• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anharmonic Properties of Aluminum from Direct Free Energy Interpolation Method?

    2018-01-24 06:23:17ZhiGuoZhao趙志國JunShengSun孫俊生XiuLuZhang張修路HaiFengYang楊海峰andZhongLiLiu劉中利
    Communications in Theoretical Physics 2017年5期
    關(guān)鍵詞:海峰修路

    Zhi-Guo Zhao(趙志國),Jun-Sheng Sun(孫俊生),Xiu-Lu Zhang(張修路),Hai-Feng Yang(楊海峰), and Zhong-Li Liu(劉中利),*

    1College of Physics and Electric Information,Luoyang Normal University,Luoyang 471022,China

    2The Unit 63615 of People’s Liberation Army,Kuerle 841001,China

    3Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology,Mianyang 621010,China

    1 Introduction

    Like platinum and tungsten,aluminum is another frequently used pressure standard material in high-pressure experiments,such as the shock wave experiment.The pressure-volume-temperature equation of states(EOS)provides key information for it as a pressure standard.[1]Al is a typicalsp-bonded simple metal and crystallized in face-centered-cubic structure under ambient conditions.With the simple electronic and lattice structures,it is often taken as a typical prototype for theoretical calculations.[2?3]For the theoretical calculation of free energy,the accurate anharmonic effects are very hard to be taken into account in the theoretical EOS in previous methods.

    Usually,the quasi-harmonic approximation(QHA)was used to calculate the temperature effects and it only takes account into the volume dependence of phonon frequencies of lattice vibrations.However,in real materials the phonon frequencies depend largely on temperature,especially in the highly anharmonic solids or at the temperature close to melting.This is because that the QHA omits part of anharmonicity and is only accurate when temperature below Debye temperature.[4?6]In order to overcome these diffculties of QHA,several anharmonic free energy calculation techniques have been developed,such as the thermodynamic integration technique[7?8]and the self-consistent ab initio lattice dynamics(SCAILD)method.[9?10]

    Molecular dynamics(MD)simulations include anharmonicity to any order beyond Debye temperature,[11?12]especially applicable to high-temperature free energy calculations.Thus it can correct the free energy of the QHA considerably in the free energy calculations.In this paper,we apply the MD simulations to extract anharmonic free energy of Al and then construct more accurate EOS beyond the QHA.

    The rest of the paper is organized as follows.In Sec.2,we describe the details about the computation method.We illustrate the results in detail and make deep discussions in Sec.3.The conclusions are presented in Sec.4.

    2 Computational Method

    2.1 Quasi-Harmonic Approximation

    The free energy of Al was first calculated by the quasi-harmonic approximation and then corrected by taking into account the phonon-phonon interactions.The quasi-harmonic approximation(QHA)describes volumedependent thermal effects based on lattice vibration models known as phonon,neglecting the phonon-phonon interactions.In the framework of the QHA,the Helmholtz free energy of a crystal system is,

    whereEstatic(V)is the zero-temperature energy of a staticlattice with volumeV.The termFzpis the zero-point motion energy written as,

    whereg(ω,0K)is the 0 K phonon density of states(PDOS)of the frequencyω.

    The termFph(V,T)in Eq.(1)is the lattice vibrational free energy,and is calculated from,

    2.2 Anharmonicity Corrections

    In the harmonic approximation,the PDOSg(ω,0K)is calculated from the force constants using either the direct method[13?14]or the density functional perturbation theory.[5,15]In the harmonic approximation,the phononphonon interaction contribution to free energy are neglected,resulting in large errors of thermodynamic properties at high temperature.Therefore,the phonons interactions must be fully taken into account to include the rest of the anharmonic effects.However,the rest anharmonic free energy calculation is very challenging.As we know that the explicit anharmonicity are naturally implied in molecular dynamics(MD)simulations.We can take into account the rest anharmonic effects from MD simulations.The PDOS atT,g(ω,T),can be extracted from the Fourier transform of autocorrelation of atomic position function r(t)in a constant temperature MD simulation.[16]

    According to the Wiener–Khintchine theorem,[17?18]the autocorrelation of position function r(t)is given by

    The PDOS atTis,

    The Helmholtz free energy of a crystal system is then rewritten as,

    whereEstatic(V)is the total energy of a static lattice with volumeV.

    In Eq.(6),the termFzpis the zero-point motion energy of the lattice written as,

    The termFph(V)in Eq.(6)is calculated from,

    After obtaining the finite number of temperature dependent PDOS(TD-PDOS)data,we use a much straitforward and simple method named the direct free energy interpolation(DFEI)method,to construct full anharmonic effects at any temperature.

