• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,Structures and Catalytic Activity in Knoevenagel Condensation Reaction of Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) Coordination Polymers Based on Ether-Bridged Tetracarboxylic Acid

    2021-11-04 13:54:56CHENJinWeiZHUANGYingFenZOUXunZhongFENGAnShengZHANGYanLaiLIYu

    CHEN Jin-WeiZHUANG Ying-FenZOU Xun-ZhongFENG An-ShengZHANG Yan-LaiLI Yu*,

    (1Fujian Provincial Key Laboratory of Advanced Materials Processing and Application,Fujian University of Technology,Fuzhou 350118,China)

    (2School of Light Chemical Engineering/Guangdong Research Center for Special Building Materials and Its Green Preparation Technology,Guangdong Industry Polytechnic,Guangzhou 510300,China)

    Abstract:Three Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) coordination polymers,namely{[Cu2(μ5-deta)(2,2′-bipy)2]·2H2O}n(1),[Co2(μ4-deta)(2,2′-bipy)2(H2O)3]n(2)and{[Ni2(μ3-deta)(μ-4,4′-bipy)2.5(H2O)5]·3H2O}n(3),have been constructed hydrothermally using H4deta(2,3′,4,4′-diphenyl ether tetracarboxylic acid),2,2′-bipy(2,2′-bipyridine)/4,4′-bipy(4,4′-bipyridine)and CuCl2·2H2O,CoCl2·6H2O,NiCl2·6H2O,respectively,at 160 ℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses reveal that the three compounds crystallize in the triclinic or monoclinic systems,space groupsP orP21/n.Compound 1 discloses a 2D sheet.Compound 2 features a 1D chain structure.Compound 3 shows a 3D framework.The catalytic activity in the Knoevenagel condensation reaction of these compounds were investigated.Compound 1 exhibited an excellent catalytic activity in the Knoevenagel condensation reaction at room temperature.CCDC:2086961,1;2086962,2;2086963,3.

    Keywords:coordination polymer;tetracarboxylic acid;catalytic properties;Knoevenagel condensation reaction

    Coordination polymers with ordered structures are built from metal ions as nodes with versatile coordination geometry and multidentate organic linkers.The functional coordination polymers has caught increasing attention in recent years and turn out to be one of the fastest growing areas in synthetic chemistry and material science[1-12].In the last five years,organic carboxylate ligands have been widely used in synthesizing coordination polymers due to strong coordination ability of the carboxyl group and rich coordination modes[6-7,13-16].Among them,ether-bridged carboxylic acids have been extensively applied as versatile building blocks toward the assembly of metal-organic architectures[17-18].2,3′,4,4′-diphenyl ether tetracarboxylic acid(H4deta)is a good bridging ligand for constructing coordination polymers[19],under considering structural semi-rigidity,which has multiple coordinate sites involving eight carboxylate oxygen atoms and one O-ether donor.

    Knoevenagel condensation is one of the imperative and essential condensation processes in synthetic organic chemistry,in whichα,β-unsaturated products formed via carbon-carbon double bond involve a nucleophilic addition reaction between active methylene and carbonyl compounds followed by a dehydration reaction[20-24].Products obtained are extensively used as specialty chemicals and intermediates in the synthesis of fine chemicals such as carbocyclic,substituted alkenes,biologically active compounds,therapeutic drugs,calcium antagonists,natural products,functional polymers,coumarin derivatives,flavors and perfumes.Transition metal-catalyzed Knoevenagel condensation reactions have recently received much attention[25-27],mainly due to low price and moderate toxicity of the catalysts in combination with their high activity.

    Herein,we report the synthesis,crystal structures and catalysis activity in Knoevenagel condensation of three Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) coordination polymers with H4deta and 2,2′-bipy(2,2′-bipyridine)/4,4′-bipy(4,4′-bipyridine)ligands.

    1 Experimental

    1.1 Reagents and physical measurements

    All chemicals and solvents were of AR grade and used without further purification.Carbon,hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer.IR spectrum was recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer.Thermogravimetric analysis(TGA)data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10℃·min-1.Powder X-ray diffraction(PXRD)patterns were measured on a Rigaku-Dmax 2400 diffractometer using CuKαradiation(λ=0.154 06 nm);the X-ray tube was operated at 40 kV and 40 mA;the data collection range(2θ)was between 5°and 45°.Solution1H NMR spectra were recorded on a JNM ECS 400M spectrometer.

    1.2 Synthesis of {[Cu2(μ5-deta)(2,2′-bipy)2]·2H2O}n(1)

    A mixture of CuCl2·2H2O(0.034 g,0.2 mmol),H4deta(0.035 g,0.1 mmol),2,2′-bipy(0.031 g,0.2 mmol),NaOH(0.016 g,0.4 mmol)and H2O(10 mL)was stirred at room temperature for 15 min,and then sealed in a 25 mL Teflon-lined stainless steel vessel,and heated at 120℃for three days,followed by cooling to room temperature at a rate of 10 ℃·h-1.Blue block-shaped crystals were isolated manually,and washed with distilled water.Yield:45% (based on H4deta).Anal.Calcd.for C36H26Cu2N4O11(% ):C 52.88,H 3.20,N 6.85;Found(% ):C 52.63,H 3.18,N 6.88.IR(KBr,cm-1):3 507w,3 070w,1 602s,1 495w,1 473w,1447w,1424w,1370s,1313w,1290w,1254w,1232w,1 175w,1 139w,1 082w,1 032w,957w,903w,836w,778m,735w,690w,663w.

