• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Li2Ni2(MoO4)3@C Composite as High-Performance Anode Material for Lithium-Ion Batteries with High Initial Coulombic Efficiency

    2021-11-04 13:54:50ZHANGJianYinLIUHaoHaoSHIXiaoXiao
    無機化學(xué)學(xué)報 2021年10期

    ZHANG Jian-Yin LIU Hao-Hao SHI Xiao-Xiao

    (1Modern College of Humanities and Sciences,Shanxi Normal University,Linfen,Shanxi 041000,China)

    (2School of Chemical and Material Science,Shanxi Normal University,Linfen,Shanxi 041004,China)

    Abstract:Herein,Li2Ni2(MoO4)3@C composite with mass ratio of 23.7% of carbon was prepared using conventional solid-state method combined with mechanical ball milling and first investigated as the new anode of lithium-ion batteries.Compared with pure Li2Ni2(MoO4)3,Li2Ni2(MoO4)3@C presented an outstanding electrochemical performance,where a high reversible capacity of 845 mAh·g-1can be acquired at a current density of 200 mA·g-1after 50 cycles.It′s worth noting that Li2Ni2(MoO4)3@C delivered high initial coulombic efficiency of 85% .Moreover,the lithium intercalation/de-intercalation behavior of Li2Ni2(MoO4)3@C was preliminarily investigated by cyclic voltammetry.

    Keywords:Li2Ni2(MoO4)3;solid state synthesis;anode material;lithium-ion batteries;high initial coulombic efficiency

    Lithium-ion batteries(LIBs),one of the most promising energy storage devices,have been extensively used in many fields,such as electronic vehicles and portable devices[1-2].At present,graphite is mainly used to the commercial anode material for LIBs with a theoretical capacity of 372 mAh·g-1[3].With the growing demand for various electronic products,new anode materials with admirable properties that contain high capacity and safety performance are required.Among those alternative graphite materials,Mo-based bimetallic oxides(such as Li2MoO4,FeMoO4,Bi2MoO6,and Cr3Mo2O12),as conversion reaction materials,benefiting from the high capacity delivered due to the multielectron transfer during the lithiation/delithiation pro-cess,have been investigated intensively for lithium-ion battery anodes[4-7].However,the inherent low electrical conductivity of these materials and the structural instability during the reaction process shackle its practical application.

    In the past ten or twenty years,Na-super-ionicconductor(NASICON)framework-type lithiated bimetallic oxides,such as Li3Fe(MoO4)3,Li2Co2(MoO4)3,Li2FeSiO4,and Li3V(MoO4)3,have been systematically studied as cathode materials,and it has been found that they have excellent electrochemical properties,which are mainly attributed to their three-dimensional framework structure with the coordination between different metals and many lithium ion channels during the charge/discharge process[8-9].In recent years,many studies have proved that the above cathode materials can be applied as excellent anode materials for LIBs[10-11].For example,Chen et al.prepared a pure Li3Fe(MoO4)3with micro-nanoporous structure.Electrochemical test showed that the charge capacity was 622 mAh·g-1after 450 cycles at a current density of 100 mA·g-1[10].In 2004,Quaternary lithium nickel molybdenum oxide,Li2Ni2(MoO4)3,was first reported by Prabaharan as a novel cathode material for rechargeable lithium batteries[12].The reversible intercalation capacity of Li2Ni2(MoO4)3was 115 mAh·g-1in the voltage range of 1.5 to 4.9 V.When Ni2+and Mo6+are completely reduced to the corresponding metallic elementals,it can be expected that Li2Ni2(MoO4)3has a high theoretical specific capacity(965 mAh·g-1).As far as we know,there is no research on Li2Ni2(MoO4)3as anode material for LIBs.Therefore,it is of great significance to develop high performance anode materials based on Li2Ni2(MoO4)3.

    Herein,Li2Ni2(MoO4)3@C composite was successfully synthesized via a simple method using the conventional solid-state process combined with ball milling technique.When first applied as anode material for LIBs,it showed high delithium capacity with high initial coulombic efficiency(85% ).Meanwhile,Li2Ni2(MoO4)3@C electrode also showed excellent cycling and rate performance,which is attributed to that the addition of carbon not only improves the electrical conductivity of the material,but also as a buffer medium alleviates the large volume changes in the process of charge and discharge.In addition,the lithium storage mechanism of Li2Ni2(MoO4)3@C was preliminarily explored by cyclic voltammetry(CV).

    1 Experimental

    1.1 Material synthesis

    First,Li2CO3,Ni(NO3)2·6H2O,and(NH4)6Mo7O24·4H2O were adequately ground in an agate mortar for 30 min with a molar ratio ofnLi∶nNi∶nMobeing 2∶2∶3,and the mixture was heated in air at 300℃for 10 h and then at 550℃for 24 h to obtain a pure phase of Li2Ni2(MoO4)3.Next,Li2Ni2(MoO4)3@C was synthesized by planetary ball milling(QM-3SP04,Nanjing NanDa Instrument Plant,China)at 400 r·min-1for 12 h.The mass ratio of Li2Ni2(MoO4)3to Ketjen Black(ECP-600JD,Lion Corporation)was 8∶2.The mass ratio of grinding balls to the material was set as 40∶1.For comparison,pure Li2Ni2(MoO4)3without added Ketjen Black was also ball-milled under the same condition.The synthesis schematic diagram of Li2Ni2(MoO4)3and Li2Ni2(MoO4)3@C is shown in Fig.1.

