• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic Effect Versus Thermal Effect on Quark Matter with a Running Coupling at Finite Densities?

    2018-01-24 06:23:06LiYang楊麗andXinJianWen溫新建
    Communications in Theoretical Physics 2017年5期
    關(guān)鍵詞:辭舊歲銀蛇楊麗

    Li Yang(楊麗)and Xin-Jian Wen(溫新建)

    Institute of Theoretical Physics,Shanxi University,Taiyuan 030006,China

    1 Introduction

    The properties of the quark matter are of most importance in understanding many physical aspects of nature,such as the quark gluon plasma in the big bang of the early universe,the possible structure in the core of compact objects,and the hadronic quark phase transition in experiments,where the high temperature and high densities characterize the extreme conditions.Recently,the study of the quark matter phase diagram is extended to a strong magnetic field,[1?3]and further extended to a parallel electric and magnetic field background.[4]There is a possibility that the early universe contained a strong magnetic field.Present investigations in experiments or theory propose that a strong magnetic field could exist in the core of neutron stars and in the noncentral heavy ion collision experiments in the Relativistic Heavy Ion Collider or the Large Hadron Collider(LHC).[5]The magnitude of the magnetic field can reach the order of 1019G or higher in these conditions,which is much stronger than the value 1016G in some magnetars.[6]Theoretically,the physical upper limit of the strong magnetic field can be understood as large as 1018G by comparing the magnetic and gravitational energies.[7]The magnetic field in the interior of stars could go up to the maximum strengths of(1018?1020)G.[5,8]In the experiments at the LHC/CERN energy,it is possible to produce a magnetic field of 5×1019G,[5,9]where all the flavors could be lying in the lowest Landau level(LLL).These magnetic fields are short-lived at very high energies,but play an important role in understanding the equation of state of compact stars,the chiral magnetic effect,and the possible signatures of strong CP violation in experiments.[10?13]

    In addition to the influence on the stability of the quark matter,the presence of the external magnetic field will produce the temperature-magnetic phase diagram for QCD matter.[14?15]The isospin symmetry breaking is determined by both the temperature and the non-zero magnetic field.[16]The chiral symmetry phase transition will be intensively affected by the magnetic catalysis effect at finite temperature.The spins of the quarks are aligned along the direction of the induced magnetic field according to their helicities.As a result,the spin polarization effect is enhanced and the quark-antiquark pair couples strongly as the magnetic field increases.

    In previous works,we have studied the properties of two- flavor quark matter at zero temperature within the NJL model with a magnetic field dependent running coupling.It was shown that the dynamical quark masses as functions of the magnetic field strength are not monotonous in the fully chirally broken phase and the magnetized quark matter with the running coupling is more stable than that of the conventional constant coupling case.[27]In this paper,our aim is to investigate the influence of the magnetic effect and thermal effect on twoflavor quark matter under the strong magnetic field at if nite densities.

    This work is organized as follows.In Sec.2,a brief review of the NJL model description of quark matter in a strong magnetic field is provided.The magnetic- fielddependent running scalar coupling in the SU(2)version is introduced as well as the model parameters in the computation.In Sec.3,the numerical results and discussion are given with a detailed analysis of the competition of the magnetic effect and the thermal effect.The last section is a short summary.

    2 Thermodynamics of Magnetized Quark Matter in SU(2)NJL Model

    The Lagrangian density of the two- flavor NJL model in a strong magnetic field is given as

    whereψrepresents a flavor isodoublet(uanddquarks),the covariant derivativeDμ=?μ?iqiAμrepresents the coupling of the quarks to the electromagnetic field,while→τare isospin Pauli matrices. A sum over flavor and color degrees of freedom is implicit.In the mean- field approximation,[28]the dynamical quark mass is related to the condensation terms as

    where the quark condensates includeuanddquark contributions as The constituent mass depends on both condensates.Therefore,the same massMu=Md=Mis available foruanddquarks.Thecontribution from the quark flavoriis

    銀蛇歡舞辭舊歲,金馬奔騰迎新春,在這辭舊迎新的日子里,保定市力達(dá)塑業(yè)有限公司通過《中國水利》雜志向各界朋友致以節(jié)日的問候,祝大家在新的一年里身體健康、萬事如意、闔家幸福!

    whereaki=2?δk0andkiare respectively the degeneracy label and the Landau quantum number.The dimensionless quantityxiis defined asxi=M2/(2|qi|B).The fermion distribution function is

    The quark condensation is greatly strengthened by the factor|qiB|together with the dimension reductionD? 2.[31?32]

    The total thermodynamic potential density in the mean field approximation reads

    where the first term is the interaction term.In the second term,the quantity is defined asThe vacuum contribution to the thermodynamic potential is

    where the quantity?Λis defined asThe ultraviolet divergence in the vacuum partof the thermodynamic potential is removed by the momentum cutoff.The magnetic field and medium contributions are respectively

    According to the formulaSi= ?(??i/?T),we can obtain the entropy density from the flavoricontribution[30]

    Under strong magnetic fields,the system total pressure should be a sum of the matter pressure and the field pressure contribution.[29,33]But due to the requirement that the pressure should vanish in vacuum,the magnetic field termB2/2 is automatically absent in the normalized thermodynamic quantities.