    1.3 Synthesis of[Co2(μ4-deta)(2,2′-bipy)2(H2O)3]n(2)

    Synthesis of 2 was similar to 1 except using CoCl2·6H2O(0.048 g,0.2 mmol)instead of CuCl2·2H2O.Orange block-shaped crystals of 2 were isolated manually,and washed with distilled water.Yield:56% (based on H4deta).Anal.Calcd.for C36H28Co2N4O12(% ):C 52.32,H 3.41,N 6.78;Found(% ):C 52.55,H 3.39,N 6.81.IR(KBr,cm-1):3 422w,3 062w,1 602s,1 543s,1489w,1473m,1440s,1374s,1307w,1262m,1233w,1 150w,1 121w,1 063w,1 022w,952w,902w,840w,803w,770m,736w,687w,637w.

    1.4 Synthesis of{[Ni2(μ3-deta)(μ-4,4′-bipy)2.5(H2O)5]·3H2O}n(3)

    A mixture of NiCl2·6H2O(0.048 g,0.2 mmol),H4deta(0.035 g,0.1 mmol),4,4′-bipy(0.031 g,0.2 mmol),NaOH(0.016 g,0.4 mmol)and H2O(10 mL)was stirred at room temperature for 15 min,and then sealed in a 25 mL Teflon-lined stainless steel vessel,and heated at 120℃for three days,followed by cooling to room temperature at a rate of 10℃·h-1.Green block-shaped crystals were isolated manually,and washed with distilled water.Yield:50% (based on H4deta).Anal.Calcd.for C41H42Ni2N5O17(% ):C 49.53,H 4.26,N 7.04;Found(% ):C 49.77,H 4.28,N 7.02.IR(KBr,cm-1):3 436m,1 607s,1 553s,1 495w,1 418w,1383s,1263w,1232w,1161w,1122w,1072w,1046w,1 010w,952w,814m,770w,699w,637w.

    The compounds are insoluble in water and common organic solvents,such as methanol,ethanol,acetone and DMF.

    1.5 Structure determination

    The single crystals with dimensions of 0.23 mm×0.22 mm×0.20 mm(1),0.22 mm×0.18 mm×0.17 mm(2)and 0.23 mm×0.21 mm×0.20 mm(3)were collected at 293(2)K on a Bruker SMART APEX Ⅱ CCD diffractometer with MoKα(λ=0.071 073 nm).The structures were solved by direct methods and refined by full matrix least-square onF2using SHELXTL-2014 program[28].All non-hydrogen atoms were refined anisotropically.All the hydrogen atoms(except for the ones bound to water molecules)were placed in calculated positions with fixed isotropic thermal parameters included in structure factor calculations in the final stage of full-matrix least-squares refinement.The hydrogen atoms of water molecules were located by different maps and constrained to ride on their paraent O atoms.A summary of the crystallography data and structure refinements for 1~3 is given in Table 1.The selected bond lengths and angles for 1~3 are listed in Table 2.Hydrogen bond parameters of 1~3 are given in Table 3~5.

    Table 1 Crystal data for compounds 1~3

    Table 2 Selected bond distances(nm)and bond angles(°)for compounds 1~3

    Table 3 Hydrogen bond parameters of compound 1

    Table 4 Hydrogen bond parameters of compound 2

    Table 5 Hydrogen bond parameters of compound 3

    CCDC:2086961,1;2086962,2;2086963,3.

    1.6 Catalytic test for Knoevenagel condensation reaction of aldehydes

    In a typical test,a suspension of an aromatic aldehyde(0.50 mmol,benzaldehyde as a model substrate),malononitrile(1.0 mmol)and the catalyst(Molar fraction:2% )in methanol(1.0 mL)was stirred at room temperature.After a desired reaction time,the catalyst was removed by centrifugation,followed by an evaporation of the solvent from the filtrate under reduced pressure to give a crude solid.This solid was dissolved in CDCl3and analyzed by1H NMR spectroscopy for quantification of products(Fig.S1,Supporting information).To perform the recycling experiment,the catalyst was isolated by centrifugation,washed with methanol,dried at room temperature and reused.The subsequent steps were performed as described above.

