• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anharmonic Properties of Aluminum from Direct Free Energy Interpolation Method?

    2018-01-24 06:23:17ZhiGuoZhao趙志國JunShengSun孫俊生XiuLuZhang張修路HaiFengYang楊海峰andZhongLiLiu劉中利
    Communications in Theoretical Physics 2017年5期
    關(guān)鍵詞:海峰修路

    Zhi-Guo Zhao(趙志國),Jun-Sheng Sun(孫俊生),Xiu-Lu Zhang(張修路),Hai-Feng Yang(楊海峰), and Zhong-Li Liu(劉中利),*

    1College of Physics and Electric Information,Luoyang Normal University,Luoyang 471022,China

    2The Unit 63615 of People’s Liberation Army,Kuerle 841001,China

    3Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology,Mianyang 621010,China

    1 Introduction

    Like platinum and tungsten,aluminum is another frequently used pressure standard material in high-pressure experiments,such as the shock wave experiment.The pressure-volume-temperature equation of states(EOS)provides key information for it as a pressure standard.[1]Al is a typicalsp-bonded simple metal and crystallized in face-centered-cubic structure under ambient conditions.With the simple electronic and lattice structures,it is often taken as a typical prototype for theoretical calculations.[2?3]For the theoretical calculation of free energy,the accurate anharmonic effects are very hard to be taken into account in the theoretical EOS in previous methods.

    Usually,the quasi-harmonic approximation(QHA)was used to calculate the temperature effects and it only takes account into the volume dependence of phonon frequencies of lattice vibrations.However,in real materials the phonon frequencies depend largely on temperature,especially in the highly anharmonic solids or at the temperature close to melting.This is because that the QHA omits part of anharmonicity and is only accurate when temperature below Debye temperature.[4?6]In order to overcome these diffculties of QHA,several anharmonic free energy calculation techniques have been developed,such as the thermodynamic integration technique[7?8]and the self-consistent ab initio lattice dynamics(SCAILD)method.[9?10]

    Molecular dynamics(MD)simulations include anharmonicity to any order beyond Debye temperature,[11?12]especially applicable to high-temperature free energy calculations.Thus it can correct the free energy of the QHA considerably in the free energy calculations.In this paper,we apply the MD simulations to extract anharmonic free energy of Al and then construct more accurate EOS beyond the QHA.

    The rest of the paper is organized as follows.In Sec.2,we describe the details about the computation method.We illustrate the results in detail and make deep discussions in Sec.3.The conclusions are presented in Sec.4.

    2 Computational Method

    2.1 Quasi-Harmonic Approximation

    The free energy of Al was first calculated by the quasi-harmonic approximation and then corrected by taking into account the phonon-phonon interactions.The quasi-harmonic approximation(QHA)describes volumedependent thermal effects based on lattice vibration models known as phonon,neglecting the phonon-phonon interactions.In the framework of the QHA,the Helmholtz free energy of a crystal system is,

    whereEstatic(V)is the zero-temperature energy of a staticlattice with volumeV.The termFzpis the zero-point motion energy written as,

    whereg(ω,0K)is the 0 K phonon density of states(PDOS)of the frequencyω.

    The termFph(V,T)in Eq.(1)is the lattice vibrational free energy,and is calculated from,

    2.2 Anharmonicity Corrections

    In the harmonic approximation,the PDOSg(ω,0K)is calculated from the force constants using either the direct method[13?14]or the density functional perturbation theory.[5,15]In the harmonic approximation,the phononphonon interaction contribution to free energy are neglected,resulting in large errors of thermodynamic properties at high temperature.Therefore,the phonons interactions must be fully taken into account to include the rest of the anharmonic effects.However,the rest anharmonic free energy calculation is very challenging.As we know that the explicit anharmonicity are naturally implied in molecular dynamics(MD)simulations.We can take into account the rest anharmonic effects from MD simulations.The PDOS atT,g(ω,T),can be extracted from the Fourier transform of autocorrelation of atomic position function r(t)in a constant temperature MD simulation.[16]

    According to the Wiener–Khintchine theorem,[17?18]the autocorrelation of position function r(t)is given by

    The PDOS atTis,

    The Helmholtz free energy of a crystal system is then rewritten as,

    whereEstatic(V)is the total energy of a static lattice with volumeV.

    In Eq.(6),the termFzpis the zero-point motion energy of the lattice written as,

    The termFph(V)in Eq.(6)is calculated from,

    After obtaining the finite number of temperature dependent PDOS(TD-PDOS)data,we use a much straitforward and simple method named the direct free energy interpolation(DFEI)method,to construct full anharmonic effects at any temperature.

