• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,Structures and Catalytic Activity in Knoevenagel Condensation Reaction of Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) Coordination Polymers Based on Ether-Bridged Tetracarboxylic Acid

    2021-11-04 13:54:56CHENJinWeiZHUANGYingFenZOUXunZhongFENGAnShengZHANGYanLaiLIYu

    CHEN Jin-WeiZHUANG Ying-FenZOU Xun-ZhongFENG An-ShengZHANG Yan-LaiLI Yu*,

    (1Fujian Provincial Key Laboratory of Advanced Materials Processing and Application,Fujian University of Technology,Fuzhou 350118,China)

    (2School of Light Chemical Engineering/Guangdong Research Center for Special Building Materials and Its Green Preparation Technology,Guangdong Industry Polytechnic,Guangzhou 510300,China)

    Abstract:Three Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) coordination polymers,namely{[Cu2(μ5-deta)(2,2′-bipy)2]·2H2O}n(1),[Co2(μ4-deta)(2,2′-bipy)2(H2O)3]n(2)and{[Ni2(μ3-deta)(μ-4,4′-bipy)2.5(H2O)5]·3H2O}n(3),have been constructed hydrothermally using H4deta(2,3′,4,4′-diphenyl ether tetracarboxylic acid),2,2′-bipy(2,2′-bipyridine)/4,4′-bipy(4,4′-bipyridine)and CuCl2·2H2O,CoCl2·6H2O,NiCl2·6H2O,respectively,at 160 ℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses reveal that the three compounds crystallize in the triclinic or monoclinic systems,space groupsP orP21/n.Compound 1 discloses a 2D sheet.Compound 2 features a 1D chain structure.Compound 3 shows a 3D framework.The catalytic activity in the Knoevenagel condensation reaction of these compounds were investigated.Compound 1 exhibited an excellent catalytic activity in the Knoevenagel condensation reaction at room temperature.CCDC:2086961,1;2086962,2;2086963,3.

    Keywords:coordination polymer;tetracarboxylic acid;catalytic properties;Knoevenagel condensation reaction

    Coordination polymers with ordered structures are built from metal ions as nodes with versatile coordination geometry and multidentate organic linkers.The functional coordination polymers has caught increasing attention in recent years and turn out to be one of the fastest growing areas in synthetic chemistry and material science[1-12].In the last five years,organic carboxylate ligands have been widely used in synthesizing coordination polymers due to strong coordination ability of the carboxyl group and rich coordination modes[6-7,13-16].Among them,ether-bridged carboxylic acids have been extensively applied as versatile building blocks toward the assembly of metal-organic architectures[17-18].2,3′,4,4′-diphenyl ether tetracarboxylic acid(H4deta)is a good bridging ligand for constructing coordination polymers[19],under considering structural semi-rigidity,which has multiple coordinate sites involving eight carboxylate oxygen atoms and one O-ether donor.

    Knoevenagel condensation is one of the imperative and essential condensation processes in synthetic organic chemistry,in whichα,β-unsaturated products formed via carbon-carbon double bond involve a nucleophilic addition reaction between active methylene and carbonyl compounds followed by a dehydration reaction[20-24].Products obtained are extensively used as specialty chemicals and intermediates in the synthesis of fine chemicals such as carbocyclic,substituted alkenes,biologically active compounds,therapeutic drugs,calcium antagonists,natural products,functional polymers,coumarin derivatives,flavors and perfumes.Transition metal-catalyzed Knoevenagel condensation reactions have recently received much attention[25-27],mainly due to low price and moderate toxicity of the catalysts in combination with their high activity.

    Herein,we report the synthesis,crystal structures and catalysis activity in Knoevenagel condensation of three Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) coordination polymers with H4deta and 2,2′-bipy(2,2′-bipyridine)/4,4′-bipy(4,4′-bipyridine)ligands.

    1 Experimental

    1.1 Reagents and physical measurements

    All chemicals and solvents were of AR grade and used without further purification.Carbon,hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer.IR spectrum was recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer.Thermogravimetric analysis(TGA)data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10℃·min-1.Powder X-ray diffraction(PXRD)patterns were measured on a Rigaku-Dmax 2400 diffractometer using CuKαradiation(λ=0.154 06 nm);the X-ray tube was operated at 40 kV and 40 mA;the data collection range(2θ)was between 5°and 45°.Solution1H NMR spectra were recorded on a JNM ECS 400M spectrometer.

    1.2 Synthesis of {[Cu2(μ5-deta)(2,2′-bipy)2]·2H2O}n(1)

    A mixture of CuCl2·2H2O(0.034 g,0.2 mmol),H4deta(0.035 g,0.1 mmol),2,2′-bipy(0.031 g,0.2 mmol),NaOH(0.016 g,0.4 mmol)and H2O(10 mL)was stirred at room temperature for 15 min,and then sealed in a 25 mL Teflon-lined stainless steel vessel,and heated at 120℃for three days,followed by cooling to room temperature at a rate of 10 ℃·h-1.Blue block-shaped crystals were isolated manually,and washed with distilled water.Yield:45% (based on H4deta).Anal.Calcd.for C36H26Cu2N4O11(% ):C 52.88,H 3.20,N 6.85;Found(% ):C 52.63,H 3.18,N 6.88.IR(KBr,cm-1):3 507w,3 070w,1 602s,1 495w,1 473w,1447w,1424w,1370s,1313w,1290w,1254w,1232w,1 175w,1 139w,1 082w,1 032w,957w,903w,836w,778m,735w,690w,663w.

