• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlling Thermodynamic Properties of Ferromagnetic Group-IV Graphene-Like Nanosheets by Dilute Charged Impurity

    2018-01-24 06:23:14MohsenYarmohammadiandKavoosMirabbaszadeh
    Communications in Theoretical Physics 2017年5期

    Mohsen Yarmohammadiand Kavoos Mirabbaszadeh

    Department of Energy Engineering and Physics,Amirkabir University of Technology,Tehran,Iran

    1 Introduction

    The properties of graphene,the one-atom-thick sheet of carbon atoms with thesp2hybridization,were first discussed in the literature more than sixty years ago.[1]Since then,graphene has been intensively investigated with focus on its physical and chemical properties.[2]Because of its unique symmetry,electron and hole bands of graphene show linear band crossing at the Fermi level,[3]resulting in a massless Dirac fermion like behavior of charge carriers.It has found several two-dimensional(2D)materials like group-IV graphene-like structures,hexagonal boron-nitride(h-BN)and MoS2,which present null gaps in both flat or buckled con figurations.Although these materials have a honeycomb lattice,but their properties are different.[4?8]The band gap is a measurement of the threshold voltage and on-off ratio of the field effect transistors.[9?10]In recent years,elemental sheets of silicon and germanium(silicene and germanene respectively)have been emerging as strong contenders in the realm of 2D materials.[11?12]There have been several theoretical studies assessing their fundamental properties while experimental analyses are just in their infancy,as practical synthesis methods are being explored to establish well defined fabrication techniques and parameters.Studies predict that such elemental sheets may also possess Dirac fermions similar to graphene and much simpler techniques may become available for their band gap engineering.Although semi-metallic,the main hurdle experienced in realizing silicene and germanene is that unlike graphene,they do not form a van der Waals layered structures in their bulk phase.Hence,they do not exist as freestanding sheets but synthesized as adlayer structures on ordered substrates.[13]Despite this fact,the exceptional findings through theoretical and preliminary experimental analyses,along with its compatibility to the current silicon based electronics,continues to inspire the exploration of 2D silicene and other group-IV elemental materials(germanene,stanene).However,a lot remains to be explored before these materials can be established as viable alternatives for the next generation of electronic applications.[14?15]

    Successful realization of single crystal silicon monolayer structures[16?17]through chemical exfoliation shows that 2D silicon monolayers with their low resistivity and extremely thin structures can be quite promising for nanoelectronics. Unlike graphene,silicene has a hexagonal atomic arrangement with a buckled con figuration because of its large ionic radius of silicon atoms,[18?21]as presented in Fig.1.From this point,its sublattices(AandB)sit in two parallel planes with a vertical distance of 0.46 ?A.[22?23]The low-energy dynamics of fermions in pristine graphene describes by Dirac Hamiltonian but in silicene,germanene and stanene due to the strong spinorbit coupling(SOC),carriers are massive with an energy gap.[24?25]This gap can be modulated via an applied perpendicular EF to its layer,which leads to the many attractive properties.[26?33]Unlike electronic properties,thermal properties of group-IV are still not well studied.Many works show that the thermal conductivity of silicene is predicted around(20–65)W/mK.[34?38]Electronic heat capacity(EHC)of a semiconductor system is defined as the ratio of the heat used by the carriers(here,Diracfermions)to the rise in temperature of the system.[39]On the other hand,magnetic susceptibility(MS)is the degree of magnetization of a material in response to an external applied magnetic field.Furthermore,our system is considered as a ferromagnetic with an exchange field.Electrons in a system scatter from dilute charged impurities with a scattering rate.This induces a characteristic energy scale at Dirac points.For this reason,impurities have a strong effect on physical properties of materials such as electronic and thermal properties for their applications in electronic devices.Motivated by the recent experimental developments and theoretical investigations on 2D monolayer honeycomb structures,in this paper we carry out a systematic study of three similar structures of group-IV elements based on the Green’s function method.

    In this work,we have investigated the temperature dependence of EHC and MS in ferromagnetic silicene,germanene and stanene in the presence of dilute charged impurity at Dirac points.Also,at a given impurity concentration(IC)and impurity scattering strength(ISS),EHC and MS have been studied with EF.Green’s function approach is carried out with the Kane-Mele Hamiltonian to study the dynamics of carriers in the system.In this work,impurities are randomly doped on sheets.The organization of this paper is as follows:In Sec.2,the methods together with parameters used in our calculations are outlined.The thermodynamic properties of these structures are investigated in Sec.3.In Sec.4,we present our results regarding the calculations.In Sec.5,our conclusions are presented.

    2 Methods

    Here is considered a monolayer system on thexy-plane,exposed to the perpendicular EFEz,as illustrated in Fig.1.The system is described by following model in order to study the dynamics of carriers[25,40]

    in which the first term denotes the nearest-neighbor hopping with energy oft0and the sum runs over all neighboring pairscreates(annihilates)an electron with spinσ=↑,↓ at sitei.The first two terms illustrate the Kane–Mele Hamiltonian describing the SOC with ΔSO,being→σ=(σx,σy,σz)the Pauli matrices.Also is defined

    with→diand→djbeing the two typical vectors,which connect the next nearest neighbors,and sum over all such pairs indicated by 〈i,j〉.[41?42]The third term is the staggered sublattice potential term as mentioned before in Sec.1 with?i=+1(?1)forA(B)sites.The final term is related to the induced exchange magnetic field by the magnetic insulator substrate.The low-energy limit of the above Hamiltonian in a ferromagnetic system in presence of a perpendicular uniform EF is described as:[25,43]