    The DFEI method extracts anharmonic free energy at any temperature based on the limited several TD-PDOS data from MD simulations.The free energiesF(V,T)can be directly deduced from the TD-PDOS data at the specific temperaturesTs with the temperature interval 50 K,according to Eq.(6).The free energies at any temperatures were obtained by interpolating these resulting free energy data using the numerical analysis technique of the basis spline(B-spline).Finally,the anharmonic effects of other thermodynamic properties were corrected.

    2.3 The Interatomic Potential of Al

    We perform classical MD simulations to simulate Al at different pressure and temperature.Then,we gather the trajectories of all the atoms in crystal to calculate phonon density of states.The embedded-atom-method(EAM)[19?20]potential developed by Mishin et al.[21?22]was used to describe the interatomic interactions of Al atoms.For a metal system containingNatoms,the total potential energyEtotis the sum of the embedding energyFand a pair potential?,

    whererijis the distance between the atomsiandj.The functionFi(ρi)is the energy to embed the atomiinto the background electron densityρi,which is the superposition of the atomic densities,

    TheMD simulationswereconducted with the large-scale atomic/molecular massively parallel simulator(LAMMPS)[23?24]package.The simulation box constructed from the multiplication 14×14×14 of the facecentered-cubic(fcc)conventional unit cell including 10976 atoms.The simulations were conducted for all the supercells with different volumes in the canonical ensemble(NVT).The periodic boundary condition was used for all the atoms in the simulation box.The time step was 1 fs and the total number of time steps were 10000.From Fig.1,we see that 10000 MD steps are able to converge the PDOS well.

    Fig.1 (Color online)The PDOS obtained using different numbers of MD steps.

    3 Results and Discussions

    3.1 High-Temperature Phonon Dispersion and DOS

    The phonon dispersion curve of Al were calculated using the direct method from molecular dynamics simulations.[25]The calculated phonon dispersion curve of Al are compared well with experimental data at 298 K[26]in Fig.2(a).The frequency of lattice vibration decreases with temperature until very small negative frequencies occur at 900 K as shown in the circle of Fig.2(a).Such very small negative frequencies often result from the numerical noises in the direct phonon calculation method with molecular dynamics simulations.[26]The good agreement of the calculated phonon dispersion curve with experimental data show the validity of the EAM potential for Al.The TD-PDOSs of Al with atomic volumeV0=16.61?A3are obtained by Fourier transform of autocorrelation of atomic position function and plotted in Fig.2(b).The PDOSs are from 0 to 900 K with the interval of 100 K.The density of states of higher frequencies increase with temperature,attributed to the increasing collective excitations of higher frequencies from the phonon-phonon interactions.On the contrary,the lower frequencies of vibrations are inhibited with increasing temperature.The 900 K PDOS does not show any negative frequency and thus does not affect the free energy calculation.

    The volumes of supercells used for PDOS calculations had volumes varying from 1.08V0to 0.64V0with the interval of 0.1V0,whereV0is the equilibrium volume at ambient pressure.The simulation temperature for each volume ranged from 0 K to 950 K with the interval of 50 K.The volume range and interval made a good sample for the description of the equation of states of Al(Fig.3(a))compared with the experimental data,[27]indicating that the anharmonic free energy interpolation based on the PDOS with the temperature interval of 50 K is suffcient.

    Fig.2 (a)The comparison of the calculated 0 GPa phonon dispersion curves of Al with experimental data at 298 K.[26]The circle indicates the negative frequencies at Γ point.(b)The phonon DOS of Al at atomic volume of 16.61?A3from 0 to 900 K with the interval of 100 K along the arrow direction.

    3.2 Thermal Expansion Coeffcients

    We calculate the Helmholtz free energy from the PDOS according to Eq.(1).The third-order Birch–Murnaghan equation of states[28]was fitted to the calculated free energyF–Vdata at each temperature. The third-order Birch–Murnaghan equation of states is given by,

    whereη=(V0/V)1/3,andF0,V0,B0andB′are fitting parameters.The thermodynamic properties and the anharmonic effects are automatically analyzed using the our PhaseGO package.[29?30]

    The accuracy of the calculated thermal properties was checked by the thermal expansion coeffcient defined by,The calculated thermal expansion coeffcients as a function of temperature are shown in Fig.3(b).The QHA results are in good agreement with experimental data[31]below 400 K,while when the temperature is above 400 K the zero-pressure thermal expansion coeffcient gradually deviates from experiment.This attributes to the neglect of anharmonicity caused by phonon-phonon interactions.This deviation is also observed in the calculations for other transition metals,such as Ta,[32]Pt,[33]and Pd.[34]However,the DFEI results show good agreement with the experimental data[31]in Fig.3(b).

