• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis on diffusion-induced stress for multi-layer spherical core–shell electrodes in Li-ion batteries?

    2021-09-28 02:18:36SiyuanYang楊思源ChuanweiLi李傳崴ZhifengQi齊志鳳LipanXin辛立攀LinanLi李林安ShibinWang王世斌andZhiyongWang王志勇
    Chinese Physics B 2021年9期
    關(guān)鍵詞:思源

    Siyuan Yang(楊思源),Chuanwei Li(李傳崴),?,Zhifeng Qi(齊志鳳),Lipan Xin(辛立攀),Linan Li(李林安),Shibin Wang(王世斌),and Zhiyong Wang(王志勇),?

    1Department of Mechanics,School of Mechanical Engineering,Tianjin University,Tianjin 300350,China

    2Tianjin Key Laboratory of Modern Engineering Mechanics,School of Mechanical Engineering,Tianjin University,Tianjin 300350,China

    Keywords:multi-layer spherical core–shell electrode,diffusion-induced stress

    1.Introduction

    Rechargeable lithium-ion batteries(LIBs)have the advantages of large storage capacity,high energy density,good stability,and excellent cycle capability,which become dominant power sources in many fields including portable electronic devices and electric vehicles.[1–5]In recent years,a host of improved strategies of LIBs techniques are proposed to satisfy the increasing demand for better LIBs’performance,such as high efficient manufacturing processes,advanced materials,innovative and heteromorphic battery.[6–9]The anode,as an integral part of the LIBs,plays an important role in determining the key performance including the energy density and the cycle ability.[10]As one of the most promising anodes,silicon(Si)has drawn great attention due to its high theoretical capacity of 4200 mAh·g?1.[11]Nevertheless,commercial applications of Si anodes are hampered owing to their considerable volumetric changes(greater than 300%)which directly lead to electrode failures during the lithiation/delithiation process.

    Currently,based on mechanical fundamental,[12]studies on the deformation of Si electrodes have put forward various diffusion-induced theories,[13–17]meanwhile,damage,[18–20]and fracture[21]based on diffusion-induced theory also draw attention.The new solid electrolyte interphase(SEI)layer forms over the surface,resulting in rapid capacity attenuation and poor rate performance.[4,22,23]Besides,inherent low conductivity leads to poor rate capacity and low utilization rate of electrode materials.[24]The structural damage to electrode materials during charging and discharging processes causes performance degradations.[25,26]In a word,mechanical damages have a critical influence on the performance and service period of the LIBs.[27]In recent years,tremendous progresses have been made on the above mentioned problems by using siliconcarbon composite(Si/C)with graphite.The Si/C composite has been proved to be beneficial to decrease the volumetric variation of silicon anodes.[4]

    Especially,structures of Si/C spherical electrodes have been broadly investigated,such as spherical core–shell nanoparticles and coated-hollow electrode particles.[28]Spherical core–shell(SCS)electrode is believed as an excellent structure to realize stable electro-mechanical behaviors.[29]Mechanical investigation on SCS is indispensable in evaluations for SCS-based LIBs performance and service life.Based on elastic–plastic theory,evolution law of stress and strain has been analyzed.[30–34]

    As mentioned above,the most previous studies have focused on deformation and damage of monolayer or bilayer spherical electrode particles.In this paper,an electrochemical-/mechanical-coupling model of the multilayer spherical core–shell(M-SCS)electrode with graphite framework is developed to maintain the stability of the electrode structure and to obtain higher capacity density.It is generally known that the electrochemical/mechanical degradation limits the increasingly wide range of applications of cells with silicon electrode.Accordingly,it is critical to analyze the mechanical performance of electrode materials for promoting electrochemical performance of LIBs.Similarly,in order to understand electrochemical-/mechanical-coupling mechanism of the multilayer spherical core–shell(M-SCS)electrode,it is necessary to establish diffusion-induced stress models applying to the M-SCS electrode.

    As depicted above,significant volume change of Si electrode hinders its development,giving rise to more mechanical problems compared with other electrodes Therefore,Chen et al.[4]prepared carbon-coated silicon-based spherical composite with consideration of superiority of hierarchical structure to improve electrochemical performance.However,it is not clear how the stress affects carbon-coated silicon-based spherical composite.An Si@O-MCMB/C nanoparticle is hence taken as an example,in which an electrochemical model with consideration of particles mutually coupling has been presented and developed.The rest of this article is divided into the following sections.In Section 2,the diffusion-induced stress model in the M-SCS electrode particles is developed.In Section 3,the impact of some parameters on the electrode stress is discussed and analyzed.Finally,we summarize the work in Section 4.