    whereinvFis the Fermi velocity of carriers for the inplane momentum k=(kx,ky)of the first Brillouin zone.ais the equilibrium lattice constant of structures andτi(i=x,y,z)are the Pauli matrices in the sublattice space.The first term in Eq.(1)is the pristine graphene Hamiltonian(Dirac Hamiltonian)at Dirac cone approximation forK(K′)points indexed byη=+1(?1).This term refers to the intra-layer hopping fromAatoms toBatoms and vice versa.The second term is the Kane–Mele Hamiltonian for the intrinsic SOC.[44]If systems rest onto the surface of a magnetic insulator substrate,an exchange magnetization can be induced asM= ΔSO/2.[45?46]σ=+1(?1)are used for spin-up and spin-down subbands.The Green’s function matrix of the unperturbed system can be readily obtained by following equation

    Having substituted Eq.(2)into Eq.(3),the explicit form of the Green’s function matrix is found but has not been written here because it is quite lengthy.The lattice constantsa,SOC and Fermi velocity at the Dirac pointKare given as((3.86,4.02 and 4.70)?A),((5.42,5.24 and 4.70)×105m/s)and((1.55,23.9 and 73.5)meV)for(silicene,germanene and stanene),respectively.[25]According to the Born approximation in the scattering theory[47]and usingTmatrix,[47]the electronic self-energy matrix of disordered system in the presence of finite but small density of impurity atoms,ni=Ni/N,could be obtained as

    whereNis the number of unit cell atoms andνidenotes the electronic on-site energy,which shows the strength of scattering potential.The local propagator of unperturbed system is given by

    In order to include some contributions from multiple site scattering,we replace the local bare Green’s functionby local full one,in the expression of the self-energy matrix in Eq.(4),leading to full self-consistent Born approximation.Under neglecting interstice correlations,the self-consistent problem requires the solution of equation

    The electronic self-energy should be found from a selfconsistent solution of Eq.(6).The pertubative expansion for the Green’s function of disordered system is obtained via the Dyson equation[47]as

    In the next section,EHC and MS are calculated.

    Fig.1 The(a)side view and(b)top view schematic illustration of group-IV graphene-like nanosheets.The A and B sites separated by a distance 2d within the electric field(EF)Ez.The black dashed lines illustrate the Bravais unit cell including two atoms.→diand→djare two typical vectors connecting the next nearest neighbors.

    3 Electronic Heat Capacity and Magnetic Susceptibility

    Density of states(DOS)can be calculated by trace of the imaginary part of the Green’s function matrix,D(ε)= ?? TrG(ε)/π.[48]Taking trace over the quantum numbers,which label the Hamiltonian,engaging Eqs.(1)and(3)along with setting iωn→ε+i0+as an analytical continuation(being 0+a very small real number),the total DOS would be eventuated

    whereμdescribes a sub-site andNcis the number of unit cells.The EHC could be introduced by following expression[39]

    in whichD(ε)calculated by Eq.(8)andf(ε) =1/[eε/kBT+1](kBis the Boltzmann constant)represents the Fermi–Dirac distribution function.By using Eqs.(8)and(9),the EHC would be obtained as

    and MS could be introduced by following expression[39]

    in whichf(E)=1/[eε/kBT+1](beingkBthe Boltzmann constant)stands for the Fermi–Dirac distribution function.Calling Eqs.(8)and(11),the MS would be obtained by

    4 Numerical Results

    In this section,taking into account Eqs.(2),(7),(10),and(12),we obtain the entire low-energy EHC and MS curves around the DiracKpoint and spin-up because of the much number of results besides theK′point and spindown.Because of the unique structure of aforementioned nanosheets and also a symmetry behavior between DiracK(K′)point with spin-up(down)andK′(K)point with spin-down(up),as verified in Refs.[26–27,30,32],we have focused on theKpoint and spin-up cases for reduction of the same results and curves.Also,we have completed our numerical calculations based on the reported parameters in Ref.[25].

    It is well-known that EHC of semiconductors at low temperatures is given byC(T)∝ e?Δ/kBT.[39,49]We see that all curves for EHC exhibit the same behavior with respect to the temperature.Remarkable in every curve is an anomalous peak,so-called the Schottky anomaly,which appears over a small range of temperatures when thermal energy reaches to the energy gap between the subbands.[50?51]The Schottky anomaly as an interesting effect can be explained in terms of the changing in the entropy of the system.As we know,at zero temperature only the lowest energy level is occupied and the entropy is equal to zero.In this regard,there is a very little probability of transition to a higher energy level.As soon as the temperature increases,the entropy increases too monotonausly and therefore the probability of the transition goes up.As soon as the temperature closes to the difference between the energy levels in the system,a broad peak appears,which is corresponding to a large change in the entropy for a small change in temperature.At high temperatures,all of levels are occupied,so there is again a little change in the entropy for small changes in temperature and thus a lower heat capacity.[52?53]Here Δ is the combined EF and impurity scattering potentials.Interaction between conducting electrons and dilute charged impurities affects the scattering rate of electrons.

    Fig.2 Electronic heat capacity in terms of temperature at different electric field strengths for(a)silicene,(b)germanene,(c)stanene and(d)all structures at Δz= ΔSO.

    Fig.3 As Fig.2 but for magnetic susceptibility.

    Fig.4 Temperature-dependent electronic heat capacity for various impurity concentrations for(a)silicene,(b)germanene,(c)stanene and(d)all structures at Δz= ΔSO,νi=0.4ΔSOand ni=0.1.