    Fig.3 (a)The comparison of the calculated isothermal compression curve with experimental data.[27](b)The calculated thermal expansion coeffcients of Al compared with experimental data.[31]

    3.3 Heat Capacity

    Fig.4 The specific heat of Al at constant volume and at constant pressure compared with the experimental data.[35]

    whereFis the Helmholtz free energy calculated from Eq.(6).The thermal expansion caused by anharmonic effects results in a difference betweenCPandCV.The difference between the two can be written as

    whereαVis the volume thermal expansion coeffcient andB0is the bulk modulus.Because the heat capacities are

    The specific heat at constant volume was calculated by obtained from a second derivative of the Helmholtz free energy,they are more sensitive to the tiny errors in the Helmholtz free energy.

    Figure 4 showsCVandCPas a function of temperature at 0 GPa.The calculatedCVaccords reasonably well with experimental data[35]below 600 K,and first increases dramatically as pressure increases and then finally approaches to 3R.The DFEI and QHA results are very similar.The calculatedCPis also in good comparison with experimental data.[35]The better agreement with experimental data is also found after anharmonic correction(DFEI),especially whenTis beyond 800 K.

    3.4 Grüneisen Parameter and Bulk Modulus

    The thermodynamic Grüneisen parameter was achieved by

    whereBTis isothermal bulk modulus.The isothermal bulk modulus was calculated from

    The calculated isothermal bulk modulus versus temperature curves at different pressures are shown in Fig.5(a).The isothermal bulk modulus curve at 0 GPa is very good agreement with the experimental data.[36]The calculated thermodynamic Grüneisen parameter is compared with the ab initio data from Ref.[37]in Fig.5(b).The calculated thermodynamic Grüneisen parameter is also in very good agreement with the reference data from Ref.[38].

    Fig.5(a)The calculated isothermal bulk modulus of Al at different pressures,in comparison with zero-pressure data[36](open circles).(b)The calculated thermodynamic Grüneisen parameter compared with ab initio data from Ref.[37].

    4 Conclusion

    In conclusion,we calculate and correct the thermodynamic properties of Al using the direct calculation method of full free energy of lattice vibrations,i.e.,the DFEI method which makes accurate anharmonic corrections for the thermodynamic properties of materials beyond the QHA.The calculated thermal expansion coeffcients of Al using DFEI method agree better with experiment than the QHA results.Furthermore,the calculated isotherms,the constant volume and constant pressure heat capacities,the bulk moduli using DFEI are all in good agreement with experimental data.This indicates that the DFEI method is indeed an effcient and accurate method to determining the thermodynamic properties of materials from the high temperature phonon density of states.

    [1]C.J.Pickard and R.J.Needs,Nat.Mater.9(2010)624.

    [2]R.Martin,Nature(London)400(1999)117.

    [3]J.C.Boettger and S.B.Trickey,Phys.Rev.B 53(1996)3007.

    [4]U.Hansen,P.Vogl,and V.Fiorentini,Phys.Rev.B 60(1999)5055.

    [5]S.Baroni,S.D.Gironcoli,A.D.Corso,and P.Giannozzi,Rev.Mod.Phys.73(2001)515.

    [6]S.Baroni,P.Giannozzi,and E.Isaev,Rev.Miner.Geochem.71(2010)39.

    [7]D.Alf`e,G.D.Price,and M.J.Gillan,Phys.Rev.B 64(2001)45123.

    [8]D.Alf`e,G.D.Price,and M.J.Gillan,Phys.Rev.B 65(2002)165118.

    [9]P.Souvatzis,O.Eriksson,M.I.Katsnelson,and S.P.Rudin,Phys.Rev.Lett.100(2008)95901.

    [10]P.Souvatzis,O.Eriksson,M.I.Katsnelson,and S.P.Rudin,Comput.Mater.Sci.44(2009)888.

    [11]I.Errea,M.Calandra,and F.Mauri,Phys.Rev.B 89(2014)64302.

    [12]R.Car and M.Parrinello,Phys.Rev.Lett.55(1985)2471.

    [13]D.Alf`e,Comput.Phys.Commun.180(2009)2622.

    [14]A.Togo,F.Oba,and I.Tanaka,Phys.Rev.B 78(2008)134106.

    [15]X.Gonze,Phys.Rev.B 55(1997)10337.

    [16]M.Thomas,M.Brehm,R.Fligg,et al.,Phys.Chem.Chem.Phys.15(2013)6608.

    [17]N.Wiener,Acta Math.55(1930)117.

    [18]A.Khintchine,Math.Ann.109(1934)604.

    [19]M.S.Daw and M.I.Baskes,Phys.Rev.B 29(1984)6443.