    Fig.1 Synthesis schematic diagram of Li2Ni2(MoO4)3@C

    1.2 Material characterization

    The crystalline structure of the materials was investigated using X-ray diffractometer(XRD,Ultima Ⅳ)with CuKαradiation(λ=0.154 nm)at 40 kV and 40 mA in a scanning range of 10°~80°(2θ).The surface morphologies were observed by scanning electron microscopy(SEM,JSM-7500F)working at 10 kV and transmission electron microscopy(TEM,JEM-2100F)operated at 200 kV.Thermogravimetric analysis(TG,DTG-60H)was carried out under air atmosphere with a temperature ramp of 10℃·min-1.The surface valence states of the samples were researched by X-ray photoelectron spectroscopy(XPS,PHI-5000 Versa Probe)with AlKαradiation(λ=0.835 nm).

    1.3 Electrochemical measurements

    The electrochemical performance of Li2Ni2(MoO4)3and Li2Ni2(MoO4)3@C was evaluated by a 2016-type coin cell assembled in a MBRAUN glove box filled high-purity argon gas.The working electrode consisted of Li2Ni2(MoO4)3(or Li2Ni2(MoO4)3@C),carbon powder(Super p)and adhesive(polyvinylidene fluoride)(mass ratio of 8∶1∶1).Li foil and Celgard-2400 membrane were served as counter electrode and separators,respectively.The electrolyte was constituted by 1.0 mol·L-1LiPF6dissolved in ethyl methyl carbonate(EMC),dimethyl carbonate(DMC),and ethylene carbonate(EC)(volume ratio:1∶1∶1).The CV and electrochemical impedance spectroscopy(EIS)of the as-prepared samples were performed on an electrochemical workstation(CHI660e,Chenhua Instrument Co.,Ltd.,Shanghai,China).Constant current discharge-charge tests were completed at a NEWAR CT3008 battery system.

    2 Results and discussion

    The XRD patterns of Li2Ni2(MoO4)3and Li2Ni2(MoO4)3@C are displayed in Fig.2a.For comparison,Fig.S1(Supporting information)illustrates the XRD pattern of ball-milled Li2Ni2(MoO4)3.All the peak positions are well indexed as PDF card(PDF No.70-0452,an orthorhombic structure with space groupPmcn),indicating that the samples form a well single-phase crystalline structure.In addition,the characteristic dif-fraction peaks of carbon are not found,demonstrating it exists as an amorphous state in Li2Ni2(MoO4)3@C composite after ball milling[13].In contrast to pristine Li2Ni2(MoO4)3,the broadening of some diffraction peaks observed in Li2Ni2(MoO4)3@C can be attributed to particle refinement after ball milling[14],which is shown in the SEM measuring results below.Fig.2b presents the crystal structure of Li2Ni2(MoO4)3as determined by the Diamond software,where the figure exhibits a threedimensional framework.What matters is that the open frame structure may allow Li+to move into and out of the structure easily[5].In order to obtain accurate structural information,Rietveld refinements of XRD profiles of the as-synthesized samples were performed by the GSAS software.As shown in Fig.2c and 2d,the calculated results are in good agreement with the experimental XRD patterns.RpandRwpare collectively referred to as reliability factors,representing profile factor and weighted profile factor,respectively.The Rietveld refinements are credible only ifRpandRwpvalues are both under 15%[15].For Li2Ni2(MoO4)3,the refinement terminates withRp=3.2% andRwp=4.5% .The corresponding lattice parameters were calculated to bea=1.040 69(8)nm,b=1.749 83(1)nm,c=0.507 89(4)nm,andV=0.924 89(2)nm3.These values are very close to standard data(a=1.042 nm,b=1.752 nm,c=0.507 nm),which also corresponds with the conclusion drawn by the above XRD.The detailed structural parameters of Li2Ni2(MoO4)3and Li2Ni2(MoO4)3@C acquired from the refinement results are summarized in Table 1.

    Fig.2 (a)XRD patterns of Li2Ni2(MoO4)3and Li2Ni2(MoO4)3@C;(b)Crystal structure of Li2Ni2(MoO4)3;Rietveld refinement results of XRD patterns for(c)Li2Ni2(MoO4)3and(d)Li2Ni2(MoO4)3@C

    Table 1 XRD refinement results of as-prepared samples

    The morphology of Li2Ni2(MoO4)3prepared by solid state synthesis was revealed by SEM,as shown in Fig.3a.It is obvious that the sample shows irregular sintered block shape.When Li2Ni2(MoO4)3was milledwith Ketjen Black(Fig.3b),it displayed irregular agglomeration.It can be seen that the particle sizes of most of Li2Ni2(MoO4)3@C were smaller than that of pure Li2Ni2(MoO4)3after ball milling.The average particle size was roughly calculated by Image-Pro software from SEM images.The sizes of Li2Ni2(MoO4)3and Li2Ni2(MoO4)3@C were ~0.31 and ~0.15 μm,respectively.Further,among various strategies to improve electrochemical behavior,reducing the particle size is an effective method to shorten the diffusion path of ions for LIBs[16].Digital photographs of Li2Ni2(MoO4)3and Li2Ni2(MoO4)3@C are displayed in the upper right corners of Fig.3a and 3b.Li2Ni2(MoO4)3@C powder was black in sharp contrast with the yellow Li2Ni2(MoO4)3powder,which demonstrates that Li2Ni2(MoO4)3particles have become a composite with carbon.Fig.3c presents the TEM image of Li2Ni2(MoO4)3@C,where the size of the particles was about 145 nm.The particle size is basically consistent with the SEM measurement result.High-resolution TEM(HRTEM)image(Fig.3d)exhibited a 0.246 nm lattice spacing corresponding to the(161)plane of Li2Ni2(MoO4)3.The perfect lattice fringe indicates the excellent crystal structure of Li2Ni2(MoO4)3,which is essential for the high-performance anodes of LIBs.