    1.3 Synthesis of[Co2(μ4-deta)(2,2′-bipy)2(H2O)3]n(2)

    Synthesis of 2 was similar to 1 except using CoCl2·6H2O(0.048 g,0.2 mmol)instead of CuCl2·2H2O.Orange block-shaped crystals of 2 were isolated manually,and washed with distilled water.Yield:56% (based on H4deta).Anal.Calcd.for C36H28Co2N4O12(% ):C 52.32,H 3.41,N 6.78;Found(% ):C 52.55,H 3.39,N 6.81.IR(KBr,cm-1):3 422w,3 062w,1 602s,1 543s,1489w,1473m,1440s,1374s,1307w,1262m,1233w,1 150w,1 121w,1 063w,1 022w,952w,902w,840w,803w,770m,736w,687w,637w.

    1.4 Synthesis of{[Ni2(μ3-deta)(μ-4,4′-bipy)2.5(H2O)5]·3H2O}n(3)

    A mixture of NiCl2·6H2O(0.048 g,0.2 mmol),H4deta(0.035 g,0.1 mmol),4,4′-bipy(0.031 g,0.2 mmol),NaOH(0.016 g,0.4 mmol)and H2O(10 mL)was stirred at room temperature for 15 min,and then sealed in a 25 mL Teflon-lined stainless steel vessel,and heated at 120℃for three days,followed by cooling to room temperature at a rate of 10℃·h-1.Green block-shaped crystals were isolated manually,and washed with distilled water.Yield:50% (based on H4deta).Anal.Calcd.for C41H42Ni2N5O17(% ):C 49.53,H 4.26,N 7.04;Found(% ):C 49.77,H 4.28,N 7.02.IR(KBr,cm-1):3 436m,1 607s,1 553s,1 495w,1 418w,1383s,1263w,1232w,1161w,1122w,1072w,1046w,1 010w,952w,814m,770w,699w,637w.

    The compounds are insoluble in water and common organic solvents,such as methanol,ethanol,acetone and DMF.

    1.5 Structure determination

    The single crystals with dimensions of 0.23 mm×0.22 mm×0.20 mm(1),0.22 mm×0.18 mm×0.17 mm(2)and 0.23 mm×0.21 mm×0.20 mm(3)were collected at 293(2)K on a Bruker SMART APEX Ⅱ CCD diffractometer with MoKα(λ=0.071 073 nm).The structures were solved by direct methods and refined by full matrix least-square onF2using SHELXTL-2014 program[28].All non-hydrogen atoms were refined anisotropically.All the hydrogen atoms(except for the ones bound to water molecules)were placed in calculated positions with fixed isotropic thermal parameters included in structure factor calculations in the final stage of full-matrix least-squares refinement.The hydrogen atoms of water molecules were located by different maps and constrained to ride on their paraent O atoms.A summary of the crystallography data and structure refinements for 1~3 is given in Table 1.The selected bond lengths and angles for 1~3 are listed in Table 2.Hydrogen bond parameters of 1~3 are given in Table 3~5.

    Table 1 Crystal data for compounds 1~3

    Table 2 Selected bond distances(nm)and bond angles(°)for compounds 1~3

    Table 3 Hydrogen bond parameters of compound 1

    Table 4 Hydrogen bond parameters of compound 2

    Table 5 Hydrogen bond parameters of compound 3

    CCDC:2086961,1;2086962,2;2086963,3.

    1.6 Catalytic test for Knoevenagel condensation reaction of aldehydes

    In a typical test,a suspension of an aromatic aldehyde(0.50 mmol,benzaldehyde as a model substrate),malononitrile(1.0 mmol)and the catalyst(Molar fraction:2% )in methanol(1.0 mL)was stirred at room temperature.After a desired reaction time,the catalyst was removed by centrifugation,followed by an evaporation of the solvent from the filtrate under reduced pressure to give a crude solid.This solid was dissolved in CDCl3and analyzed by1H NMR spectroscopy for quantification of products(Fig.S1,Supporting information).To perform the recycling experiment,the catalyst was isolated by centrifugation,washed with methanol,dried at room temperature and reused.The subsequent steps were performed as described above.

    2 Results and discussion

    2.1 Description of the structure

    2.1.1 Crystal structure of 1

    X-ray crystallography analysis reveals that compound 1 crystallizes in the triclinic system space groupP.As shown in Fig.1,the asymmetric unit of 1 bears two crystallographically unique Cu(Ⅱ)ions(Cu1 and Cu2),oneμ5-deta4-block,two 2,2′-bipy moieties and two lattice water molecules.The penta-coordinate Cu1 atom exhibits a distorted square pyramidal{CuN2O3}environment,which is occupied by three carboxylate O donors from three differentμ5-deta4-blocks and two N atoms from 2,2′-bipy moiety.The Cu2 center is tetracoordinated and forms a distorted tetrahedral{CuN2O2}geometry.It is completed by two carboxylate O atoms from two individualμ5-deta4-blocks and two N atoms from 2,2′-bipy moiety.The Cu—O and Cu—N bond distances are 0.192 4(4)~0.242 7(5)nm and 0.199 2(5)~0.201 2(6)nm,respectively;these are within the normal ranges observed in related Cu(Ⅱ)compounds[6,29].In 1,deta4-ligand adopts the coordination modeⅠ(Scheme 1)with four COO-groups being monodentate or bidentate.In deta4-ligand,a dihedral angle(between two aromatic rings)and a C—Oether—C angle are 85.22°and 121.02°,respectively,andμ5-deta4-blocks connect Cu atoms to give a 2D sheet(Fig.2).