    2.M-SCS model

    2.1.Geometric model

    An isotropic diffusion system with three-phase(phases ofα,β,andγ)multilayer-core–shell structure is considered,taking the Si@O-MCMB/C nanoparticle as an example(see Fig.1(a)).To carry out mechanical analysis on the M-SCS structure,the spherical symmetry is taken into account and the structure is simplified,as shown in Fig.1(b).Theαcore is graphite as a framework of the M-SCS structure due to its excellent electrical conductivity.A combination of Si and graphite is a fine approach to surmount weakness of low electrical conductivity of Si.[4,35,36]Theγ-outer-shell(carbon)separates the electrolyte and the electrode(β-medium-layer Si andα-core graphite).Carbon shell as a protective layer does not undergo lithiation reaction and contributes to restrain the fracture of Si.[4,35,36]The three-phase structure allows the expansion of silicon to receive both internal and external constraints,due to the minute deformation of lithiated graphitecore and non-reaction of carbon-shell with lithium.[4,37]The structure has a considerable advantage in designing and improving electrodes.The three-phase structure enhances the capacity,mechanical and chemical stability of Si/C anodes simultaneously.The continual solid electrolyte interphase(SEI)cracking and reforming are restrained,owing to the outward expansion of the intermediate layer limited by the outer shell,which ensures to maintain the electric contact between the electrode and the matrix.A similar structure design shows the prospect of a high-capacity electrode with hundreds of cycles.[4]The diffusion-induced stress/strain equation appropriate for the core–shell model has been investigated by several researchers.However,there are still less reports on the study of modeling for the stress/strain evolution process within a multilayer-core–shell framework.Worth mentioning is that there exists a large discontinuity in composition,stress,and strain across a propagating phase boundary in lithiated electrode materials.Therefore,it is critical to take into account the effect of the multi-dimensional inhomogeneity of electrodes for battery analysis and estimation.

    Fig.1.(a)Schematic diagram of the M-SCS phase,(b)geometric structure of the M-SCS.

    2.2.Stress model of the M-SCS

    2.3.Single multilayer-core–shell particle

    The diffusion-induced stress is an analogy to thermal stress according to Prussin’s research.[38]The constitutive relationship equations of the stress and strain can be expressed as[39]

    where E is the Young’s modulus and v is the Poisson’s ratio.Since we consider the response as quasi-static in this study,E and v are assumed to be constant.C(r,t)is the molar concentration of lithium with insertion into material elements,andΩ is the partial molar volume of solute.The displacement field is radially symmetric due to the spherically symmetric structure of the material.Meantime,the radial and tangential strain of the multilayer-core–shell spherical nanoparticle can be expressed with functions of radial displacement ur,as

    For the local coordinate system is used for a single particle,there is no displacement at the center of the nanoparticle,and thus ur(0)=0.The displacement u(r)is expressed as[39]

    where P and Q are parameters,which can be determined by the boundary conditions forα,β,andγphases.r0is the inner radius of the three-phase.In accordance with the boundary conditions for the multilayer-core–shell spherical nanoparticles,the following equation is determined,

    Therefore,the radial and tangential stress are given as

    Specifically,the hydrostatic stress is expressed as follows:

    According to Fang et al.’s work,[40]the surface/interface stress has a significant impact on diffusion-induced stress of the spherical core–shell electrodes.In this research,we take into account its effect on diffusion-induced stress of the MSCS electrodes.Furthermore,the influence of coreshell surface/interface stress modulus ratio on silicon sandwich layer was studied.For an elastically isotropic model,the surface/interface stress Sθcan be expressed as

    whereτis the deformation-indepent residual surface/interface stress.K is defined as the surface/interface modulus,andεθis the surface strain corresponding to Sθ.The molar concentration equations can be further written as

    where a,b,and c are the outer radii of each material phase in multilayer-core–shell,as shown in Fig.1(b).

    We extend the diffusion-induced stress solution from a single phase to three-phase in spheroidal particle.For the three-phase multilayer-core–shell structure,there are six constants of the three materials denoted by P1and Q1of materialα,P2and Q2of material-β,P3and Q3of material-γ.For the α-core with 0≤r≤a,there are

    At the center of spheroidal core–shell electrode particle(r=0),Q1=0 as a result of ur=0.For theβ-medium-layer(Si)with a≤r≤b,there are

    For theγ-outer-shell with b≤r≤c,there are

    At the outer surface,there is

    At the junction interface of two materials,there are

    2.4.Diffusion equation in spherical multilayer-core–shell electrodes

    In the multilayer spherical core–shell(M-SCS)the lithium-ion transport is a concentration driven diffusion process.[41]The species flux is expressed as[42]

    where M is the mobility of the lithium-ion.The driving force for the movement of lithium-ion is the gradient of chemical potentialμ,[43]considering the effect of the hydrostatic stress on diffusion

    in whichμ0is the constant,R and T are the gas constant and the absolute temperature,respectively.X is the molar fraction of the lithium-ion.Besides,the diffusion coefficient is written as D=MRT.Substituting Eq.(20)into Eq.(19),we get another expression of parameter J with assumption of temperature uniformity as follows:

    where D=MRT is the diffusion coefficient.θis a normal constant describing the extent of the influence of hydrostatic stress on the diffusion flux,[40]θ=2Ω2E/[9(1?v)RT],obtained from Eq.(11).The conservation of species is given by