    [20]S.M.Foiles,M.I.Baskes,and M.S.Daw,Phys.Rev.B 33(1986)7983.

    [21]J.M.Winey,A.Kubota,and Y.M.Gupta,Modell.Simul.Mater.Sci.Eng.17(2009)55004.

    [22]J.M.Winey,A.Kubota,and Y.M.Gupta,Modell.Simul.Mater.Sci.Eng.18(2010)29801.

    [23]S.J.Plimpton,J.Comput.Phys.117(1995)1.

    [24]http://lammps.sandia.gov.

    [25]L.T.Kong,Comput.Phys.Commun.182(2011)2201.

    [26]R.Stedman and G.Nilsson,Phys.Rev.145(1966)492.

    [27]A.Hnstrm and P.Lazor,J.Alloy Compd.305(2000)209.

    [28]F.Birch,Phys.Rev.71(1947)809.

    [29]Z.L.Liu,Comput.Phys.Commun.191(2015)150.

    [30]Z.L.Liu,Comput.Phys.Commun.197(2015)341.

    [31]F.C.Nix and D.MacNair,Phys.Rev.60(1941)597.

    [32]Z.L.Liu,L.C.Cai,X.R.Chen,et al.,J.Phys.:Condens.Matter 21(2009)95408.

    [33]T.Sun,K.Umemoto,Z.Wu,J.C.Zheng,and R.M.Wentzcovitch,Phys.Rev.B 78(2008)24304.

    [34]Z.L.Liu,J.H.Yang,L.C.Cai,F.Q.Jing,and D.Alf`e,Phys.Rev.B 83(2011)144113.

    [35]M.Forsblom,N.Sandberg,and G.Grimvall,Phys.Rev.B 69(2004)165106.

    [36]A.Dewaele,P.Loubeyre,and M.Mezouar,Phys.Rev.B 70(2004)94112.

    [37]J.L.Nie,L.Ao,F.A.Zhao,M.Jiang,and X.T.Zu,Can.J.Phys.93(2015)55004.

    [38]W.B.Holzapfel,M.Hartwig,and W.Sievers,J.Phys.Chem.Ref.Data 30(2001)515.