    2 Results and discussion

    2.1 Description of the structure

    2.1.1 Crystal structure of 1

    X-ray crystallography analysis reveals that compound 1 crystallizes in the triclinic system space groupP.As shown in Fig.1,the asymmetric unit of 1 bears two crystallographically unique Cu(Ⅱ)ions(Cu1 and Cu2),oneμ5-deta4-block,two 2,2′-bipy moieties and two lattice water molecules.The penta-coordinate Cu1 atom exhibits a distorted square pyramidal{CuN2O3}environment,which is occupied by three carboxylate O donors from three differentμ5-deta4-blocks and two N atoms from 2,2′-bipy moiety.The Cu2 center is tetracoordinated and forms a distorted tetrahedral{CuN2O2}geometry.It is completed by two carboxylate O atoms from two individualμ5-deta4-blocks and two N atoms from 2,2′-bipy moiety.The Cu—O and Cu—N bond distances are 0.192 4(4)~0.242 7(5)nm and 0.199 2(5)~0.201 2(6)nm,respectively;these are within the normal ranges observed in related Cu(Ⅱ)compounds[6,29].In 1,deta4-ligand adopts the coordination modeⅠ(Scheme 1)with four COO-groups being monodentate or bidentate.In deta4-ligand,a dihedral angle(between two aromatic rings)and a C—Oether—C angle are 85.22°and 121.02°,respectively,andμ5-deta4-blocks connect Cu atoms to give a 2D sheet(Fig.2).

    Fig.1 Drawing of asymmetric unit of compound 1 with 30% probability thermal ellipsoids

    Scheme 1 Coordination modes of deta4-ligand in compounds 1~3

    Fig.2 Perspective of 2D metal-organic sheet viewed alongc axis

    2.1.2 Crystal structure of 2

    The asymmetric unit of compound 2 contains two crystallographically unique Co(Ⅱ)ions(Co1 and Co2),oneμ4-deta4-block,two 2,2′-bipy moieties and three H2O ligands.As depicted in Fig.3,the Co1 center is six-coordinated and possesses a distorted octahedral{CoN2O4}environment,which is populated by two carboxylate oxygen atoms from twoμ4-deta4-blocks,two O donors from two H2O ligands and two N donors from 2,2′-bipy moiety.The six-coordinated Co2 center is surrounded by three oxygen donors from twoμ4-deta4-blocks,one H2O ligands,and two N donors from 2,2′-bipy moiety,generating the distorted octahedral{CoN2O4}environments.The bond lengths of Co—O are in a range of 0.204 3(5)~0.223 2(5)nm,while the Co—N bonds are 0.208 8(6)~0.213 5(6)nm,being comparable to those found in some reported Co(Ⅱ)compounds[7,29-32].In 2,deta4-block acts as aμ4-linker(mode Ⅱ,Scheme 1),in which four carboxylate groups adopt uncoordinated,monodentate,bidentate orμbridging bidentate modes.Besides,μ4-deta4-ligand is considerably bent showing a dihedral angle of 89.87°(between two aromatic rings)and the C—Oether—C angle of 118.29°.So,μ4-deta4-linkers interconnect the Co(Ⅱ)ions to form a 1D coordination polymer chain(Fig.4).

    Fig.3 Drawing of asymmetric unit of compound 2 with 30% probability thermal ellipsoids

    Fig.4 View of 1D metal-organic chain alonga andb axes

    Compounds 1 and 2 were assembled under similar conditions except for the type of metal chloride used(CuCl2·2H2O for 1 and CoCl2·6H2O for 2).The difference in their structures,2D sheet in 1 vs 1D chain in 2,indicates that the assembly process is dependent on the type of metal ion.

    2.1.3 Crystal structure of 3

    This compound discloses a 3D metal-organic framework(MOF)structure.The asymmetric unit of compound 3 has two crystallographically unique Ni(Ⅱ)ions(Ni1 and Ni2),aμ3-deta4-spacer,two and a half ofμ-4,4′-bipy moieties,five H2O ligands and three lattice water molecules(Fig.5).The Ni1 center is sixcoordinated and displays a distorted octahedral{NiN2O4}environment that is constructed from two carboxylate oxygen atoms from twoμ3-deta4-spacers,two O donors from two H2O ligands,and two N atoms from two different 4,4′-bipy moieties.The Ni2 center is also six-coordinated and features a distorted octahedral{NiN2O4}geometry that is taken by one carboxylate oxygen donor from oneμ3-deta4-block,three O atoms from three H2O ligands,and two Natoms from two individual 4,4′-bipy moieties.The Ni—O(0.201 3(4)~0.214 6(5)nm)and Ni—N(0.206 3(5)~0.213 2(6)nm)bonds are within typical values for these type of nickel derivatives[33-34].In compound 3,deta4-spacer acts in aμ3-coordination fashion(mode Ⅲ,Scheme 1),with its COO-groups showing uncoordinated or monodentate modes,and 4,4′-bipy moiety adopts a bridging coordination mode.Inμ3-deta4-spacer,relevant angles are 79.84°(dihedral angle between aromatic rings)and 117.26°(C—Oether—C functionality).Finally,μ3-deta4-blocks andμ-4,4′-bipy moieties connect Ni centers to furnish a 3D MOF(Fig.6).The structure of another Ni(Ⅱ) coordination polymer with H4deta and 4,4′-bipy ligands was reported[35],in which deta4-and 4,4′-bipy moieties adoptμ4-orμ-coordination fashions.Although these two Ni(Ⅱ)coordination polymers possess different space groups and the number of the lattice water molecules,they have the same skeletons.