    Finally,substituting Eq.(21)into Eq.(22),we can obtain that

    The initial and boundary conditions are

    At the interface of theα/β,it can be obtained that

    At the interface of theβ/γ,it can be obtained that

    2.5.Numerical solutions

    The governing equations obtained above are numerically solved.Owing to the central symmetry,the structure of spherical particles can be simplified as a one-dimensional model from Eq.(14)to Eq.(23).Finite difference method(FDM)is applied herein to solve nonlinear Eq.(23)based on the boundary conditions Eqs.(24)–(26).Subsequently,the stress values are determined through by means of fitting the discrete concentration to a continuous concentration function.Material properties of the employed three materials are listed in Table 1.The constant of lithium ion concentration is set to be 1.2×104as on the outer surface of the spherical electrode active material particles during the lithiation process.

    Table 1.Parameters of the materials.

    3.Results and discussion

    To reveal the effect of the diffusion-induced stress with carbon shell,two situations are compared firstly:one containing carbon shell,the other in the absence of the carbon shell.During the lithiation process,in contrast with the other two phases,the silicon material phase experiences maximum tensile stress due to the large volume expansion.Figure 2 shows the diffusion-induced stress of the two cases when the maximum tensile stress occurs in the silicon layer.Both shell thickness ratio of the carbon phase(Δ2/c)and shell thickness ratio of the silicon phase(Δ1/c)are 1/3,and Young’s modulus of the carbon shell is 1 GPa.Because of the discrepancy of the three material properties and the influence of the surface/interface stress,the discontinuity and jump of the stress distribution are observed clearly in the two cases.Besides,there are mild stress changes in the graphite material phase and dramatic stress changes in the silicon material phase,related to the concentration gradient.From Fig.2,the presence of the carbon shell greatly decreases the maximum tensile stress of the silicon material phase.Silicon-based spherical core–shell electrode particles employ carbon shell where lithium reaction is not produced,hence the stress of the carbon shell mainly results from the silicon expansion.The carbon shell in turn limits the increase of stress in the tangential and radial direction.

    Fig.2.Diffusion-induced stress of two cases when the maximum tensile stress occurs in the silicon layer:(a)radial stress and(b)tangential stress.

    3.1.Effect of elastic modulus ratio on sandwich silicon materials

    Since Young’s modulus of the carbon shell ranges from 1 GPa to 20 GPa,it is necessary to study the impact of the variation of Young’s modulus of the carbon shell on the stress field of multilayer core–shell structure.E3/E1equaling to 0.1,0.5,1,and 1.5 respectively is investigated.The shell thickness ratio of the carbon material phase and silicon material phase is still 1/3.As shown in Fig.3,the diffusion-induced stress with four different Young’s modulus versus r/c is obtained when tensile stress in the silicon material phase reaches the maximum.In the radial direction,the tensile stress of the three-phase reduces with the decrease of E3/E1.Similarly,in the tangential direction,both the tensile stress in the graphite/silicon and the compressive stress in the carbon also reduce when E3/E1decreases.To sum up,the decrease of E3/E1not only makes the diffusion-induced stress of carbon tend to be zero,but also alleviates the tensile stress of inner materials.

    Fig.3.The diffusion-induced stress of four different Young’s modulus,(a)radial stress and(b)tangential stress.

    3.2.Effect of surface/interface modulus K ratio on sandwich silicon material

    Next,the effect of surface/interface stress is considered.The residual surface/interface stressesτin the three surface/interface are all supposed to 0 N/m.To investigate respectively effect of surface/interface modulus K1,K2,K3on multilayer core–shell structure,one of surface/interface modulus is assumed to 0 N/m and±10 N/m respectively and the other two surface/interface modulus keep constant.Otherwise,the dimensionless time D2t/c2equals 0.1,shell thickness ration of the carbon material phase and shell thickness ratio of the silicon material phase are 1/3,and E3=1 GPa.Figures 4(a)and 4(b)indicate that positive interface modulus K1tends to decrease diffusion-induced stress in the graphite material phase,on the contrary,negative interface modulus K1increases diffusion-induced stress.However,positive interface modulus K2leads to increasing diffusion-induced stress in the graphite material phase and in the silicon material phase,and negative interface modulus K2reduces diffusion-induced stress,as shown in Figs.4(c)and 4(d).Similarly,in Figs.4(e)and 4(f),positive surface modulus K3increases diffusioninduced stress in the entire structure,and negative surface modulus K3reduces diffusion-induced stress.To sum up,as the surface/interface modulus change,the diffusion-induced stress of material phase which is wrapped by surfuce/interface is influenced.Moreover,the effect of K2on the silicon materials phase is the furthest.

