龐米杰,陳鈺文,王婉慈,趙云霞,3,4*
石墨烯量子點(diǎn)輔助合成Cu-MOFs及CO2吸附行為
龐米杰1,陳鈺文1,王婉慈2,趙云霞1,3,4*
(1.南京信息工程大學(xué)環(huán)境科學(xué)與工程學(xué)院,江蘇 南京 210044;2.南京信息工程大學(xué)大氣科學(xué)學(xué)院,江蘇 南京 210044;3.江蘇省大氣環(huán)境與裝備技術(shù)協(xié)同創(chuàng)新中心,江蘇 南京 210044;4.江蘇省大氣環(huán)境監(jiān)測(cè)與污染控制高技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210044)
選用一種成本低、可大規(guī)模合成的Cu基MOFs(Cu-MOFs)材料作為CO2吸附劑,在原位合成過(guò)程中添加石墨烯量子點(diǎn)以調(diào)控其晶體結(jié)構(gòu).結(jié)果表明:適量石墨烯量子點(diǎn)的添加有利于提高Cu-MOFs的比表面積和孔體積,相比未改性MOFs材料,改性后的CO2吸附性能有所提高, 25℃,100kPa時(shí)提高了4.5%.隨著溫度升高,吸附容量提升越明顯.改性后的MOFs對(duì)于N2的吸附量則比未改性時(shí)更低,因此計(jì)算得到的CO2/N2吸附選擇性也更高,增加了近一倍.綜合等量吸附熱的考察結(jié)果發(fā)現(xiàn),尤其添加適量含N石墨烯量子點(diǎn)的Cu-MOFs吸附劑不僅具備了較高的吸附容量、吸附選擇性,還展現(xiàn)了較理想的吸附熱,因此兼具了較優(yōu)CO2吸附性能和較低脫附能耗的特點(diǎn),為MOFs吸附劑的改性提供了一點(diǎn)參考價(jià)值.
金屬有機(jī)框架MOFs;石墨烯量子點(diǎn);CO2吸附;吸附選擇性;吸附熱
我國(guó)已明確提出2030年前實(shí)現(xiàn)碳達(dá)峰,2060年前實(shí)現(xiàn)碳中和.而目前我國(guó)的碳排放總量已遠(yuǎn)超美國(guó)、歐盟、日本等國(guó),且從碳達(dá)峰到碳中和僅有30a時(shí)間.因此,對(duì)于我國(guó)煤炭為主的能源結(jié)構(gòu),大力實(shí)現(xiàn)碳減排已然成為各領(lǐng)域?qū)W者們重點(diǎn)努力的方向[1-2].燃燒后CO2捕集是實(shí)現(xiàn)碳減排的最有效途徑之一[3],如能源相關(guān)的電力企業(yè)就是減排的大戶(hù).吸附法由于操作范圍廣、設(shè)備簡(jiǎn)單易控、能耗低以及便于實(shí)施等優(yōu)點(diǎn),已成為一種極有競(jìng)爭(zhēng)力的CO2捕集技術(shù).因此,篩選或開(kāi)發(fā)一種適用于電廠(chǎng)的CO2捕獲劑具有十分重要的意義.