    Fig.5 Similar to Fig.4 but for magnetic susceptibility.

    Fig.6 Temperature behavior of electronic heat capacity for various impurity scattering strengths for(a)silicene,(b)germanene,(c)stanene and(d)all structures at Δz=(3/2)ΔSO,νi=0.4ΔSOand ni=0.1.

    Fig.7 Like Fig.6 but for magnetic susceptibility.

    The evaluation of EHC with EF has been presented in Fig.2.For silicene,spin-up band gap decreases at Δz≤ ΔSOwhile increases at Δz>ΔSO,which is in agreement with derived findings in Ref.[32].It means that the Schottky anomaly appears atkBT<ΔSO(kBT>ΔSO)for Δz<ΔSO(Δz>ΔSO).For germanene and stanene structures,the spin-up band gaps remain constant because of their large SOC,which does not allow the quantum states to change with EF.In fact,change of Δzin comparison with these large SOCs is negligible.For these nanosheets,there is a critical EF,Δz=(1/2)ΔSO,where EHC is maximum.At low EF strengths,scattering rate is normal and systems see EF as a perturbation that affects their electron transports,but at Δz= ΔSO,systems back to their initial states because of the uniform EF with a smaller transport.For Δz>ΔSO,systems encounter with a unusual scattering rate and EHC increases.These are invalid for germanene and stanene because of their large SOC.For Δz>ΔSO,we have minimum EHC for germanene and stanene structures.In Fig.2(d),silicene(stanene)has the maximum(minimum)EHC at Δz=ΔSO.

    Figure 3 show the temperature-dependent magnetic susceptibility like Fig.2.Each curve bears a crossover,which originates from degenerated energy levels in the electronic minibands and parts the susceptibility into two temperature regions with a sharp positive slope before the apex and a relatively less negative slope after that.[52]According to the concept of magnetic susceptibility,which is a famous topic in every magnetic books and literatures,we have three magnetic orders based on the MS curves for spins including antiferromagnetic,ferromagnetic and paramagnetic.Susceptibility appears as response of the system to the interaction between magnetic field and spin of carriers,which changes the net magnetization of the system.To investigate the temperature behavior of susceptibility,the competition between thermal energy and mentioned interaction plays a key role in the system,leading to the change of magnetization.It is shown that at low temperatures,spin ordering of antiferromagntic systems changes interestingly with magnetic field and MS increases with temperature(albeit in small ranges).When thermal energy reaches to the band gap size of the system,MSmaxoccurs and after that MS decreases,i.e.,system does not answer to magnetic field at high temperatures.Generally,at low temperatures,magnetic field is dominant and MS increases while at high temperatures,temperature is dominant and MS decreases but with a critical temperature,known as Neel temperature.In fact,magnetic field at low temperatures flips the spins and the number of spins with the same directions increases,which leads to the increase of MS but at high temperatures,magnetic field cannot flip the spins and MS decreases because of the high scattering rate of carriers at high temperatures,as shown in the following figure.In ferromagnetic state,all spins have the same directions and at low temperatures,MS decreases with a severe slope up to the Curie temperature.Finally,paramagnetic materials have the random spin directions and MS decreases slightly with temperature because of the weak coupling between spins and external magnetic field.At first,spin-up have the ferromagnetic con figuration while for Δz<ΔSOand Δz>ΔSO,silicene show antiferromagnetic phase and transitions to paramagnetic at Δz= ΔSO.These changes are not valid for germanene and stanene structures and only at Δz<ΔSO,systems show the antiferromagnetic phase.

    Presented in Fig.4 are temperature-dependent EHC for various ICs at Δz= ΔSOandνi/ΔSO=0.4.One can see that EHC increases withniand the band gap size does not change for silicene.Interestingly,EHC decreases withnifor germanene and stanene,which it can be understood by their large intrinsic SOC.Also,it is necessary to say that these changes are at 1<kBT/ΔSO<2 and 1<kBT/ΔSO<3/2 for germanene and stanene,respectively.Figure 4(d)presents silicene(stanene)has the EHCmax(EHCmin).Figure 5 shows that impurity transited the magnetic order of the spins-up from paramagnetic to ferromagnetic phase by flipping.Germanene and stanene do not have phase transition withni.Silicene(stanene)responses to the external magnetic field as maximum(minimum)behavior as shown in Fig.5(d).

    Finally,we have investigated the temperature behavior of EHC and MS of these systems for various ICCs in Figs.6 and 7.Generally,EHC decreases withνi/ΔSOin silicene.Also,the band gap decreases withνi/ΔSObecause the crossover moves towards the lower temperatures.In germanene and stanene,EHC decreases slightly withνi/ΔSOup toνi<ΔSOwhile increases forνi>ΔSO.For MS results,according to the previous descriptions on magnetic order,silicene’s phase is antiferromagnetic while germanene and stanene are at ferromagnetic phase and all structures have MSmaxatνi>ΔSO.

    5 Summary

    In summary,based on symmetry aspects and the massive Dirac theory combined with the Green’s function method,we derived the temperature behavior electronic heat capacity and magnetic susceptibility of silicene,germanene and stanene with electric field,impurity concentration and impurity scattering strength.Spin-up band gap changes with the mentioned above quantities because of the change of the scattering rate of carriers.We have found that the impurity-dependent magnetic susceptibility curves lead to a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases.

    [1]A.H.Castro Neto,F.Guinea,N.M.R.Peres,K.S.Novoselov,and A.K.Geim,Rev.Mod.Phys.81(2009)109.