    Fig.4.The effect of surface/interface modulus K on stress distribution:(a)and(b)K1,(c)and(d)K2,(e)and(f)K3.

    3.3.Effect of shell/core thickness o on sandwich silicon materials

    Finally,the effect of the carbon–shell thickness is also studied.The carbon–shell thicknessΔis subsequently chosen as 0.5 nm,2.5 nm,5 nm,and 7.5 nm.the other parameters E3=1 GPa and D2t/c2=0.1.Figures 5(a)and 5(b)show the distribution of radial and tangential stress.they indicate that the stress can be reduced effectively by the increase of the carbon–shell thickness.However,the increase of the carbon–shell thickness leads to decreasing the specific capacity of electrode particles.As a result,carbon–shell thickness is as thin as possible within the endure of material strengths.

    Fig.5.The effect carbon thickness on diffusion-induced stress:(a)radial stress and(b)tangential stress.

    4.Conclusion

    In this work,an electrochemically-/mechanically coupled model for a novelly proposed M-SCS structure made from Si@O-MCMB/C nanoparticles has been established,in which the diffusion-induced stresses along various directions in each material phase can be expressed and determined based on the finite difference method(FDM).Through a calculation for the stress,it can be concluded that,compared with those traditional dual-layer core–shell(CS)structures,the M-SCS with an external carbon-shell can remarkably reduce the tensile stress of theβ-medium-layer,namely the silicon layer.Moreover,influences of parameters including the Young’s modulus,the surface/interface modulus,and the thickness of each layer on the stress have been also presented.Results show that,(i)with the Young’s modulus of the carbon–shell decreasing,the expansion of the silicon phase is effectively limited and the tensile stress in the silicon reduces,(ii)the parameter of K2affects the stress of the silicon phase furthest among all the surface/interface modulus,(iii)on the premise of the strength requirements,the smaller the thickness of the carbon shell can be,the higher the specific capacity of the overall structure can achieve.