    Fig.3 SEM images of(a)Li2Ni2(MoO4)3and(b)Li2Ni2(MoO4)3@C;(c)TEM image and(d)HRTEM image of Li2Ni2(MoO4)3@C

    The TG curve of Li2Ni2(MoO4)3@C composite under air atmosphere is shown in Fig.4a.The weight percentage of Li2Ni2(MoO4)3in the composite was 76.3% at 800℃,which is roughly the same as the feed ratio before ball-milling.The electronic state of different elements of Li2Ni2(MoO4)3@C was verified by XPS,as presented in Fig.4b~4f.The survey spectrum(Fig.4b)exhibits the existence of Li,Ni,Mo,and O,as well as C from the composite material and the reference electrode.The binding energy observed near 56 eV is in line with the Li1sXPS spectrum(Fig.4c)[12].As shown in Fig.4d,the two peaks located at 856.1 and 873.4 eV can be ascribed to Ni2p3/2and Ni2p1/2,representative of the presence of Ni2+[17].And there are two satellite peaks with binding energies at 878.8 and 860.9 eV(Fig.4d).The binding energies of two peaks existed at 232.4 and 235.5 eV are assigned to Mo3d5/2and Mo3d3/2,respectively,which corresponds to the characteristic of Mo6+as depicted in Fig.4e[18].The O1sXPS spectrum for Li2Ni2(MoO4)3@C shows two peaks with binding energies at 530.4 and 532.5 eV,which is attributed to the lattice oxygen and chemisorbed oxygen,respectively(Fig.4f)[8].

    Fig.4 (a)TG curve of Li2Ni2(MoO4)3@C in an air atmosphere;XPS spectra of Li2Ni2(MoO4)3@C:(b)survey spectrum,(c)Li1s,(d)Ni2p,(e)Mo3d,and(f)O1s

    The lithium intercalation/de-intercalation behavior of pure Li2Ni2(MoO4)3and Li2Ni2(MoO4)3@C composite was studied by CV and galvanostatic chargedischarge cycling.Fig.5a shows the first three CV curves of Li2Ni2(MoO4)3@C electrode for LIBs in the voltage range of 0.02~3.0 V(vs Li+/Li)at the scan rate of 0.1 mV·s-1,which is similar to that of NiMoO4anodes[19].The initial cathodic scan displays three reduction peaks at 1.46,0.70,and 0.17 V.The peak at 1.46 V involves an irreversible transition,possibly due to the insertion of Li+into the Li2Ni2(MoO4)3.This phenomenon also appears in another molybdenum-based material[5,10-11].The other two peaks correspond to the transformation of Mo6+to Mo and Ni2+to Ni,accompanied by the formation of solid electrolyte interface(SEI)film on the electrode surface.When the scanning direction was reversed,the anodic peak at 1.38 V can be related to the oxidation of Mo to Mo4+,while the peak located 1.80 V represents the overlapping peaks of Mo4+to Mo6+and Ni to Ni2+[19].It can be visibly seen from the second cycle that three reduction peaks appeared(1.50,0.64,and 0.15 V).Among them,the peaks located at 1.50 and 0.15 V may be attributed to the multi-step reduction of Mo6+to Mo[10].Another reduction peak at 0.64 V can be related to the reduction of Ni2+to Ni[20].Meanwhile,two peaks at 1.38 and 1.80 V are shown in the anodic process,which is basically consistent with the initial anodic scans.During the scanning process,the changes in the redox potential of Ni2+and Mo6+are related to the existence of the polyanion (MoO4)2-in the main frame structure[21].Clearly,the CV curves of Li2Ni2(MoO4)3@C after the first cycle overlap better than that of pure Li2Ni2(MoO4)3(Fig.5b),indicating that the former has superior reversibility as an anode material.In short,the reaction processes are as follows:

    Fig.5 CV profiles of(a)Li2Ni2(MoO4)3@C and(b)Li2Ni2(MoO4)3at scan rate of 0.1 mV·s-1;Discharge/charge curves of(c)Li2Ni2(MoO4)3@C and(d)Li2Ni2(MoO4)3at 200 mA·g-1

    Fig.5c presents the charge/discharge curves of Li2Ni2(MoO4)3@C electrode for the 1st,2nd,and 50th cycles at 200 mA·g-1.During the first discharge process,three voltage platforms were recorded,which was also in line with the CV results(Fig.5a).First,a short platform located at 1.5 V(86 mAh·g-1),which corresponded to the intercalation of 2Li+in to Li2Ni2(MoO4)3[21].When the discharge voltage was below 1 V,the two voltage platforms contribute a capacity sum of 930 mAh·g-1(21Li+),which is involved in the decomposition of Li2+xNi2(MoO4)3to produce Ni and Mo as well as the formation of SEI film.It is worth noting that the polarization of Li2Ni2(MoO4)3@C between the discharge platform and the charging platform is smaller than that of Li2Ni2(MoO4)3(Fig.5d),indicating that its kinetic characteristics are better than that of Li2Ni2(MoO4)3.The improved kinetics of Li2Ni2(MoO4)3@C can be attributed to the higher electrical conductivity and Li+ion diffusivity[22-23].

