• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase transition-induced superstructures ofβ-Sn films with atomic-scale thickness?

    2021-09-28 02:18:20LeLei雷樂(lè)FeiyueCao曹飛躍ShuyaXing邢淑雅HaoyuDong董皓宇JianfengGuo郭劍鋒ShangzhiGu顧尚志YanyanGeng耿燕燕ShuoMi米爍HanxiangWu吳翰翔FeiPang龐斐RuiXu許瑞WeiJi季威andZhihaiCheng程志海
    Chinese Physics B 2021年9期
    關(guān)鍵詞:程志尚志

    Le Lei(雷樂(lè)),Feiyue Cao(曹飛躍),Shuya Xing(邢淑雅),Haoyu Dong(董皓宇),Jianfeng Guo(郭劍鋒),Shangzhi Gu(顧尚志),Yanyan Geng(耿燕燕),Shuo Mi(米爍),Hanxiang Wu(吳翰翔),Fei Pang(龐斐),Rui Xu(許瑞),Wei Ji(季威),and Zhihai Cheng(程志海)

    Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-nano Devices,Department of Physics,Renmin University of China,Beijing 100872,China

    Keywords:epitaxial growth,β-Sn films,bilayer-by-bilayer,superstructures,structural transition,scanning tunneling microscopy,surface energy

    1.Introduction

    Since the discovery and characterization of graphene,[1,2]the novel two-dimensional(2D)materials,especially for monoelemental 2D materials,have been the subject of an increasing area of research due to their exotic non-trivial topological properties and potential applications.[3–10]In the periodic table,most of 2D monoelemental materials,consisting of the elements in the main group of IIIA,IVA,and VA,have been successfully prepared,such as borophene,[11–14]silicene,[15–17]antimonene,[18–21]bismuthine,[5,22,23]and so on.[24–26]Among them,the 2D materials consisted of heavy elements have been predicted as topological insulators with enhanced bulk gap and nontrivial edge state due to their strong spin–orbit coupling(SOC).[27–29]For instance,the bismuthine grown on SiC(0001)substrate shows a large gap of~0.8 eV and conductive edge states.[23]The ultraflat stanene on Cu(111)exhibits a topological bandgap(~0.3 eV)induced by SOC at theΓpoint.[30]The robust one-dimensional topological edge state of antimonene monolayer has been also observed experimentally.[31]

    It is well known that bulk Sn exhibits two kinds of phases.[32]The one is semiconductingα-Sn with diamond structure at low temperature,while the other one is metallic β-Sn at high temperature,which has a body-centered tetragonal(bct)structure.The bulk Sn undergoes a phase transition fromβ-Sn toα-Sn at 285 K upon cooling process.[33]The monolayerα-Sn(111)with honeycomb structure,known as stanene,has been theoretically predicted to be a topological insulator with nontrivial edge states.[28,34]The stanene has been further successfully prepared by molecular beam epitaxy(MBE).[30,35]In recent years,the search for Majorana bound states(MBSs)in condensed matter systems has attracted a great deal of interests for potential applications in topological quantum computing.[36–40]The bulkβ-Sn is a typical superconductor below 3.72 K.[41]The further theoretical exploration points out that the ultrathinβ-Sn(001)is an ideal platform for topological superconductor(TSC)with MBSs.[42]Recently,the strainedβ-Sn(001)thin films were obtained via phase transition engineering by leaving the fcc-Sn(111)at room temperature for some weeks.[43]Theα-Sn thin films can also transform into strainedβ-Sn films with the increase of thickness because of the large lattice mismatch and symmetry difference.[32,44]The one-step growth and the detailed structural characterization of ultrathinβ-Sn films are still lacking.

