧美国产日韩亚洲一区| 一个人看视频在线观看www免费 | 嫩草影院入口| 久久精品国产99精品国产亚洲性色| 欧美乱码精品一区二区三区| 色在线成人网| 国产精品爽爽va在线观看网站| 嫁个100分男人电影在线观看| 99热这里只有精品一区| 国产亚洲精品综合一区在线观看| 国产精品久久久久久久电影 | 三级毛片av免费| 日日摸夜夜添夜夜添小说| 亚洲中文字幕日韩| 午夜a级毛片| 成人无遮挡网站| 淫妇啪啪啪对白视频| 黄色日韩在线| 成人三级黄色视频| 波多野结衣高清作品| 亚洲精华国产精华精| 午夜激情欧美在线| 成人欧美大片| 精品一区二区三区视频在线观看免费| 亚洲av日韩精品久久久久久密| 熟女人妻精品中文字幕| 日本三级黄在线观看| 岛国在线观看网站| 人人妻,人人澡人人爽秒播| 麻豆国产97在线/欧美| 禁无遮挡网站| 国产 一区 欧美 日韩| 欧美日韩综合久久久久久 | 免费观看的影片在线观看| 欧美国产日韩亚洲一区| 国产熟女xx| 久久欧美精品欧美久久欧美| 国产国拍精品亚洲av在线观看 | 亚洲欧美精品综合久久99| 91在线观看av| 午夜免费成人在线视频| 啪啪无遮挡十八禁网站| 国产精品永久免费网站| 黄色成人免费大全| 美女免费视频网站| 综合色av麻豆| 国产精品嫩草影院av在线观看 | 免费无遮挡裸体视频| 日韩欧美 国产精品| 十八禁网站免费在线| 99热6这里只有精品| 色老头精品视频在线观看| 国产欧美日韩一区二区三| 欧美成人a在线观看| 国产精品永久免费网站| 少妇熟女aⅴ在线视频| 少妇人妻一区二区三区视频| 一个人免费在线观看的高清视频| 美女 人体艺术 gogo| 18+在线观看网站| 欧美日本亚洲视频在线播放| 国产三级黄色录像| tocl精华| 99久久99久久久精品蜜桃| 亚洲国产精品999在线| 桃红色精品国产亚洲av| 色av中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 久久久成人免费电影| 免费看十八禁软件| 亚洲国产中文字幕在线视频| 国产高清videossex| 最近最新中文字幕大全电影3| 精品福利观看| 久久精品国产自在天天线| 亚洲精品久久国产高清桃花| 中文字幕av在线有码专区| 一区福利在线观看| 在线观看日韩欧美| 午夜日韩欧美国产| 午夜福利高清视频| 最近视频中文字幕2019在线8| 美女cb高潮喷水在线观看| 国产高清三级在线| 全区人妻精品视频| 国产蜜桃级精品一区二区三区| 男女视频在线观看网站免费| 天堂影院成人在线观看| 成人高潮视频无遮挡免费网站| 精华霜和精华液先用哪个| 91在线精品国自产拍蜜月 | 欧美午夜高清在线| 欧美色欧美亚洲另类二区| 老司机深夜福利视频在线观看| 男女午夜视频在线观看| 露出奶头的视频| 在线看三级毛片| 熟妇人妻久久中文字幕3abv| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 99热这里只有精品一区| 少妇高潮的动态图| 亚洲片人在线观看| 中亚洲国语对白在线视频| 色综合婷婷激情| 女人高潮潮喷娇喘18禁视频| 色播亚洲综合网| 国产色爽女视频免费观看| 国产午夜福利久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 少妇人妻精品综合一区二区 | 亚洲av成人不卡在线观看播放网| 久久久久久久午夜电影| 99久久综合精品五月天人人| 女同久久另类99精品国产91| 久久久久久国产a免费观看| 一级黄片播放器| 欧美日本视频| 丁香欧美五月| 母亲3免费完整高清在线观看| 蜜桃久久精品国产亚洲av| 女同久久另类99精品国产91| 男女床上黄色一级片免费看| 国产精品美女特级片免费视频播放器| 