    Fig.1 Drawing of asymmetric unit of compound 1 with 30% probability thermal ellipsoids

    Scheme 1 Coordination modes of deta4-ligand in compounds 1~3

    Fig.2 Perspective of 2D metal-organic sheet viewed alongc axis

    2.1.2 Crystal structure of 2

    The asymmetric unit of compound 2 contains two crystallographically unique Co(Ⅱ)ions(Co1 and Co2),oneμ4-deta4-block,two 2,2′-bipy moieties and three H2O ligands.As depicted in Fig.3,the Co1 center is six-coordinated and possesses a distorted octahedral{CoN2O4}environment,which is populated by two carboxylate oxygen atoms from twoμ4-deta4-blocks,two O donors from two H2O ligands and two N donors from 2,2′-bipy moiety.The six-coordinated Co2 center is surrounded by three oxygen donors from twoμ4-deta4-blocks,one H2O ligands,and two N donors from 2,2′-bipy moiety,generating the distorted octahedral{CoN2O4}environments.The bond lengths of Co—O are in a range of 0.204 3(5)~0.223 2(5)nm,while the Co—N bonds are 0.208 8(6)~0.213 5(6)nm,being comparable to those found in some reported Co(Ⅱ)compounds[7,29-32].In 2,deta4-block acts as aμ4-linker(mode Ⅱ,Scheme 1),in which four carboxylate groups adopt uncoordinated,monodentate,bidentate orμbridging bidentate modes.Besides,μ4-deta4-ligand is considerably bent showing a dihedral angle of 89.87°(between two aromatic rings)and the C—Oether—C angle of 118.29°.So,μ4-deta4-linkers interconnect the Co(Ⅱ)ions to form a 1D coordination polymer chain(Fig.4).

    Fig.3 Drawing of asymmetric unit of compound 2 with 30% probability thermal ellipsoids

    Fig.4 View of 1D metal-organic chain alonga andb axes

    Compounds 1 and 2 were assembled under similar conditions except for the type of metal chloride used(CuCl2·2H2O for 1 and CoCl2·6H2O for 2).The difference in their structures,2D sheet in 1 vs 1D chain in 2,indicates that the assembly process is dependent on the type of metal ion.

    2.1.3 Crystal structure of 3

    This compound discloses a 3D metal-organic framework(MOF)structure.The asymmetric unit of compound 3 has two crystallographically unique Ni(Ⅱ)ions(Ni1 and Ni2),aμ3-deta4-spacer,two and a half ofμ-4,4′-bipy moieties,five H2O ligands and three lattice water molecules(Fig.5).The Ni1 center is sixcoordinated and displays a distorted octahedral{NiN2O4}environment that is constructed from two carboxylate oxygen atoms from twoμ3-deta4-spacers,two O donors from two H2O ligands,and two N atoms from two different 4,4′-bipy moieties.The Ni2 center is also six-coordinated and features a distorted octahedral{NiN2O4}geometry that is taken by one carboxylate oxygen donor from oneμ3-deta4-block,three O atoms from three H2O ligands,and two Natoms from two individual 4,4′-bipy moieties.The Ni—O(0.201 3(4)~0.214 6(5)nm)and Ni—N(0.206 3(5)~0.213 2(6)nm)bonds are within typical values for these type of nickel derivatives[33-34].In compound 3,deta4-spacer acts in aμ3-coordination fashion(mode Ⅲ,Scheme 1),with its COO-groups showing uncoordinated or monodentate modes,and 4,4′-bipy moiety adopts a bridging coordination mode.Inμ3-deta4-spacer,relevant angles are 79.84°(dihedral angle between aromatic rings)and 117.26°(C—Oether—C functionality).Finally,μ3-deta4-blocks andμ-4,4′-bipy moieties connect Ni centers to furnish a 3D MOF(Fig.6).The structure of another Ni(Ⅱ) coordination polymer with H4deta and 4,4′-bipy ligands was reported[35],in which deta4-and 4,4′-bipy moieties adoptμ4-orμ-coordination fashions.Although these two Ni(Ⅱ)coordination polymers possess different space groups and the number of the lattice water molecules,they have the same skeletons.

    Fig.5 Drawing of asymmetric unit of compound 3 with 30% probability thermal ellipsoids

    Fig.6 View of 3D MOF(3)alongb andc axes

    2.2 TGA for compounds 1~3

    To determine the thermal stability of 1~3,their thermal behaviors were investigated under nitrogen atmosphere by TGA.As shown in Fig.7,compound 1 lost its two lattice water molecules in a range of 137~238℃(Obsd.4.6% ,Calcd.4.4% ),followed by the decomposition at 316℃.For 2,one weight loss(Obsd.6.3% ,Calcd.6.5% )in the 155~212 ℃ range corresponds to a removal of three coordinated water molecules;decomposition of the sample occurred only at 230℃.For 3D MOF 3,the TGA plot displayed a loss of three lattice and five coordinated water molecules between 41 and 178℃(Obsd.14.4% ,Calcd.14.5% ),whereas a dehydrated solid was then stable up to 195℃.