    2.Materials and methods

    The sample preparation and STM/AFM measurements are described below.Theβ-Sn thin film was grown on freshly cleaved highly oriented pyrolytic graphite(HOPG)substrates by standard MBE in ultra-high vacuum(UHV)chamber under a base pressure of 3.0×10?10Torr(1 Torr=1.33322×102Pa).The HOPG substrate was cleaved in air and immediately loaded into the MBE chamber,then annealed at 773 K overnight to remove contaminants.High purity Sn(99.999%)was evaporated from the Knudsen cell onto the HOPG kept at~500 K.After the growth experiment,the sample was first transferred to another UHV chamber with LTSTM(PanScan Freedom,RHK)for the following STM measurements.The low temperature STM measurements were performed at 9 K with chemical etched W tip calibrated on a clean Au(111)surface.All STM images were processed by Gwyddion and WSxM software.[45]The AFM measurements were performed on a commercial AFM system(MFP-3D Infinity,Asylum Research),in combination with a dynamic signal analyzer(HF2LI,Zurich Instruments)in the atmosphere circumstance.

    3.Results and discussion

    Bulk Sn is allotropic with two stable phases of whiteβ-Sn and grayα-Sn,and undergoes the structural phase transition at 286 K.The bulkβ-Sn has a body-centered tetragonal(bct)structure(A5,space group I4/amd)with lattice constants of a=5.82?A and c=3.18?A,as shown in Fig.1(a).Figure 1(c)illustrates the diamond crystal structure of bulkα-Sn(a=6.49?A,space group Fd3m).Figure 1(b)shows the bilayer structural model ofβ-Sn with double unit cells.The number 8 of Sn atoms in a unit cell ofα-Sn is identical with that of double unit cells ofβ-Sn,which could play important roles in the structural phase transition ofα-βSn.In bulk Sn,this phase transition is well known as tin pest[46]due to the powdering ofα-Sn fromβ-Sn when cooling.The volume of α-Sn(273?A3/unit cell)is pronouncedly larger than that of β-Sn(216?A3/double unit cell),which results in a~26%volume increase of phase transition fromβ-Sn toα-Sn.The bulk Sn occurred during phase transition is so structurally weak that readily crumbles into powder due to huge internal compressive strain.While the structural phase transition behavior of Sn films with atomic-scale thickness is still not clear,which may play important roles in determining their morphology,structures and properties significantly.

    Fig.1.Atomic structural models and phase transition of Sn.(a)and(b)Atomic structural models of monolayer(a)and bilayer(b)β-Sn(bct structure,white tin),respectively.(c)Atomic structural models ofα-Sn(diamond structure,grey tin).(d)Top view of atomic structure ofβ-Sn(001)surface.(e)Top view of atomic structure ofα-Sn(001)surface.(f)Top view(upper)and side view(lower)of atomic structure ofα-Sn(111)surface.Bulk tin undergoes a structural phase transition ofα-Sn toβ-Sn at~286 K.

    As we know,the Sn belongs to the elements of group IVA in the periodic table.Among of the elements of group IVA,C,Si,and Ge exhibit strong semiconducting property due to they have a tendency to form covalent diamond structure by strong sp3hybridization at ambient conditions.[47]The sp3hybridization becomes weaker as the atomic number increases in the elements of group IVA.The heavy element Pb shows a metallic fcc structure due to the prohibition of formation of sp3bonds.The position of Sn in the elements of group IVA is the borderline between light elements(C,Si,and Ge)and heavy element(Pb).Therefore,the covalent diamond structure ofα-Sn is relatively weak at low temperature[48]with zero-gap semiconducting property.Theβ-Sn is stable and metallic at high temperature due to the metallic bonding nature in body-centered tetragonal crystal structure.

    For ultrathin Sn film,it is clear that the surface structure and stability of ultrathin Sn film will pronouncedly affect the structural phase transition behaviors.The(001)surfaces of β-Sn films andα-Sn films are relatively stable with similar fourfold symmetric structure,as shown in Figs.1(d)and 1(e).The surface atoms ofα-Sn(001)surface is flat and more closepacked than that ofβ-Sn films.Therefore,it can be speculated that theβ-Sn(001)surface has a tendency to transform intoα-Sn(001)surface by the upward moving of central pink Sn atom to reduce the surface corrugation and surface energy.Theβ-Sn(001)surface of Sn films still have a tendency to further transform into the most stable and close-packed(111)surface ofα-Sn films with threefold symmetric structure.It is clear that the above surface transformation will introduce significantly interval in-plane compressive strain within the ultra Sn films,which may affect their surface morphology and lattice structures.