    The comparative cycling performance of Li2Ni2(MoO4)3and Li2Ni2(MoO4)3@C composite electrodes at a current density of 200 mA·g-1is shown in Fig.6a.For Li2Ni2(MoO4)3@C electrode,the initial discharge and charge capacities were 1 131 and 961 mAh·g-1,respectively,corresponding to the initial columbic efficiency of 85% .It should be noted that such a high coulomb efficiency is very competitive in reported anode materials,which is of great importance for practical applications[11].Li2Ni2(MoO4)3@C delivered a charge capacity of 845 mAh·g-1after 50 cycles and exhibited excellent capacity retention(87.5% of the initial capacity).In contrast,pure Li2Ni2(MoO4)3remained at 95 mAh·g-1and the capacity retention was only 12.6% .In addition,the cycle properties of ball-milled Li2Ni2(MoO4)3without adding Ketjen Black were also characterized under the same condition.As shown in Fig.S2,the reversible capacity of ball-milled Li2Ni2(MoO4)3was only 135 mAh·g-1after 50 discharge-charge cycles.This significantly enhanced electrochemical performance is mainly attributed to the fact that Ketjen Black in Li2Ni2(MoO4)3@C composite protect the electrode from collapse due to volume expansion/contraction during Li+insertion/extraction process,thus improving the electrode stability[22].

    Fig.6 (a)Cycling performance at 200 mA·g-1and(b)rate performance of as-prepared samples

    To verify practicality,the rate capabilities of Li2Ni2(MoO4)3and Li2Ni2(MoO4)3@C electrodes were also studied at different current densities,as shown in Fig.6b.Li2Ni2(MoO4)3@C electrode showed a superior rate performance with the specific discharge capacity of approximately 936,876,760,and 551 mAh·g-1at 200,400,800,and 1 600 mA·g-1,respectively.After 40 cycles,when the current density was restored to 200 mA·g-1,the specific discharge capacity could recover to ~811 mAh·g-1,which is 86% of the first stage capacity.By contrast,Li2Ni2(MoO4)3only returned to 32% under the same conditions,indicating that Li2Ni2(MoO4)3@C possesses a good structural stability under the large current density changes.

    In order to further investigate the reasons for the improved electrochemical properties, comparative alternating current(AC)impedance spectroscopy analyses were performed after the rate performance cycles.There are a semicircle and a sloping line in the Nyquist plot that was fitted using the equivalent circuit acquired by Z-view software(Fig.7a).In the equivalent circuit,Rs,Rct,CPE andZWstand for ohmic resistance of electrolyte and contact resistance,resistance of charge transfer,double layer capacitance,and Warburg impedance controlled by diffusion,respectively[24].The diffusion coefficient of lithium ions(DLi)was calculated according to the following equation[25-26]:

    WhereR,T,A,n,F,c,andσrepresent gas constant,absolute temperature,surface area of the anode,number of electrons per molecule during oxidization,Faraday constant,concentration of lithium-ion and Warburg factor,respectively.Theσis relative withZ′:

    Fig.7b presents the linear fitting ofZ′vsω-1/2,from which the slopeσcan be derived.Based on Eq.5,it is possible to calculateDLiof the samples using theσvalue.The fitting results of resistance and the values ofDLiare tabulated in Table 2.It is obvious that theRsandRctfor Li2Ni2(MoO4)3@C electrode are smaller than those of pure Li2Ni2(MoO4)3electrode,demonstrating that Li2Ni2(MoO4)3@C electrode possesses a more stable surface film and a faster charge transfer process.In addition,theDLivalues of Li2Ni2(MoO4)3@C and Li2Ni2(MoO4)3indicate that the electrochemical kinetics for Li2Ni2(MoO4)3@C is easier with Li+insertion/extraction than Li2Ni2(MoO4)3,which also verifies the enhance-ment of lithium storage performance of Li2Ni2(MoO4)3@C after compounding with carbon.

    Table 2 Fitted impedance parameters of Li2Ni2(MoO4)3@C and Li2Ni2(MoO4)3

    3 Conclusions

    In summary,Li2Ni2(MoO4)3@C composite was synthesized using solid-state reaction combined with ball milling and researched as novel anode material for LIBs.In contrast to Li2Ni2(MoO4)3,Li2Ni2(MoO4)3@C composite exhibited competitive rate performance and cyclic stability.Moreover,Li2Ni2(MoO4)3@C provided a discharge capacity of 861 mAh·g-1after 50 cycles at 200 mA·g-1and delivered high initial coulombic efficiency of 85% .The excellent electrochemical performance is due to the reduction of particle size after ball milling,and more importantly,the carbon matrix of Li2Ni2(MoO4)3@C composite can improve electrode conductivity,buffer massive volume changes,and raise reaction kinetics.All the results highlight that Li2Ni2(MoO4)3@C would become a promising candidate for new anode materials of LIBs.