    Fig.5 Drawing of asymmetric unit of compound 3 with 30% probability thermal ellipsoids

    Fig.6 View of 3D MOF(3)alongb andc axes

    2.2 TGA for compounds 1~3

    To determine the thermal stability of 1~3,their thermal behaviors were investigated under nitrogen atmosphere by TGA.As shown in Fig.7,compound 1 lost its two lattice water molecules in a range of 137~238℃(Obsd.4.6% ,Calcd.4.4% ),followed by the decomposition at 316℃.For 2,one weight loss(Obsd.6.3% ,Calcd.6.5% )in the 155~212 ℃ range corresponds to a removal of three coordinated water molecules;decomposition of the sample occurred only at 230℃.For 3D MOF 3,the TGA plot displayed a loss of three lattice and five coordinated water molecules between 41 and 178℃(Obsd.14.4% ,Calcd.14.5% ),whereas a dehydrated solid was then stable up to 195℃.

    Fig.7 TGA curves of compounds 1~3

    2.3 Catalytic activity in Knoevenagel condensation reaction

    Given the potential of transition metal(Ⅱ)coordination compounds to catalyze the organic reactions[6-7,14,29,34],we explored the application of 1~3 as heterogeneous catalysts in the Knoevenagel condensation reaction of benzaldehyde as a model substrate to give 2-(phenylmethylene)-propanedinitrile.Typical tests were carried out by reacting a mixture of benzaldehyde,malononitrile,and a catalyst in methanol at room temperature(Scheme 2,Table 6).Such effects as reaction time,catalyst loading,solvent composition,catalyst recycling and finally substrate scope were investigated.

    Scheme 2 Knoevenagel condensation reaction of benzaldehyde(model substrate)catalyzed by CuCl2,H4deta and 1~3

    Table 6 Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by CuCl2,H4deta and 1~3

    Compound 1 revealed the highest activity among the obtained compounds 1~3,resulting in a quantitative conversion of benzaldehyde to 2-benzylidenemalononitrile(Table 6).The latter was accumulated with a yield increasing from 42% to 100% on prolonging the reaction from 10 to 60 min(Table 6,Entry 1~6).The influence of catalyst amount was also investigated,revealing a yield growth from 91% to 100% on increasing the loading of catalyst(molar fraction)from 1% to 2% (Entry 6 and 11).In addition to methanol,other solvents were tested,in particular,water and ethanol showed a comparable efficiency(Yield:99% and 98% ,respectively).Acetonitrile and chloroform are less suitable(Yield:85% and 67% ,respectively).

    In comparison with 1,compounds 2 and 3 were only slightly less active,resulting in the maximum yields in the 87% ~92% range(Entry 12 and 13,Table 6).It should be highlighted that under similar reaction conditions,the Knoevenagel condensation of benzaldehyde was significantly less efficient in the absence of catalyst(only 23% yield)or when using H4deta(30% yield)or CuCl2(34% yield)as catalysts(Entry 14~16,Table 6).Although the relationship between the structural characteristics and the catalytic activity cannot be clearly established in the present study,the highest conversion shown by compound 1 may eventually be related to the presence of unsaturated open sites in the Cu(Ⅱ)centers[36-37].

    Different subsittuted benzaldehyde substrates were used to study the substrate scope in the Knoevenagel condensation with malononitrile.These tests were run under optimized conditions(catalyst 1:2.0% ,CH3OH,1 h).The corresponding products were obtained in the yields varying from 56% to 100% (Table 7).Benzaldehydes containing a strong electronwithdrawing group(e.g.,nitro and chloro substituent in the ring)revealed the best efficiency(Entry 2~5,Table 7),which can be explained by an increased electrophilicity of substrates.The benzaldehydes containing an electron-donating functionality(e.g.,methyl or methoxy group)led to lower yields(Entry 6~8,Table 7).

    Table 7 Knoevenagel condensation reaction of various aldehydes with malononitrile catalyzed by compound 1a

    To examine the stability of 1 in the Knoevenagel condensation,we tested the recyclability of this hetero-geneous catalyst.For this purpose,upon completion of a reaction cycle,we separated the catalyst by centrifugation,washed it with CH3OH,and dried it at room temperature before its further use.For catalyst 1,the catalytic system maintained the higher activity over at least five consecutive cycles(Yield:100% ,100% ,99% and 98% for second to fifth run,respectively).According to the PXRD patterns(Fig.8),the structure of 1 was essentially preserved after five catalytic cycles.

    Fig.8 PXRD patterns of 1:simulated(red),before(black)and after(blue)five catalytic cycles

    The catalytic process is assumed to follow a mechanism,by which the copper Lewis acid center interacts with the carbonyl group of benzaldehyde,increasing the electrophilic character of the carbonyl carbon atom.The interaction of a cyano group of malononitrile with the Lewis acid metal site increase the acidity of its methylene moiety.The basic sites(carboxylate O atoms)can abstract a proton from the methylene group to generate the corresponding nucleophilic species,which attacks the carbonyl group of coordinated benzaldehyde with C—C bond formation and dehydration[38-39].

    3 Conclusions

    In summary,we have synthesized three Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) coordination,polymers{[Cu2(μ5-deta)(2,2′-bipy)2]·2H2O}n(1),[Co2(μ4-deta)(2,2′-bipy)2(H2O)3]n(2)and{[Ni2(μ3-deta)(μ-4,4′-bipy)2.5(H2O)5]·3H2O}n(3),based on a tetracarboxylate ligand.Compounds 1~3 disclose a 2D sheet,1D chain and 3D framework,respectively.The catalytic properties of these compounds were investigated.Compound 1 revealed an excellent catalytic activity in the Knoevenagel conden-sation reaction at room temperature.