    The DFEI method extracts anharmonic free energy at any temperature based on the limited several TD-PDOS data from MD simulations.The free energiesF(V,T)can be directly deduced from the TD-PDOS data at the specific temperaturesTs with the temperature interval 50 K,according to Eq.(6).The free energies at any temperatures were obtained by interpolating these resulting free energy data using the numerical analysis technique of the basis spline(B-spline).Finally,the anharmonic effects of other thermodynamic properties were corrected.

    2.3 The Interatomic Potential of Al

    We perform classical MD simulations to simulate Al at different pressure and temperature.Then,we gather the trajectories of all the atoms in crystal to calculate phonon density of states.The embedded-atom-method(EAM)[19?20]potential developed by Mishin et al.[21?22]was used to describe the interatomic interactions of Al atoms.For a metal system containingNatoms,the total potential energyEtotis the sum of the embedding energyFand a pair potential?,

    whererijis the distance between the atomsiandj.The functionFi(ρi)is the energy to embed the atomiinto the background electron densityρi,which is the superposition of the atomic densities,

    TheMD simulationswereconducted with the large-scale atomic/molecular massively parallel simulator(LAMMPS)[23?24]package.The simulation box constructed from the multiplication 14×14×14 of the facecentered-cubic(fcc)conventional unit cell including 10976 atoms.The simulations were conducted for all the supercells with different volumes in the canonical ensemble(NVT).The periodic boundary condition was used for all the atoms in the simulation box.The time step was 1 fs and the total number of time steps were 10000.From Fig.1,we see that 10000 MD steps are able to converge the PDOS well.

    Fig.1 (Color online)The PDOS obtained using different numbers of MD steps.

    3 Results and Discussions

    3.1 High-Temperature Phonon Dispersion and DOS

    The phonon dispersion curve of Al were calculated using the direct method from molecular dynamics simulations.[25]The calculated phonon dispersion curve of Al are compared well with experimental data at 298 K[26]in Fig.2(a).The frequency of lattice vibration decreases with temperature until very small negative frequencies occur at 900 K as shown in the circle of Fig.2(a).Such very small negative frequencies often result from the numerical noises in the direct phonon calculation method with molecular dynamics simulations.[26]The good agreement of the calculated phonon dispersion curve with experimental data show the validity of the EAM potential for Al.The TD-PDOSs of Al with atomic volumeV0=16.61?A3are obtained by Fourier transform of autocorrelation of atomic position function and plotted in Fig.2(b).The PDOSs are from 0 to 900 K with the interval of 100 K.The density of states of higher frequencies increase with temperature,attributed to the increasing collective excitations of higher frequencies from the phonon-phonon interactions.On the contrary,the lower frequencies of vibrations are inhibited with increasing temperature.The 900 K PDOS does not show any negative frequency and thus does not affect the free energy calculation.

    The volumes of supercells used for PDOS calculations had volumes varying from 1.08V0to 0.64V0with the interval of 0.1V0,whereV0is the equilibrium volume at ambient pressure.The simulation temperature for each volume ranged from 0 K to 950 K with the interval of 50 K.The volume range and interval made a good sample for the description of the equation of states of Al(Fig.3(a))compared with the experimental data,[27]indicating that the anharmonic free energy interpolation based on the PDOS with the temperature interval of 50 K is suffcient.

    Fig.2 (a)The comparison of the calculated 0 GPa phonon dispersion curves of Al with experimental data at 298 K.[26]The circle indicates the negative frequencies at Γ point.(b)The phonon DOS of Al at atomic volume of 16.61?A3from 0 to 900 K with the interval of 100 K along the arrow direction.

    3.2 Thermal Expansion Coeffcients

    We calculate the Helmholtz free energy from the PDOS according to Eq.(1).The third-order Birch–Murnaghan equation of states[28]was fitted to the calculated free energyF–Vdata at each temperature. The third-order Birch–Murnaghan equation of states is given by,

    whereη=(V0/V)1/3,andF0,V0,B0andB′are fitting parameters.The thermodynamic properties and the anharmonic effects are automatically analyzed using the our PhaseGO package.[29?30]

    The accuracy of the calculated thermal properties was checked by the thermal expansion coeffcient defined by,The calculated thermal expansion coeffcients as a function of temperature are shown in Fig.3(b).The QHA results are in good agreement with experimental data[31]below 400 K,while when the temperature is above 400 K the zero-pressure thermal expansion coeffcient gradually deviates from experiment.This attributes to the neglect of anharmonicity caused by phonon-phonon interactions.This deviation is also observed in the calculations for other transition metals,such as Ta,[32]Pt,[33]and Pd.[34]However,the DFEI results show good agreement with the experimental data[31]in Fig.3(b).