    Supporting information is available at http://www.wjhxxb.cn

    一级毛片精品| 欧美黄色片欧美黄色片| 国产高清有码在线观看视频 | 一本精品99久久精品77| 亚洲av五月六月丁香网| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产精品久久久不卡| 99久久无色码亚洲精品果冻| 成人三级做爰电影| 岛国在线观看网站| 中文字幕人成人乱码亚洲影| 免费人成视频x8x8入口观看| 日本在线视频免费播放| 一二三四在线观看免费中文在| av国产免费在线观看| 久久久国产精品麻豆| 最近在线观看免费完整版| 亚洲天堂国产精品一区在线| 999久久久精品免费观看国产| 一进一出好大好爽视频| 午夜福利视频1000在线观看| 亚洲欧美日韩高清在线视频| 久久久久久九九精品二区国产 | 免费看美女性在线毛片视频| 两性午夜刺激爽爽歪歪视频在线观看 | 免费看十八禁软件| 男人舔女人的私密视频| 91麻豆精品激情在线观看国产| 51午夜福利影视在线观看| 久久久久性生活片| 窝窝影院91人妻| 三级国产精品欧美在线观看 | а√天堂www在线а√下载| 免费在线观看成人毛片| 亚洲精品av麻豆狂野| 国产午夜福利久久久久久| 国产欧美日韩一区二区三| 欧美黑人巨大hd| 婷婷丁香在线五月| 欧美不卡视频在线免费观看 | 丰满人妻熟妇乱又伦精品不卡| 观看免费一级毛片| 日韩欧美在线乱码| 国产视频一区二区在线看| 久久精品人妻少妇| 男女下面进入的视频免费午夜| 九色成人免费人妻av| 男女视频在线观看网站免费 | 两个人的视频大全免费| 中文字幕久久专区| 色播亚洲综合网| 啪啪无遮挡十八禁网站| 十八禁人妻一区二区| 亚洲成av人片免费观看| 在线看三级毛片| 91麻豆av在线| 人人妻人人看人人澡| 亚洲全国av大片| 亚洲国产欧美人成| 性欧美人与动物交配| 又黄又粗又硬又大视频| 亚洲美女视频黄频| 免费看十八禁软件| 欧美一级a爱片免费观看看 | 欧美日韩亚洲国产一区二区在线观看| 又黄又爽又免费观看的视频| 午夜福利欧美成人| 十八禁人妻一区二区| 欧美大码av| 午夜两性在线视频| 黄色视频不卡| 又爽又黄无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看 | 高清毛片免费观看视频网站| 中文字幕久久专区| 国产亚洲精品第一综合不卡| 精品国产乱码久久久久久男人| 亚洲免费av在线视频| 在线观看舔阴道视频| 亚洲精品在线观看二区| 国产成人精品无人区| 欧美另类亚洲清纯唯美| 国产亚洲av高清不卡| 免费电影在线观看免费观看| 欧美色视频一区免费| 国产激情欧美一区二区| 午夜影院日韩av| 一个人免费在线观看电影 | 欧美激情久久久久久爽电影| 在线观看一区二区三区| tocl精华| 黑人操中国人逼视频| 久久人人精品亚洲av| 在线观看美女被高潮喷水网站 | 伊人久久大香线蕉亚洲五| 亚洲中文av在线| 久久久精品国产亚洲av高清涩受| 老司机深夜福利视频在线观看| 97人妻精品一区二区三区麻豆| av视频在线观看入口| 国产激情久久老熟女| 在线观看66精品国产| 美女高潮喷水抽搐中文字幕| 久久这里只有精品19| 久久精品国产综合久久久| 亚洲美女黄片视频| 啪啪无遮挡十八禁网站| 国产又黄又爽又无遮挡在线| 亚洲 国产 在线| 淫秽高清视频在线观看| 亚洲avbb在线观看| 身体一侧抽搐| 欧美一区二区国产精品久久精品 | 我的老师免费观看完整版| 亚洲精品国产精品久久久不卡| 免费在线观看亚洲国产| 国产精品免费视频内射| 久久精品综合一区二区三区| 亚洲avbb在线观看| 亚洲一区二区三区色噜噜| 国产欧美日韩精品亚洲av| 可以在线观看的亚洲视频| 亚洲av成人一区二区三| 男人舔女人下体高潮全视频| 麻豆成人午夜福利视频| 在线十欧美十亚洲十日本专区| 亚洲片人在线观看| av福利片在线| 欧美日韩瑟瑟在线播放| 久久精品影院6| 99热6这里只有精品| 欧美日韩国产亚洲二区| 久久天堂一区二区三区四区| 精品一区二区三区四区五区乱码| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美三级三区| 日本一区二区免费在线视频| 成人高潮视频无遮挡免费网站| 免费av毛片视频| 麻豆国产av国片精品| 中文字幕av在线有码专区| 老熟妇仑乱视频hdxx| 香蕉av资源在线| 久久久国产精品麻豆| 一个人免费在线观看电影 | 国产成人aa在线观看| 成人18禁在线播放| 