金屬有機(jī)框架(MOFs)材料因比表面積大、孔隙豐富,被廣泛研究應(yīng)用于氣體儲(chǔ)存分離領(lǐng)域[4].由于構(gòu)建MOFs單元的金屬離子和有機(jī)配體種類(lèi)繁多,通過(guò)改變或調(diào)節(jié)金屬位點(diǎn)和配體的化學(xué)環(huán)境,可以?xún)?yōu)化MOFs材料的氣體吸附性能.在這種驅(qū)動(dòng)作用下,國(guó)內(nèi)外學(xué)者開(kāi)發(fā)了諸多MOFs的改性方法,如不飽和配位金屬中心[5-6]、金屬離子交換[7]或摻雜[8]、胺基功能化修飾[9]等,此外,MOFs與石墨烯類(lèi)構(gòu)建復(fù)合材料也是一種很熱門(mén)的手段.相關(guān)研究[10]合成的MOFs與氧化石墨烯(GO)復(fù)合物相比母體MOFs具有更好的CO2捕獲性能,且GO最佳摻雜量為9wt.%.石墨烯量子點(diǎn)(GQDs)是一種尺寸獨(dú)特的零維GO,片層少且表面尺寸小于100nm,它兼具了GO與量子點(diǎn)的獨(dú)特優(yōu)勢(shì).可從更精細(xì)的納微結(jié)構(gòu)角度調(diào)控MOFs孔結(jié)構(gòu),且避免了石墨烯的堆垛效應(yīng)[11].目前關(guān)于MOFs與GQDs復(fù)合物的研究還非常少,已有研究[12]制備了具有熒光性質(zhì)的N-GQDs和Eu3+共包覆的Mg-MOF用于探測(cè)環(huán)境空氣中的苯系物,顯示出了優(yōu)異的檢測(cè)靈敏度.為更接近工業(yè)應(yīng)用,本文選擇了一種成本低、易大規(guī)模合成、穩(wěn)定性較好的MOFs——Cu-BTC(Cu2+與均苯三甲酸配體絡(luò)合而成)[13-15]作為CO2的捕獲劑,在其原位合成過(guò)程中添加GQDs調(diào)控MOFs內(nèi)在結(jié)構(gòu).
本文采用GQDs輔助合成Cu-BTC,研究其對(duì)CO2、N2的吸附性能,通過(guò)測(cè)定單組份氣體的吸附等溫線(xiàn),并根據(jù)理想吸附溶液理論(IAST)估算改性MOFs對(duì)二元混合氣的吸附選擇性,以及基于不同溫度下的CO2吸附等溫線(xiàn)利用Clausius-Clapeyron方程計(jì)算CO2吸附熱.從低能耗的物理吸附角度,為燃煤電廠(chǎng)脫硫凈煙氣環(huán)境下的CO2捕集分離工業(yè)應(yīng)用提供參考.
GQDs的合成[16-17]:取2g一水合檸檬酸,置于小玻璃瓶中.在電熱板上加熱至180℃,用時(shí)約25min,顏色由無(wú)色變?yōu)榈S色.待變?yōu)殚冱S色時(shí)取下,溶于80mL的氫氧化鈉溶液(10mg/mL),并伴隨劇烈攪拌,待溶液pH值穩(wěn)定為7.0,封存待用.
N摻雜石墨烯量子點(diǎn)(NGQDs)的合成[18]:將0.21g一水合檸檬酸與0.18g尿素溶于5mL超純水,待形成澄清溶液,轉(zhuǎn)移至100mL高壓釜.在180℃下反應(yīng)4h,得到黑色懸浮液.加入無(wú)水乙醇,在8000r/ min下離心15min,得到黑色固體.采用無(wú)水乙醇多次洗滌,以8000r/min離心15min,最終得到分散性較好的黑色固體.
Cu-BTC的合成:三水合硝酸銅(2.0772g)與1,3,5-苯三甲酸(1g)分別加入 17mLN,N’-二甲基甲酰胺(DMF)、17mL無(wú)水乙醇、17mL超純水的混合溶液中,攪拌15min.將混合溶液轉(zhuǎn)移至三口燒瓶后密封,置于油浴鍋中,在85℃下振蕩反應(yīng)12h.產(chǎn)物用DMF、二氯甲烷多次洗滌,過(guò)濾后在120℃下真空干燥12h,得到藍(lán)色固體.
GQDs輔助Cu-BTC的合成:步驟與合成Cu-BTC相似,在初始混合溶液中加入一定量的GQDs(10mL)或NGQDs溶液(20mL、100mL),所得產(chǎn)物分別命名為Cu-BTC/GQDs-10、Cu-BTC/ NGQDs-20和Cu-BTC/NGQDs-100.