    猜你喜歡
    思源
    《山間》
    “筷子翻書”挑戰(zhàn)賽
    My Dreams
    磨刀不誤砍柴工
    定積分及其應(yīng)用
    可怕的霧霾
    注意!頭痛可能預(yù)示著甲狀腺問題
    健康女性(2016年11期)2017-02-14 13:22:31
    Hippie
    思源致遠(yuǎn) 繼往開來
    ——記4808工廠威海修船廠
    中國修船(2016年6期)2016-06-23 10:04:05
    陳永龍:思源致遠(yuǎn)
    夜夜躁狠狠躁天天躁| 午夜日韩欧美国产| 别揉我奶头~嗯~啊~动态视频| 日韩欧美免费精品| 久久久久久大精品| 免费av毛片视频| 最新中文字幕久久久久| 日韩精品青青久久久久久| 欧美日本亚洲视频在线播放| 嫩草影视91久久| 一区二区三区高清视频在线| 久久久久免费精品人妻一区二区| 欧洲精品卡2卡3卡4卡5卡区| 国产成人欧美在线观看| 久久久国产成人精品二区| 中文字幕精品亚洲无线码一区| av片东京热男人的天堂| 真人做人爱边吃奶动态| 亚洲精品在线美女| 三级男女做爰猛烈吃奶摸视频| 国产精品野战在线观看| 成人亚洲精品av一区二区| 最近视频中文字幕2019在线8| 琪琪午夜伦伦电影理论片6080| 国产黄a三级三级三级人| 亚洲av免费在线观看| 国产高清激情床上av| 90打野战视频偷拍视频| av女优亚洲男人天堂| 亚洲人成电影免费在线| 亚洲av电影不卡..在线观看| 一区二区三区国产精品乱码| 久久精品国产亚洲av涩爱 | 天天一区二区日本电影三级| 精品久久久久久,| 19禁男女啪啪无遮挡网站| 在线观看午夜福利视频| 在线播放国产精品三级| 九九在线视频观看精品| 亚洲美女黄片视频| 欧美成人性av电影在线观看| 狂野欧美激情性xxxx| 午夜日韩欧美国产| 久久人人精品亚洲av| 国产成人福利小说| 一进一出抽搐动态| 免费av观看视频| 91久久精品电影网| 亚洲国产欧美人成| 操出白浆在线播放| 麻豆一二三区av精品| 成年女人看的毛片在线观看| 91麻豆精品激情在线观看国产| 免费人成视频x8x8入口观看| 久久性视频一级片| 欧美一区二区亚洲| 熟女人妻精品中文字幕| 免费搜索国产男女视频| 久久久久久久精品吃奶| 丝袜美腿在线中文| 偷拍熟女少妇极品色| 久久久久久国产a免费观看| 美女黄网站色视频| 中文字幕熟女人妻在线| 国产不卡一卡二| 亚洲人与动物交配视频| 久久香蕉国产精品| 亚洲 国产 在线| 国产精品影院久久| 国产一区在线观看成人免费| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产精品成人综合色| 成人午夜高清在线视频| 桃红色精品国产亚洲av| 一级作爱视频免费观看| 婷婷丁香在线五月| 久久久久精品国产欧美久久久| 国产一区二区亚洲精品在线观看| 色噜噜av男人的天堂激情| 亚洲专区中文字幕在线| 在线天堂最新版资源| 国内毛片毛片毛片毛片毛片| 久久久久久国产a免费观看| 国内毛片毛片毛片毛片毛片| a级毛片a级免费在线| 黄色视频,在线免费观看| 美女大奶头视频| av专区在线播放| 国产熟女xx| 在线天堂最新版资源| 日本成人三级电影网站| 黄色成人免费大全| 亚洲精品一卡2卡三卡4卡5卡| 在线观看av片永久免费下载| 一区二区三区激情视频| 国产免费av片在线观看野外av| 国内精品一区二区在线观看| 国产极品精品免费视频能看的| 日韩精品青青久久久久久| 国产成人系列免费观看| 国产免费av片在线观看野外av| 最近最新免费中文字幕在线| 精品久久久久久久久久免费视频| 成人国产一区最新在线观看| 亚洲av一区综合| 女人被狂操c到高潮| 一本综合久久免费| 国产主播在线观看一区二区| 久久性视频一级片| 日韩大尺度精品在线看网址| 人人妻,人人澡人人爽秒播| 亚洲无线在线观看| 色综合欧美亚洲国产小说| 国产精品国产高清国产av| 在线观看一区二区三区| 久久性视频一级片| 夜夜躁狠狠躁天天躁| 中文亚洲av片在线观看爽| 美女高潮喷水抽搐中文字幕| 中文字幕精品亚洲无线码一区| 亚洲午夜理论影院| 国产不卡一卡二| 欧美成人a在线观看| 久久伊人香网站| 一级黄色大片毛片| 老汉色av国产亚洲站长工具| 老司机午夜十八禁免费视频| 亚洲国产精品合色在线| 亚洲av美国av| 国产美女午夜福利| 国内精品一区二区在线观看| 美女高潮喷水抽搐中文字幕| 久久久久性生活片| 国产精品国产高清国产av| 热99在线观看视频| 久久久色成人| 亚洲国产日韩欧美精品在线观看 | 岛国在线免费视频观看| 九色国产91popny在线| 国产午夜福利久久久久久| АⅤ资源中文在线天堂| 老司机午夜福利在线观看视频| 