    For asymmetric quark matter we should consider theβequilibrium by including the electron contribution under strong magnetic fields,where the charge neutrality condition 2nu?nd?3ne=0 is attained. The electron chemical potential,which is not independent and related to the quark chemical potential meet the conditions:μe=μd?μu.The thermodynamical quantities can√ be obtained by settingNc=1,M=meandThe total pressure withβequilibrium should be a summation going over theu,dquarks and electrons as

    According to the fundamental thermodynamic relation,the free energy density and the energy density at finite temperature are

    In principle,the interaction coupling constant between quarks should be solved by the renormalization group equation,or it can be phenomenologically expressed in an effective potential dependent on environmental variables.[34?36]In the infrared region,the nonperturbative effect becomes important and the dynamical gluon mass represents the confinement feature of QCD.[37]In the presence of a strong magnetic field,it is well known that the interaction constant shows an obvious decreasing behavior in addition to the enlargement of the gluon mass.[38]For suffciently strong magnetic fieldseB?Λ2QCD,it is reasonable to express the coupling constantαsrelated to the magnetic field.[26,31]Motivated by the work of Miransky and Shovkovy,[31]the similar ansatz of the magnetic- field-dependent coupling constant is introduced in the SU(2)NJL models.[25]

    with the parameters ΛQCD=200 MeV,α=2,β=0.000327.

    3 Numerical Results and Discussion

    In this work we consider the two- flavor quarks inβequilibrium state.Therefore the different chemical potentials ofuanddquarks should be solved,even though their dynamical masses are common from Eq.(2).In Fig.1,the dynamical masses ofuanddquarks are shown versus their chemical potentials at a fixed magnetic fieldB=2×1019G.The three different temperaturesT=(50,100,150)MeV are marked respectively by solid,dashed,and dotted lines from outside to inside.It can be clearly seen from the figure that the lower the temperature,the larger the critical chemical potential at which the firstorder phase transition happens.As the chemical potential increases,the dynamical masses decrease gradually until their masses approach to the chiral limit,which indicates a fully chiral symmetry restored phase.

    Fig.1 Dynamical masses of u and d quarks versus the chemical potential at different temperatures and a fixed magnetic field.

    Fig.2 (Color online)Dynamical quark mass versus the temperature for the fixed coupling G and the running coupling G′(eB)at a fixed density and three different magnetic fields.

    In Fig.2,we show that the dynamical quark masses vary with the temperature at a fixed densitynB=2ρ0.The three different magnetic fieldsB=5 × 1018G,B=2×1019G,B=5×1019G are marked respectively by black,blue,and red lines.For comparisons,the two kinds of the interactionsGandG′(eB)are taken in computations.It can be seen that the magnetic- fielddependent running couplingG′(eB)has a light influence on the values of the dynamical masses.The minor difference between the two kinds of couplings is expected to be enlarged under higher magnetic field.

    In order to study the spin polarization,the degeneracy factor is neglected.The Landau level quantum number is 2ki=2n+1?s.Thes= ±1 stand for the spin up and down respectively.We define the polarization parameter as[30]

    Charged particles in a magnetic field have a tendency to align their spin orientation along the direction of the external field.In Fig.3,the entropy per baryon is shown as a function of the temperature at different magnetic fieldsB=(1×1018,2×1019,5×1019)G from top to bottom.The entropy per baryon increases monotonically as the temperature increases,which is fully in agreement with the third law of thermodynamics.From the figure we can find that the magnetic field has a less influence on the entropy per baryon.The entropy behavior is mainly dominated by the temperature as expected.At the fixed temperature in Fig.5,the entropy per baryon is given as a function of the magnetic field.It is again verified that the entropy keeps constant for a given temperature,and feels less influence of the magnetic field below 1.5×1019G,at the field beyond which the entropy per baryon will have a slight oscillation behavior at lower temperature.

    Fig.3 The entropy per baryon versus the temperature is shown at the magnetic field B=1018G,2×1019G,5×1019G and the density nB=2ρ0.

    In Fig.4,we show the quark spin polarizations versus the magnetic fields at different temperaturesT=25 MeV,150 MeV and the densitiesnB=2ρ0,3ρ0withρ0=0.16 fm?3. The spin polarization effect is more noticeable for the low temperatureT=25 MeV and the densitynB=2ρ0indicated by the dashed line.The maximum of the absolute value is|Δi|=1.Specially at the magnetic field larger than 1019G,a lot of quarks are collected into the LLL,which is indicated by the two horizonal lines labeled by Δu=+1 and Δd= ?1.However,at a higher temperature,the thermal effect makes the lines gradually concentrate to the central region and the spin polarization effect becomes weaker and weaker.

    Fig.4 Spin polarizations Δuand Δdversus the magnetic field at two different temperatures T=25,150 MeV and two different density nB=2ρ0,3ρ0.

    Fig.5 The entropy per baryon versus the magnetic field is shown at three different temperatures T=(25,100,and 150)MeV and the density nB=2ρ0.

    where the signs“+”and“?”refer the positively and negatively charged particles respectively.is the number density in the LLL fori-type quarks.So the absolute value of the spin polarization is directly related to the ratio of the number density on the LLL and the total density,then all quarks are in the LLL.In Fig.6,the ratiosofu-andd-quarks versus the temperature are shown.The different densitiesnB=2ρ0,3ρ0are represented by solid and dotted lines

    In a strong magnetic field,the each Landau level is occupied by the particles with two spin-directions in addition to the zeroth Landau level,which is not spin-degenerated.So in Eq.(17),the difference of the number density is directly denominated by the zeroth Landau level,namely the LLL.For positively charged quarks,the LLL is occupied by the spin-up particle,and for negatively charged quarks by the spin-down particle.Now the spin polarization in Eq.(17)can be simplified by a ratio of the number density as respectively.The ratio/nuofuquark is larger than that of thedquark because of the larger electric charge ofuquarks.Moreover,it is easily seen that the ratio is larger at a lower temperature and a lower baryon number density,where the magnetic field becomes very important.However,as the temperature increases,the ratio will decrease and the spin polarization becomes weaker until the thermal effect dominates the structure of the matter.