    Fig.3 (a)The comparison of the calculated isothermal compression curve with experimental data.[27](b)The calculated thermal expansion coeffcients of Al compared with experimental data.[31]

    3.3 Heat Capacity

    Fig.4 The specific heat of Al at constant volume and at constant pressure compared with the experimental data.[35]

    whereFis the Helmholtz free energy calculated from Eq.(6).The thermal expansion caused by anharmonic effects results in a difference betweenCPandCV.The difference between the two can be written as

    whereαVis the volume thermal expansion coeffcient andB0is the bulk modulus.Because the heat capacities are

    The specific heat at constant volume was calculated by obtained from a second derivative of the Helmholtz free energy,they are more sensitive to the tiny errors in the Helmholtz free energy.

    Figure 4 showsCVandCPas a function of temperature at 0 GPa.The calculatedCVaccords reasonably well with experimental data[35]below 600 K,and first increases dramatically as pressure increases and then finally approaches to 3R.The DFEI and QHA results are very similar.The calculatedCPis also in good comparison with experimental data.[35]The better agreement with experimental data is also found after anharmonic correction(DFEI),especially whenTis beyond 800 K.

    3.4 Grüneisen Parameter and Bulk Modulus

    The thermodynamic Grüneisen parameter was achieved by

    whereBTis isothermal bulk modulus.The isothermal bulk modulus was calculated from

    The calculated isothermal bulk modulus versus temperature curves at different pressures are shown in Fig.5(a).The isothermal bulk modulus curve at 0 GPa is very good agreement with the experimental data.[36]The calculated thermodynamic Grüneisen parameter is compared with the ab initio data from Ref.[37]in Fig.5(b).The calculated thermodynamic Grüneisen parameter is also in very good agreement with the reference data from Ref.[38].

    Fig.5(a)The calculated isothermal bulk modulus of Al at different pressures,in comparison with zero-pressure data[36](open circles).(b)The calculated thermodynamic Grüneisen parameter compared with ab initio data from Ref.[37].

    4 Conclusion

    In conclusion,we calculate and correct the thermodynamic properties of Al using the direct calculation method of full free energy of lattice vibrations,i.e.,the DFEI method which makes accurate anharmonic corrections for the thermodynamic properties of materials beyond the QHA.The calculated thermal expansion coeffcients of Al using DFEI method agree better with experiment than the QHA results.Furthermore,the calculated isotherms,the constant volume and constant pressure heat capacities,the bulk moduli using DFEI are all in good agreement with experimental data.This indicates that the DFEI method is indeed an effcient and accurate method to determining the thermodynamic properties of materials from the high temperature phonon density of states.

    [1]C.J.Pickard and R.J.Needs,Nat.Mater.9(2010)624.

    [2]R.Martin,Nature(London)400(1999)117.

    [3]J.C.Boettger and S.B.Trickey,Phys.Rev.B 53(1996)3007.

    [4]U.Hansen,P.Vogl,and V.Fiorentini,Phys.Rev.B 60(1999)5055.

    [5]S.Baroni,S.D.Gironcoli,A.D.Corso,and P.Giannozzi,Rev.Mod.Phys.73(2001)515.

    [6]S.Baroni,P.Giannozzi,and E.Isaev,Rev.Miner.Geochem.71(2010)39.

    [7]D.Alf`e,G.D.Price,and M.J.Gillan,Phys.Rev.B 64(2001)45123.

    [8]D.Alf`e,G.D.Price,and M.J.Gillan,Phys.Rev.B 65(2002)165118.

    [9]P.Souvatzis,O.Eriksson,M.I.Katsnelson,and S.P.Rudin,Phys.Rev.Lett.100(2008)95901.

    [10]P.Souvatzis,O.Eriksson,M.I.Katsnelson,and S.P.Rudin,Comput.Mater.Sci.44(2009)888.

    [11]I.Errea,M.Calandra,and F.Mauri,Phys.Rev.B 89(2014)64302.

    [12]R.Car and M.Parrinello,Phys.Rev.Lett.55(1985)2471.

    [13]D.Alf`e,Comput.Phys.Commun.180(2009)2622.

    [14]A.Togo,F.Oba,and I.Tanaka,Phys.Rev.B 78(2008)134106.

    [15]X.Gonze,Phys.Rev.B 55(1997)10337.

    [16]M.Thomas,M.Brehm,R.Fligg,et al.,Phys.Chem.Chem.Phys.15(2013)6608.

    [17]N.Wiener,Acta Math.55(1930)117.

    [18]A.Khintchine,Math.Ann.109(1934)604.