吸附劑的X射線(xiàn)衍射(XRD)圖譜由北京普析通用儀器公司XD-3衍射儀測(cè)定,測(cè)試條件為36kV電壓和30mA電流,輻射源為Cu Kα (=1.5418?).掃描范圍為5~80o,速度8o/min,步長(zhǎng)0.04o.原子力顯微鏡(AFM)圖由Bruker multimode 8儀器測(cè)得.掃描電鏡(SEM)型號(hào)為ZEISS MERLIN Compact,測(cè)試前樣品先進(jìn)行噴金處理.吸附劑的比表面積和孔體積依據(jù)-196℃下N2吸附-脫附等溫線(xiàn)計(jì)算得到.采用Micromeritics ASAP 2020物理吸附儀測(cè)定,測(cè)試前樣品先經(jīng)120℃真空處理8h.
實(shí)驗(yàn)采用麥克TriStar II 3flex吸附儀,基于靜態(tài)容量法分別測(cè)定CO2、N2在原始Cu-BTC以及GQDs改性的Cu-BTC上的吸附等溫線(xiàn),測(cè)試的壓力范圍為0~100kPa, 溫度分別為0,25,45℃.樣品測(cè)試之前,經(jīng)脫氣站120℃下預(yù)處理8h.以壓力為橫坐標(biāo),測(cè)試直接獲得的吸附量數(shù)據(jù)為縱坐標(biāo)繪制吸附等溫線(xiàn),利用理想氣體狀態(tài)方程將吸附量單位由cm3/g換算成mmol/g.
根據(jù)所制備的GQDs和NGQDs的AFM圖像和厚度剖面圖(圖1)可觀(guān)察其表面尺寸和厚度范圍.GQDs和NGQDs的平均表面直徑在20nm左右,NGQDs的尺寸更均一;GQDs厚度小于8nm,而NGQDs的厚度更小(<5nm),均證實(shí)了10層以下的石墨烯結(jié)構(gòu).
圖1 GQDs和NGQDs的AFM圖像及厚度剖面
如圖2所示,與Cu-BTC標(biāo)準(zhǔn)譜圖[19]對(duì)比,證實(shí)了本文中Cu-BTC的成功合成,并且改性后的Cu- BTC與原始Cu-BTC的出峰位置以及相對(duì)峰強(qiáng)度均保持一致.說(shuō)明原位合成過(guò)程中(N)GQDs的加入未改變Cu-BTC的晶型結(jié)構(gòu)和晶面取向,仍保持著較完美的晶型.對(duì)比Cu-BTC和Cu-BTC/NGQDs-100的SEM圖(圖3)發(fā)現(xiàn),后者除保留有Cu-BTC原晶體形貌,其表面還附著有大量“寶劍狀”晶體,體現(xiàn)著與原始Cu-BTC有著較大差異的外觀(guān)形貌.
對(duì)于物理吸附來(lái)說(shuō),吸附劑的比表面積和孔體積是影響吸附性能的重要因素.圖4是原始Cu-BTC以及GQDs輔助合成的Cu-BTC在-196℃下的N2吸-脫附等溫線(xiàn),可以看出4種樣品均呈現(xiàn)I型吸附等溫線(xiàn),表明了它們的微孔特性.基于Brunauer- Emmet-Teller(BET)方程,可以算出它們的比表面積,如表1所示.相比未改性Cu-BTC,改性后的Cu-BTC比表面積均有所增加,這是由于(N)GQDs的引入能增加"寶劍狀"小粒徑晶體的產(chǎn)生,粒徑越小,比表面積越大,其中Cu-BTC/GQDs-10的比表面積最大.對(duì)比它們的孔體積,同樣發(fā)現(xiàn)改性后的吸附劑總孔體積和微孔體積均有所增加,其中Cu-BTC/NGQDs- 20的孔體積最大.而NGQDs的過(guò)量引入則引起了微孔率的下降,且GQDs加入量越大,微孔比率越低.