    Fig.6 The particle number density ratios/nifor uand d-quarks versus the temperature are indicated by solid and dotted lines respectively.For a given magnetic field B=5×1018G,the two baryon densities nB=2ρ0,3ρ0are studied.

    For three values of the magnetic field,we show the ratioatnB=2ρ0in Fig.7,where we can find two extreme cases.The first case is under the magnetic field of the order 1018G indicated by the red lines,where the polarization effect is not important in the whole range of temperature.On the contrary,the second case is in a stronger magnetic field of order 5×1019G,where the polarization effect will become more important.In particular,the ratiois very close to 1 for lower temperatureT=25 MeV,where a mount of quarks are in the LLL.Therefore the corresponding LLL approximation is exactly suitable for the condition of the strong magnetic if elds and low temperature.

    Undoubtedly,the spin polarization is enhanced by the magnetic field larger than 1019G and the quarks would be in a uniform arrangement with the same spin orientation.The fully polarized state means that all quarks would be lying in the LLL.In Fig.8,we show the ratioversus the magnetic field at three temperaturesT=(25,100,150)MeV respectively andnB=2ρ0.From the figure,we can see that the quark number density ratiois an increasing function of the magnetic field:from the non-polarized stateto the fully polarized stateindicated by the solid horizonal line.In other words,the quark number in the zeroth Landau level has a remarkable increase at the magnetic field about 1019G.When the magnetic field reached the threshold value,almost alluquark are lying in the LLL.The threshold value of the magnetic field foris larger because ofdquark’s smaller electric charge.

    Fig.7 The ratio /nifor u-,d-quark versus the temperature for nB=2ρ0and B=(1018,2×1019,5×1019)G from bottom to top marked by red,blue,and black lines respectively.

    Fig.8 The quark number density ratio n0i/niof u,d quark versus the magnetic field B is shown at T=(25,100,150)MeV respectively.The baryon number density is fixed as nB=2ρ0.

    The free energy per baryon is an important quantity to characterize the stability of the quark matter.In the SU(2)NJL model,Fig.9 gives the energy and free energy per baryon versus baryon number density for different temperatures at theB=1×1018G.In the small density region,the free energy per baryon on left panel is clearly an increasing function of the number density,while the energy per baryon is a decreasing function.In the middle range of the density,there is a local minimum value for both the energy and free energy.At a given density,the higher temperature will lead to a smaller free energy and a larger energy per baryon.

    To illustrate the fundamental thermodynamic relationE=F+TSin fluenced by the magnetic effect and thermal effect,we show the energy and free energy per baryon as a function of the temperature for three different magnetic fields in Fig.10.It is obvious that the energy is an increasing function of temperature whereas the free energy decreases with increasing temperature.Importantly,we can find that stronger magnetic field will lead to a lower free energy per baryon,which means that a proper strong magnetic field can enhance the stability of quark matter.However,we should notice that for more higher magnetic fields,the quark matter may be located in the fully chirally broken phase,where the calculation would give a larger free energy.The relevant discussion at zero temperature can be found in Fig.4 in Ref.[39].According to the fundamental thermodynamic relation,the energy and free energy coincide with each other at zero temperature.

    Fig.9 The free energy per baryon and energy per baryon at T=(50,100,150)MeV as a function of the baryon number density for B=1×1018G.

    Fig.10 The free energy and the energy per baryon versus the temperature at the four different magnetic field values and the density nB=2ρ0.

    The free energy versus the temperature is shown at a if xed densitynB=2ρ0and two different magnetic fieldsB=1×1018andB=5×1019in Fig.11.The constant couplingGand the running couplingG′(eB)are indicated by the solid and dotted lines respectively.The effect of the magnetic field can hardly be seen from the very close lines.Especially at the fieldB=1×1018G,the two red lines forGandG′(eB)overlap.But it can be numerically concluded that the quark matter is more stable under the running couplingG′(eB)in larger magnetic field.At both the low temperature and the strong magnetic field,the running coupling effect becomes more clear.

    Fig.11 The free energy per baryon versus the temperature at two different magnetic field values for the couplings G and G′(eB).

    4 Summary

    In this paper we have studied the magnetic effect and the thermal effect on the quark matter in a strong magnetic field within the SU(2)NJL model.The interaction is described by the magnetic- field-dependent coupling.As the temperature or density increases,the chiral restoration transition happens.By comparison with the constant coupling case,the dynamical masses change a little under the running couplingG′(eB).The spin polarization is shown as a function of the magnetic field.It can be further understood by the ratio of the quark number in the LLL and the total quark number.We focus on the discussion of the competition of the magnetic effect and thermal effect by investigating the spin polarization,the ratioand the entropy per baryon.In a suffcient strong magnetic field,a lot of quarks are lying in the LLL due to the large degeneracy factor|eB|.But higher temperatures will excite the quarks to higher Landau levels,and eventually make the magnetic effect less and less important.It is graphically demonstrated that for the magnetic field range from 1017G to 1019G,the quark matter would undergo a transition from the non-polarized state to fully polarized state,where all quarks are in the LLL.Because theuquark has a larger charge thandquark,it is earlier collected in the LLL as the magnetic field increases.Finally,we show the energy and the free energy per baryon varying with the density,the temperature,and the magnetic field.It is found that the magnetic field of a proper value can lower the free energy per baryon and enhance the stability of quark matter to some extent.

    [1]V.A.Miransky and I.A.Shovkovy,Phys.Rep.576(2015)1;J.O.Andersen,W.R.Naylor,and A.Tranberg,Rev.Mod.Phys.88(2016)025001.