    [2]A.K.Geim,Science 324(2009)1530.

    [3]P.R.Wallace,Phys.Rev.71(1947)622.

    [4]K.F.Mak,C.Lee,J.Hone,J.Shan,and T.F.Heinz,Phys.Rev.Lett.105(2010)136805.

    [5]A.H.Castro Neto,F.Guinea,N.M.R.Peres,K.S.Novoselov,and A.K.Geim,Rev.Mod.Phys.81(2009)109.

    [6]N.M.R.Peres,Rev.Mod.Phys.82(2010)2673.

    [7]D.Pacile,J.C.Meyer,C.O.Girit,and A.Zettl,Appl.Phys.Lett.92(2008)133107.

    [8]K.S.Novoselov,D.Jiang,F.Schedin,T.J.Booth,V.V.Khotkevich,S.V.Morozov,and A.K.Geim,Proc.Natl.Acad.Sci.USA 102(2005)10451.

    [9]Y.Lin,K.A.Jenkins,A.Valdes-Garcia,J.P.Small,D.B.Farmer,and P.Avouris,Nano Lett.9(2009)422.

    [10]J.Kedzierski,P.Hsu,P.Healey,P.W.Wyatt,C.L.Keast,M.Sprinkle,C.Berger,and W.A.de Heer,IEEE Trans.Electron Devices.55(2008)2078.

    [11]Q.Tang and Z.Zhou,Prog.Mater.Sci.58(2013)1244.

    [12]L.C.L.Yan Voon and G.G.Guzmn-Verri,MRS Bull.39(2014)366.

    [13]P.Vogt,P.De Padova,C.Quaresima,J.Avila,E.Frantzeskakis,M.C.Asensio,A.Resta,B.Ealet,and G.Le Lay,Phys.Rev.Lett.108(2012)155501.

    [14]L.Li,Y.Yu,G.J.Ye,Q.Ge,X.Ou,H.Wu,D.Feng,X.H.Chen,and Y.Zhang,Nat.Nanotechnol.9(2014)372.

    [15]H.Liu,A.T.Neal,Z.Zhu,Z.Luo,X.Xu,D.Tomnek,and P.D.Ye,ACS Nano 8(2014)4033.

    [16]H.Nakano,T.Mitsuoka,M.Harada,K.Horibuchi,H.Nozaki,N.Takahashi,T.Nonaka,Y.Seno,and H.Nakamura,Angew Chem.118(2006)6451.

    [17]R.Krishnan,Q.Xie,J.Kulik,X.D.Wang,S.Lu,M.Molinari,Y.Gao,T.D.Krauss,and P.M.Fauchet,J.Appl.Phys.96(2004)1.

    [18]B.Lalmi,H.Oughaddou,H.Enriquez,A.Kara,S.Vizzini,B.Ealet,and B.Aufray,Appl.Phys.Lett.97(2010)223109.

    [19]P.E.Padova,C.Quaresima,C.Ottaviani,et al.,Appl.Phys.Lett.96(2010)261905.

    [20]B.Aufray,A.Vizzini,H.Oughaddou,C.Lndri,B.Ealet,and G.L.Lay,Appl.Phys.Lett.96(2010)183102.

    [21]P.Vogt,P.De Padova,C.Quaresima,et al.,

    [22]Z.Ni,Q.Liu,K.Tang,et al.,Nano Lett.12(2012)113.

    [23]N.D.Drummond,V.Z’olyomi,and V.I.Fal’ko,Phys.Rev.B 85(2012)075423.

    [24]C.C.Liu,W.Feng,and Y.Yao,Phys.Rev.Lett.107(2011)076802.

    [25]C.C.Liu,H.Jiang,and Y.Yao,Phys.Rev.B 84(2011)195430.

    [26]M.Ezawa,New J.Phys.14(2012)033003.

    [27]M.Ezawa,Phys.Rev.Lett.109(2012)055502.

    [28]X.T.An,Y.Y.Zhang,J.J.Liu,and S.S.Li,New J.Phys.14(2012)083039.

    [29]M.Tahir and U.Schwingenschlogl,Sci.Rep.3(2013)1075.

    [30]M.Ezawa,Phys.Rev.Lett.110(2013)026603.

    [31]W.F.Tsai,C.Y.Huang,T.R.Chang,H.Lin,H.T.Jeng,and A.Bansil,Nat.Commun.4(2013)1500.

    [32]C.J.Tabert and E.J.Nicol,Phys.Rev.Lett.110(2013)197402.

    [33]H.Pan,Z.Li,C.C.Liu,G.Zhu,Z.Qiao,and Y.Yao,Phys.Rev.Lett.112(2014)106802.

    [34]E.Scalise,M.Houssa,G.Pourtois,B.Broek,V.Afanasev,and A.Stesmans,Nano Res.6(2013)19.

    [35]H.P.Li and R.Q.Zhang,Eur.Phys.Lett.99(2012)36001.

    [36]M.Hu,X.Zhang,and D.Poulikakos,Phys.Rev.B 87(2013)195417.

    [37]Q.X.Pei,Y.W.Zhang,Z.D.Sha,and V.B.Shenoy,J.Appl.Phys.114(2013)033526.

    [38]T.Y.Ng,J.Yeo,and Z.Liu,Int.J.Mech.Mater.Des.9(2013)105.

    [39]C.Kittle,Introduction to Solid State Physicseighth ed.Wiley,New York(2004).

    [40]B.Aufray,A.Vizzini,H.Oughaddou,C.Lndri,B.Ealet,and G.L.Lay,Appl.Phys.Lett.96(2010)183102.