    [19]M.S.Daw and M.I.Baskes,Phys.Rev.B 29(1984)6443.

    [20]S.M.Foiles,M.I.Baskes,and M.S.Daw,Phys.Rev.B 33(1986)7983.

    [21]J.M.Winey,A.Kubota,and Y.M.Gupta,Modell.Simul.Mater.Sci.Eng.17(2009)55004.

    [22]J.M.Winey,A.Kubota,and Y.M.Gupta,Modell.Simul.Mater.Sci.Eng.18(2010)29801.

    [23]S.J.Plimpton,J.Comput.Phys.117(1995)1.

    [24]http://lammps.sandia.gov.

    [25]L.T.Kong,Comput.Phys.Commun.182(2011)2201.

    [26]R.Stedman and G.Nilsson,Phys.Rev.145(1966)492.

    [27]A.Hnstrm and P.Lazor,J.Alloy Compd.305(2000)209.

    [28]F.Birch,Phys.Rev.71(1947)809.

    [29]Z.L.Liu,Comput.Phys.Commun.191(2015)150.

    [30]Z.L.Liu,Comput.Phys.Commun.197(2015)341.

    [31]F.C.Nix and D.MacNair,Phys.Rev.60(1941)597.

    [32]Z.L.Liu,L.C.Cai,X.R.Chen,et al.,J.Phys.:Condens.Matter 21(2009)95408.

    [33]T.Sun,K.Umemoto,Z.Wu,J.C.Zheng,and R.M.Wentzcovitch,Phys.Rev.B 78(2008)24304.

    [34]Z.L.Liu,J.H.Yang,L.C.Cai,F.Q.Jing,and D.Alf`e,Phys.Rev.B 83(2011)144113.

    [35]M.Forsblom,N.Sandberg,and G.Grimvall,Phys.Rev.B 69(2004)165106.

    [36]A.Dewaele,P.Loubeyre,and M.Mezouar,Phys.Rev.B 70(2004)94112.

    [37]J.L.Nie,L.Ao,F.A.Zhao,M.Jiang,and X.T.Zu,Can.J.Phys.93(2015)55004.

    [38]W.B.Holzapfel,M.Hartwig,and W.Sievers,J.Phys.Chem.Ref.Data 30(2001)515.