    [2]V.P.Gusynin,V.A.Miransky,and I.A.Shovkovy,Phys.Rev.Lett.73(1994)3499;E.J.Ferrer and V.de la Incera,Phys.Lett.B 481(2000)287;N.Mueller and J.M.Pawlowski,Phys.Rev.D 91(2015)116010.

    [3]R.G.Felipe and A.P.Martínez,J.Phys.G 36(2009)075202;R.González Felipe,D.Manreza Paret,and A.Pérez Martínez,Eur.Phys.J A 47(2011)1.

    [4]M.Ruggieri and G.X.Peng,Phys.Rev.D 19(2016)094021.

    [5]D.E.Kharzeev,L.D.McLerran,and H.J.Warringa,Nucl.Phys.A 803(2008)227.

    [6]C.Thompson and R.C.Duncan,Astrophys.J.392(1992)L9.

    [7]G.Chanmugam,Annu.Rev.Astron.Astrophys.30(1992)143;D.Lai,Rev.Mod.Phys.73(2001)629.

    [8]L.Dong and S.L.Shapiro,Astrophys.J.383(1991)745.

    [9]V.Voronyuk,V.D.Toneev,W.Cassing,E.L.Bratkovskaya,V.P.Konchakovski,and S.A.Voloshin,Phys.Rev.C 83(2011)054911.

    [10]K.Fukushima,D.E.Kharzeev,and H.J.Warringa,Phys.Rev.D 78(2008)074033;D.E.Kharzeev and H.J.Warringa,Phys.Rev.D 80(2009)034028.

    [11]D.Kharzeev,R.D.Pisarski,and M.H.G.Tytgat,Phys.Rev.Lett.81(1998)512;D.Kharzeev and R.D.Pisarski,Phys.Rev.D 61(2000)111901(R);K.Buckley,T.Fugleberg,and A.Zhitnitsky,Phys.Rev.Lett.84(2000)4814;S.A.Voloshin,Phys.Rev.C 62(2000)044901;70(2004)057901;D.Kharzeev,Phys.Lett.B 633(2006)260;D.Kharzeev and A.Zhitnitsky,Nucl.Phys.A 797(2007)67.

    [12]D.E.Kharzeev,Nucl.Phys.A 830(2009)543c;Ann.Phys.(N.Y.)325(2010)205;K.Fukushima,D.E.Kharzeev,and H.J.Warringa,Nucl.Phys.A 836(2010)311;Phys.Rev.Lett.104(2010)212001.

    [13]V.Skokov,A.Illarionov,and V.Toneev,Int.J.Mod.Phys.A 24(2009)5925.

    [14]A.J.Mizher,M.N.Chernodub,and E.S.Fraga,Phys.Rev.D 82(2010)105016.

    [15]R.L.S.Farias,V.S.Timóteo,S.S.Avancini,M.B.Pinto,and G.Krein,arXiv:1603.03847[hep-ph].

    [16]S.Nam and C.W.Kao,Phys.Rev.D 83(2011)096009.

    [17]D.P.Menezes,M.B.Pinto,and C.Providência,Phys.Rev.C 91(2015)065205.

    [18]D.Ebert,K.G.Klimenko,M.A.Vdovichenko,and A.S.Vshivtsev,Phys.Rev.D 61(1999)025005.

    [19]P.G.Allen and N.N.Scoccola,Phys.Rev.D 88(2013)094005.

    [20]T.Inagaki,D.Kimura,and T.Murata,Prog.Theor.Phys.111(2004)371.

    [21]A.G.Grunfeld,D.P.Menezes,M.B.Pinto,and N.N.Scoccola,Phys.Rev.D 90(2014)044024.

    [22]F.Preis,A.Rebhan,and A.Schmitt,J.High Energy Phys.03(2011)033;Lect.Notes Phys.871(2013)51.

    [23]G.S.Bali,F.Bruckmann,G.Endrodi,Z.Fodor,S.D.Katz,S.Krieg,A.Schafer,and K.K.Szabo,J.High Energy Phys.1202(2012)044;G.S.Bali,F.Bruckmann,G.Endrodi,Z.Fodor,S.D.Katz,S.Krieg,and A.Schafer,Phys.Rev.D 86(2012)071502(R).

    [24]V.Bernard and U.G.Meissner,Annals Phys.206(1991)50;M.B.Pinto,Phys.Rev.D 50(1994)7673.

    [25]R.L.S.Farias,K.P.Gomes,G.Krein,and M.B.Pinto,Phys.Rev.C 90(2014)025203.

    [26]M.Ferreira,P.Costa,O.Lourenco,T.Frederico,and C.Providência,Phys.Rev.D 89(2014)116011.

    [27]C.F.Li,L.Yang,X.J.Wen,and G.X.Peng,Phys.Rev.D 93(2016)054005.

    [28]C.Ratti,Europhys.Lett.61(2003)314;M.Buballa and M.Oertel,Phys.Lett.B 457(1999)261.

    [29]D.P.Menezes,M.B.Pinto,S.S.Avancini,A.P.Martínez,and C.Providência,Phys.Rev.C 79(2009)035807;M.Ferreira,P.Costa,D.P.Menezes,C.Providência,and N.N.Scoccola,Phys.Rev.D 89(2014)016002.

    [30]S.S.Avancini,D.P.Menezes,and C.Providência,Phys.Rev.C 83(2011)065805.

    [31]V.A.Miransky and I.A.Shovkovy,Phys.Rev.D 66(2002)045006.

    [32]T.Kojo and N.Su,Nucl.Phys.A 931(2014)763.