丰满人妻熟妇乱又伦精品不卡| 757午夜福利合集在线观看| 国产高清视频在线播放一区| 亚洲成人国产一区在线观看| 亚洲精品中文字幕一二三四区| 久久天躁狠狠躁夜夜2o2o| 在线永久观看黄色视频| 日本a在线网址| 免费在线观看成人毛片| 日本三级黄在线观看| 亚洲色图av天堂| 最新中文字幕久久久久| 精品久久久久久久末码| 国产又黄又爽又无遮挡在线| 身体一侧抽搐| 国产av不卡久久| 亚洲国产精品成人久久小说 | 五月伊人婷婷丁香| 99九九线精品视频在线观看视频| 国产精品久久久久久精品电影小说 | 久久99热这里只有精品18| av在线天堂中文字幕| 少妇猛男粗大的猛烈进出视频 | 九九爱精品视频在线观看| 日韩成人伦理影院| 欧美区成人在线视频| 日韩精品青青久久久久久| 国产一区亚洲一区在线观看| 99久久无色码亚洲精品果冻| 欧美极品一区二区三区四区| 国产精品乱码一区二三区的特点| 国产亚洲精品久久久久久毛片| 男女下面进入的视频免费午夜| 午夜亚洲福利在线播放| 夜夜夜夜夜久久久久| 熟妇人妻久久中文字幕3abv| 人人妻人人澡欧美一区二区| 嫩草影院精品99| 熟女人妻精品中文字幕| 国产激情偷乱视频一区二区| h日本视频在线播放| 身体一侧抽搐| 国产午夜精品久久久久久一区二区三区| 26uuu在线亚洲综合色| 国产不卡一卡二| 亚洲精品成人久久久久久| 久久国产乱子免费精品| 久久久久久久久大av| 久久久久久久久大av| av国产免费在线观看| 波多野结衣高清无吗| 日本黄色视频三级网站网址| 久久久久国产网址| 寂寞人妻少妇视频99o| 人人妻人人澡欧美一区二区| 亚洲无线在线观看| 少妇裸体淫交视频免费看高清| 日韩 亚洲 欧美在线| 中出人妻视频一区二区| 国产色爽女视频免费观看| 伊人久久精品亚洲午夜| 99国产极品粉嫩在线观看| 国产私拍福利视频在线观看| 久久久精品欧美日韩精品| 97热精品久久久久久| 国产精品蜜桃在线观看 | 免费人成在线观看视频色| 精品一区二区三区人妻视频| 99久久精品热视频| 国产精品日韩av在线免费观看| 国产精华一区二区三区| av黄色大香蕉| 亚洲成人精品中文字幕电影| 熟女人妻精品中文字幕| 欧美三级亚洲精品| 亚洲高清免费不卡视频| 久久久欧美国产精品| 99久久精品热视频| 晚上一个人看的免费电影| 99久久久亚洲精品蜜臀av| 成人午夜高清在线视频| a级一级毛片免费在线观看| 久久精品国产自在天天线| 国产人妻一区二区三区在| 岛国毛片在线播放| 国产一区二区激情短视频| 国产久久久一区二区三区| 国产精品久久久久久亚洲av鲁大| 一本久久精品| 99久久九九国产精品国产免费| 久久精品综合一区二区三区| 男女那种视频在线观看| 最新中文字幕久久久久| 男人狂女人下面高潮的视频| 午夜福利在线在线| 国产淫片久久久久久久久| www.av在线官网国产| 床上黄色一级片| 日本在线视频免费播放| 国产 一区精品| 精品欧美国产一区二区三| 色综合色国产| 日韩成人av中文字幕在线观看| 日韩大尺度精品在线看网址| 久久久久久久久大av| 男人狂女人下面高潮的视频| 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 久久鲁丝午夜福利片| 有码 亚洲区| 高清在线视频一区二区三区 | av国产免费在线观看| 亚洲成人久久爱视频| 国产老妇女一区| 嫩草影院新地址| 亚洲av中文字字幕乱码综合| 精品国产三级普通话版| 亚洲欧洲日产国产| 日产精品乱码卡一卡2卡三| 日韩三级伦理在线观看| 欧美成人a在线观看| 午夜精品国产一区二区电影 | 人体艺术视频欧美日本| 婷婷色综合大香蕉| 69av精品久久久久久| 嘟嘟电影网在线观看| 人人妻人人澡人人爽人人夜夜 | 蜜桃久久精品国产亚洲av| 九九在线视频观看精品| 变态另类丝袜制服| 国产麻豆成人av免费视频| 亚洲av中文字字幕乱码综合| 黄片无遮挡物在线观看| 国产真实乱freesex| 欧美日韩综合久久久久久| 免费观看人在逋| 一级毛片aaaaaa免费看小| 久久99热这里只有精品18| 免费看日本二区| 男人舔奶头视频| 男人和女人高潮做爰伦理| 网址你懂的国产日韩在线| 我要搜黄色片| 亚洲无线观看免费| 嫩草影院精品99| 99精品在免费线老司机午夜| 天堂√8在线中文| 中文在线观看免费www的网站| 日韩中字成人| 婷婷色av中文字幕| 精品人妻视频免费看| 一进一出抽搐动态| 成人毛片a级毛片在线播放| 高清毛片免费观看视频网站| 99视频精品全部免费 在线| 日日摸夜夜添夜夜爱| av在线亚洲专区| 成人特级av手机在线观看| 