    Fig.7 TGA curves of compounds 1~3

    2.3 Catalytic activity in Knoevenagel condensation reaction

    Given the potential of transition metal(Ⅱ)coordination compounds to catalyze the organic reactions[6-7,14,29,34],we explored the application of 1~3 as heterogeneous catalysts in the Knoevenagel condensation reaction of benzaldehyde as a model substrate to give 2-(phenylmethylene)-propanedinitrile.Typical tests were carried out by reacting a mixture of benzaldehyde,malononitrile,and a catalyst in methanol at room temperature(Scheme 2,Table 6).Such effects as reaction time,catalyst loading,solvent composition,catalyst recycling and finally substrate scope were investigated.

    Scheme 2 Knoevenagel condensation reaction of benzaldehyde(model substrate)catalyzed by CuCl2,H4deta and 1~3

    Table 6 Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by CuCl2,H4deta and 1~3

    Compound 1 revealed the highest activity among the obtained compounds 1~3,resulting in a quantitative conversion of benzaldehyde to 2-benzylidenemalononitrile(Table 6).The latter was accumulated with a yield increasing from 42% to 100% on prolonging the reaction from 10 to 60 min(Table 6,Entry 1~6).The influence of catalyst amount was also investigated,revealing a yield growth from 91% to 100% on increasing the loading of catalyst(molar fraction)from 1% to 2% (Entry 6 and 11).In addition to methanol,other solvents were tested,in particular,water and ethanol showed a comparable efficiency(Yield:99% and 98% ,respectively).Acetonitrile and chloroform are less suitable(Yield:85% and 67% ,respectively).

    In comparison with 1,compounds 2 and 3 were only slightly less active,resulting in the maximum yields in the 87% ~92% range(Entry 12 and 13,Table 6).It should be highlighted that under similar reaction conditions,the Knoevenagel condensation of benzaldehyde was significantly less efficient in the absence of catalyst(only 23% yield)or when using H4deta(30% yield)or CuCl2(34% yield)as catalysts(Entry 14~16,Table 6).Although the relationship between the structural characteristics and the catalytic activity cannot be clearly established in the present study,the highest conversion shown by compound 1 may eventually be related to the presence of unsaturated open sites in the Cu(Ⅱ)centers[36-37].

    Different subsittuted benzaldehyde substrates were used to study the substrate scope in the Knoevenagel condensation with malononitrile.These tests were run under optimized conditions(catalyst 1:2.0% ,CH3OH,1 h).The corresponding products were obtained in the yields varying from 56% to 100% (Table 7).Benzaldehydes containing a strong electronwithdrawing group(e.g.,nitro and chloro substituent in the ring)revealed the best efficiency(Entry 2~5,Table 7),which can be explained by an increased electrophilicity of substrates.The benzaldehydes containing an electron-donating functionality(e.g.,methyl or methoxy group)led to lower yields(Entry 6~8,Table 7).

    Table 7 Knoevenagel condensation reaction of various aldehydes with malononitrile catalyzed by compound 1a

    To examine the stability of 1 in the Knoevenagel condensation,we tested the recyclability of this hetero-geneous catalyst.For this purpose,upon completion of a reaction cycle,we separated the catalyst by centrifugation,washed it with CH3OH,and dried it at room temperature before its further use.For catalyst 1,the catalytic system maintained the higher activity over at least five consecutive cycles(Yield:100% ,100% ,99% and 98% for second to fifth run,respectively).According to the PXRD patterns(Fig.8),the structure of 1 was essentially preserved after five catalytic cycles.

    Fig.8 PXRD patterns of 1:simulated(red),before(black)and after(blue)five catalytic cycles

    The catalytic process is assumed to follow a mechanism,by which the copper Lewis acid center interacts with the carbonyl group of benzaldehyde,increasing the electrophilic character of the carbonyl carbon atom.The interaction of a cyano group of malononitrile with the Lewis acid metal site increase the acidity of its methylene moiety.The basic sites(carboxylate O atoms)can abstract a proton from the methylene group to generate the corresponding nucleophilic species,which attacks the carbonyl group of coordinated benzaldehyde with C—C bond formation and dehydration[38-39].

    3 Conclusions

    In summary,we have synthesized three Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) coordination,polymers{[Cu2(μ5-deta)(2,2′-bipy)2]·2H2O}n(1),[Co2(μ4-deta)(2,2′-bipy)2(H2O)3]n(2)and{[Ni2(μ3-deta)(μ-4,4′-bipy)2.5(H2O)5]·3H2O}n(3),based on a tetracarboxylate ligand.Compounds 1~3 disclose a 2D sheet,1D chain and 3D framework,respectively.The catalytic properties of these compounds were investigated.Compound 1 revealed an excellent catalytic activity in the Knoevenagel conden-sation reaction at room temperature.