圖2 Cu-BTC和Cu-BTC/GQDs的XRD譜圖
圖3 Cu-BTC和Cu-BTC/NGQDs-100的SEM圖
圖4 Cu-BTC以及Cu-BTC/GQDs復(fù)合物在-196℃下的N2吸-脫附等溫線(xiàn)
表1 Cu-BTC以及Cu-BTC/GQDs復(fù)合物的比表面積和孔結(jié)構(gòu)參數(shù)
圖5(a)為所合成的4種吸附劑在室溫25℃時(shí)的CO2吸附等溫線(xiàn).吸附量與吸附劑的比表面積正相關(guān),其中Cu-BTC/GQDs-10對(duì)CO2的吸附量最大,在100kPa時(shí)達(dá)到1.86mmol/g,增幅達(dá)4.5%.基于圖5(a)的數(shù)據(jù)結(jié)果,采用Wilcoxon 加符秩檢驗(yàn)進(jìn)行顯著性分析,結(jié)果表明Cu-BTC/GQDs-10的CO2吸附量相較于Cu-BTC有顯著差異,而Cu-BTC/NQGDs-100相較于Cu-BTC沒(méi)有顯著差異.可見(jiàn),適量(N)GQDs的輔助合成有利于提高Cu-BTC的CO2吸附量.針對(duì)上述結(jié)果,本文選擇了其中3種吸附劑Cu-BTC、Cu-BTC/GQDs-10和Cu-BTC/NGQDs-20進(jìn)行了進(jìn)一步的研究.如圖5(b)可以發(fā)現(xiàn),適量(N)GQDs輔助合成的吸附劑降低了N2的吸附量,尤以Cu-BTC/ NGQDs-20更為明顯.由于N2分子動(dòng)力學(xué)直徑(0.364nm)要稍大于CO2分子動(dòng)力學(xué)直徑(0.33nm),可以認(rèn)為適量(N)GQDs輔助合成的吸附劑其孔結(jié)構(gòu)在精確篩分CO2/N2方面能起到助力作用.
燃煤電廠(chǎng)脫硫凈煙氣中CO2的體積比在15%左右,其余主要為N2和極少量雜質(zhì)氣體[20].為了獲得CO2/N2混合氣體的吸附選擇性,本文采用DSLF(雙位點(diǎn)Langmuir- Freundlich吸附模型)[21]方程(1)結(jié)合matlab軟件對(duì)25℃下的CO2、N2吸附等溫線(xiàn)進(jìn)行了擬合.
式中:為純組分平衡吸附量,mmol/g;為對(duì)應(yīng)的平衡氣壓,mbar;b為位點(diǎn)的親和系數(shù)1/mbar;q為位點(diǎn)的最大吸附量,mmol/g-1;n為位點(diǎn)的偏離系數(shù).擬合結(jié)果如表2所示.采用了預(yù)測(cè)混合氣體吸附選擇性普遍采用的IAST (理想吸附溶液理論)[21]模型,通過(guò)假設(shè)混合物中的氣體不相互反應(yīng),用基于DSLF方程擬合得到的吸附量計(jì)算了25℃下CO2/N2吸附選擇性, CO2和N2的體積比分別為0.15和0.85,計(jì)算結(jié)果如圖6所示.3種吸附劑中Cu-BTC的選擇性最低,而Cu-BTC/GQDs-10和Cu-BTC/NGQDs-20的選擇性比較接近,低壓(<45kPa)時(shí)后者的CO2/N2選擇性更高,高壓(>45kPa)時(shí)前者更高.這可能與NGQDs輔助合成的吸附劑攜帶有極少量含N基團(tuán)或是引起更多的不飽和配位金屬位點(diǎn)[11]有關(guān),成為低壓時(shí)CO2的優(yōu)先作用位點(diǎn),而高壓時(shí)以孔隙占據(jù)為主,N2對(duì)CO2競(jìng)爭(zhēng)性更大.因此可以看到,在小于15kPa時(shí),3種吸附劑對(duì)CO2/N2選擇性均隨壓力增大而增大,而在大于15kPa時(shí)均隨壓力增大而減小.通過(guò)與文獻(xiàn)[22]報(bào)道的CO2/N2選擇性對(duì)比,對(duì)于物理吸附來(lái)說(shuō),Cu- BTC/GQDs-10和Cu-BTC/NGQDs-20具有可與文獻(xiàn)相較的選擇性結(jié)果.