国产日韩欧美在线精品| 97超视频在线观看视频| 十八禁国产超污无遮挡网站| 亚州av有码| 国产乱人偷精品视频| 男人舔女人下体高潮全视频| 午夜福利成人在线免费观看| eeuss影院久久| 国产视频内射| 久久99精品国语久久久| 久久99热6这里只有精品| 大型黄色视频在线免费观看| 欧美xxxx性猛交bbbb| 12—13女人毛片做爰片一| 国产精华一区二区三区| 国产一级毛片七仙女欲春2| 欧美成人一区二区免费高清观看| 人人妻人人澡人人爽人人夜夜 | avwww免费| 嘟嘟电影网在线观看| av在线观看视频网站免费| 51国产日韩欧美| 两个人的视频大全免费| 成人性生交大片免费视频hd| 国产乱人视频| 免费在线观看成人毛片| 人人妻人人澡欧美一区二区| 美女高潮的动态| 久久99精品国语久久久| 欧美3d第一页| 国产真实伦视频高清在线观看| 在线免费观看不下载黄p国产| 日本免费一区二区三区高清不卡| 好男人在线观看高清免费视频| 中文亚洲av片在线观看爽| 好男人视频免费观看在线| 成年版毛片免费区| 国产精品久久视频播放| 免费av不卡在线播放| 亚洲aⅴ乱码一区二区在线播放| 国产成人freesex在线| 深爱激情五月婷婷| 亚洲,欧美,日韩| 青春草亚洲视频在线观看| 麻豆一二三区av精品| 九色成人免费人妻av| 亚洲欧美日韩高清在线视频| 精品久久久久久久久av| 亚洲人成网站在线观看播放| 淫秽高清视频在线观看| 尾随美女入室| 天美传媒精品一区二区| 九草在线视频观看| 一个人观看的视频www高清免费观看| 日韩,欧美,国产一区二区三区 | 成人亚洲精品av一区二区| 欧美日韩精品成人综合77777| 国产v大片淫在线免费观看| 成人三级黄色视频| 99热这里只有精品一区| 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 国产高清视频在线观看网站| 欧美潮喷喷水| 中文字幕熟女人妻在线| 熟妇人妻久久中文字幕3abv| 日本av手机在线免费观看| 麻豆成人av视频| 日本免费a在线| 伦精品一区二区三区| 免费观看人在逋| 国产成人freesex在线| 91在线精品国自产拍蜜月| 天天一区二区日本电影三级| 色播亚洲综合网| 久久久久久久久久久免费av| 中国美女看黄片| 国产亚洲精品久久久久久毛片| 午夜免费激情av| 国产午夜福利久久久久久| 日本一二三区视频观看| 成人毛片60女人毛片免费| 国产淫片久久久久久久久| ponron亚洲| 午夜激情欧美在线| 国产精品无大码| 极品教师在线视频| 国产伦精品一区二区三区视频9| 亚洲第一电影网av| 亚洲18禁久久av| 欧美潮喷喷水| 欧美性感艳星| 伦理电影大哥的女人| 一个人观看的视频www高清免费观看| 婷婷精品国产亚洲av| 欧美成人a在线观看| 国产老妇女一区| 国产精华一区二区三区| 久久热精品热| 麻豆精品久久久久久蜜桃| 国产午夜精品久久久久久一区二区三区| 久久精品国产99精品国产亚洲性色| 3wmmmm亚洲av在线观看| 欧美高清性xxxxhd video| 婷婷六月久久综合丁香| 观看免费一级毛片| 国产一区二区亚洲精品在线观看| 麻豆成人av视频| 亚洲av熟女| 99久久精品一区二区三区| 国产乱人视频| 夜夜看夜夜爽夜夜摸| 天堂√8在线中文| 亚洲人成网站在线播| 22中文网久久字幕| 99久久精品国产国产毛片| 国产精品乱码一区二三区的特点| 亚洲无线在线观看| 国产欧美日韩精品一区二区| 国产黄a三级三级三级人| 国产探花在线观看一区二区| 国产精品一及| 欧美极品一区二区三区四区| 黄色日韩在线| 国产高清有码在线观看视频| 国产精品不卡视频一区二区| 久久中文看片网| 性欧美人与动物交配| 日本-黄色视频高清免费观看| 国产高清有码在线观看视频| 人人妻人人看人人澡| 美女国产视频在线观看| 男人狂女人下面高潮的视频| 99久久久亚洲精品蜜臀av| 欧美xxxx黑人xx丫x性爽| 欧美激情国产日韩精品一区| 色哟哟·www| 国产亚洲av片在线观看秒播厂 | 99国产精品一区二区蜜桃av| 一区二区三区高清视频在线| 22中文网久久字幕| 久99久视频精品免费| 边亲边吃奶的免费视频| 少妇人妻精品综合一区二区 | 99热网站在线观看| av在线老鸭窝| 长腿黑丝高跟| 精品久久久久久久人妻蜜臀av| 九九热线精品视视频播放| 可以在线观看毛片的网站| 亚洲内射少妇av| 美女被艹到高潮喷水动态| 国产一区二区在线av高清观看| 一级毛片aaaaaa免费看小| 久久精品综合一区二区三区| 国产精品不卡视频一区二区| 91在线精品国自产拍蜜月| 成人高潮视频无遮挡免费网站| 