    [41]C.L.Kane and E.J.Mele,Phys.Rev.Lett.95(2005)146802.

    [42]C.L.Kane and E.J.Mele,Phys.Rev.Lett.95(2005)226801.

    [43]T.Yokoyama,Phys.Rev.B 87(2013)241409(R).

    [44]L.Chen,B.J.Feng,and K.H.Wu,Appl.Phys.Lett.102(2013)081602.

    [45]H.Haugen,D.Huertas-Hernando,and A.Brataas,Phys.Rev.B 77(2008)115406.

    [46]Z.Qiao,S.A.Yang,W.Feng,et al.,Phys.Rev.B 82(2010)161414.

    [47]W.Nolthing and A.Ramakanth,Quantum Theory of Magnetism,Springer,New York(2009).

    [48]E.N.Economou,Green’s Functions in Quantum Physics,3rd ed.Springer-Verlag,Berlin,Heidelberg(2006).

    [49]R.K.Pathria,Statistical Mechanics,Oxford Press,London(1997).

    [50]B.Velicky,Phys.Rev.184(1969)614.

    [51]M.Yarmohammadi,Solid State Commun.250(2017)84.

    [52]A.Tari,The Specific Heat of Matter at Low Temperatures,Imperial College Press,London(2003)p.250.

    [53]X.Xu,J.Chen,and B.Li,J.Phys.Condens.Matter.28(2016)483001.