表2 CO2、N2吸附等溫線(xiàn)的DSLF模型擬合參數(shù)
圖6 IAST模型預(yù)測(cè)的25℃下CO2/N2吸附選擇性
等量吸附熱是評(píng)估吸附劑和吸附質(zhì)之間相互作用強(qiáng)度的重要參數(shù),也間接反映了脫附的能耗和成本.等量吸附熱通?;诓煌瑴囟认挛降葴鼐€(xiàn),采用Clausius-Clapeyron[23]方程(2)計(jì)算獲得,將原方程式積分得到式(3).
式中:Q為吸附等容熱,kJ/mol,為溫度,K;為CO2吸附量;為氣體常數(shù),0.00831kJ/(mol·K),為絕對(duì)平衡壓力,kPa.
圖7給出了0和45℃下的CO2吸附等溫線(xiàn),低溫時(shí)Cu-BTC、Cu-BTC/GQDs-10、Cu-BTC/ NGQDs-20這3種吸附劑對(duì)CO2的吸附量非常接近,高溫時(shí)改性后的吸附劑對(duì)CO2的吸附優(yōu)勢(shì)逐漸顯現(xiàn).可能的原因在于GQDs輔助MOFs生長(zhǎng)的過(guò)程中出現(xiàn)更多的不飽和配位金屬位點(diǎn),或是GQDs表面較高的原子密度使得吸附劑表面色散力增強(qiáng)[24].基于0℃、25℃和45℃下的CO2吸附等溫線(xiàn),結(jié)合Clausius-Clapeyron方程計(jì)算出了3種吸附劑的等量吸附熱,如圖8所示.3種吸附劑的吸附熱均呈現(xiàn)隨著吸附量增大而降低的趨勢(shì),說(shuō)明吸附劑表面不均勻[25],體現(xiàn)為高能吸附位點(diǎn)優(yōu)先與CO2作用.
3種樣品中Cu-BTC/NGQDs-20的吸附熱值最高,越高表示吸附劑對(duì)CO2的親和力越強(qiáng),更有利于混合氣體中CO2的選擇性脫除.此外,圖8中基本上所有吸附劑的值都在25~40kJ/mol之間,這仍然屬于物理吸附的范圍[26],說(shuō)明吸附劑容易再生,脫附的能耗和成本更低.據(jù)多篇文獻(xiàn)[22,26]提到,廢氣中脫除CO2的最佳吸附熱值為35~50kJ/mol,因此從實(shí)際應(yīng)用的角度來(lái)說(shuō),Cu-BTC/NGQDs-20能同時(shí)兼具較優(yōu)的CO2吸附性能和較低的脫附能耗.
圖8 CO2等量吸附熱
3.1 利用(N)GQDs原位輔助合成Cu-MOFs作為CO2吸附劑,適量(N)GQDs的加入有利于提高Cu-MOFs的比表面積和孔體積.與母體Cu-BTC相比,Cu-BTC/GQDs-10的比表面積和孔體積分別增加了14%和5.6%,Cu-BTC/NGQDs-20的比表面積和孔體積分別增加了9.6%和10.4%.
3.2 在25℃,100kPa時(shí)Cu-BTC/GQDs-10的CO2吸附容量達(dá)到1.86mmol/g,比Cu-BTC提高了4.5%.隨著吸附溫度升高,改性吸附劑對(duì)CO2的吸附優(yōu)勢(shì)越明顯. 同時(shí),改性后的吸附劑對(duì)N2的吸附量更低,相應(yīng)地進(jìn)一步提高了CO2/N2吸附選擇性,與母體Cu-BTC相比,增加了近一倍.
3.3 所合成的吸附劑對(duì)CO2的吸附熱值均在物理吸附范圍,體現(xiàn)了它們較低的脫附能耗,容易再生.其中Cu-BTC/NGQDs-20的吸附熱值最高,表明對(duì)CO2的親和力最強(qiáng),更有利于混合氣體中CO2選擇性脫除.綜合等量吸附熱的計(jì)算結(jié)果,優(yōu)選Cu-BTC/ NGQDs-20作為電廠(chǎng)凈煙氣CO2捕集劑.