    猜你喜歡
    海峰修路
    以牙還牙
    科教新報(2024年51期)2024-12-11 00:00:00
    Progress and challenges in magnetic skyrmionics
    活著
    歌海(2022年1期)2022-03-29 21:39:55
    小豬琪琪修路
    倪海峰
    兒童大世界(2019年3期)2019-04-11 03:33:38
    開常古道上有個“修路節(jié)”
    中國公路(2017年8期)2017-07-21 14:26:20
    My School
    Nonlinear symbolic LFT model for UAV
    修路
    小說月刊(2015年8期)2015-04-19 02:41:24
    修路
    小說月刊(2014年8期)2014-04-19 02:39:18
    麻豆乱淫一区二区| 人人妻人人添人人爽欧美一区卜| 麻豆成人av视频| 亚洲第一av免费看| 免费黄网站久久成人精品| 狂野欧美激情性bbbbbb| videossex国产| 亚洲色图综合在线观看| 精品国产一区二区久久| 午夜福利在线观看免费完整高清在| 女的被弄到高潮叫床怎么办| 色婷婷久久久亚洲欧美| av国产精品久久久久影院| 黑人高潮一二区| 观看av在线不卡| 街头女战士在线观看网站| 天天躁夜夜躁狠狠久久av| 伦精品一区二区三区| 18禁动态无遮挡网站| 大香蕉97超碰在线| 最近手机中文字幕大全| 国产成人a∨麻豆精品| 国产精品免费大片| 777米奇影视久久| 免费观看a级毛片全部| 亚洲性久久影院| 日韩电影二区| 久久久国产欧美日韩av| 欧美精品高潮呻吟av久久| 亚洲精品一区蜜桃| 亚洲国产成人一精品久久久| 在线免费观看不下载黄p国产| 久久精品国产亚洲网站| 亚洲精品第二区| 我要看黄色一级片免费的| 毛片一级片免费看久久久久| 免费大片18禁| 欧美另类一区| 日韩三级伦理在线观看| 观看av在线不卡| 欧美人与性动交α欧美精品济南到 | 精品人妻熟女毛片av久久网站| 精品久久久噜噜| 内地一区二区视频在线| 纯流量卡能插随身wifi吗| 午夜精品国产一区二区电影| 欧美 日韩 精品 国产| 亚洲精品国产av蜜桃| 91精品国产九色| 另类精品久久| 男人爽女人下面视频在线观看| 一本大道久久a久久精品| 亚洲四区av| 国产精品熟女久久久久浪| a 毛片基地| 亚洲五月色婷婷综合| 久久人人爽人人片av| 99热全是精品| 久久久久精品性色| 夜夜骑夜夜射夜夜干| 国内精品宾馆在线| 美女国产高潮福利片在线看| 午夜老司机福利剧场| 亚洲成人手机| 久久青草综合色| 亚洲国产色片| 亚洲综合色网址| 亚洲国产欧美在线一区| 亚州av有码| 午夜久久久在线观看| 日韩强制内射视频| 成人影院久久| 伦理电影免费视频| 日韩三级伦理在线观看| 国产国拍精品亚洲av在线观看| 啦啦啦在线观看免费高清www| 五月玫瑰六月丁香| 午夜久久久在线观看| 国产高清国产精品国产三级| 中国国产av一级| 美女xxoo啪啪120秒动态图| 久久久久久久精品精品| 久久精品久久精品一区二区三区| 亚洲精品av麻豆狂野| 中文字幕av电影在线播放| 91久久精品国产一区二区成人| 少妇猛男粗大的猛烈进出视频| av卡一久久| 99久久精品国产国产毛片| 最近的中文字幕免费完整| 日韩一区二区三区影片| 天堂俺去俺来也www色官网| 18禁动态无遮挡网站| 久久久久久久久久久丰满| 国产无遮挡羞羞视频在线观看| 少妇 在线观看| 秋霞在线观看毛片| a级毛片黄视频| 美女国产高潮福利片在线看| 最近手机中文字幕大全| 色婷婷久久久亚洲欧美| 热re99久久精品国产66热6| 国产黄色视频一区二区在线观看| 我要看黄色一级片免费的| 国产精品久久久久成人av| 2021少妇久久久久久久久久久| 日韩亚洲欧美综合| 男人爽女人下面视频在线观看| 国产 精品1| 亚洲精品成人av观看孕妇| 麻豆乱淫一区二区| 国产高清有码在线观看视频| 国产精品人妻久久久影院| 有码 亚洲区| 国产亚洲最大av| 一级二级三级毛片免费看| 搡老乐熟女国产| 久久久久久久精品精品| 日本av手机在线免费观看| av卡一久久| 久久国内精品自在自线图片| 亚洲精品成人av观看孕妇| 国产欧美日韩一区二区三区在线 | 人体艺术视频欧美日本| 日韩一本色道免费dvd| 18在线观看网站| 男女边摸边吃奶| 国产精品一国产av| 一区二区av电影网| 亚州av有码| 丰满迷人的少妇在线观看| 啦啦啦中文免费视频观看日本| 