    猜你喜歡
    海峰修路
    以牙還牙
    科教新報(2024年51期)2024-12-11 00:00:00
    Progress and challenges in magnetic skyrmionics
    活著
    歌海(2022年1期)2022-03-29 21:39:55
    小豬琪琪修路
    倪海峰
    兒童大世界(2019年3期)2019-04-11 03:33:38
    開常古道上有個“修路節(jié)”
    中國公路(2017年8期)2017-07-21 14:26:20
    My School
    Nonlinear symbolic LFT model for UAV
    修路
    小說月刊(2015年8期)2015-04-19 02:41:24
    修路
    小說月刊(2014年8期)2014-04-19 02:39:18
    男女边吃奶边做爰视频| 如何舔出高潮| 日本一本二区三区精品| 成人亚洲欧美一区二区av| 亚洲精品,欧美精品| 中国三级夫妇交换| 91久久精品国产一区二区成人| 青春草国产在线视频| 国产一区有黄有色的免费视频| 黄色一级大片看看| 亚洲成人中文字幕在线播放| 在线观看美女被高潮喷水网站| 国产人妻一区二区三区在| 极品少妇高潮喷水抽搐| 国产老妇女一区| 亚洲欧美日韩无卡精品| 免费观看性生交大片5| 亚洲综合精品二区| 亚洲成人中文字幕在线播放| 亚洲av福利一区| 日日啪夜夜撸| 菩萨蛮人人尽说江南好唐韦庄| 免费播放大片免费观看视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品国产亚洲| av一本久久久久| 91久久精品国产一区二区成人| 国语对白做爰xxxⅹ性视频网站| 成人无遮挡网站| 18禁裸乳无遮挡免费网站照片| 香蕉精品网在线| 中文资源天堂在线| 久久久午夜欧美精品| 久久久久久国产a免费观看| 亚洲精品日本国产第一区| 免费黄频网站在线观看国产| 身体一侧抽搐| 夫妻午夜视频| 热re99久久精品国产66热6| 免费看不卡的av| 成人毛片a级毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 中文乱码字字幕精品一区二区三区| 老女人水多毛片| 夫妻性生交免费视频一级片| 各种免费的搞黄视频| 国产在视频线精品| 午夜精品一区二区三区免费看| 肉色欧美久久久久久久蜜桃 | 性色avwww在线观看| 亚洲av在线观看美女高潮| av天堂中文字幕网| 国产成年人精品一区二区| 久久久久九九精品影院| 成年女人在线观看亚洲视频 | 久久99热6这里只有精品| 伊人久久国产一区二区| 国产精品精品国产色婷婷| 午夜福利网站1000一区二区三区| 边亲边吃奶的免费视频| 亚洲精品乱久久久久久| 在线 av 中文字幕| 人人妻人人看人人澡| 日韩一本色道免费dvd| 国产成人福利小说| 青春草国产在线视频| 麻豆成人av视频| 国产精品福利在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 欧美 日韩 精品 国产| 免费看光身美女| 哪个播放器可以免费观看大片| 午夜亚洲福利在线播放| av黄色大香蕉| 全区人妻精品视频| 国产一区二区亚洲精品在线观看| 韩国高清视频一区二区三区| 国产成人freesex在线| 亚洲av国产av综合av卡| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 成人亚洲欧美一区二区av| 看非洲黑人一级黄片| 日韩av在线免费看完整版不卡| 亚洲国产精品专区欧美| 亚洲国产精品成人久久小说| 国产精品不卡视频一区二区| 国内揄拍国产精品人妻在线| 一区二区三区免费毛片| 国产探花在线观看一区二区| 2021天堂中文幕一二区在线观| 激情 狠狠 欧美| 国产精品国产三级国产专区5o| 亚洲欧美成人精品一区二区| 男女下面进入的视频免费午夜| videossex国产| 99热这里只有是精品50| 亚洲精品久久久久久婷婷小说| 亚洲av电影在线观看一区二区三区 | 欧美潮喷喷水| 国产黄色免费在线视频| 免费观看性生交大片5| 亚洲精品乱码久久久v下载方式| 欧美日韩综合久久久久久| 日本午夜av视频| 自拍欧美九色日韩亚洲蝌蚪91 | 高清日韩中文字幕在线| 日本一二三区视频观看| 18+在线观看网站| 日本与韩国留学比较| 精品少妇久久久久久888优播| 久久久久久久大尺度免费视频| 99久久九九国产精品国产免费| 九九久久精品国产亚洲av麻豆| 日韩欧美精品免费久久| 日本一本二区三区精品| 2021天堂中文幕一二区在线观| 国产av国产精品国产| 高清在线视频一区二区三区| 亚洲精品视频女| 综合色丁香网| 老师上课跳d突然被开到最大视频| 欧美xxⅹ黑人| 欧美性感艳星| 亚洲精品国产av蜜桃| .