[1] Zhang G J, ZhaoP Y, Hao L X, et al. Amine-modi?ed SBA-15(P): A promising adsorbent for CO2capture [J]. Journal of CO2Utilization, 2018,24:22-33.
[2] Zhang Z J, Huang S S, Xian S K, et al. Adsorption equilibrium and kinetics of CO2on chromium terephthalate MIL-101 [J]. Energy Fuels, 2011,25:835-842.
[3] 駱仲泱,方夢(mèng)祥,李明遠(yuǎn),等.二氧化碳捕集封存和利用技術(shù)[M]. 北京:中國(guó)電力出版社, 2012:15-16.
Luo Z Y, Fang M X, Li M Y, et al. Carbon dioxide capture, storage and utilization technology [M]. Beijing: CEPP, 2012:15-16.
[4] Seoane B, Castellanos S, Dikhtia Renko A, et al. Multiscale crystal engineering of metal organic frameworks [J]. Coordination Chemistry Reviews, 2016,307(2):147-187.
[5] Yazaydin A O, Benin A I, Faheem S A, et al. Enhanced CO2adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules [J]. Chemistry of Materials, 2009,21: 1425-1430.
[6] Landaverde-Alvarado C, Morris A J, Martin S M. Gas sorption and kinetics of CO2sorption and transport in a polymorphic microporous MOF with open Zn (II) coordination sites [J]. Journal of CO2Utilization, 2017,19:40-48.
[7] 張秀芳,安曉輝,劉大歡,等.離子交換對(duì)usf-ZMOF二氧化碳吸附能力影響的研究 [J]. 化學(xué)學(xué)報(bào), 2011,69(1):84-88.
Zhang X F, An X H, Liu D H, et al. Study of the influence of ion-exchange on carbon dioxide adsorption capacity in usf-ZMOF [J]. Journal of Chemistry, 2011,69(1):84-88.
[8] Zhou Z, Mei L, Ma C, et al. A novel bimetallic MIL-101 (Cr, Mg) with high CO2adsorption capacity and CO2/N2selectivity [J]. Chemical Engineering Science, 2016,147:109-117.
[9] Su X, Bromberg L, Hatton T A, et al. Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: Structural characterization and enhanced CO2adsorption [J]. ACS Applied Materials & Interfaces, 2017,9(12):11299-11306.
[10] Liu S, Sun L, Xu F, et al. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity [J]. Energy & Environmental Science, 2013,6:818-823.
[11] Xu G Y, Yuan J R, Geng X M, et al. Caterpillar-like graphene confining sulfur by restacking effect for high performance lithium sulfur batteries [J]. Chemical Engineering Journal, 2017,322:454-462.
[12] Weng H, Yan B. N-GQDs and Eu3+co-encapsulated anionic MOFs: Two-dimensional luminescent platform for decoding benzene homologues [J]. Dalton Transactions, 2016,45:8795-8801.
[13] Li F, Duan C, Zhang H, et al. Hierarchically porous metal-organic frameworks: green synthesis and high space-time yield [J]. Industrial & Engineering Chemistry Research, 2018,57(28):9136-9143.
[14] Mckinstry C, Cussen E J, Fletcher A J, et al. Scalable continuous production of high quality HKUST-1via conventional and microwave heating [J]. Chemical Engineering Journal, 2017,326:570-577.
[15] 石 勇,牛丹陽(yáng),武卓敏,等.Ag/Cu3(BTC)2復(fù)合催化劑的制備及其N(xiāo)H3-SCR催化性能 [J]. 中國(guó)環(huán)境科學(xué), 2018,38(7):2445-2450.
Shi Y, Niu D Y, Wu Z M, et al. Synthesis of Ag/Cu3(BTC)2composite catalysts and their catalytic performance for NH3-SCR [J]. China Environmental Science, 2018,38(7):2445-2450.
[16] Dong Y, Shao J, Chen C, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J]. Carbon, 2012,50:4738-4743.
[17] 馬慶運(yùn),張紀(jì)梅,張 坤,等.熱解檸檬酸制備石墨烯量子點(diǎn)及其光學(xué)性質(zhì)研究 [J]. 化工新型材料, 2017,45(2):70-72.