小蜜桃在线观看免费完整版高清| 在线观看av片永久免费下载| 午夜福利免费观看在线| 欧美大码av| 午夜福利欧美成人| 51国产日韩欧美| 亚洲无线观看免费| 一a级毛片在线观看| 亚洲精品久久国产高清桃花| 国产成人a区在线观看| 好男人电影高清在线观看| 一夜夜www| 久久久久精品国产欧美久久久| 国产视频一区二区在线看| 中文字幕人妻丝袜一区二区| 桃红色精品国产亚洲av| 免费av观看视频| 午夜福利欧美成人| 99精品久久久久人妻精品| 中文资源天堂在线| 一a级毛片在线观看| 美女cb高潮喷水在线观看| 啦啦啦韩国在线观看视频| 色在线成人网| 亚洲精品久久国产高清桃花| 级片在线观看| 亚洲精品在线观看二区| 欧美在线一区亚洲| 欧美最黄视频在线播放免费| 亚洲成人精品中文字幕电影| 毛片女人毛片| 又黄又粗又硬又大视频| 黄色女人牲交| 最近在线观看免费完整版| 搡老熟女国产l中国老女人| 亚洲片人在线观看| 午夜精品在线福利| 天堂av国产一区二区熟女人妻| 国产男靠女视频免费网站| 一个人观看的视频www高清免费观看| 亚洲人成网站高清观看| 美女大奶头视频| 亚洲人与动物交配视频| 国产精品99久久99久久久不卡| 久久精品影院6| 99久国产av精品| 在线观看免费视频日本深夜| or卡值多少钱| 色视频www国产| 99视频精品全部免费 在线| 香蕉av资源在线| 国产精品亚洲av一区麻豆| 久久香蕉精品热| 叶爱在线成人免费视频播放| 99精品在免费线老司机午夜| 国产蜜桃级精品一区二区三区| 午夜激情欧美在线| 激情在线观看视频在线高清| 长腿黑丝高跟| 精品久久久久久成人av| av在线蜜桃| 国产高清有码在线观看视频| 精品一区二区三区av网在线观看| 午夜福利18| 国产亚洲av嫩草精品影院| 中文字幕高清在线视频| 午夜免费成人在线视频| 十八禁人妻一区二区| 欧美最新免费一区二区三区 | 精品不卡国产一区二区三区| 免费看美女性在线毛片视频| 久久久久精品国产欧美久久久| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩卡通动漫| 久久久久精品国产欧美久久久| 国产乱人视频| 欧美成人一区二区免费高清观看| 91九色精品人成在线观看| 久久精品国产清高在天天线| 性欧美人与动物交配| 99久久九九国产精品国产免费| 中文字幕人妻丝袜一区二区| xxxwww97欧美| 欧美日韩瑟瑟在线播放| 床上黄色一级片| 婷婷丁香在线五月| 91久久精品电影网| 国产精品久久久久久人妻精品电影| 少妇裸体淫交视频免费看高清| 三级毛片av免费| av福利片在线观看| 精品久久久久久久毛片微露脸| 国产69精品久久久久777片| 岛国在线免费视频观看| 美女黄网站色视频| 亚洲人成网站在线播| 亚洲 国产 在线| 国产精品久久视频播放| 国产熟女xx| 亚洲国产欧洲综合997久久,| 色综合欧美亚洲国产小说| 欧美一区二区精品小视频在线| 亚洲aⅴ乱码一区二区在线播放| 精品国内亚洲2022精品成人| 国产一区二区在线观看日韩 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国内久久婷婷六月综合欲色啪| 国产一区在线观看成人免费| 精品熟女少妇八av免费久了| 在线十欧美十亚洲十日本专区| 女生性感内裤真人,穿戴方法视频| 亚洲精品456在线播放app | 欧美色视频一区免费| 国产乱人伦免费视频| 黄色视频,在线免费观看| 久久久久久久亚洲中文字幕 | 国产精品久久久久久亚洲av鲁大| 俺也久久电影网| 网址你懂的国产日韩在线| 国产黄色小视频在线观看| 国产探花在线观看一区二区| 在线观看一区二区三区| 中国美女看黄片| 99久久99久久久精品蜜桃| 