    成人一区二区视频在线观看| 好男人在线观看高清免费视频| 最新中文字幕久久久久| 亚洲国产日韩欧美精品在线观看 | 欧美在线一区亚洲| 热99在线观看视频| 在线播放国产精品三级| 国产高清有码在线观看视频| av在线蜜桃| 99热这里只有精品一区| 日日夜夜操网爽| 黄色成人免费大全| 亚洲激情在线av| 亚洲,欧美精品.| 国产精品av视频在线免费观看| 在线播放国产精品三级| 久久久成人免费电影| 国产精品国产高清国产av| 亚洲第一电影网av| 色播亚洲综合网| 日日干狠狠操夜夜爽| 色精品久久人妻99蜜桃| 亚洲精品影视一区二区三区av| 12—13女人毛片做爰片一| 蜜桃久久精品国产亚洲av| 亚洲av一区综合| 国产蜜桃级精品一区二区三区| 亚洲专区国产一区二区| 久久国产乱子伦精品免费另类| www日本黄色视频网| svipshipincom国产片| 亚洲精品久久国产高清桃花| 免费av毛片视频| 一区二区三区高清视频在线| 性欧美人与动物交配| 久久精品国产99精品国产亚洲性色| 一个人免费在线观看的高清视频| 精品国内亚洲2022精品成人| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久毛片微露脸| 国产一区二区在线观看日韩 | 色综合亚洲欧美另类图片| 一区二区三区激情视频| 99热这里只有是精品50| 热99re8久久精品国产| 国产精品久久久久久人妻精品电影| 一区福利在线观看| 无限看片的www在线观看| 99精品在免费线老司机午夜| 一个人免费在线观看电影| 婷婷六月久久综合丁香| 无遮挡黄片免费观看| 女生性感内裤真人,穿戴方法视频| 欧美zozozo另类| 好男人在线观看高清免费视频| 99国产综合亚洲精品| 欧美日韩黄片免| www日本在线高清视频| 国产精品久久久久久久久免 | 男插女下体视频免费在线播放| 一夜夜www| 欧美又色又爽又黄视频| 中文资源天堂在线| 亚洲国产中文字幕在线视频| 桃色一区二区三区在线观看| 一区二区三区免费毛片| 国产精品亚洲av一区麻豆| 美女高潮的动态| 两个人视频免费观看高清| 精品久久久久久,| 国产三级在线视频| 一个人免费在线观看电影| 欧美3d第一页| 免费观看精品视频网站| 久久精品亚洲精品国产色婷小说| 亚洲人成伊人成综合网2020| 18美女黄网站色大片免费观看| 亚洲精品色激情综合| 日本成人三级电影网站| 好看av亚洲va欧美ⅴa在| 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 一本一本综合久久| 国产aⅴ精品一区二区三区波| 天堂网av新在线| tocl精华| 亚洲欧美日韩卡通动漫| 国产三级黄色录像| 中文字幕人成人乱码亚洲影| 国产一区二区在线观看日韩 | 啦啦啦观看免费观看视频高清| 久久精品91蜜桃| 亚洲乱码一区二区免费版| 久久久久免费精品人妻一区二区| 欧美一级a爱片免费观看看| 日韩欧美在线二视频| 婷婷丁香在线五月| 热99re8久久精品国产| 亚洲人与动物交配视频| 18+在线观看网站| 色哟哟哟哟哟哟| 小蜜桃在线观看免费完整版高清| 午夜激情欧美在线| 亚洲熟妇熟女久久| 91麻豆精品激情在线观看国产| 国产高潮美女av| 最好的美女福利视频网| 欧美成人性av电影在线观看| www.www免费av| a级毛片a级免费在线| 乱人视频在线观看| 免费大片18禁| 成人午夜高清在线视频| 国产精品 国内视频| 女生性感内裤真人,穿戴方法视频| 日韩欧美三级三区| 久久亚洲精品不卡| 神马国产精品三级电影在线观看| 亚洲av二区三区四区| 天天一区二区日本电影三级| 国产不卡一卡二| 老鸭窝网址在线观看| 国产成人啪精品午夜网站| 中文资源天堂在线| 国产精品久久久久久久电影 | 午夜福利在线观看免费完整高清在 | 在线国产一区二区在线| 伊人久久大香线蕉亚洲五| 老汉色av国产亚洲站长工具| 男女之事视频高清在线观看| 国产免费av片在线观看野外av| 欧美三级亚洲精品| 国语自产精品视频在线第100页| 白带黄色成豆腐渣| 国产探花极品一区二区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品在线观看二区| 3wmmmm亚洲av在线观看| 少妇熟女aⅴ在线视频| 国产成+人综合+亚洲专区| 亚洲中文日韩欧美视频| 久久久精品大字幕| 看片在线看免费视频| 国产成人a区在线观看| 中文字幕久久专区| 尤物成人国产欧美一区二区三区| 亚洲久久久久久中文字幕| xxxwww97欧美| 日本黄色片子视频| 国产久久久一区二区三区| 精品久久久久久成人av| 黄色丝袜av网址大全| 亚洲一区高清亚洲精品| 给我免费播放毛片高清在线观看| 99精品久久久久人妻精品| 国产v大片淫在线免费观看| xxxwww97欧美| 精品无人区乱码1区二区| bbb黄色大片| 很黄的视频免费| 亚洲av免费高清在线观看| 久久久色成人| 波多野结衣巨乳人妻| 日韩成人在线观看一区二区三区| 亚洲国产精品成人综合色| 一级黄片播放器| 免费看日本二区| 欧美丝袜亚洲另类 | 亚洲人成网站在线播| 精品午夜福利视频在线观看一区| 欧美乱色亚洲激情| 香蕉av资源在线| 国产真实乱freesex| 婷婷丁香在线五月| 免费在线观看亚洲国产| 亚洲国产色片| 久久亚洲真实| 亚洲五月天丁香| 欧美乱妇无乱码| 美女 人体艺术 gogo| 色老头精品视频在线观看| 五月伊人婷婷丁香| 国产免费av片在线观看野外av| 欧美在线黄色| 久久国产乱子伦精品免费另类| 丁香欧美五月| 久久久成人免费电影| 国产精品一区二区三区四区久久| 成人av在线播放网站| 国产精品久久电影中文字幕| av片东京热男人的天堂| aaaaa片日本免费| 老司机福利观看| 国产精品 欧美亚洲| 免费观看精品视频网站| 国产伦在线观看视频一区| 欧美又色又爽又黄视频| 一进一出抽搐gif免费好疼| 久久国产精品影院| 国产毛片a区久久久久| 国产精品99久久99久久久不卡| 亚洲成人免费电影在线观看| 国产爱豆传媒在线观看| 黄片小视频在线播放| 少妇的逼好多水| 国产精品一及| 88av欧美| 