Ma Q Y, Zhang J M, Zhang K, et al. Citrate pyrolysis and synthesis of graphene quantum dots and study on optical property [J]. New chemical materials, 2017,45(2):70-72.
[18] Qu D, Zheng M, Zhang L, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots [J]. Scientific Reports, 2014,4:5294.
[19] Chui S Y, Lo M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999,283:1148-1150.
[20] Sumida K, Rogow D L, Long J R, et al. Carbon dioxide capture in metal organic frameworks [J]. Chemical Reviews, 2012,112:724-781.
[21] Huang W, Zhou X, Xia Q, et al. Preparation and adsorption performance of GrO@Cu-BTC for separation of CO2/CH4[J]. Industrial & Engineering Chemistry Research, 2014,53(27):11176- 11184.
[22] Yoo D K, Yoon T-U, Bae Y-S, et al. Metal-organic framework MIL-101loaded with polymethacrylamide with or without further reduction: Effective and selective CO2adsorption with amino or amide functionality [J]. Chemical Engineering Journal, 2020,380:122496.
[23] Xian S, Li X, Xu F, et al. Adsorption isotherms, kinetics, and desorption of 1,2-dichloroethane on chromium-based metal organic framework MIL-101 [J]. Separation Science and Technology, 2013, 48(10):1479-1489.
[24] Chen Y, Lv D, Wu J, et al. A new MOF-505@GO composite with high selectivity for CO2/CH4and CO2/N2separation [J]. Chemical Engineering Journal, 2017,308:1065-1072.
[25] Rao L, Liu S, Wang L, et al. N-doped porous carbons from low- temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2capture performance [J]. Chemical Engineering Journal, 2019,359:428-435.
[26] Park J M, Yoo D K, Jhung S H. Selective CO2adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: Contribution of functional groups to adsorption [J]. Chemical Engineering Journal, 2020,402:126254.
Synthesis and CO2adsorptive storage of Cu-MOFs by graphene quantum dots-assistant route.
PANG Mi-jie1, CHEN Yu-wen1, WANG Wan-ci2, ZHAO Yun-xia1,3,4*
(1.School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;2.School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;3.Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing 210044, China;4.Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China)., 2021,41(10):4565~4571
In this paper, a kind of Cu-based MOFs which is low-cost and easy to be synthesized in large-scale was selected as the CO2adsorbent. Graphene quantum dots (GQDs) were in-situ incorporated in the synthesis process of MOFs to control their crystal structure. The research results indicated that adding of a proper amount of GQDs was beneficial to increase the specific surface area and pore volume of Cu-MOFs. Compared with the pristine MOFs, CO2adsorption capacities of the modified MOFs were improved. At 25℃ and 100kPa, the highest increased 4.5%. As temperature increased, the improvement of CO2adsorption capacity was more obvious. The adsorption capacities of the modified MOFs for N2were lower than that of the pristine MOFs, thus their calculated adsorption selectivity values of CO2/N2were higher and nearly doubled. Combined with the results of isosteric heats of CO2adsorption, especially the Cu-MOFs adsorbent added with a proper amount of N-doped graphene quantum dots, which not only had higher CO2uptake and selectivity, but exhibited more ideal adsorption heat within the physical adsorption category. Therefore, it has the characteristics of superior CO2adsorption performance and low energy consumption for desorption, which provides a little reference value for the modification of MOFs adsorbent.
metal-organic frameworks (MOFs);graphene quantum dots (GQDs);CO2adsorption; adsorption selectivity; adsorption heat
X511
A
1000-6923(2021)10-4565-07
龐米杰(1999-),男,浙江臺(tái)州人,南京信息工程大學(xué)本科生,主要從事二氧化碳吸附方面的研究.
2021-02-05
國(guó)家自然科學(xué)基金資助項(xiàng)目(51802160);南京信息工程大學(xué)大學(xué)生實(shí)踐創(chuàng)新訓(xùn)練計(jì)劃項(xiàng)目(202010300137)
* 責(zé)任作者, 副教授, nlgzyx@nuist.edu.cn