    Supporting information is available at http://www.wjhxxb.cn

    久久久久免费精品人妻一区二区 | 国产亚洲av嫩草精品影院| 在线看三级毛片| 亚洲人成网站高清观看| 久热爱精品视频在线9| 欧美又色又爽又黄视频| 国产午夜精品久久久久久| 这个男人来自地球电影免费观看| 日韩欧美国产在线观看| 成年版毛片免费区| 日韩欧美一区二区三区在线观看| 久久久久国内视频| 欧美久久黑人一区二区| 国产一区二区三区视频了| 丰满的人妻完整版| 又大又爽又粗| 国产片内射在线| 中文字幕精品免费在线观看视频| 午夜影院日韩av| 午夜福利免费观看在线| 国产视频内射| 久久精品亚洲精品国产色婷小说| 久久国产精品男人的天堂亚洲| 免费高清在线观看日韩| 国产成人欧美在线观看| www日本在线高清视频| 国产三级在线视频| 精品国产乱码久久久久久男人| 中文字幕久久专区| 午夜福利免费观看在线| 国产麻豆成人av免费视频| 精品国内亚洲2022精品成人| 男人舔女人的私密视频| 女性生殖器流出的白浆| xxxwww97欧美| 亚洲最大成人中文| 美女午夜性视频免费| 黄频高清免费视频| 国产久久久一区二区三区| 曰老女人黄片| 亚洲成人国产一区在线观看| 久久久国产成人免费| 黑人欧美特级aaaaaa片| 99久久久亚洲精品蜜臀av| 中文字幕人妻丝袜一区二区| 性欧美人与动物交配| 亚洲精品av麻豆狂野| 欧美亚洲日本最大视频资源| 视频区欧美日本亚洲| 美女 人体艺术 gogo| 日日爽夜夜爽网站| 久久久久久九九精品二区国产 | 亚洲国产精品成人综合色| 国产单亲对白刺激| 黄色成人免费大全| 天堂动漫精品| 精品熟女少妇八av免费久了| 成人精品一区二区免费| 最好的美女福利视频网| a级毛片a级免费在线| 国产成人一区二区三区免费视频网站| 精华霜和精华液先用哪个| 在线永久观看黄色视频| 日韩高清综合在线| 国产1区2区3区精品| 久久久久久人人人人人| 极品教师在线免费播放| 亚洲精品国产一区二区精华液| 婷婷亚洲欧美| 深夜精品福利| 久久久精品国产亚洲av高清涩受| 在线国产一区二区在线| 午夜免费成人在线视频| 免费人成视频x8x8入口观看| 天堂影院成人在线观看| ponron亚洲| 女人爽到高潮嗷嗷叫在线视频| 极品教师在线免费播放| 少妇的丰满在线观看| 日韩国内少妇激情av| 无遮挡黄片免费观看| 欧美日韩乱码在线| 国产成人啪精品午夜网站| 国语自产精品视频在线第100页| 日本 av在线| a级毛片在线看网站| 久久久久精品国产欧美久久久| 麻豆成人av在线观看| 久久精品国产清高在天天线| 一本久久中文字幕| 成人精品一区二区免费| 亚洲第一av免费看| 日韩高清综合在线| 久久 成人 亚洲| 欧美又色又爽又黄视频| 99国产精品一区二区蜜桃av| 亚洲人成网站高清观看| 伊人久久大香线蕉亚洲五| 90打野战视频偷拍视频| 欧美一级毛片孕妇| 熟女电影av网| 色综合站精品国产| 91麻豆av在线| 国产av不卡久久| 国产成人精品无人区| 校园春色视频在线观看| 动漫黄色视频在线观看| 国产三级黄色录像| 亚洲欧美精品综合久久99| 国产精品99久久99久久久不卡| 亚洲成人国产一区在线观看| 免费在线观看成人毛片| 国产免费男女视频| 国产精品香港三级国产av潘金莲| 亚洲va日本ⅴa欧美va伊人久久| 日本五十路高清| 18禁美女被吸乳视频| 午夜久久久在线观看| 精品少妇一区二区三区视频日本电影| 美女高潮到喷水免费观看| x7x7x7水蜜桃| 黄色成人免费大全| 久久久久久大精品| 成人三级做爰电影| 亚洲中文字幕一区二区三区有码在线看 | 免费看日本二区| 亚洲av五月六月丁香网| 啦啦啦 在线观看视频| 日本一区二区免费在线视频| 老司机深夜福利视频在线观看| 一a级毛片在线观看| 日本三级黄在线观看| 精品福利观看| 欧美激情极品国产一区二区三区| 人妻久久中文字幕网| 精品少妇一区二区三区视频日本电影| 国产精品爽爽va在线观看网站 | 午夜福利高清视频| 亚洲一码二码三码区别大吗| 免费在线观看日本一区| 97人妻精品一区二区三区麻豆 | 老司机深夜福利视频在线观看| 一区二区日韩欧美中文字幕| 美女 人体艺术 gogo| 欧美性猛交黑人性爽| 国产真实乱freesex| 女人爽到高潮嗷嗷叫在线视频| 日韩精品免费视频一区二区三区| 亚洲人成电影免费在线| 不卡av一区二区三区| 国产免费av片在线观看野外av| tocl精华| 日韩国内少妇激情av| 久久天堂一区二区三区四区| 在线看三级毛片| 免费无遮挡裸体视频| 岛国视频午夜一区免费看| 美女 人体艺术 gogo| 色老头精品视频在线观看| 午夜免费观看网址| 国产视频内射| 变态另类成人亚洲欧美熟女| 天天添夜夜摸| 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 久久中文字幕一级| 老汉色∧v一级毛片| 男人舔女人下体高潮全视频| 国产精品美女特级片免费视频播放器 | 99久久国产精品久久久| 国语自产精品视频在线第100页| 深夜精品福利| 精品久久久久久成人av| 国产爱豆传媒在线观看 | 亚洲av电影不卡..