日本熟妇午夜| 男女做爰动态图高潮gif福利片| 99riav亚洲国产免费| 精品一区二区三区av网在线观看| 午夜免费成人在线视频| 欧美成人a在线观看| 欧美大码av| 午夜福利在线观看免费完整高清在 | 99国产精品一区二区蜜桃av| 欧美大码av| 成人av一区二区三区在线看| 国产精品女同一区二区软件 | 好男人在线观看高清免费视频| 99久久精品一区二区三区| 嫩草影视91久久| 我要搜黄色片| 真实男女啪啪啪动态图| 日本与韩国留学比较| 亚洲av第一区精品v没综合| 内地一区二区视频在线| 国产一级毛片七仙女欲春2| 久久久久久国产a免费观看| e午夜精品久久久久久久| www日本在线高清视频| 国产主播在线观看一区二区| 可以在线观看的亚洲视频| 在线观看舔阴道视频| 午夜福利欧美成人| 亚洲国产色片| 伊人久久精品亚洲午夜| 色吧在线观看| 97超级碰碰碰精品色视频在线观看| 国产精品乱码一区二三区的特点| 亚洲av免费在线观看| 亚洲欧美日韩高清专用| 国产在视频线在精品| 天天一区二区日本电影三级| 亚洲专区国产一区二区| 亚洲av成人不卡在线观看播放网| 精华霜和精华液先用哪个| 最近视频中文字幕2019在线8| 51午夜福利影视在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲av电影不卡..在线观看| 国产av麻豆久久久久久久| 又黄又爽又免费观看的视频| 91久久精品电影网| 午夜免费观看网址| tocl精华| 在线十欧美十亚洲十日本专区| 久久婷婷人人爽人人干人人爱| 午夜精品在线福利| 欧美精品啪啪一区二区三区| 久久精品影院6| 免费在线观看成人毛片| 国产精品1区2区在线观看.| 人人妻,人人澡人人爽秒播| 精品乱码久久久久久99久播| 母亲3免费完整高清在线观看| 操出白浆在线播放| 国产激情偷乱视频一区二区| 国内精品美女久久久久久| 少妇丰满av| 亚洲av电影在线进入| 欧美乱妇无乱码| 亚洲国产精品久久男人天堂| 婷婷精品国产亚洲av| 国产午夜精品久久久久久一区二区三区 | 在线十欧美十亚洲十日本专区| 日韩人妻高清精品专区| 亚洲18禁久久av| 母亲3免费完整高清在线观看| 又爽又黄无遮挡网站| 午夜视频国产福利| 欧美+亚洲+日韩+国产| 亚洲av免费在线观看| 亚洲五月天丁香| 免费在线观看日本一区| 国产伦精品一区二区三区视频9 | 99久久精品一区二区三区| 最好的美女福利视频网| 亚洲最大成人手机在线| 亚洲欧美日韩东京热| 97超视频在线观看视频| 熟女少妇亚洲综合色aaa.| 亚洲一区二区三区色噜噜| 叶爱在线成人免费视频播放| 久久国产精品人妻蜜桃| 18禁黄网站禁片免费观看直播| 欧美乱妇无乱码| 欧美乱色亚洲激情| 亚洲内射少妇av| 老司机福利观看| 国产99白浆流出| 18禁美女被吸乳视频| 久久久久久久亚洲中文字幕 | 日韩欧美免费精品| 午夜精品一区二区三区免费看| 亚洲真实伦在线观看| 久久天躁狠狠躁夜夜2o2o| 中文字幕av在线有码专区| 欧美av亚洲av综合av国产av| a在线观看视频网站| 香蕉久久夜色| 亚洲精品色激情综合| 少妇的丰满在线观看| 午夜福利在线观看免费完整高清在 | 国产黄色小视频在线观看| 亚洲人成网站高清观看| 最新中文字幕久久久久| 最新在线观看一区二区三区| 麻豆久久精品国产亚洲av| 一个人免费在线观看电影| 人妻丰满熟妇av一区二区三区| 亚洲精品日韩av片在线观看 | 国产乱人伦免费视频| 国产一区二区激情短视频| 成年女人毛片免费观看观看9| 动漫黄色视频在线观看| 国产精品女同一区二区软件 | 欧美极品一区二区三区四区| 午夜福利在线在线| 99riav亚洲国产免费| 国产探花在线观看一区二区| 国产免费男女视频| 美女被艹到高潮喷水动态| 精品久久久久久久人妻蜜臀av| 久久久久久人人人人人| 亚洲精品粉嫩美女一区| 精品欧美国产一区二区三| 亚洲人成网站在线播| 欧美日韩瑟瑟在线播放| 国内少妇人妻偷人精品xxx网站| 国产蜜桃级精品一区二区三区| 天天添夜夜摸| 好男人在线观看高清免费视频| 国产成人啪精品午夜网站| 欧美乱码精品一区二区三区| 日本黄色视频三级网站网址| 每晚都被弄得嗷嗷叫到高潮| 色在线成人网| 国产91精品成人一区二区三区| 国产三级黄色录像| 偷拍熟女少妇极品色| 欧美日韩乱码在线| 香蕉丝袜av| 女人十人毛片免费观看3o分钟| 岛国在线免费视频观看| 天天躁日日操中文字幕| 国产精品嫩草影院av在线观看 | 哪里可以看免费的av片| 99国产综合亚洲精品| 久久久久久久精品吃奶| 特大巨黑吊av在线直播| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人精品中文字幕电影| 