亚洲国产最新在线播放| av国产精品久久久久影院| 亚洲高清免费不卡视频| av电影中文网址| 亚洲精品日本国产第一区| 免费黄色在线免费观看| 女的被弄到高潮叫床怎么办| 精品久久久噜噜| 在线观看免费视频网站a站| 两个人免费观看高清视频| 日日摸夜夜添夜夜添av毛片| 久久这里有精品视频免费| 一个人看视频在线观看www免费| 久久国产精品大桥未久av| 久久人妻熟女aⅴ| 男女啪啪激烈高潮av片| av免费观看日本| 色吧在线观看| 日韩强制内射视频| 精品少妇内射三级| 欧美 亚洲 国产 日韩一| 人妻系列 视频| 亚洲av在线观看美女高潮| 久久婷婷青草| videosex国产| 亚洲精品亚洲一区二区| 亚洲国产av新网站| 久久ye,这里只有精品| 午夜91福利影院| 午夜激情福利司机影院| 精品亚洲成a人片在线观看| 国产精品人妻久久久久久| 夫妻性生交免费视频一级片| 日韩av在线免费看完整版不卡| 亚洲美女视频黄频| 精品一区在线观看国产| 少妇猛男粗大的猛烈进出视频| 国产片特级美女逼逼视频| 晚上一个人看的免费电影| 秋霞伦理黄片| 亚洲中文av在线| 寂寞人妻少妇视频99o| 精品久久久久久久久亚洲| 大码成人一级视频| 在线观看美女被高潮喷水网站| 亚洲高清免费不卡视频| 国产精品久久久久久精品电影小说| 亚洲精品456在线播放app| 国产日韩欧美在线精品| 国产在线视频一区二区| 免费观看在线日韩| 国产黄色免费在线视频| 少妇人妻久久综合中文| 在线观看三级黄色| 国产极品粉嫩免费观看在线 | 亚洲色图综合在线观看| 亚洲色图综合在线观看| 精品少妇内射三级| 精品少妇内射三级| 高清不卡的av网站| 午夜激情av网站| 亚洲少妇的诱惑av| 在线精品无人区一区二区三| 日本黄大片高清| 欧美人与性动交α欧美精品济南到 | 久久久久久久久久成人| 国产视频内射| 99视频精品全部免费 在线| 国产免费视频播放在线视频| 99久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲国产精品一区三区| 久久久精品94久久精品| 国产欧美另类精品又又久久亚洲欧美| 99九九线精品视频在线观看视频| 大片免费播放器 马上看| 少妇熟女欧美另类| 久久久久久久久久久丰满| 欧美人与善性xxx| 日韩人妻高清精品专区| 18禁裸乳无遮挡动漫免费视频| 午夜老司机福利剧场| 亚洲精品国产av成人精品| 国产视频内射| 黄色欧美视频在线观看| 女人久久www免费人成看片| 亚洲av欧美aⅴ国产| 蜜臀久久99精品久久宅男| 亚洲av福利一区| 嫩草影院入口| 久久精品久久久久久久性| 天天影视国产精品| 日韩成人伦理影院| 全区人妻精品视频| 国产精品成人在线| 国产片内射在线| 下体分泌物呈黄色| 黑人巨大精品欧美一区二区蜜桃 | 婷婷成人精品国产| 考比视频在线观看| 久久久国产精品麻豆| 最新的欧美精品一区二区| 久久人人爽人人爽人人片va| 日日爽夜夜爽网站| 99热6这里只有精品| 精品人妻一区二区三区麻豆| 国产毛片在线视频| 久久热精品热| 777米奇影视久久| 毛片一级片免费看久久久久| 在线免费观看不下载黄p国产| 极品少妇高潮喷水抽搐| 国产在线免费精品| 只有这里有精品99| 一级片'在线观看视频| 91久久精品国产一区二区成人| 国产日韩欧美视频二区| 成年女人在线观看亚洲视频| 一级毛片黄色毛片免费观看视频| 日本wwww免费看| 亚洲av电影在线观看一区二区三区| 亚洲欧美一区二区三区国产| 免费人成在线观看视频色| 久久久国产精品麻豆| 欧美精品一区二区免费开放| 国产视频首页在线观看| 日本欧美国产在线视频| 精品亚洲乱码少妇综合久久| 欧美日本中文国产一区发布| 亚洲熟女精品中文字幕| 国产国拍精品亚洲av在线观看| av不卡在线播放| 久久国产精品男人的天堂亚洲 | 看免费成人av毛片| 国产免费一级a男人的天堂| 女人精品久久久久毛片| 久久综合国产亚洲精品| 亚洲欧美一区二区三区国产| 青春草视频在线免费观看| 99精国产麻豆久久婷婷| 搡女人真爽免费视频火全软件| 久久97久久精品| 欧美亚洲日本最大视频资源| 亚洲性久久影院| 午夜日本视频在线| 在线观看三级黄色| 性色avwww在线观看| 午夜精品国产一区二区电影| a级片在线免费高清观看视频| 高清黄色对白视频在线免费看| 中国三级夫妇交换| av电影中文网址| 日日啪夜夜爽| 亚洲精品美女久久av网站| 国产精品一国产av| 亚洲美女视频黄频| av天堂久久9| 日韩一区二区三区影片| 蜜桃在线观看..