在线观看| 日本免费一区二区三区高清不卡| av超薄肉色丝袜交足视频| 精品国内亚洲2022精品成人| 女警被强在线播放| 美国免费a级毛片| 黄色女人牲交| 三级毛片av免费| 白带黄色成豆腐渣| 国产精品精品国产色婷婷| 久久伊人香网站| 欧美中文综合在线视频| 曰老女人黄片| 91成年电影在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成人特级黄色片久久久久久久| 亚洲无线在线观看| 高清在线国产一区| 精品久久久久久,| 俺也久久电影网| 色播在线永久视频| 亚洲男人天堂网一区| 美女 人体艺术 gogo| 午夜激情av网站| 国产精品九九99| 曰老女人黄片| 一二三四社区在线视频社区8| 97超级碰碰碰精品色视频在线观看| 免费无遮挡裸体视频| 国产午夜精品久久久久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区二区三区色噜噜| 黄频高清免费视频| 看黄色毛片网站| 久久精品aⅴ一区二区三区四区| 青草久久国产| 757午夜福利合集在线观看| 亚洲熟妇中文字幕五十中出| 成人三级做爰电影| 久热爱精品视频在线9| 久久久久久国产a免费观看| 成人三级做爰电影| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 国产在线观看jvid| 中文字幕精品亚洲无线码一区 | 黑丝袜美女国产一区| 午夜久久久久精精品| 人人妻人人澡欧美一区二区| 成人手机av| 亚洲午夜理论影院| 免费高清视频大片| 最新美女视频免费是黄的| 最好的美女福利视频网| 香蕉国产在线看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久精品电影 | 亚洲片人在线观看| 女警被强在线播放| 日本黄色视频三级网站网址| 亚洲国产精品成人综合色| 一区二区三区国产精品乱码| 午夜a级毛片| 在线国产一区二区在线| 婷婷六月久久综合丁香| 精品欧美一区二区三区在线| 一区二区三区高清视频在线| 十八禁人妻一区二区| 女人爽到高潮嗷嗷叫在线视频| 88av欧美| 国产亚洲欧美精品永久| 亚洲欧美日韩无卡精品| 热99re8久久精品国产| 曰老女人黄片| 亚洲av第一区精品v没综合| 一级毛片女人18水好多| 婷婷六月久久综合丁香| 精品日产1卡2卡| 久久久久久人人人人人| 91国产中文字幕| 成人国产综合亚洲| 久久人妻福利社区极品人妻图片| 亚洲中文日韩欧美视频| 亚洲熟妇熟女久久| 男女那种视频在线观看| 一区二区日韩欧美中文字幕| 狂野欧美激情性xxxx| 久久久久久人人人人人| 制服诱惑二区| 欧美不卡视频在线免费观看 | 搡老妇女老女人老熟妇| 久久午夜亚洲精品久久| 又紧又爽又黄一区二区| 母亲3免费完整高清在线观看| 99精品在免费线老司机午夜| 岛国视频午夜一区免费看| 国产亚洲欧美精品永久| 97人妻精品一区二区三区麻豆 | 亚洲熟女毛片儿| а√天堂www在线а√下载| 啦啦啦观看免费观看视频高清| 婷婷六月久久综合丁香| 久久久国产成人精品二区| 少妇粗大呻吟视频| 丝袜人妻中文字幕| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 黄片播放在线免费| 91麻豆精品激情在线观看国产| 国产单亲对白刺激| 色在线成人网| 中文字幕精品亚洲无线码一区 | 免费看十八禁软件| 精品福利观看| 久久亚洲真实| 99国产精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久亚洲av鲁大| 一个人观看的视频www高清免费观看| 亚洲欧美成人精品一区二区| 国产欧美日韩精品亚洲av| 国内久久婷婷六月综合欲色啪| 蜜臀久久99精品久久宅男| 麻豆成人午夜福利视频| av在线蜜桃| 一区二区三区免费毛片| 老熟妇乱子伦视频在线观看| 综合色丁香网| 