床上黄色一级片| 99久久精品国产亚洲精品| 亚洲午夜理论影院| 中文字幕人成人乱码亚洲影| 日韩av在线大香蕉| 欧美日韩一级在线毛片| 亚洲aⅴ乱码一区二区在线播放| 校园春色视频在线观看| 黄色日韩在线| 久久久久久久久久黄片| 欧美色视频一区免费| 日本一本二区三区精品| 中文亚洲av片在线观看爽| 国产伦精品一区二区三区视频9 | 一本久久中文字幕| 色尼玛亚洲综合影院| 亚洲专区国产一区二区| 久久精品国产清高在天天线| 最近最新免费中文字幕在线| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 啦啦啦免费观看视频1| 18禁在线播放成人免费| 国产69精品久久久久777片| 欧美精品啪啪一区二区三区| 国产精品三级大全| 中文字幕久久专区| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 亚洲片人在线观看| 性欧美人与动物交配| 精品电影一区二区在线| 男人的好看免费观看在线视频| 久久久久国产精品人妻aⅴ院| 噜噜噜噜噜久久久久久91| 国产成人av激情在线播放| 久久99热这里只有精品18| 婷婷丁香在线五月| 18禁黄网站禁片免费观看直播| 很黄的视频免费| 亚洲成人久久性| 成人无遮挡网站| 亚洲欧美日韩东京热| 黄色视频,在线免费观看| 国产激情偷乱视频一区二区| 国产三级黄色录像| 成人欧美大片| 天堂√8在线中文| 美女高潮的动态| 内射极品少妇av片p| 国产成人av激情在线播放| 黄色日韩在线| 亚洲精品粉嫩美女一区| 成年女人毛片免费观看观看9| 欧美精品啪啪一区二区三区| 欧美激情在线99| 亚洲avbb在线观看| 中文亚洲av片在线观看爽| 波多野结衣高清作品| 中文字幕熟女人妻在线| 亚洲国产中文字幕在线视频| 国产伦一二天堂av在线观看| 精品人妻1区二区| 精品一区二区三区视频在线观看免费| 香蕉丝袜av| 国产av一区在线观看免费| 国产野战对白在线观看| 久久午夜亚洲精品久久| 内射极品少妇av片p| 中文字幕人妻丝袜一区二区| 亚洲男人的天堂狠狠| 亚洲 国产 在线| 久久精品91无色码中文字幕| 91九色精品人成在线观看| 亚洲精品色激情综合| 亚洲人成网站在线播| 精品人妻偷拍中文字幕| 我要搜黄色片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av在线蜜桃| www.999成人在线观看| 亚洲五月婷婷丁香| 国内精品久久久久精免费| 一级黄色大片毛片| 91麻豆精品激情在线观看国产| 99riav亚洲国产免费| 国产又黄又爽又无遮挡在线| 亚洲国产欧美网| 成年女人看的毛片在线观看| 久久精品国产自在天天线| 亚洲av日韩精品久久久久久密| 久久久色成人| 午夜久久久久精精品| 亚洲国产精品合色在线| 日韩人妻高清精品专区| 在线免费观看的www视频| 无人区码免费观看不卡| 日韩中文字幕欧美一区二区| 欧美zozozo另类| av专区在线播放| 国产精品香港三级国产av潘金莲| 在线免费观看不下载黄p国产 | 在线十欧美十亚洲十日本专区| а√天堂www在线а√下载| 99国产精品一区二区三区| 国产一区二区亚洲精品在线观看| netflix在线观看网站| 成人特级av手机在线观看| 中文字幕高清在线视频| 综合色av麻豆| 又黄又粗又硬又大视频| 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| 久久性视频一级片| 午夜福利高清视频| 非洲黑人性xxxx精品又粗又长| 伊人久久大香线蕉亚洲五| x7x7x7水蜜桃| 美女免费视频网站| 国产精品永久免费网站| 精品乱码久久久久久99久播| 国产精品电影一区二区三区| 琪琪午夜伦伦电影理论片6080| 在线国产一区二区在线| 观看美女的网站| 欧美日韩瑟瑟在线播放| 国模一区二区三区四区视频| 精品一区二区三区人妻视频| 狂野欧美白嫩少妇大欣赏| 国产av在哪里看| 国产成人欧美在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成人18禁在线播放| 欧美黄色片欧美黄色片| 麻豆一二三区av精品| 听说在线观看完整版免费高清| 在线观看舔阴道视频| 日本免费a在线| 亚洲国产精品合色在线| 亚洲人成电影免费在线| 我的老师免费观看完整版| 麻豆成人午夜福利视频| 波多野结衣高清无吗| 桃色一区二区三区在线观看| 中文字幕人成人乱码亚洲影| 日韩欧美国产在线观看| 变态另类丝袜制服| 亚洲无线观看免费| 欧美zozozo另类| 精品不卡国产一区二区三区| 一本一本综合久久| 国产精品影院久久| 老司机福利观看| 丰满的人妻完整版| 怎么达到女性高潮| 久久久精品欧美日韩精品| 一本综合久久免费| 亚洲五月天丁香| 精品一区二区三区视频在线观看免费| 国产成人av教育| 日韩欧美精品v在线| 熟女少妇亚洲综合色aaa.