国产高清有码在线观看视频| h日本视频在线播放| 国模一区二区三区四区视频| 国产一级毛片七仙女欲春2| 麻豆成人午夜福利视频| 国产精品久久久久久亚洲av鲁大| 亚洲欧美精品综合久久99| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人免费av一区二区三区| 最新中文字幕久久久久| 国产大屁股一区二区在线视频| 99热只有精品国产| 久久这里有精品视频免费| 一级二级三级毛片免费看| 日韩国内少妇激情av| 国产高清有码在线观看视频| 国产高清不卡午夜福利| 亚洲欧美中文字幕日韩二区| 国产亚洲5aaaaa淫片| 国产69精品久久久久777片| 亚洲国产精品sss在线观看| 欧美另类亚洲清纯唯美| av又黄又爽大尺度在线免费看 | 色综合色国产| 久久久久网色| 日本色播在线视频| 国产高清三级在线| 99九九线精品视频在线观看视频| 三级男女做爰猛烈吃奶摸视频| 国产人妻一区二区三区在| 少妇人妻一区二区三区视频| 中文字幕人妻熟人妻熟丝袜美| 欧美一区二区国产精品久久精品| 天天一区二区日本电影三级| 一本一本综合久久| 少妇人妻一区二区三区视频| 国产又黄又爽又无遮挡在线| 丰满人妻一区二区三区视频av| 色尼玛亚洲综合影院| 国产成人精品婷婷| 国产成人freesex在线| 亚洲七黄色美女视频| 亚洲欧美日韩东京热| 亚洲精品影视一区二区三区av| 成人毛片a级毛片在线播放| 91精品国产九色| 爱豆传媒免费全集在线观看| 91精品一卡2卡3卡4卡| 欧美成人a在线观看| 男的添女的下面高潮视频| 亚洲欧美精品综合久久99| av又黄又爽大尺度在线免费看 | 在线a可以看的网站| 国产人妻一区二区三区在| 婷婷色综合大香蕉| 联通29元200g的流量卡| 日日干狠狠操夜夜爽| 三级国产精品欧美在线观看| 亚洲欧美精品综合久久99| 波多野结衣高清作品| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲四区av| 少妇人妻一区二区三区视频| 亚洲在线观看片| av又黄又爽大尺度在线免费看 | 国内精品一区二区在线观看| 一级毛片电影观看 | 国产精品久久久久久久久免| 亚洲欧美日韩无卡精品| 极品教师在线视频| 日韩精品有码人妻一区| 国产av一区在线观看免费| 国产精品人妻久久久影院| 亚洲在线观看片| 丰满的人妻完整版| 国产精品永久免费网站| 国产精品一及| 中文字幕免费在线视频6| 五月伊人婷婷丁香| 欧洲精品卡2卡3卡4卡5卡区| 国产伦精品一区二区三区视频9| 国产91av在线免费观看| 午夜a级毛片| 乱码一卡2卡4卡精品| 我的女老师完整版在线观看| 成熟少妇高潮喷水视频| 亚州av有码| 亚洲精华国产精华液的使用体验 | 国产伦一二天堂av在线观看| 欧美在线一区亚洲| 黄色日韩在线| 国产淫片久久久久久久久| 2021天堂中文幕一二区在线观| 亚洲人成网站在线播| 国产精品一区二区三区四区久久| 人人妻人人看人人澡| 黄色视频,在线免费观看| 久久鲁丝午夜福利片| 久久午夜福利片| 成人亚洲欧美一区二区av| 亚洲最大成人手机在线| av在线观看视频网站免费| 亚洲欧美精品综合久久99| 久久久成人免费电影| 可以在线观看毛片的网站| 噜噜噜噜噜久久久久久91| 欧美激情国产日韩精品一区| 天天躁日日操中文字幕| 边亲边吃奶的免费视频| 国产一级毛片在线| 日韩欧美三级三区| 久久这里有精品视频免费| 久久久精品94久久精品| 亚洲精华国产精华液的使用体验 | 国产精品乱码一区二三区的特点| 18禁在线无遮挡免费观看视频| 在线观看免费视频日本深夜| 在现免费观看毛片| 亚洲av中文av极速乱| 国产单亲对白刺激| 草草在线视频免费看| 亚洲在线自拍视频| 久久久久久大精品| 国产精品乱码一区二三区的特点| 97热精品久久久久久| 国产女主播在线喷水免费视频网站 | 婷婷亚洲欧美| 男插女下体视频免费在线播放| 天天躁夜夜躁狠狠久久av| 干丝袜人妻中文字幕| 男女做爰动态图高潮gif福利片| 国产色爽女视频免费观看| 久久久久久大精品| 国产毛片a区久久久久| 一个人观看的视频www高清免费观看| 高清午夜精品一区二区三区 | 最好的美女福利视频网| 蜜桃久久精品国产亚洲av| 在线免费观看的www视频| 午夜视频国产福利| av卡一久久| 在线a可以看的网站| 在线免费十八禁| eeuss影院久久| 啦啦啦韩国在线观看视频| 亚洲七黄色美女视频| 在线观看免费视频日本深夜| 在线免费十八禁| 国产精品无大码| 午夜久久久久精精品| 亚洲最大成人av| 在线观看免费视频日本深夜|