    Supporting information is available at http://www.wjhxxb.cn

    亚洲精品国产色婷婷电影| 午夜视频精品福利| 久久人妻av系列| 亚洲欧美日韩高清在线视频| 9191精品国产免费久久| 搡老熟女国产l中国老女人| 又紧又爽又黄一区二区| 日韩欧美国产一区二区入口| 亚洲少妇的诱惑av| 一级a爱片免费观看的视频| 精品国产美女av久久久久小说| 成人三级黄色视频| 久久久水蜜桃国产精品网| 极品教师在线免费播放| 亚洲九九香蕉| 99国产精品一区二区蜜桃av| 日韩欧美免费精品| 国产欧美日韩精品亚洲av| 女生性感内裤真人,穿戴方法视频| 日韩三级视频一区二区三区| 久久久国产精品麻豆| 日本a在线网址| 免费观看人在逋| 亚洲av日韩精品久久久久久密| 中文字幕人妻丝袜制服| a级毛片在线看网站| 久久久久国内视频| 免费人成视频x8x8入口观看| 国产精品 国内视频| 国产精华一区二区三区| 女警被强在线播放| 一级作爱视频免费观看| 色综合婷婷激情| 亚洲专区中文字幕在线| 亚洲人成77777在线视频| 亚洲人成电影免费在线| 亚洲欧美一区二区三区久久| 亚洲第一av免费看| 欧美日韩乱码在线| 法律面前人人平等表现在哪些方面| 在线十欧美十亚洲十日本专区| 久久国产乱子伦精品免费另类| 亚洲人成77777在线视频| 女警被强在线播放| 高清欧美精品videossex| 日本五十路高清| 国产免费现黄频在线看| 女人被狂操c到高潮| 无限看片的www在线观看| 国产男靠女视频免费网站| 露出奶头的视频| bbb黄色大片| 久久久久久久久免费视频了| 91字幕亚洲| 亚洲精品国产精品久久久不卡| 99在线视频只有这里精品首页| 亚洲精品久久午夜乱码| 12—13女人毛片做爰片一| 日本精品一区二区三区蜜桃| 香蕉国产在线看| 黑人欧美特级aaaaaa片| 日韩免费av在线播放| xxx96com| 欧美人与性动交α欧美精品济南到| 搡老岳熟女国产| 亚洲精品粉嫩美女一区| 国产亚洲精品久久久久5区| 18禁黄网站禁片午夜丰满| www.熟女人妻精品国产| 亚洲精品av麻豆狂野| 黄色视频,在线免费观看| 五月开心婷婷网| av网站免费在线观看视频| 俄罗斯特黄特色一大片| 交换朋友夫妻互换小说| 一级作爱视频免费观看| 婷婷丁香在线五月| 校园春色视频在线观看| 久久久久精品国产欧美久久久| 国产aⅴ精品一区二区三区波| 热re99久久国产66热| 欧美日韩瑟瑟在线播放| 美女福利国产在线| 天天影视国产精品| 啪啪无遮挡十八禁网站| av天堂久久9| 日韩中文字幕欧美一区二区| 亚洲男人天堂网一区| 久久精品亚洲av国产电影网| 99国产精品99久久久久| 亚洲国产看品久久| 久久九九热精品免费| 一级毛片女人18水好多| 国产深夜福利视频在线观看| 亚洲激情在线av| 欧美日韩瑟瑟在线播放| www国产在线视频色| 精品欧美一区二区三区在线| 精品午夜福利视频在线观看一区| 美女扒开内裤让男人捅视频| 日日夜夜操网爽| 欧美乱色亚洲激情| 亚洲精品一卡2卡三卡4卡5卡| 免费看a级黄色片| 亚洲精品粉嫩美女一区| 成人亚洲精品av一区二区 | 国产男靠女视频免费网站| 国产亚洲精品久久久久5区| 成人亚洲精品av一区二区 | 国产精品美女特级片免费视频播放器 | 嫁个100分男人电影在线观看| 9色porny在线观看| 国产亚洲精品第一综合不卡| 中国美女看黄片| 人人澡人人妻人| 女人被躁到高潮嗷嗷叫费观| 午夜亚洲福利在线播放| 精品第一国产精品| 91成人精品电影| 亚洲av熟女| 多毛熟女@视频| 动漫黄色视频在线观看| 90打野战视频偷拍视频| 中出人妻视频一区二区| 丝袜在线中文字幕| 国产精品久久久人人做人人爽| 欧美老熟妇乱子伦牲交| 午夜福利免费观看在线| 欧美成人性av电影在线观看| 亚洲性夜色夜夜综合| 国产亚洲精品久久久久5区| 高清黄色对白视频在线免费看| 男女高潮啪啪啪动态图| 国产高清视频在线播放一区| 成人亚洲精品一区在线观看| 夫妻午夜视频| 国产高清视频在线播放一区| av网站免费在线观看视频| 久久人人爽av亚洲精品天堂| 伊人久久大香线蕉亚洲五| 极品教师在线免费播放| 久久国产精品人妻蜜桃| 国产精品影院久久| 亚洲一区二区三区欧美精品| 免费观看精品视频网站| 成人三级黄色视频| 久久精品国产亚洲av高清一级| 免费看十八禁软件| 男女之事视频高清在线观看| 国产成人精品久久二区二区91| www.