精品少妇黑人巨大在线播放 | 国产精品一区二区三区四区久久| 男女那种视频在线观看| 久久久久久久久久黄片| 十八禁国产超污无遮挡网站| 91麻豆精品激情在线观看国产| 精品99又大又爽又粗少妇毛片| 欧美日韩在线观看h| 午夜激情欧美在线| 国产三级中文精品| 少妇人妻精品综合一区二区 | 亚洲精品影视一区二区三区av| 内射极品少妇av片p| or卡值多少钱| 尾随美女入室| 乱人视频在线观看| 亚洲av中文字字幕乱码综合| 国产成人福利小说| 99久国产av精品| 一本精品99久久精品77| 色综合亚洲欧美另类图片| 精品午夜福利视频在线观看一区| 亚洲欧美日韩无卡精品| 99久国产av精品| 国产真实伦视频高清在线观看| 国产中年淑女户外野战色| 日本黄大片高清| 亚洲婷婷狠狠爱综合网| 亚洲av二区三区四区| 女人十人毛片免费观看3o分钟| 欧美人与善性xxx| 噜噜噜噜噜久久久久久91| 可以在线观看毛片的网站| 深夜精品福利| 精品国内亚洲2022精品成人| 九色成人免费人妻av| 国产色婷婷99| 国产亚洲91精品色在线| 午夜精品一区二区三区免费看| 国产精品,欧美在线| 久久精品国产鲁丝片午夜精品| 久久精品国产自在天天线| 干丝袜人妻中文字幕| 日日啪夜夜撸| 尾随美女入室| 国产一区二区在线av高清观看| 国产又黄又爽又无遮挡在线| 色吧在线观看| 国内精品久久久久精免费| 日韩欧美三级三区| 精品久久久噜噜| 亚洲av美国av| 联通29元200g的流量卡| 一级毛片电影观看 | 亚洲人与动物交配视频| 国产三级中文精品| 色视频www国产| 亚洲精品在线观看二区| 亚洲成a人片在线一区二区| 九九热线精品视视频播放| 欧美潮喷喷水| 亚洲无线在线观看| 亚洲精华国产精华液的使用体验 | 日本撒尿小便嘘嘘汇集6| 国产三级中文精品| 色视频www国产| 午夜福利18| 性欧美人与动物交配| 免费看a级黄色片| 97超级碰碰碰精品色视频在线观看| 此物有八面人人有两片| 97在线视频观看| 波多野结衣巨乳人妻| 国产一区二区亚洲精品在线观看| 亚洲精华国产精华液的使用体验 | 啦啦啦啦在线视频资源| 美女免费视频网站| 精品99又大又爽又粗少妇毛片| 午夜a级毛片| 亚洲图色成人| 日韩三级伦理在线观看| 99热精品在线国产| 亚洲国产欧美人成| 草草在线视频免费看| 在线免费十八禁| 99久久久亚洲精品蜜臀av| av女优亚洲男人天堂| 亚洲中文字幕日韩| 国产真实乱freesex| 又粗又爽又猛毛片免费看| 最近2019中文字幕mv第一页| 国产精品久久久久久亚洲av鲁大| 又爽又黄无遮挡网站| 一级a爱片免费观看的视频| 老司机午夜福利在线观看视频| 久久久午夜欧美精品| 桃色一区二区三区在线观看| 看非洲黑人一级黄片| 亚洲人成网站在线播| 婷婷六月久久综合丁香| 亚洲在线自拍视频| a级毛片免费高清观看在线播放| 亚洲精华国产精华液的使用体验 | 国产单亲对白刺激| 久久这里只有精品中国| 十八禁国产超污无遮挡网站| 成年女人永久免费观看视频| 中国美白少妇内射xxxbb| 超碰av人人做人人爽久久| 少妇熟女aⅴ在线视频| 欧美zozozo另类| .国产精品久久| 亚洲欧美清纯卡通| 国产精品一区二区三区四区免费观看 | 少妇猛男粗大的猛烈进出视频 | 麻豆国产av国片精品| 国产免费一级a男人的天堂| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 99热6这里只有精品| 午夜影院日韩av| 亚洲av不卡在线观看| 日韩欧美一区二区三区在线观看| 欧美一级a爱片免费观看看| 国产黄a三级三级三级人| 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| 特级一级黄色大片| 中国美女看黄片| 成年女人看的毛片在线观看| 狂野欧美白嫩少妇大欣赏| 免费看a级黄色片| 人妻久久中文字幕网| 色综合亚洲欧美另类图片| 精品久久久久久久久久免费视频| a级毛片免费高清观看在线播放| 色5月婷婷丁香| 日日干狠狠操夜夜爽| 亚洲精品粉嫩美女一区| 久久久国产成人免费| 看十八女毛片水多多多| 中国国产av一级| 亚洲内射少妇av| 美女高潮的动态| 免费看a级黄色片| 丝袜美腿在线中文| 搞女人的毛片| 欧美日韩乱码在线| 99久久精品一区二区三区| 国产熟女欧美一区二区| 亚洲性夜色夜夜综合| 欧美极品一区二区三区四区| 欧美三级亚洲精品| 乱人视频在线观看| 精品久久久噜噜| 97人妻精品一区二区三区麻豆| 一个人观看的视频www高清免费观看| 丝袜喷水一区| 