国产精品久久| 免费不卡的大黄色大毛片视频在线观看| 色婷婷久久久亚洲欧美| 日韩一区二区视频免费看| 亚洲av国产av综合av卡| 一区二区三区免费毛片| 国产在线男女| 哪个播放器可以免费观看大片| 色播亚洲综合网| 精品亚洲乱码少妇综合久久| 精品国产露脸久久av麻豆| 成人国产麻豆网| 大片电影免费在线观看免费| 欧美激情在线99| 成年免费大片在线观看| 中文字幕久久专区| 精品国产一区二区三区久久久樱花 | 国产69精品久久久久777片| 日韩免费高清中文字幕av| 国产成人aa在线观看| 观看免费一级毛片| 波野结衣二区三区在线| 国产 一区精品| 亚洲国产欧美人成| 大片免费播放器 马上看| a级毛色黄片| 国产又色又爽无遮挡免| 午夜福利网站1000一区二区三区| 国产精品久久久久久精品电影| 国产黄片视频在线免费观看| 下体分泌物呈黄色| 国产乱人偷精品视频| 国产探花极品一区二区| 欧美亚洲 丝袜 人妻 在线| 国产亚洲91精品色在线| 午夜老司机福利剧场| 免费看日本二区| 日日摸夜夜添夜夜添av毛片| 少妇被粗大猛烈的视频| 日本欧美国产在线视频| 久久精品国产亚洲av涩爱| 婷婷色综合大香蕉| 毛片女人毛片| 国产成人午夜福利电影在线观看| 少妇被粗大猛烈的视频| 水蜜桃什么品种好| 欧美+日韩+精品| 国产极品天堂在线| 热re99久久精品国产66热6| 成人亚洲精品av一区二区| av线在线观看网站| 国产午夜精品一二区理论片| 三级经典国产精品| 日本色播在线视频| a级毛片免费高清观看在线播放| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品久久久com| 亚洲天堂av无毛| 99久久精品热视频| 女人十人毛片免费观看3o分钟| 极品少妇高潮喷水抽搐| 久久精品人妻少妇| 久久韩国三级中文字幕| 亚洲av中文字字幕乱码综合| 精品一区二区免费观看| 亚洲人与动物交配视频| av.在线天堂| av一本久久久久| 欧美极品一区二区三区四区| 国产熟女欧美一区二区| 综合色丁香网| 赤兔流量卡办理| 亚洲av成人精品一二三区| 中文乱码字字幕精品一区二区三区| 十八禁网站网址无遮挡 | 日本免费在线观看一区| 国产黄片视频在线免费观看| 人人妻人人看人人澡| 亚洲国产av新网站| 久久99热6这里只有精品| 亚洲成人av在线免费| 搡老乐熟女国产| 高清毛片免费看| 精品人妻偷拍中文字幕| 日韩成人av中文字幕在线观看| tube8黄色片| av在线观看视频网站免费| 国产免费一区二区三区四区乱码| 不卡视频在线观看欧美| 亚洲国产欧美在线一区| 国产在线一区二区三区精| 午夜日本视频在线| 久久久色成人| 成人免费观看视频高清| 超碰av人人做人人爽久久| 久久久久久久亚洲中文字幕| 久久精品久久久久久噜噜老黄| 亚洲精品日本国产第一区| 国产欧美亚洲国产| 中文精品一卡2卡3卡4更新| 男人狂女人下面高潮的视频| 亚洲精品视频女| 日韩欧美精品免费久久| 国产精品.久久久| 男女国产视频网站| 欧美97在线视频| 精品久久久久久久久亚洲| 水蜜桃什么品种好| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 亚洲人成网站在线观看播放| 国产欧美另类精品又又久久亚洲欧美| 国产一级毛片在线| av在线蜜桃| 久久韩国三级中文字幕| 国产又色又爽无遮挡免| av免费在线看不卡| 女人被狂操c到高潮| 永久免费av网站大全| 国产av国产精品国产| 久久久精品免费免费高清| 搡女人真爽免费视频火全软件| 精品人妻熟女av久视频| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 熟女av电影| 亚洲一级一片aⅴ在线观看| 蜜桃亚洲精品一区二区三区| 婷婷色麻豆天堂久久| 欧美成人一区二区免费高清观看| www.av在线官网国产| 有码 亚洲区| av黄色大香蕉| av播播在线观看一区| 精品少妇久久久久久888优播| 特大巨黑吊av在线直播| av.在线天堂| 久久久久久久午夜电影| 国产中年淑女户外野战色| 久久久欧美国产精品| 亚洲欧美日韩无卡精品| 色视频在线一区二区三区| videos熟女内射| 亚洲精品成人久久久久久| 水蜜桃什么品种好| 国产女主播在线喷水免费视频网站| 亚洲精品影视一区二区三区av| av在线亚洲专区| xxx大片免费视频| 久久久久久久大尺度免费视频| 亚洲一区二区三区欧美精品 | 亚洲av国产av综合av卡| 精品人妻熟女av久视频| 欧美精品一区二区大全| 高清欧美精品videossex| 白带黄色成豆腐渣| 嫩草影院新地址| 人人妻人人看人人澡| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品中文字幕在线视频 | 青春草视频在线免费观看| 日本色播在线视频| 国产一级毛片在线| 白带黄色成豆腐渣| 国产精品三级大全| 亚洲久久久久久中文字幕| 2022亚洲国产成人精品| 性色avwww在线观看| www.av在线官网国产| 欧美性猛交╳xxx乱大交人| 联通29元200g的流量卡| 一级毛片 在线播放| 久久久久久久国产电影| 日本午夜av视频| a级毛色黄片| 精品人妻偷拍中文字幕| 水蜜桃什么品种好| 国产高清不卡午夜福利| 一二三四中文在线观看免费高清| 免费大片黄手机在线观看| 欧美性猛交╳xxx乱大交人| 国产伦精品一区二区三区四那| 一级毛片 在线播放| 高清毛片免费看| 免费观看a级毛片全部| 少妇人妻精品综合一区二区| 男的添女的下面高潮视频| 午夜福利视频1000在线观看| 99精国产麻豆久久婷婷| 亚洲国产最新在线播放| 国产老妇女一区| 一个人观看的视频www高清免费观看| 熟女av电影| 国产精品三级大全| 日韩电影二区| 亚洲av免费在线观看| 午夜精品国产一区二区电影 | 一本一本综合久久| 精品熟女少妇av免费看| 免费观看的影片在线观看| 人人妻人人澡人人爽人人夜夜| av在线天堂中文字幕| 99久久精品一区二区三区| 777米奇影视久久| 久久久a久久爽久久v久久| 亚洲av成人精品一二三区| 亚洲av不卡在线观看| 国产真实伦视频高清在线观看| 亚洲精品日本国产第一区| 少妇高潮的动态图| 久久精品综合一区二区三区| 欧美高清性xxxxhd video| 在线天堂最新版资源| 国产亚洲91精品色在线| 日本黄色片子视频| 最近中文字幕2019免费版| 777米奇影视久久| 少妇 在线观看| 日日摸夜夜添夜夜添av毛片| 久久久亚洲精品成人影院| 婷婷色综合www| 国产毛片a区久久久久| 亚洲av.av天堂| 久久精品久久久久久久性| 男女啪啪激烈高潮av片| 久久久久国产精品人妻一区二区| 久久久亚洲精品成人影院| 国产 精品1| 日本-黄色视频高清免费观看| 精品久久久久久久末码| 国产高清不卡午夜福利| 亚洲欧美清纯卡通| 熟女电影av网| 亚洲va在线va天堂va国产| 大香蕉久久网| 一个人观看的视频www高清免费观看| 不卡视频在线观看欧美| 国产成人免费无遮挡视频| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频 | 亚洲va在线va天堂va国产| 黄色日韩在线| 欧美少妇被猛烈插入视频| 熟妇人妻不卡中文字幕| 欧美精品一区二区大全| 一本久久精品| 亚洲第一区二区三区不卡| 亚洲最大成人手机在线| 亚洲av欧美aⅴ国产| 中文乱码字字幕精品一区二区三区| 三级国产精品欧美在线观看| 男人爽女人下面视频在线观看| 我的老师免费观看完整版| 久久久色成人| 久久久亚洲精品成人影院| 51国产日韩欧美| 国内少妇人妻偷人精品xxx网站| 国产 精品1| 日韩av在线免费看完整版不卡| 亚洲精品第二区| 日韩av在线免费看完整版不卡| 国产中年淑女户外野战色| 2022亚洲国产成人精品| 嘟嘟电影网在线观看| 欧美日韩视频精品一区| 国产精品久久久久久久久免| 国产一区二区在线观看日韩| 直男gayav资源| 国产成人免费观看mmmm| 精品一区二区三卡| 国产一区二区亚洲精品在线观看| 日日摸夜夜添夜夜添av毛片| 久久97久久精品| 国产欧美亚洲国产| 丰满少妇做爰视频| 午夜福利在线观看免费完整高清在| 免费观看的影片在线观看| 在线看a的网站| 色婷婷久久久亚洲欧美| 男人舔奶头视频| 麻豆精品久久久久久蜜桃| 一区二区三区精品91| 国产乱来视频区| 亚洲欧美日韩无卡精品| 午夜精品国产一区二区电影 | 性色av一级| 婷婷色麻豆天堂久久| 欧美丝袜亚洲另类| 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆| 99久久中文字幕三级久久日本| 又黄又爽又刺激的免费视频.| 色吧在线观看| 国产高清三级在线| 一级毛片电影观看| 一个人看视频在线观看www免费| 嫩草影院新地址| 十八禁网站网址无遮挡 | 国产亚洲最大av| 国产伦在线观看视频一区| av在线播放精品| 人妻制服诱惑在线中文字幕| 在线观看免费高清a一片| 亚洲经典国产精华液单| 日韩欧美精品免费久久| 亚洲av欧美aⅴ国产| 99热全是精品| 中文欧美无线码| 久久久久久久国产电影| 一级毛片 在线播放| 联通29元200g的流量卡| 国产精品爽爽va在线观看网站| 久久久欧美国产精品| 亚洲av福利一区| 亚洲人成网站高清观看| 99热国产这里只有精品6| 久久久国产一区二区| 97热精品久久久久久| 91狼人影院| a级毛片免费高清观看在线播放| av在线app专区| 两个人的视频大全免费| 一个人观看的视频www高清免费观看| 99久久精品一区二区三区| 国产成人91sexporn| 