精华液| 亚洲精品中文字幕在线视频| 国产成人精品久久二区二区91| 国产人伦9x9x在线观看| 久久人人97超碰香蕉20202| 国产亚洲精品久久久久5区| 国产精品永久免费网站| 午夜免费成人在线视频| 久久精品亚洲av国产电影网| 老司机亚洲免费影院| 亚洲成人国产一区在线观看| 性少妇av在线| 精品国产亚洲在线| 免费高清在线观看日韩| 最新美女视频免费是黄的| 欧美+亚洲+日韩+国产| 欧美成人性av电影在线观看| 日日摸夜夜添夜夜添小说| 波多野结衣av一区二区av| 色精品久久人妻99蜜桃| 黑人操中国人逼视频| av在线播放免费不卡| 91国产中文字幕| 午夜日韩欧美国产| 国产高清激情床上av| 亚洲欧美一区二区三区黑人| 电影成人av| 大香蕉久久成人网| 一级作爱视频免费观看| 日韩欧美在线二视频| 亚洲专区字幕在线| 日韩精品青青久久久久久| 岛国视频午夜一区免费看| x7x7x7水蜜桃| 变态另类成人亚洲欧美熟女 | 久久亚洲真实| 91在线观看av| 欧美日本中文国产一区发布| 国产成人啪精品午夜网站| 亚洲成人久久性| 亚洲九九香蕉| 9色porny在线观看| 在线观看免费视频网站a站| 在线观看日韩欧美| 国产亚洲av高清不卡| 国产一区二区三区在线臀色熟女 | 天堂√8在线中文| av天堂久久9| 黑人猛操日本美女一级片| 免费一级毛片在线播放高清视频 | 亚洲色图av天堂| 91成人精品电影| 久久中文字幕人妻熟女| bbb黄色大片| 亚洲中文日韩欧美视频| 亚洲第一av免费看| 美女 人体艺术 gogo| 国产精品99久久99久久久不卡| av有码第一页| 国产精品永久免费网站| 国产在线观看jvid| 热99re8久久精品国产| 欧美日韩av久久| 国产精品九九99| 法律面前人人平等表现在哪些方面| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av高清一级| xxxhd国产人妻xxx| 亚洲精品一二三| 夜夜夜夜夜久久久久| 日韩中文字幕欧美一区二区| 一夜夜www| 黄色a级毛片大全视频| 亚洲第一av免费看| 亚洲成a人片在线一区二区| 精品少妇一区二区三区视频日本电影| 亚洲av第一区精品v没综合| 人妻丰满熟妇av一区二区三区| 国产精品久久久av美女十八| 视频区图区小说| 精品少妇一区二区三区视频日本电影| 高清黄色对白视频在线免费看| 国产精品野战在线观看 | 久久 成人 亚洲| 一a级毛片在线观看| 别揉我奶头~嗯~啊~动态视频| 色老头精品视频在线观看| 黄色视频不卡| 黑人猛操日本美女一级片| 人人妻,人人澡人人爽秒播| 国产黄色免费在线视频| 亚洲午夜精品一区,二区,三区| av有码第一页| 亚洲精品久久午夜乱码| 国产精品香港三级国产av潘金莲| 亚洲成国产人片在线观看| 国产一区二区三区视频了| 亚洲精品中文字幕一二三四区| av国产精品久久久久影院| 精品人妻在线不人妻| 精品一区二区三区四区五区乱码| 身体一侧抽搐| 少妇裸体淫交视频免费看高清 | 18禁黄网站禁片午夜丰满| 午夜老司机福利片| 国产精品野战在线观看 | 成人黄色视频免费在线看| 久久 成人 亚洲| 成人av一区二区三区在线看| 亚洲欧美日韩无卡精品| 国产精品自产拍在线观看55亚洲| 亚洲欧美激情综合另类| 一本综合久久免费| 国产野战对白在线观看| 91成年电影在线观看| 性欧美人与动物交配| 亚洲av成人一区二区三| 欧美激情 高清一区二区三区| 老司机福利观看| 天天躁夜夜躁狠狠躁躁| 大香蕉久久成人网| 曰老女人黄片| 在线看a的网站| 真人做人爱边吃奶动态| 天堂动漫精品| 人人澡人人妻人| 两个人免费观看高清视频| 国产亚洲欧美98| 欧美日韩亚洲高清精品| 波多野结衣一区麻豆| 国产精品免费视频内射| 性色av乱码一区二区三区2| 在线观看免费高清a一片| 亚洲精品一二三| 久久久国产一区二区| 日韩精品青青久久久久久| 欧美精品一区二区免费开放| 欧美成人午夜精品| 久久精品91无色码中文字幕| 老熟妇乱子伦视频在线观看| 最近最新中文字幕大全免费视频| 日韩国内少妇激情av| 色综合站精品国产| 中文字幕av电影在线播放| 亚洲激情在线av| 成人亚洲精品av一区二区 | 国产av一区在线观看免费| 无遮挡黄片免费观看| 精品熟女少妇八av免费久了| 激情视频va一区二区三区| 亚洲黑人精品在线| 国产精品国产高清国产av| 99精国产麻豆久久婷婷| 在线观看舔阴道视频| 亚洲熟妇熟女久久| 人妻丰满熟妇av一区二区三区| 丰满的人妻完整版| www.熟女人妻精品国产| 他把我摸到了高潮在线观看| www.