日本色播在线视频| 在线免费十八禁| 久久鲁丝午夜福利片| 久久精品影院6| 国产精品久久电影中文字幕| 精品人妻偷拍中文字幕| 春色校园在线视频观看| 免费看光身美女| 91久久精品国产一区二区三区| 亚洲第一电影网av| 少妇人妻一区二区三区视频| 国产精品一区www在线观看| 国产精品久久久久久久电影| 中国美女看黄片| 天天一区二区日本电影三级| 在线观看美女被高潮喷水网站| 看片在线看免费视频| 亚洲内射少妇av| 免费观看精品视频网站| 99热只有精品国产| 观看免费一级毛片| 91麻豆精品激情在线观看国产| 亚洲美女搞黄在线观看 | 国产美女午夜福利| 亚洲电影在线观看av| 欧美xxxx黑人xx丫x性爽| 黄色日韩在线| 六月丁香七月| 小说图片视频综合网站| 日韩欧美精品免费久久| 在线天堂最新版资源| 亚洲精品国产av成人精品 | 午夜免费激情av| 熟女电影av网| 99久国产av精品国产电影| 你懂的网址亚洲精品在线观看 | 一本精品99久久精品77| 国产真实伦视频高清在线观看| 热99re8久久精品国产| 我的老师免费观看完整版| videossex国产| 黄色配什么色好看| 乱人视频在线观看| 国产精品电影一区二区三区| 99热只有精品国产| 成熟少妇高潮喷水视频| 久久久久久九九精品二区国产| 亚洲精品456在线播放app| 国产在线男女| 在线免费观看的www视频| 啦啦啦啦在线视频资源| 寂寞人妻少妇视频99o| 麻豆国产av国片精品| 人人妻人人澡人人爽人人夜夜 | 国产精品国产三级国产av玫瑰| 国产av一区在线观看免费| 99久久精品热视频| 亚洲一区高清亚洲精品| 亚洲成人久久性| 一边摸一边抽搐一进一小说| h日本视频在线播放| 天美传媒精品一区二区| 欧美+日韩+精品| 麻豆国产97在线/欧美| 亚洲天堂国产精品一区在线| 欧美日韩在线观看h| 成年女人毛片免费观看观看9| 久久精品人妻少妇| 午夜精品在线福利| 亚洲精品一卡2卡三卡4卡5卡| 在线观看美女被高潮喷水网站| 日日摸夜夜添夜夜添小说| 麻豆国产97在线/欧美| 久久久精品大字幕| 久久久久久久久大av| 女的被弄到高潮叫床怎么办| 国产男靠女视频免费网站| 国产亚洲欧美98| 欧美日韩在线观看h| 成人二区视频| 色噜噜av男人的天堂激情| 亚洲精品乱码久久久v下载方式| 久久婷婷人人爽人人干人人爱| 国产精品久久电影中文字幕| 国产精品av视频在线免费观看| 九九爱精品视频在线观看| 日韩欧美一区二区三区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 一区福利在线观看| 午夜精品国产一区二区电影 | 国产精品久久久久久久久免| 亚洲美女黄片视频| 欧美3d第一页| 久久精品国产自在天天线| 色av中文字幕| 日韩制服骚丝袜av| 老女人水多毛片| 日本精品一区二区三区蜜桃| 精品国内亚洲2022精品成人| 欧美性猛交黑人性爽| 亚洲成av人片在线播放无| 免费看美女性在线毛片视频| 国产伦一二天堂av在线观看| 亚洲性夜色夜夜综合| 久久久久久久久久成人| 欧美日韩乱码在线| 伦理电影大哥的女人| 免费人成视频x8x8入口观看| 成年版毛片免费区| 精品久久久久久久末码| 一个人看的www免费观看视频| videossex国产| 三级国产精品欧美在线观看| 在线免费十八禁| 亚洲真实伦在线观看| 女的被弄到高潮叫床怎么办| 国内揄拍国产精品人妻在线| 日本三级黄在线观看| 久久久久久伊人网av| 精品欧美国产一区二区三| 精品一区二区三区人妻视频| 国内精品宾馆在线| 成人毛片a级毛片在线播放| 亚洲欧美日韩高清专用| 精品一区二区三区视频在线观看免费| 久久久久国内视频| 不卡一级毛片| 国产黄色视频一区二区在线观看 | 亚洲欧美日韩卡通动漫| av福利片在线观看| 高清毛片免费观看视频网站| 99久久久亚洲精品蜜臀av| 午夜激情欧美在线| 人人妻人人澡欧美一区二区| 成年免费大片在线观看| 欧美日韩精品成人综合77777| 别揉我奶头 嗯啊视频| 国产私拍福利视频在线观看| 亚洲三级黄色毛片| 欧美一区二区国产精品久久精品| 在线国产一区二区在线| 我要看日韩黄色一级片| 国产精品乱码一区二三区的特点| 一边摸一边抽搐一进一小说| 国产成人精品久久久久久| 国产黄色视频一区二区在线观看 | 亚洲av电影不卡..在线观看| 香蕉av资源在线| 日日摸夜夜添夜夜添小说| 免费看美女性在线毛片视频| 看十八女毛片水多多多| 高清毛片免费观看视频网站| 1000部很黄的大片| 少妇人妻精品综合一区二区 | 网址你懂的国产日韩在线|