| 婷婷色麻豆天堂久久| 激情五月婷婷亚洲| 国产精品熟女久久久久浪| 国产日韩欧美在线精品| 九九在线视频观看精品| 日韩大片免费观看网站| 国产免费一区二区三区四区乱码| 国产精品蜜桃在线观看| 人妻制服诱惑在线中文字幕| 哪个播放器可以免费观看大片| 日日爽夜夜爽网站| 18禁观看日本| 精品酒店卫生间| 亚洲国产av新网站| 大香蕉97超碰在线| tube8黄色片| 久久人妻熟女aⅴ| 大码成人一级视频| 日本欧美国产在线视频| 一个人免费看片子| 成人亚洲欧美一区二区av| 十分钟在线观看高清视频www| 插阴视频在线观看视频| 久久久久久久久久久丰满| 亚洲成色77777| 十分钟在线观看高清视频www| 亚洲国产最新在线播放| 老熟女久久久| 女性生殖器流出的白浆| 五月伊人婷婷丁香| 91久久精品国产一区二区成人| 蜜桃久久精品国产亚洲av| 成人免费观看视频高清| 最新中文字幕久久久久| 狂野欧美激情性xxxx在线观看| 另类精品久久| 九草在线视频观看| 精品久久久久久久久亚洲| 国产精品久久久久久av不卡| 精品亚洲乱码少妇综合久久| 全区人妻精品视频| 2018国产大陆天天弄谢| 国产片特级美女逼逼视频| 80岁老熟妇乱子伦牲交| 只有这里有精品99| av国产精品久久久久影院| 久久久久久久久久久丰满| 国产乱人偷精品视频| 人体艺术视频欧美日本| 久久人人爽人人爽人人片va| 国产成人aa在线观看| 欧美激情国产日韩精品一区| 免费观看a级毛片全部| 亚洲精品久久午夜乱码| 久久久久久人妻| 久久精品人人爽人人爽视色| 一本色道久久久久久精品综合| 国产精品嫩草影院av在线观看| 国产免费又黄又爽又色| 欧美精品人与动牲交sv欧美| 成人漫画全彩无遮挡| 亚洲精品456在线播放app| 插逼视频在线观看| 免费久久久久久久精品成人欧美视频 | 国产成人午夜福利电影在线观看| 亚洲精品亚洲一区二区| 亚洲情色 制服丝袜| 亚洲av不卡在线观看| 欧美最新免费一区二区三区| 桃花免费在线播放| 最近2019中文字幕mv第一页| 高清视频免费观看一区二区| 亚洲色图 男人天堂 中文字幕 | 最新中文字幕久久久久| 性色avwww在线观看| 成年女人在线观看亚洲视频| 大香蕉久久成人网| 91精品伊人久久大香线蕉| 99久久人妻综合| 国产成人精品无人区| 中文字幕最新亚洲高清| 超碰97精品在线观看| 五月开心婷婷网| 啦啦啦在线观看免费高清www| 老司机影院成人| 久久久国产欧美日韩av| 日韩av在线免费看完整版不卡| 国产综合精华液| 伊人久久国产一区二区| 高清黄色对白视频在线免费看| 亚洲国产精品一区三区| 日日啪夜夜爽| 国产极品天堂在线| 久久青草综合色| 亚洲第一av免费看| 免费高清在线观看视频在线观看| 久久国产亚洲av麻豆专区| 国产成人精品一,二区| 国产黄频视频在线观看| 91久久精品国产一区二区成人| 一级爰片在线观看| 久久99蜜桃精品久久| 亚洲国产最新在线播放| 日韩欧美一区视频在线观看| 亚洲熟女精品中文字幕| 日本欧美国产在线视频| 在线播放无遮挡| 视频区图区小说| 丝袜脚勾引网站| 国产精品一区二区三区四区免费观看| 午夜久久久在线观看| 丝袜在线中文字幕| 制服丝袜香蕉在线| 国产高清有码在线观看视频| 精品一区二区三卡| 日韩不卡一区二区三区视频在线| 五月天丁香电影| 欧美+日韩+精品| 一边亲一边摸免费视频| 久久精品久久久久久久性| 国产高清不卡午夜福利| av天堂久久9| av在线老鸭窝| 一级,二级,三级黄色视频| 亚洲欧美日韩卡通动漫| 青春草视频在线免费观看| 久久精品久久久久久噜噜老黄| av女优亚洲男人天堂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产综合精华液| 丁香六月天网| 成人黄色视频免费在线看| 曰老女人黄片| 亚洲成色77777| 青春草亚洲视频在线观看| 高清在线视频一区二区三区| 亚洲精品乱码久久久久久按摩| 美女内射精品一级片tv| 18+在线观看网站| 亚洲av男天堂| 免费看av在线观看网站| 一级毛片黄色毛片免费观看视频| 丰满迷人的少妇在线观看| 国产色爽女视频免费观看| 成人黄色视频免费在线看| 曰老女人黄片| 女人久久www免费人成看片| av天堂久久9| 国产一区有黄有色的免费视频| 国产精品一国产av| 我要看黄色一级片免费的| 精品少妇黑人巨大在线播放| 国产精品人妻久久久影院| 韩国高清视频一区二区三区| 久久精品人人爽人人爽视色| 久久久国产一区二区| 特大巨黑吊av在线直播| freevideosex欧美| 亚洲综合精品二区| 99re6热这里在线精品视频| 亚洲av福利一区| 狠狠精品人妻久久久久久综合| 男女啪啪激烈高潮av片| 国产av国产精品国产| 