    [33]J.L.Noronha and I.A.Shovkovy,Phys.Rev.D 76(2007)105030.E.J.Ferrer,V.de la Incera,J.P.Keith,I.Portillo,and P.L.Springsteen,Phys.Rev.C 82(2010)065802;L.Paulucci,E.J.Ferrer,V.de la Incera,and J.E.Horvath,Phys.Rev.D 83(2011)043009.

    [34]J.L.Richardson,Phys.Lett.B 82(1979)272.

    [35]M.Sinha,X.G.Huang,and A.Sedrakian,Phys.Rev.D 88(2013)025008.

    [36]J.F.Xu,G.X.Peng,F.Liu,D.F.Hou,and L.W.Chen,Phys.Rev.D 92(2015)025025.

    [37]A.A.Natale,Nucl.Phys.B Proc.Suppl.199(2010)178.

    [38]E.J.Ferrer,V.de la Incera,and X.J.Wen,Phys.Rev.D 91(2015)054006.

    [39]X.J.Wen,S.Z.Su,D.H.Yang,and G.X.Peng,Phys.Rev.C 86(2012)034006.

    猜你喜歡
    辭舊歲銀蛇楊麗
    跨年
    童畫世界
    過跨海大橋
    岷峨詩稿(2022年4期)2022-09-02 22:10:28
    迎新年
    燕歸巢(外一首)
    草堂(2020年11期)2020-11-18 11:21:35
    辭舊歲,迎新春,舉杯為健康
    從“銀蛇”到名醫(yī)
    新民周刊(2018年45期)2018-12-01 04:52:58
    長江叢刊(2018年22期)2018-11-14 22:44:32
    白夜
    七年級上學(xué)期數(shù)學(xué)期末檢測題(A)
    国产亚洲精品久久久久久毛片| 最新美女视频免费是黄的| 最近最新免费中文字幕在线| 黄片大片在线免费观看| 麻豆成人午夜福利视频| 亚洲一卡2卡3卡4卡5卡精品中文| 好男人在线观看高清免费视频 | 国语自产精品视频在线第100页| 久久久久国产精品人妻aⅴ院| 国产精品国产高清国产av| 欧美日韩福利视频一区二区| 在线免费观看的www视频| 亚洲精品在线观看二区| 99精品在免费线老司机午夜| 美女 人体艺术 gogo| 亚洲精品中文字幕一二三四区| 久久久精品欧美日韩精品| 久久精品国产清高在天天线| 啦啦啦免费观看视频1| 久久国产乱子伦精品免费另类| 国产精品影院久久| 啦啦啦免费观看视频1| 亚洲久久久国产精品| 亚洲男人天堂网一区| 黄色视频不卡| 好男人在线观看高清免费视频 | 国产精品二区激情视频| 久久久久九九精品影院| √禁漫天堂资源中文www| 亚洲专区字幕在线| 久久人人精品亚洲av| 亚洲,欧美精品.| 18禁美女被吸乳视频| 可以在线观看的亚洲视频| svipshipincom国产片| 亚洲一区二区三区不卡视频| 自线自在国产av| 亚洲第一青青草原| 18禁裸乳无遮挡免费网站照片 | 999久久久国产精品视频| 91麻豆精品激情在线观看国产| 男女之事视频高清在线观看| 性欧美人与动物交配| 可以在线观看毛片的网站| 久久久久久久久中文| 国产成人欧美在线观看| 欧美绝顶高潮抽搐喷水| 欧美黄色淫秽网站| 黄色女人牲交| 午夜免费成人在线视频| 无限看片的www在线观看| 欧美黄色淫秽网站| 少妇裸体淫交视频免费看高清 | 亚洲人成网站在线播放欧美日韩| 亚洲熟女毛片儿| 欧美 亚洲 国产 日韩一| 男女之事视频高清在线观看| 一二三四社区在线视频社区8| 韩国精品一区二区三区| 久久精品亚洲精品国产色婷小说| 国产亚洲精品综合一区在线观看 | 亚洲欧美日韩高清在线视频| 亚洲天堂国产精品一区在线| 两人在一起打扑克的视频| 精品熟女少妇八av免费久了| 午夜精品久久久久久毛片777| 青草久久国产| 成人手机av| 给我免费播放毛片高清在线观看| 18禁黄网站禁片午夜丰满| 欧美一级毛片孕妇| 观看免费一级毛片| 国产激情欧美一区二区| 亚洲专区字幕在线| 嫁个100分男人电影在线观看| 国产成人精品无人区| 啪啪无遮挡十八禁网站| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩一区二区三| 波多野结衣av一区二区av| 亚洲成人国产一区在线观看| 制服丝袜大香蕉在线| 黄片大片在线免费观看| 操出白浆在线播放| 97超级碰碰碰精品色视频在线观看| 青草久久国产| 禁无遮挡网站| 在线观看午夜福利视频| 黄片大片在线免费观看| 日本一区二区免费在线视频| 国产成人一区二区三区免费视频网站| 女警被强在线播放| 老司机午夜十八禁免费视频| 老司机午夜十八禁免费视频| 成年女人毛片免费观看观看9| 