狠狠狠狠99中文字幕| 精品欧美国产一区二区三| 欧美日韩亚洲国产一区二区在线观看| 亚洲天堂国产精品一区在线| 国产亚洲精品av在线| 中文亚洲av片在线观看爽| 少妇人妻一区二区三区视频| 99精品欧美一区二区三区四区| 搡老妇女老女人老熟妇| 51国产日韩欧美| 99热这里只有精品一区| 午夜视频国产福利| 91在线观看av| 在线观看免费视频日本深夜| 欧美日本亚洲视频在线播放| 国产精品一区二区三区四区久久| 18禁在线播放成人免费| 国产精品女同一区二区软件 | 中文字幕人妻熟人妻熟丝袜美 | 亚洲乱码一区二区免费版| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 老汉色∧v一级毛片| 一个人免费在线观看的高清视频| 好男人在线观看高清免费视频| 18禁黄网站禁片午夜丰满| 国产成人欧美在线观看| 夜夜夜夜夜久久久久| 亚洲在线自拍视频| 精品一区二区三区视频在线观看免费| 人人妻,人人澡人人爽秒播| 97人妻精品一区二区三区麻豆| 一进一出好大好爽视频| а√天堂www在线а√下载| 天天躁日日操中文字幕| 亚洲七黄色美女视频| 在线免费观看不下载黄p国产 | 麻豆一二三区av精品| 国产高清激情床上av| 亚洲av免费在线观看| 69av精品久久久久久| 在线观看日韩欧美| 国产精品永久免费网站| 高潮久久久久久久久久久不卡| 高清在线国产一区| 欧美乱码精品一区二区三区| 日本成人三级电影网站| 精华霜和精华液先用哪个| 国产亚洲精品久久久com| 国产成+人综合+亚洲专区| 色吧在线观看| 在线观看午夜福利视频| 久9热在线精品视频| 午夜激情欧美在线| 国产久久久一区二区三区| 美女被艹到高潮喷水动态| 网址你懂的国产日韩在线| 丁香欧美五月| 少妇裸体淫交视频免费看高清| 国产精品一区二区免费欧美| 男人舔奶头视频| 精品国产美女av久久久久小说| 久久婷婷人人爽人人干人人爱| 国产精品日韩av在线免费观看| 久久精品91无色码中文字幕| 99久久综合精品五月天人人| 少妇的逼水好多| 又黄又爽又免费观看的视频| 女生性感内裤真人,穿戴方法视频| 麻豆国产av国片精品| 美女cb高潮喷水在线观看| 天天躁日日操中文字幕| 在线观看日韩欧美| 在线播放国产精品三级| 久久国产精品影院| 每晚都被弄得嗷嗷叫到高潮| or卡值多少钱| 婷婷丁香在线五月| 真人做人爱边吃奶动态| 香蕉久久夜色| 老司机在亚洲福利影院| 99国产极品粉嫩在线观看| 噜噜噜噜噜久久久久久91| 亚洲欧美激情综合另类| 国产成人av激情在线播放| 激情在线观看视频在线高清| 婷婷精品国产亚洲av在线| 久久精品夜夜夜夜夜久久蜜豆| 天堂√8在线中文| 亚洲av熟女| 国产成人啪精品午夜网站| 人人妻,人人澡人人爽秒播| 久久久国产成人免费| 久久国产精品影院| 18美女黄网站色大片免费观看| 欧美日本视频| 啦啦啦免费观看视频1| 嫩草影院入口| 少妇的丰满在线观看| 99热这里只有是精品50| 国产午夜精品论理片| 亚洲一区二区三区色噜噜| 黄片小视频在线播放| 我要搜黄色片| 国产精华一区二区三区| 欧美另类亚洲清纯唯美| 国产熟女xx| 国产99白浆流出| 男女做爰动态图高潮gif福利片| 国产一区二区亚洲精品在线观看| 天美传媒精品一区二区| 色av中文字幕| 白带黄色成豆腐渣| 精品国产美女av久久久久小说| 久久天躁狠狠躁夜夜2o2o| 欧美色欧美亚洲另类二区| 天堂网av新在线| 日本成人三级电影网站| 成人三级黄色视频| 成人特级av手机在线观看| 日本黄色片子视频| 女同久久另类99精品国产91| 88av欧美| 欧美日韩乱码在线| 久久久国产成人免费| 真人做人爱边吃奶动态| 亚洲成人精品中文字幕电影| 有码 亚洲区| 高清毛片免费观看视频网站| 精品99又大又爽又粗少妇毛片 | 亚洲在线观看片| 国产私拍福利视频在线观看| 国产色爽女视频免费观看| eeuss影院久久| 一进一出抽搐动态| 欧美乱色亚洲激情| 大型黄色视频在线免费观看| www.999成人在线观看| 国产精品久久久久久人妻精品电影| 国产成人av教育| 成人亚洲精品av一区二区| 色尼玛亚洲综合影院| www日本在线高清视频| 18禁黄网站禁片免费观看直播| 午夜激情欧美在线| 亚洲真实伦在线观看| 给我免费播放毛片高清在线观看| 国产色婷婷99| 亚洲va日本ⅴa欧美va伊人久久| 欧美+亚洲+日韩+国产| 一a级毛片在线观看| 18禁在线播放成人免费| aaaaa片日本免费| 18+在线观看网站| 国产一级毛片七仙女欲春2| 最近最新中文字幕大全免费视频| 色综合欧美亚洲国产小说| 免费在线观看日本一区| 日本熟妇午夜| 国产男靠女视频免费网站| 欧美性感艳星| 国产成人啪精品午夜网站| 天天一区二区日本电影三级| 国产伦人伦偷精品视频| 成人18禁在线播放| 午夜福利在线观看免费完整高清在 | 九九热线精品视视频播放| 国产真实乱freesex| 国产免费男女视频| 国产精品女同一区二区软件 | 国内精品久久久久精免费| 中文字幕人妻丝袜一区二区| 欧美一级a爱片免费观看看| 亚洲成人精品中文字幕电影| www.www免费av| 亚洲在线自拍视频| 12—13女人毛片做爰片一| 免费高清视频大片| 精品熟女少妇八av免费久了| 一级毛片女人18水好多| 身体一侧抽搐| 国产黄a三级三级三级人| 少妇人妻精品综合一区二区 | 亚洲第一欧美日韩一区二区三区| 夜夜躁狠狠躁天天躁| 麻豆成人av在线观看| 久久99热这里只有精品18| a在线观看视频网站| 精品国内亚洲2022精品成人| 老熟妇仑乱视频hdxx| 日韩欧美免费精品| 国产成+人综合+亚洲专区| 性色av乱码一区二区三区2| 99精品在免费线老司机午夜| 97碰自拍视频| 久久精品影院6| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 日本免费一区二区三区高清不卡| 国产黄a三级三级三级人| 人妻久久中文字幕网| 少妇熟女aⅴ在线视频| 欧美黑人欧美精品刺激| 国产高清三级在线| 女人高潮潮喷娇喘18禁视频| 国产国拍精品亚洲av在线观看 | 久久久国产成人精品二区| 欧美日本视频| 国产精品av视频在线免费观看| 国产亚洲av嫩草精品影院| 日韩大尺度精品在线看网址| 亚洲国产精品sss在线观看| 黄色片一级片一级黄色片| 男人舔奶头视频| 高清毛片免费观看视频网站| 在线播放国产精品三级| 波野结衣二区三区在线 | 一个人免费在线观看的高清视频| 久久草成人影院| h日本视频在线播放| 露出奶头的视频| 国产69精品久久久久777片| 夜夜看夜夜爽夜夜摸| 俺也久久电影网| 国产精品1区2区在线观看.