亚洲综合精品二区| 美女内射精品一级片tv| 另类亚洲欧美激情| 亚洲国产av新网站| 国产69精品久久久久777片| 天堂中文最新版在线下载| 国产黄片视频在线免费观看| 免费人成在线观看视频色| 在线观看www视频免费| 老司机影院毛片| 人人澡人人妻人| 一区二区日韩欧美中文字幕 | 女性生殖器流出的白浆| 久久影院123| tube8黄色片| 观看av在线不卡| 亚洲精品成人av观看孕妇| 国产成人精品久久久久久| 国产成人a∨麻豆精品| 久久狼人影院| 日本wwww免费看| 国产乱来视频区| 国产男女超爽视频在线观看| 黑人欧美特级aaaaaa片| 国产高清三级在线| 3wmmmm亚洲av在线观看| 51国产日韩欧美| 午夜福利在线观看免费完整高清在| 黄色毛片三级朝国网站| 80岁老熟妇乱子伦牲交| 国产精品人妻久久久影院| 亚洲图色成人| 国产黄频视频在线观看| 精品人妻熟女av久视频| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 中国美白少妇内射xxxbb| 多毛熟女@视频| 大又大粗又爽又黄少妇毛片口| 最近最新中文字幕免费大全7| 18禁观看日本| 欧美亚洲 丝袜 人妻 在线| 一本大道久久a久久精品| 国产精品.久久久| 午夜久久久在线观看| 国产视频内射| 永久网站在线| 中文字幕av电影在线播放| 久久毛片免费看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲综合精品二区| kizo精华| 久久久久视频综合| 国产日韩欧美视频二区| 五月开心婷婷网| av国产精品久久久久影院| 国产精品人妻久久久久久| 国产亚洲欧美精品永久| 精品亚洲乱码少妇综合久久| 久久精品国产自在天天线| 亚洲成人一二三区av| 国产精品国产三级专区第一集| 国产黄色视频一区二区在线观看| 我的老师免费观看完整版| 亚洲精品国产av成人精品| 国产成人精品在线电影| xxxhd国产人妻xxx| 色5月婷婷丁香| 国产亚洲最大av| 午夜免费男女啪啪视频观看| 午夜激情久久久久久久| 乱码一卡2卡4卡精品| 国产精品秋霞免费鲁丝片| 纯流量卡能插随身wifi吗| 欧美日韩视频精品一区| 韩国av在线不卡| 欧美精品人与动牲交sv欧美| 色婷婷久久久亚洲欧美| 狠狠婷婷综合久久久久久88av| videossex国产| 人人妻人人澡人人爽人人夜夜| 亚洲欧美日韩卡通动漫| 免费看光身美女| 黄色怎么调成土黄色| 亚洲,欧美,日韩| 成人影院久久| 考比视频在线观看| 成人亚洲欧美一区二区av| 一级毛片aaaaaa免费看小| 久久久久久久久久久久大奶| 伦理电影免费视频| 99热这里只有精品一区| 22中文网久久字幕| 卡戴珊不雅视频在线播放| 久久精品国产亚洲av天美| 纵有疾风起免费观看全集完整版| 久久影院123| av线在线观看网站| a级毛片在线看网站| 中文字幕av电影在线播放| 久久久久久久亚洲中文字幕| 日产精品乱码卡一卡2卡三| 91精品国产国语对白视频| 天天影视国产精品| 男人操女人黄网站| 高清欧美精品videossex| 亚洲人成网站在线观看播放| 精品国产一区二区久久| 成人国语在线视频| 在线观看人妻少妇| 久久久久视频综合| 精品人妻一区二区三区麻豆| 桃花免费在线播放| 久久久国产欧美日韩av| 我的女老师完整版在线观看| 三上悠亚av全集在线观看| 欧美日韩精品成人综合77777| 婷婷成人精品国产| 3wmmmm亚洲av在线观看| 久热久热在线精品观看| 哪个播放器可以免费观看大片| 99热全是精品| 亚洲精品亚洲一区二区| 一边摸一边做爽爽视频免费| 亚洲精品亚洲一区二区| 国产日韩欧美视频二区| 成人手机av| 嘟嘟电影网在线观看| 日本午夜av视频| 18禁观看日本| 精品国产一区二区久久| 97在线人人人人妻| 一本—道久久a久久精品蜜桃钙片| 亚洲精品一区蜜桃| 一区二区av电影网| 丝瓜视频免费看黄片| 一级毛片 在线播放| 国产精品蜜桃在线观看| 婷婷色综合大香蕉| 高清毛片免费看| 成人国产av品久久久| 欧美成人午夜免费资源| 免费播放大片免费观看视频在线观看| 亚洲av不卡在线观看| 26uuu在线亚洲综合色| 欧美成人午夜免费资源| 一区二区av电影网| 极品少妇高潮喷水抽搐| 欧美精品国产亚洲| 少妇的逼水好多| 日韩成人av中文字幕在线观看| 看免费成人av毛片| 国产av国产精品国产| 久久精品人人爽人人爽视色| 国语对白做爰xxxⅹ性视频网站| 成年美女黄网站色视频大全免费 | 高清视频免费观看一区二区| av国产精品久久久久影院| 亚洲中文av在线| 人妻人人澡人人爽人人|