天堂影院成人在线观看| 一区二区三区国产精品乱码| 在线国产一区二区在线| svipshipincom国产片| 亚洲熟妇熟女久久| a级毛片a级免费在线| 性色av乱码一区二区三区2| 男人操女人黄网站| 久久久久国产一级毛片高清牌| 午夜久久久久精精品| 中文字幕精品免费在线观看视频| 欧美另类亚洲清纯唯美| 女人被狂操c到高潮| 女人被狂操c到高潮| 亚洲第一电影网av| 黑人欧美特级aaaaaa片| 黄色a级毛片大全视频| 国产成人啪精品午夜网站| 在线观看www视频免费| 免费电影在线观看免费观看| 亚洲男人天堂网一区| 国产成人精品久久二区二区91| 大香蕉久久成人网| 欧美成人免费av一区二区三区| 一级毛片女人18水好多| 日本在线视频免费播放| 美女大奶头视频| 动漫黄色视频在线观看| 婷婷精品国产亚洲av在线| 日本精品一区二区三区蜜桃| 免费高清视频大片| 好看av亚洲va欧美ⅴa在| 黄色 视频免费看| 婷婷六月久久综合丁香| 欧美性猛交╳xxx乱大交人| 欧美日韩乱码在线| 美女 人体艺术 gogo| 窝窝影院91人妻| 中文字幕最新亚洲高清| 看黄色毛片网站| 黄色毛片三级朝国网站| 久久久久精品国产欧美久久久| 看黄色毛片网站| 欧美日韩精品网址| 亚洲va日本ⅴa欧美va伊人久久| 又紧又爽又黄一区二区| 亚洲成人免费电影在线观看| 欧美性长视频在线观看| 亚洲一区二区三区色噜噜| av天堂在线播放| 日韩免费av在线播放| av免费在线观看网站| 亚洲精品中文字幕在线视频| 一区二区三区高清视频在线| 欧美精品亚洲一区二区| 国产精品亚洲一级av第二区| av天堂在线播放| 亚洲av日韩精品久久久久久密| 一个人免费在线观看的高清视频| 90打野战视频偷拍视频| 18禁美女被吸乳视频| 久久久国产成人免费| 国产麻豆成人av免费视频| 国产国语露脸激情在线看| 午夜福利在线观看吧| 国产亚洲欧美98| 欧美国产日韩亚洲一区| 国产aⅴ精品一区二区三区波| 中文字幕精品免费在线观看视频| 国产免费男女视频| 又黄又爽又免费观看的视频| 亚洲专区中文字幕在线| 在线视频色国产色| 久久狼人影院| 国产一区二区在线av高清观看| 国产精品九九99| av超薄肉色丝袜交足视频| 亚洲成国产人片在线观看| 级片在线观看| 91麻豆av在线| 三级毛片av免费| 国产成人欧美在线观看| 亚洲av电影不卡..在线观看| 黄色丝袜av网址大全| 国产精品野战在线观看| 成年版毛片免费区| 无遮挡黄片免费观看| 2021天堂中文幕一二区在线观 | 午夜福利在线在线| 巨乳人妻的诱惑在线观看| 久久国产乱子伦精品免费另类| 国产成年人精品一区二区| 一二三四社区在线视频社区8| 天堂动漫精品| 天天躁狠狠躁夜夜躁狠狠躁| 在线十欧美十亚洲十日本专区| 黑人巨大精品欧美一区二区mp4| 久热爱精品视频在线9| 侵犯人妻中文字幕一二三四区| 不卡一级毛片| 午夜视频精品福利| 日本三级黄在线观看| 亚洲国产看品久久| 亚洲国产看品久久| 国产成年人精品一区二区| 亚洲狠狠婷婷综合久久图片| bbb黄色大片| 精品第一国产精品| 白带黄色成豆腐渣| 在线观看66精品国产| 中文亚洲av片在线观看爽| 99精品在免费线老司机午夜| 欧美乱色亚洲激情| 两性午夜刺激爽爽歪歪视频在线观看 | 国产野战对白在线观看| 麻豆成人av在线观看| 欧美成人午夜精品| 亚洲熟女毛片儿| 久久人人精品亚洲av| 男人舔奶头视频| 亚洲熟妇中文字幕五十中出| 亚洲性夜色夜夜综合| 久久久久久久精品吃奶| 男女之事视频高清在线观看| 青草久久国产| 两个人视频免费观看高清| 淫秽高清视频在线观看| 啦啦啦 在线观看视频| 国产一区二区三区在线臀色熟女| 美女高潮到喷水免费观看| 老汉色∧v一级毛片| 91字幕亚洲| 国产高清视频在线播放一区| 在线国产一区二区在线| 日本在线视频免费播放| 最新在线观看一区二区三区| 免费搜索国产男女视频| avwww免费| 女人高潮潮喷娇喘18禁视频| 色在线成人网| 香蕉av资源在线| 亚洲性夜色夜夜综合| 欧美性猛交黑人性爽| 免费在线观看成人毛片| 免费在线观看日本一区| 此物有八面人人有两片| 午夜a级毛片| 精品电影一区二区在线| 日韩精品免费视频一区二区三区| 久久久久久久久久黄片| 满18在线观看网站| 欧美一级毛片孕妇| 亚洲免费av在线视频| 99热这里只有精品一区 | 成人亚洲精品一区在线观看| 又大又爽又粗| 亚洲一区高清亚洲精品| 熟女少妇亚洲综合色aaa.