| 久久香蕉国产精品| 无人区码免费观看不卡| netflix在线观看网站| 久久99热这里只有精品18| a在线观看视频网站| 看黄色毛片网站| 18禁黄网站禁片免费观看直播| 午夜精品久久久久久毛片777| 一个人看视频在线观看www免费 | 中文资源天堂在线| 国产精品久久久久久人妻精品电影| 黄色成人免费大全| 美女大奶头视频| 欧美日韩福利视频一区二区| 欧美日韩瑟瑟在线播放| 深爱激情五月婷婷| 日韩大尺度精品在线看网址| 男女下面进入的视频免费午夜| 男人和女人高潮做爰伦理| 亚洲中文日韩欧美视频| www.色视频.com| 色视频www国产| 国产老妇女一区| 午夜福利免费观看在线| 久久久久精品国产欧美久久久| 午夜免费成人在线视频| 日韩高清综合在线| 特级一级黄色大片| 欧美成人一区二区免费高清观看| 伊人久久精品亚洲午夜| 国产黄a三级三级三级人| 99热6这里只有精品| 欧美最新免费一区二区三区 | 99热这里只有是精品50| 99国产极品粉嫩在线观看| 午夜老司机福利剧场| 91九色精品人成在线观看| www.999成人在线观看| 国产欧美日韩精品一区二区| 日本精品一区二区三区蜜桃| 最新在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| 波多野结衣高清作品| 熟女少妇亚洲综合色aaa.| 悠悠久久av| 欧美zozozo另类| 在线国产一区二区在线| 搡老岳熟女国产| 成人av在线播放网站| 少妇熟女aⅴ在线视频| 国产欧美日韩精品亚洲av| 亚洲精品乱码久久久v下载方式 | 69av精品久久久久久| 男女那种视频在线观看| 美女大奶头视频| 日本在线视频免费播放| 国产一区二区亚洲精品在线观看| 成人高潮视频无遮挡免费网站| 一边摸一边抽搐一进一小说| 国产三级中文精品| 内地一区二区视频在线| 中文字幕人成人乱码亚洲影| 欧美中文日本在线观看视频| 麻豆久久精品国产亚洲av| 哪里可以看免费的av片| 精品午夜福利视频在线观看一区| 国产99白浆流出| 成人午夜高清在线视频| 国产av麻豆久久久久久久| 国产三级中文精品| 欧美日韩一级在线毛片| 国产一区二区三区视频了| 日韩av在线大香蕉| 99久久99久久久精品蜜桃| 日本免费a在线| 亚洲色图av天堂| 性色av乱码一区二区三区2| 国产精品 欧美亚洲| 在线观看av片永久免费下载| 天天躁日日操中文字幕| 99久久99久久久精品蜜桃| 一二三四社区在线视频社区8| 亚洲av成人精品一区久久| avwww免费| 人妻久久中文字幕网| 亚洲精品日韩av片在线观看 | 国产精品永久免费网站| 久久欧美精品欧美久久欧美| 国产成人影院久久av| av福利片在线观看| or卡值多少钱| 亚洲精品乱码久久久v下载方式 | 最近在线观看免费完整版| 国产精品1区2区在线观看.| 操出白浆在线播放| 国产精品香港三级国产av潘金莲| 国产探花在线观看一区二区| 久久6这里有精品| 精品国产亚洲在线| 国产单亲对白刺激| 亚洲精品美女久久久久99蜜臀| 日韩欧美在线乱码| 免费看美女性在线毛片视频| 日韩国内少妇激情av| 免费看美女性在线毛片视频| 国产激情欧美一区二区| 国产主播在线观看一区二区| 亚洲欧美激情综合另类| 午夜福利在线观看免费完整高清在 | av黄色大香蕉| 听说在线观看完整版免费高清| 国产老妇女一区| 亚洲成a人片在线一区二区| 国产91精品成人一区二区三区| 亚洲无线观看免费| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 午夜亚洲福利在线播放| 亚洲成av人片在线播放无| 19禁男女啪啪无遮挡网站| 九色国产91popny在线| 香蕉av资源在线| 狂野欧美激情性xxxx| 日本免费一区二区三区高清不卡| 一本一本综合久久| 每晚都被弄得嗷嗷叫到高潮| 18禁黄网站禁片午夜丰满| 久久精品人妻少妇| 在线免费观看不下载黄p国产 | 欧美日韩综合久久久久久 | 99精品在免费线老司机午夜| 18禁国产床啪视频网站| 国产aⅴ精品一区二区三区波| 国产欧美日韩一区二区三| 老司机福利观看| 日韩 欧美 亚洲 中文字幕| 日本黄色片子视频| 成人三级黄色视频| 久久草成人影院| av欧美777| 尤物成人国产欧美一区二区三区| 国产一区二区三区在线臀色熟女| 夜夜看夜夜爽夜夜摸| 中出人妻视频一区二区| www.色视频.com| 欧美一级a爱片免费观看看| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久免费视频| 在线观看一区二区三区| 内地一区二区视频在线| 高清日韩中文字幕在线| 久久伊人香网站| 草草在线视频免费看| 欧美极品一区二区三区四区| 色噜噜av男人的天堂激情| 黄色丝袜av网址大全| 深夜精品福利| 看免费av毛片| 精品久久久久久久毛片微露脸| 欧美绝顶高潮抽搐喷水| 99国产精品一区二区蜜桃av| 99久久九九国产精品国产免费| 91在线精品国自产拍蜜月 | 哪里可以看免费的av片| 亚洲午夜理论影院| 亚洲av熟女| 嫩草影视91久久| 黑人欧美特级aaaaaa片| 国产精品女同一区二区软件 | 给我免费播放毛片高清在线观看| 不卡一级毛片| 女警被强在线播放| 婷婷精品国产亚洲av在线| 亚洲人成伊人成综合网2020| 国产真人三级小视频在线观看| 精品99又大又爽又粗少妇毛片 | 日本三级黄在线观看| 精品国产三级普通话版| 午夜久久久久精精品| 久久精品影院6| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久人妻精品电影| 久久香蕉精品热|