| 国产精品一及| 国产av麻豆久久久久久久| 黄色视频,在线免费观看| 亚洲欧美日韩东京热| 亚洲精华国产精华精| 精品一区二区三区视频在线观看免费| 午夜激情福利司机影院| 亚洲精品日韩av片在线观看 | 精品久久久久久,| 亚洲国产中文字幕在线视频| 国产精品一区二区三区四区久久| 中文字幕av在线有码专区| 午夜亚洲福利在线播放| 国产精品1区2区在线观看.| 亚洲成av人片免费观看| 日韩精品青青久久久久久| 亚洲精品456在线播放app | 最好的美女福利视频网| 法律面前人人平等表现在哪些方面| 日韩欧美三级三区| 日韩欧美在线乱码| 国产精品久久久久久人妻精品电影| 午夜两性在线视频| 国产精品美女特级片免费视频播放器| 国产真实伦视频高清在线观看 | 国产日本99.免费观看| 欧美av亚洲av综合av国产av| 中文字幕人妻熟人妻熟丝袜美 | 国产成+人综合+亚洲专区| 69av精品久久久久久| 亚洲中文字幕日韩| 很黄的视频免费| 啦啦啦免费观看视频1| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 男插女下体视频免费在线播放| 一级黄片播放器| 小说图片视频综合网站| 69人妻影院| 亚洲午夜理论影院| 变态另类丝袜制服| 天堂影院成人在线观看| 色噜噜av男人的天堂激情| 欧美3d第一页| 精品99又大又爽又粗少妇毛片 | 在线看三级毛片| 亚洲精品亚洲一区二区| 最近在线观看免费完整版| 亚洲国产高清在线一区二区三| 日韩高清综合在线| 一级黄色大片毛片| 嫩草影院入口| 免费无遮挡裸体视频| 啪啪无遮挡十八禁网站| 色老头精品视频在线观看| 最近最新中文字幕大全免费视频| 好看av亚洲va欧美ⅴa在| 亚洲av日韩精品久久久久久密| 日日夜夜操网爽| 久久精品影院6| 午夜日韩欧美国产| 嫩草影院入口| 伊人久久大香线蕉亚洲五| 亚洲av电影不卡..在线观看| 天堂√8在线中文| 日韩国内少妇激情av| 日本一二三区视频观看| av天堂在线播放| www.熟女人妻精品国产| 欧美一区二区国产精品久久精品| 网址你懂的国产日韩在线| 一级作爱视频免费观看| 国产一区二区在线观看日韩 | 国产精品av视频在线免费观看| 99精品在免费线老司机午夜| 亚洲七黄色美女视频| 午夜福利在线观看免费完整高清在 | 两个人视频免费观看高清| 国产极品精品免费视频能看的| 最新在线观看一区二区三区| 日韩欧美一区二区三区在线观看| 真人做人爱边吃奶动态| 亚洲aⅴ乱码一区二区在线播放| 悠悠久久av| 精品日产1卡2卡| 天堂√8在线中文| www日本在线高清视频| 精品欧美国产一区二区三| 搡老岳熟女国产| 午夜精品一区二区三区免费看| 观看美女的网站| 国产一级毛片七仙女欲春2| 亚洲一区高清亚洲精品| 亚洲,欧美精品.| 欧美+日韩+精品| 亚洲av免费高清在线观看| 丁香欧美五月| 国产探花在线观看一区二区| 99国产精品一区二区蜜桃av| 日韩免费av在线播放| 欧美日韩亚洲国产一区二区在线观看| 19禁男女啪啪无遮挡网站| 欧美不卡视频在线免费观看| 18禁黄网站禁片午夜丰满| 男女做爰动态图高潮gif福利片| 亚洲中文日韩欧美视频| 亚洲五月天丁香| 人人妻,人人澡人人爽秒播| 国产高清videossex| 国产精品精品国产色婷婷| 成人特级黄色片久久久久久久| 国产97色在线日韩免费| 国产精品免费一区二区三区在线| 无限看片的www在线观看| 男人和女人高潮做爰伦理| 3wmmmm亚洲av在线观看| av专区在线播放| 精品久久久久久久末码| 亚洲av成人不卡在线观看播放网| 级片在线观看| 俄罗斯特黄特色一大片| 夜夜看夜夜爽夜夜摸| 又爽又黄无遮挡网站| 老汉色av国产亚洲站长工具| 岛国在线观看网站| 国产麻豆成人av免费视频| 色综合亚洲欧美另类图片| 好看av亚洲va欧美ⅴa在| 午夜精品在线福利| 男女下面进入的视频免费午夜| 一区二区三区国产精品乱码| www.www免费av| 无遮挡黄片免费观看| 久久久精品大字幕| 亚洲aⅴ乱码一区二区在线播放| 成人国产一区最新在线观看| 制服人妻中文乱码| 日韩欧美免费精品| 国产高潮美女av| www.熟女人妻精品国产| 国内毛片毛片毛片毛片毛片| 亚洲成人久久性| 日本在线视频免费播放| 欧美性感艳星| 亚洲成人久久性| 在线播放国产精品三级| av在线天堂中文字幕| 亚洲精品在线美女| 成人亚洲精品av一区二区| or卡值多少钱| 欧美日韩黄片免| 法律面前人人平等表现在哪些方面| 最近视频中文字幕2019在线8| 夜夜看夜夜爽夜夜摸| 色av中文字幕|