| 精品免费久久久久久久清纯| 国产成人影院久久av| 黄片大片在线免费观看| 美女扒开内裤让男人捅视频| 国产aⅴ精品一区二区三区波| 在线播放国产精品三级| 色老头精品视频在线观看| 亚洲自偷自拍图片 自拍| 免费在线观看视频国产中文字幕亚洲| 老司机深夜福利视频在线观看| 一区二区三区激情视频| 国产私拍福利视频在线观看| 一个人免费在线观看的高清视频| 夜夜爽天天搞| 国产色视频综合| 老司机午夜福利在线观看视频| 欧美最黄视频在线播放免费| 免费看a级黄色片| 两性夫妻黄色片| 精品国内亚洲2022精品成人| 国产精品久久久人人做人人爽| 国产精华一区二区三区| 老司机在亚洲福利影院| 亚洲精品美女久久av网站| √禁漫天堂资源中文www| 免费无遮挡裸体视频| 亚洲成人国产一区在线观看| 校园春色视频在线观看| 欧美不卡视频在线免费观看 | 午夜激情av网站| 国产又色又爽无遮挡免费看| 久久这里只有精品19| 国产亚洲欧美精品永久| 麻豆久久精品国产亚洲av| 久久久久久国产a免费观看| 久久九九热精品免费| 一级毛片精品| 美女免费视频网站| 99热6这里只有精品| 欧美乱码精品一区二区三区| 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播 | 制服丝袜大香蕉在线| 99热6这里只有精品| 天堂影院成人在线观看| 日日摸夜夜添夜夜添小说| 97人妻精品一区二区三区麻豆 | cao死你这个sao货| 久久久久久人人人人人| 看片在线看免费视频| 99re在线观看精品视频| 99国产极品粉嫩在线观看| 亚洲狠狠婷婷综合久久图片| 一边摸一边抽搐一进一小说| 老司机靠b影院| 欧美大码av| 精品久久久久久久毛片微露脸| 国产亚洲欧美在线一区二区| 香蕉丝袜av| 妹子高潮喷水视频| 久久久久久亚洲精品国产蜜桃av| 国产精品乱码一区二三区的特点| 日韩免费av在线播放| www.999成人在线观看| av福利片在线| 淫妇啪啪啪对白视频| 男人舔奶头视频| 美女免费视频网站| 免费高清视频大片| 国产精品久久视频播放| 中出人妻视频一区二区| 国产成+人综合+亚洲专区| 久久中文看片网| 中国美女看黄片| 97超级碰碰碰精品色视频在线观看| 美女国产高潮福利片在线看| 午夜福利在线在线| 母亲3免费完整高清在线观看| 成年免费大片在线观看| 搡老熟女国产l中国老女人| 免费看a级黄色片| 中文字幕人成人乱码亚洲影| 国产一区二区激情短视频| 国产成人精品久久二区二区91| 久久久久九九精品影院| 亚洲成国产人片在线观看| 伦理电影免费视频| 亚洲五月色婷婷综合| av天堂在线播放| 香蕉av资源在线| 日韩高清综合在线| 久久久国产成人精品二区| 一本精品99久久精品77| 色哟哟哟哟哟哟| 两个人免费观看高清视频| 国产精品免费一区二区三区在线| 欧美一区二区精品小视频在线| 国产一区在线观看成人免费| 色综合站精品国产| 俺也久久电影网| 日韩国内少妇激情av| 黄网站色视频无遮挡免费观看| av天堂在线播放| 欧美日韩中文字幕国产精品一区二区三区| 一个人观看的视频www高清免费观看 | 亚洲五月色婷婷综合| 天天躁夜夜躁狠狠躁躁| 在线免费观看的www视频| 搡老岳熟女国产| 淫秽高清视频在线观看| 在线观看日韩欧美| 亚洲自偷自拍图片 自拍| 色在线成人网| a级毛片在线看网站| www日本在线高清视频| 日本 av在线| xxxwww97欧美| 18禁观看日本| 久久性视频一级片| 亚洲精品国产区一区二| 亚洲国产精品成人综合色| 岛国在线观看网站| 美女高潮到喷水免费观看| 可以在线观看毛片的网站| 婷婷六月久久综合丁香| 在线播放国产精品三级| 国产99白浆流出| 两性夫妻黄色片| 国产视频一区二区在线看| 成人亚洲精品一区在线观看| 制服人妻中文乱码| 两个人免费观看高清视频| 亚洲国产精品久久男人天堂| 久久久久亚洲av毛片大全| 18禁黄网站禁片午夜丰满| 亚洲欧美精品综合一区二区三区| 18禁裸乳无遮挡免费网站照片 | 久久人人精品亚洲av| 欧美丝袜亚洲另类 | 最近最新中文字幕大全电影3 | www国产在线视频色| 少妇粗大呻吟视频| 久99久视频精品免费| 老司机靠b影院| 免费观看人在逋| 搞女人的毛片| 美女免费视频网站| 又大又爽又粗| a级毛片a级免费在线| 麻豆av在线久日| 亚洲成av人片免费观看| 性欧美人与动物交配| 老司机深夜福利视频在线观看| 伊人久久大香线蕉亚洲五| 国产精品一区二区三区四区久久 | avwww免费| 一级作爱视频免费观看| 亚洲欧美日韩高清在线视频| 麻豆成人av在线观看| 一级a爱片免费观看的视频| 天堂动漫精品| 久久精品91无色码中文字幕| 国产成人啪精品午夜网站| 岛国在线观看网站| 18禁美女被吸乳视频| 人妻丰满熟妇av一区二区三区| 国产又色又爽无遮挡免费看| 国产av在哪里看| 日本五十路高清| 精品免费久久久久久久清纯| 在线国产一区二区在线| 啦啦啦免费观看视频1| 国产麻豆成人av免费视频| 一本综合久久免费| 亚洲国产欧洲综合997久久, | 麻豆成人午夜福利视频| 看黄色毛片网站| av天堂在线播放| 亚洲av第一区精品v没综合| 母亲3免费完整高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品在线美女| 亚洲精品国产精品久久久不卡| 首页视频小说图片口味搜索| 亚洲av成人一区二区三| 成人三级黄色视频| 性欧美人与动物交配| 午夜福利18| av福利片在线| 国产精品98久久久久久宅男小说| 免费在线观看完整版高清| 两个人视频免费观看高清| 久久久久久久久中文| 国产男靠女视频免费网站| 