熟女人妻精品国产| 国产精品国产av在线观看| 人妻久久中文字幕网| av中文乱码字幕在线| 女警被强在线播放| 欧美+亚洲+日韩+国产| 久9热在线精品视频| 日本黄色视频三级网站网址| 国产精品成人在线| 超碰97精品在线观看| 十八禁人妻一区二区| 水蜜桃什么品种好| 国产精品久久久久久人妻精品电影| 国产亚洲精品一区二区www| 国产一区二区在线av高清观看| 9色porny在线观看| 天堂动漫精品| 国产99久久九九免费精品| 人人妻人人爽人人添夜夜欢视频| 50天的宝宝边吃奶边哭怎么回事| 十八禁网站免费在线| 9色porny在线观看| 亚洲熟妇中文字幕五十中出 | 久久精品人人爽人人爽视色| 黄色毛片三级朝国网站| 国产一区二区在线av高清观看| 黄色a级毛片大全视频| 欧美老熟妇乱子伦牲交| 黄片播放在线免费| 男女床上黄色一级片免费看| 免费观看精品视频网站| 久久香蕉国产精品| 久久久久久久久中文| 美女高潮到喷水免费观看| 免费在线观看日本一区| 在线天堂中文资源库| 黄片播放在线免费| 国产一区二区三区综合在线观看| 一级毛片女人18水好多| 国产三级黄色录像| 国产成人精品久久二区二区免费| 成在线人永久免费视频| 中文字幕精品免费在线观看视频| 狠狠狠狠99中文字幕| 国产伦一二天堂av在线观看| 18禁美女被吸乳视频| 中文字幕精品免费在线观看视频| 亚洲国产精品一区二区三区在线| 亚洲av五月六月丁香网| 久久精品91无色码中文字幕| 亚洲成人免费电影在线观看| 色综合站精品国产| 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| 真人做人爱边吃奶动态| 亚洲性夜色夜夜综合| 欧美日韩国产mv在线观看视频| 国产免费现黄频在线看| 香蕉久久夜色| 免费女性裸体啪啪无遮挡网站| 成人永久免费在线观看视频| 久久99一区二区三区| 99国产精品一区二区三区| 18禁美女被吸乳视频| 欧美国产精品va在线观看不卡| 男女之事视频高清在线观看| 老司机在亚洲福利影院| 国产成人影院久久av| 女同久久另类99精品国产91| 两性夫妻黄色片| 麻豆久久精品国产亚洲av | 一级a爱片免费观看的视频| 老司机午夜福利在线观看视频| 精品久久久久久,| 可以免费在线观看a视频的电影网站| 日韩成人在线观看一区二区三区| 亚洲欧美精品综合久久99| 国产成人系列免费观看| √禁漫天堂资源中文www| 国产蜜桃级精品一区二区三区| 国产激情久久老熟女| 两个人免费观看高清视频| 国产av一区在线观看免费| 91麻豆精品激情在线观看国产 | 亚洲第一青青草原| 一级毛片女人18水好多| 国产精品爽爽va在线观看网站 | 婷婷丁香在线五月| 国产蜜桃级精品一区二区三区| 国产人伦9x9x在线观看| 99国产精品免费福利视频| 可以在线观看毛片的网站| 19禁男女啪啪无遮挡网站| 一区二区三区国产精品乱码| 国产av精品麻豆| 老司机深夜福利视频在线观看| 国产成人精品无人区| 亚洲午夜精品一区,二区,三区| 亚洲五月天丁香| 在线观看66精品国产| 一区二区三区精品91| 丝袜在线中文字幕| 性少妇av在线| 国产不卡一卡二| www.精华液| 国产91精品成人一区二区三区| 伦理电影免费视频| 亚洲熟妇熟女久久| 美国免费a级毛片| 久久人妻熟女aⅴ| 曰老女人黄片| 国产色视频综合| 日韩免费av在线播放| 亚洲欧美激情综合另类| 精品国产一区二区三区四区第35| 搡老乐熟女国产| 99精品欧美一区二区三区四区| 日韩大尺度精品在线看网址 | 亚洲成a人片在线一区二区| 国产精品久久久av美女十八| 久久久久精品国产欧美久久久| 88av欧美| netflix在线观看网站| 少妇裸体淫交视频免费看高清 | 亚洲欧美一区二区三区黑人| 久久国产精品影院| 别揉我奶头~嗯~啊~动态视频| 99久久人妻综合| 老司机午夜福利在线观看视频| 国产高清激情床上av| xxx96com| 亚洲狠狠婷婷综合久久图片| 欧美不卡视频在线免费观看 | 久久人人精品亚洲av| 色综合欧美亚洲国产小说| 午夜福利欧美成人| 99久久精品国产亚洲精品| 久久久久久免费高清国产稀缺| 老汉色av国产亚洲站长工具| 免费在线观看亚洲国产| 亚洲欧美精品综合一区二区三区| 成人三级黄色视频| 色婷婷av一区二区三区视频| 天天躁夜夜躁狠狠躁躁| 在线观看日韩欧美| 热re99久久精品国产66热6| 黄片大片在线免费观看| 在线观看免费视频日本深夜| 欧美在线一区亚洲| 在线观看66精品国产| 成人黄色视频免费在线看| 