97精品久久久久久久久久精品| www.av在线官网国产| 一本色道久久久久久精品综合| 蜜桃亚洲精品一区二区三区| 高清午夜精品一区二区三区| av在线播放精品| 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站| av卡一久久| 欧美日本视频| 国产成人免费观看mmmm| 青青草视频在线视频观看| 午夜福利视频1000在线观看| 日本熟妇午夜| 久久ye,这里只有精品| 夜夜爽夜夜爽视频| 久久久成人免费电影| 美女视频免费永久观看网站| 免费高清在线观看视频在线观看| 男人爽女人下面视频在线观看| 99精国产麻豆久久婷婷| 亚洲,一卡二卡三卡| 亚洲国产精品999| 久久精品综合一区二区三区| 日本一本二区三区精品| 日本wwww免费看| 欧美高清性xxxxhd video| 国产一区二区三区av在线| 午夜爱爱视频在线播放| 亚洲电影在线观看av| 最后的刺客免费高清国语| 久久女婷五月综合色啪小说 | 欧美日韩国产mv在线观看视频 | 久久久午夜欧美精品| 又爽又黄无遮挡网站| 最新中文字幕久久久久| 在线观看人妻少妇| 国产精品三级大全| 国产毛片a区久久久久| 最近手机中文字幕大全| 亚洲精品自拍成人| 国产精品久久久久久久久免| 成人国产av品久久久| 成年女人看的毛片在线观看| 亚洲怡红院男人天堂| 在线免费十八禁| 高清午夜精品一区二区三区| 精品久久久久久久末码| 亚洲成色77777| 嫩草影院新地址| 国产成人freesex在线| 欧美一区二区亚洲| 另类亚洲欧美激情| 国产黄a三级三级三级人| 黄色欧美视频在线观看| 777米奇影视久久| 真实男女啪啪啪动态图| 最近最新中文字幕免费大全7| 伊人久久国产一区二区| 少妇人妻 视频| 在线亚洲精品国产二区图片欧美 | 亚洲精品国产成人久久av| 免费看光身美女| 99久久精品国产国产毛片| 日韩av不卡免费在线播放| 国产91av在线免费观看| 久久人人爽人人爽人人片va| 内射极品少妇av片p| 免费观看的影片在线观看| 久久久午夜欧美精品| 国产在线一区二区三区精| 久久人人爽人人爽人人片va| 亚洲欧美日韩东京热| 亚洲va在线va天堂va国产| 欧美亚洲 丝袜 人妻 在线| 精品99又大又爽又粗少妇毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 五月伊人婷婷丁香| 丝袜喷水一区| 午夜亚洲福利在线播放| 国产av码专区亚洲av| 青春草国产在线视频| 亚洲av成人精品一二三区| 欧美潮喷喷水| 少妇猛男粗大的猛烈进出视频 | 久热久热在线精品观看| 日日撸夜夜添| 日韩在线高清观看一区二区三区| 91精品伊人久久大香线蕉| 国产乱人视频| 香蕉精品网在线| 五月玫瑰六月丁香| 人妻制服诱惑在线中文字幕| 五月天丁香电影| 精品人妻视频免费看| 亚洲天堂国产精品一区在线| 欧美一区二区亚洲| 99视频精品全部免费 在线| 99热这里只有是精品在线观看| 久久热精品热| 麻豆乱淫一区二区| 国产精品偷伦视频观看了| 亚洲一级一片aⅴ在线观看| 香蕉精品网在线| 五月伊人婷婷丁香| 丝袜喷水一区| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av天美| 精品久久久久久电影网| av线在线观看网站| 亚洲美女视频黄频| 国产乱人偷精品视频| 少妇人妻久久综合中文| 又黄又爽又刺激的免费视频.| 少妇人妻 视频| 中国国产av一级| 搞女人的毛片| 一个人观看的视频www高清免费观看| 国产老妇女一区| 男人爽女人下面视频在线观看| 午夜福利高清视频| 久久99热6这里只有精品| 深夜a级毛片| 青春草国产在线视频| 亚洲精品乱码久久久久久按摩| 熟女人妻精品中文字幕| 3wmmmm亚洲av在线观看| 国产欧美日韩精品一区二区| 女人十人毛片免费观看3o分钟| 久久久久久九九精品二区国产| 亚洲美女搞黄在线观看| av在线天堂中文字幕| 高清午夜精品一区二区三区| 男人爽女人下面视频在线观看| 国产永久视频网站| 日本黄色片子视频| 亚洲成人精品中文字幕电影| 免费黄网站久久成人精品| 有码 亚洲区| 国产欧美亚洲国产| 大香蕉97超碰在线| 国产精品无大码| av在线app专区| 国产一区二区亚洲精品在线观看| 黄色一级大片看看| 麻豆成人午夜福利视频| 国产黄频视频在线观看| videos熟女内射| 亚洲精品国产色婷婷电影| 九草在线视频观看| 色哟哟·www| 精品人妻熟女av久视频| 22中文网久久字幕| 国产精品一区www在线观看| 免费观看av网站的网址| 热99国产精品久久久久久7| 国内精品美女久久久久久| 少妇 在线观看| 2022亚洲国产成人精品| 国产乱来视频区| 哪个播放器可以免费观看大片| 99热这里只有精品一区| av免费在线看不卡| 成人综合一区亚洲| 91久久精品国产一区二区三区|