国产午夜精品久久久久久| 精品久久久久久成人av| 美女国产高潮福利片在线看| 色尼玛亚洲综合影院| 欧美又色又爽又黄视频| av福利片在线| 国产亚洲精品第一综合不卡| а√天堂www在线а√下载| 日本一本二区三区精品| 校园春色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 日本免费a在线| 国内久久婷婷六月综合欲色啪| 亚洲熟女毛片儿| 午夜影院日韩av| tocl精华| 国产人伦9x9x在线观看| 老熟妇乱子伦视频在线观看| 午夜a级毛片| 欧美人与性动交α欧美精品济南到| 午夜激情av网站| 在线永久观看黄色视频| 日韩有码中文字幕| 午夜老司机福利片| 两个人看的免费小视频| 日韩免费av在线播放| 制服丝袜大香蕉在线| 国产极品粉嫩免费观看在线| 欧美三级亚洲精品| 久久久久久久久久黄片| 国产极品粉嫩免费观看在线| 国产成人影院久久av| 两人在一起打扑克的视频| 国产亚洲精品一区二区www| 丰满的人妻完整版| 国产色视频综合| 欧美中文综合在线视频| 欧美大码av| 一区福利在线观看| 视频在线观看一区二区三区| 久久国产亚洲av麻豆专区| 深夜精品福利| 在线观看日韩欧美| 欧美日韩瑟瑟在线播放| 听说在线观看完整版免费高清| 婷婷丁香在线五月| 757午夜福利合集在线观看| 99国产综合亚洲精品| www国产在线视频色| 欧美三级亚洲精品| 又大又爽又粗| 国产精品电影一区二区三区| 国产蜜桃级精品一区二区三区| 一本久久中文字幕| 久久久久精品国产欧美久久久| 成人欧美大片| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产超薄肉色丝袜足j| 91成年电影在线观看| 国产人伦9x9x在线观看| 99久久久亚洲精品蜜臀av| 国产精品精品国产色婷婷| 最近最新中文字幕大全电影3 | 侵犯人妻中文字幕一二三四区| 琪琪午夜伦伦电影理论片6080| 最近最新中文字幕大全电影3 | 国产欧美日韩一区二区三| 午夜福利高清视频| 国产亚洲av嫩草精品影院| 变态另类成人亚洲欧美熟女| 国产麻豆成人av免费视频| 午夜福利高清视频| 精品久久久久久成人av| 亚洲美女黄片视频| 制服人妻中文乱码| 精品国产一区二区三区四区第35| 看免费av毛片| 亚洲久久久国产精品| 无限看片的www在线观看| 视频在线观看一区二区三区| 精品不卡国产一区二区三区| 中文字幕精品亚洲无线码一区 | 日韩精品青青久久久久久| 老司机午夜福利在线观看视频| 久久欧美精品欧美久久欧美| www.熟女人妻精品国产| 国产爱豆传媒在线观看 | 91麻豆av在线| 91成人精品电影| 成人18禁高潮啪啪吃奶动态图| 久久久国产精品麻豆| 欧美日本视频| 视频在线观看一区二区三区| 国产精品免费视频内射| 国产极品粉嫩免费观看在线| 嫩草影视91久久| 日本在线视频免费播放| 他把我摸到了高潮在线观看| netflix在线观看网站| 亚洲无线在线观看| 又紧又爽又黄一区二区| 嫁个100分男人电影在线观看| 日韩欧美国产一区二区入口| 桃色一区二区三区在线观看| 日韩欧美三级三区| 最近最新中文字幕大全电影3 | 国产日本99.免费观看| 国产精品香港三级国产av潘金莲| 亚洲第一欧美日韩一区二区三区| 亚洲av成人av| 怎么达到女性高潮| 久久久久久久精品吃奶| 国产精品乱码一区二三区的特点| 欧美人与性动交α欧美精品济南到| 精品不卡国产一区二区三区| 欧美乱妇无乱码| 亚洲欧美日韩无卡精品| 91麻豆av在线| av有码第一页| 高潮久久久久久久久久久不卡| 两个人视频免费观看高清| 999精品在线视频| 无人区码免费观看不卡| 他把我摸到了高潮在线观看| 天堂影院成人在线观看| 日韩欧美免费精品| 真人做人爱边吃奶动态| 在线观看午夜福利视频| av免费在线观看网站| 99riav亚洲国产免费| 亚洲精品一区av在线观看| 欧美中文日本在线观看视频| 国内揄拍国产精品人妻在线 | 怎么达到女性高潮| 国产高清有码在线观看视频 | 最近最新中文字幕大全电影3 | 十八禁人妻一区二区| 亚洲一区中文字幕在线| 三级毛片av免费| 国产精品久久久久久精品电影 | 亚洲,欧美精品.| 国产在线精品亚洲第一网站| 国产黄色小视频在线观看| 动漫黄色视频在线观看| bbb黄色大片| 18禁国产床啪视频网站| 观看免费一级毛片| 狠狠狠狠99中文字幕| 亚洲全国av大片| 非洲黑人性xxxx精品又粗又长| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| 免费高清视频大片| av免费在线观看网站| 亚洲中文av在线| 午夜两性在线视频| 亚洲一码二码三码区别大吗| 999久久久精品免费观看国产| 婷婷丁香在线五月| 日本 av在线| 91九色精品人成在线观看| 国产色视频综合| 国产精品久久久久久亚洲av鲁大| 日本一本二区三区精品| 哪里可以看免费的av片| 777久久人妻少妇嫩草av网站| 免费在线观看成人毛片| 日韩精品免费视频一区二区三区|