婷婷精品国产亚洲av在线| 人妻久久中文字幕网| 1024香蕉在线观看| 一区二区三区国产精品乱码| 高清黄色对白视频在线免费看| 欧美成人午夜精品| 国产精品秋霞免费鲁丝片| 国产又爽黄色视频| 亚洲情色 制服丝袜| 视频区欧美日本亚洲| 高清欧美精品videossex| 久久天躁狠狠躁夜夜2o2o| 老司机靠b影院| 女人精品久久久久毛片| av视频免费观看在线观看| 欧美最黄视频在线播放免费 | 国产精品野战在线观看 | 激情视频va一区二区三区| 无人区码免费观看不卡| 巨乳人妻的诱惑在线观看| 国产日韩一区二区三区精品不卡| 亚洲人成77777在线视频| 美女国产高潮福利片在线看| 波多野结衣一区麻豆| 涩涩av久久男人的天堂| 免费av中文字幕在线| 亚洲熟妇熟女久久| 热99国产精品久久久久久7| 18美女黄网站色大片免费观看| 成人av一区二区三区在线看| 精品欧美一区二区三区在线| 人人妻人人爽人人添夜夜欢视频| 好看av亚洲va欧美ⅴa在| 啪啪无遮挡十八禁网站| 国产精品综合久久久久久久免费 | 精品一区二区三区av网在线观看| 久久中文字幕人妻熟女| 又紧又爽又黄一区二区| 国产成人一区二区三区免费视频网站| avwww免费| 免费在线观看日本一区| а√天堂www在线а√下载| 亚洲 欧美 日韩 在线 免费| 国产区一区二久久| 欧美激情 高清一区二区三区| 亚洲在线自拍视频| 欧美激情 高清一区二区三区| 看免费av毛片| 久久久久久大精品| 欧美性长视频在线观看| 大型av网站在线播放| 亚洲av五月六月丁香网| 亚洲一区二区三区欧美精品| 亚洲中文字幕日韩| 1024视频免费在线观看| 欧美精品亚洲一区二区| 久久精品91无色码中文字幕| 一级黄色大片毛片| 十八禁人妻一区二区| 精品国产亚洲在线| 成年人黄色毛片网站| 999精品在线视频| 在线观看日韩欧美| 大型黄色视频在线免费观看| 在线观看免费午夜福利视频| 国产欧美日韩一区二区三区在线| 精品熟女少妇八av免费久了| 大型黄色视频在线免费观看| 日本撒尿小便嘘嘘汇集6| 91成人精品电影| 少妇的丰满在线观看| 午夜福利欧美成人| 法律面前人人平等表现在哪些方面| 婷婷六月久久综合丁香| 91大片在线观看| 国产精品二区激情视频| 人人妻人人添人人爽欧美一区卜| 久久精品91无色码中文字幕| 成年版毛片免费区| 一边摸一边抽搐一进一小说| 麻豆久久精品国产亚洲av | 日韩欧美三级三区| 女人爽到高潮嗷嗷叫在线视频| 午夜福利在线观看吧| 亚洲伊人色综图| av天堂久久9| 国产有黄有色有爽视频| 国产无遮挡羞羞视频在线观看| 在线av久久热| 91精品三级在线观看| www日本在线高清视频| 国产熟女午夜一区二区三区| 精品一区二区三卡| 久久国产亚洲av麻豆专区| 亚洲五月天丁香| 人人妻,人人澡人人爽秒播| 国产人伦9x9x在线观看| 中文字幕另类日韩欧美亚洲嫩草| 精品国产亚洲在线| 91麻豆av在线| 国产精品日韩av在线免费观看 | 亚洲成人国产一区在线观看| 欧美乱色亚洲激情| 久久久国产成人免费| av欧美777| 色播在线永久视频| 99riav亚洲国产免费| 亚洲成人精品中文字幕电影 | 亚洲视频免费观看视频| 国产成+人综合+亚洲专区| 国产精华一区二区三区| 免费少妇av软件| 国产成人免费无遮挡视频| a级毛片在线看网站| 新久久久久国产一级毛片| 久久人妻av系列| а√天堂www在线а√下载| 国产精品综合久久久久久久免费 | 在线观看免费高清a一片| 免费看十八禁软件| 波多野结衣av一区二区av| 黄色怎么调成土黄色| 啪啪无遮挡十八禁网站| 午夜免费成人在线视频| 我的亚洲天堂| 久久久久久久久久久久大奶| 日本免费一区二区三区高清不卡 | 黄网站色视频无遮挡免费观看| 亚洲一区高清亚洲精品| 日本黄色日本黄色录像| 国产精品免费视频内射| 性欧美人与动物交配| 19禁男女啪啪无遮挡网站| 一级黄色大片毛片| 可以免费在线观看a视频的电影网站| 国产黄a三级三级三级人| 国产精品一区二区精品视频观看| 很黄的视频免费| 亚洲久久久国产精品| 97人妻天天添夜夜摸| 国产97色在线日韩免费| 啦啦啦 在线观看视频| 亚洲欧美日韩另类电影网站| e午夜精品久久久久久久| 免费高清视频大片| 一二三四在线观看免费中文在| e午夜精品久久久久久久| 99在线人妻在线中文字幕| 又紧又爽又黄一区二区| 老司机午夜福利在线观看视频| 成人免费观看视频高清| 成人特级黄色片久久久久久久| av网站在线播放免费| 成在线人永久免费视频| 亚洲成人久久性|