十八禁网站免费在线| 亚洲久久久久久中文字幕| 男人舔奶头视频| 18禁裸乳无遮挡免费网站照片| 少妇的逼水好多| 国产私拍福利视频在线观看| 日本黄色片子视频| 不卡一级毛片| 亚洲五月天丁香| 一个人看视频在线观看www免费 | 久久国产精品人妻蜜桃| 91av网一区二区| 国产中年淑女户外野战色| 精品电影一区二区在线| 最近在线观看免费完整版| 三级国产精品欧美在线观看| 性色avwww在线观看| 少妇熟女aⅴ在线视频| 听说在线观看完整版免费高清| 国内精品久久久久精免费| 久久99热这里只有精品18| 久久草成人影院| 一进一出抽搐gif免费好疼| 日韩欧美精品免费久久 | 一本综合久久免费| 哪里可以看免费的av片| 国产又黄又爽又无遮挡在线| 国产高清激情床上av| 精品午夜福利视频在线观看一区| 五月伊人婷婷丁香| aaaaa片日本免费| 91字幕亚洲| 午夜精品在线福利| 国语自产精品视频在线第100页| 90打野战视频偷拍视频| 精品国内亚洲2022精品成人| 国产91精品成人一区二区三区| 女人被狂操c到高潮| 嫩草影视91久久| 99在线视频只有这里精品首页| 麻豆成人av在线观看| 听说在线观看完整版免费高清| 免费在线观看日本一区| 国产91精品成人一区二区三区| 精品99又大又爽又粗少妇毛片 | 精品午夜福利视频在线观看一区| 日韩精品青青久久久久久| 99精品久久久久人妻精品| 国产真人三级小视频在线观看| 中文字幕熟女人妻在线| 9191精品国产免费久久| 天堂动漫精品| 久久久精品大字幕| www.色视频.com| 成人亚洲精品av一区二区| 一区二区三区高清视频在线| 久久性视频一级片| 亚洲av二区三区四区| 99久久无色码亚洲精品果冻| 久久精品国产亚洲av涩爱 | 动漫黄色视频在线观看| 国产在线精品亚洲第一网站| 欧美一级毛片孕妇| 桃色一区二区三区在线观看| 人妻丰满熟妇av一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲av中文字字幕乱码综合| 草草在线视频免费看| 少妇的丰满在线观看| 免费在线观看影片大全网站| 十八禁人妻一区二区| 久久香蕉精品热| 一个人免费在线观看电影| 波多野结衣巨乳人妻| 天堂√8在线中文| 怎么达到女性高潮| 99热只有精品国产| 国产在视频线在精品| 国产高清激情床上av| 蜜桃久久精品国产亚洲av| 久久久久久人人人人人| 精品人妻偷拍中文字幕| АⅤ资源中文在线天堂| 午夜精品一区二区三区免费看| 亚洲av美国av| 两个人看的免费小视频| 国产精品av视频在线免费观看| 国产视频内射| 午夜福利高清视频| 一本久久中文字幕| 在线a可以看的网站| 亚洲欧美日韩卡通动漫| 欧美日韩瑟瑟在线播放| 国产精品久久久久久人妻精品电影| 熟女电影av网| 午夜免费成人在线视频| 一卡2卡三卡四卡精品乱码亚洲| 一级a爱片免费观看的视频| 91麻豆av在线| eeuss影院久久| 熟女少妇亚洲综合色aaa.| 国产成人系列免费观看| 一级黄片播放器| 日本与韩国留学比较| 亚洲av电影不卡..在线观看| 国产私拍福利视频在线观看| 欧美最黄视频在线播放免费| 免费高清视频大片| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 91九色精品人成在线观看| 两个人视频免费观看高清| 亚洲专区国产一区二区| 午夜精品在线福利| av天堂在线播放| 人妻久久中文字幕网| 国产主播在线观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 久久精品夜夜夜夜夜久久蜜豆| 校园春色视频在线观看| 午夜福利欧美成人| 色av中文字幕| 高潮久久久久久久久久久不卡|