    The high-qualityβ-Sn films were successfully synthesized on HOPG,and further characterized by AFM and STM.Figure 2(a)shows a large-scale AFM topography images of the as-prepared Sn films with lateral sizes of~600 nm–800 nm.It seems that the Sn nanofilms were made of many merged small islands and represent a multi-domain crystalized structure.Figure 2(b)shows the typical large-scale STM topographic image of Sn nanofilms,in which the merged small islands with uniform thickness are clearly resolved in the Frankvan der Verwe(layer-by-layer)growth mode.

    Figure 2(c)shows the high-resolution STM image of Sn films with many step edges.The surface of Sn films was smooth and flat,suggesting their high crystallinity.Unexpectedly,all the step heights of Sn films are~0.6 nm,as shown in Fig.2(d),which is consistent with the bilayer height ofβ-Sn films.More line profiles are supplied in Fig.S1 to indicate the exclusive step heights of bilayer.As shown in Figs.1(b)and 1(c),the bilayer-by-bilayer growth mode of Sn films at here should be related with the similarity of unit cell for theα-Sn monolayer andβ-Sn bilayer during the structural transition of β-Sn toα-Sn.

    The multi-domain structures of Sn nanofilms were further clearly resolved,as shown in the STM topography and corresponding current images of Figs.2(e)and 2(f).The various domains were only vaguely observed in the topographic images due to their very small apparent height difference,while can be clearly resolved in the current images via their different long-range ordered surface structures.The apparent height difference between the domains is far less than the thickness(~0.32 nm)of monolayerβ-Sn(001)monolayer,as shown in Figs.2(g)and 2(h).More STM images of Sn nanofilms with multi structural domains were supplied in Fig.S2.

    Fig.2.Epitaxially growth of theβ-Sn films on HOPG substrate.(a)AFM morphology image of Sn films.(b)Large-scale STM topographic image of Sn films.(c)High-resolution STM topographic image of the Sn films.(d)Line profile taken along the black line in panel(c).The bilayer-by-bilayer growth mode of Sn films is confirmed by the step heights of~0.6 nm.(e)and(f)STM topography(e)and corresponding current(f)images of Sn films.The various structural domains were clearly resolved within the Sn films and highlighted with the domain walls marked by blue dashed lines.(g)High-resolution STM image with domains.(h)Line profile taken along the black line in panel(g).The small topography difference is observed between different domains of Sn films.(b)V=1.6 V,I=200 pA;(c):V=?2.4 V,I=?300 pA;(e)–(f):V=1.8 V,I=100 pA;(g):V=?0.8 V,I=?200 pA.

    The high-symmetric superstructures of the domains within theβ-Sn films were first carefully investigated via the high-resolution STM images.Figure 3(a)shows the atomically resolved STM image of the domain with the flat surface atoms and smallest(1×1)square lattice.The corresponding unit cell(marked with red solid square)is measured to be 0.41 nm×0.41 nm,which is not consistent with the pristine surface structure ofβ-Sn(001)in Fig.1(d).If the central pink Sn atoms ofβ-Sn(001)move upward to form the flat and close-packed(001)surface to reduce the surface energy,the arrangement of surface Sn atoms in the surface will be almost identical with those in Fig.3(a),as shown by the schematic modes of Fig.3(i).Actually,this unique flat surface structure in Fig.3(a)is very similar to theα-Sn(001)surface in Fig.1(f),

    Fig.3.High-symmetric superstructures of the domains within theβ-Sn nanofilms on HOPG substrate.(a)–(d)Atomic-resolution STM images of theβ-Sn domains.The unit cells are marked with red and yellow solid squares.(e)–(h)The corresponding FFT images of panels(a)–(d),respectively.(i)Schematic models of the observed surface superstructures.The green spheres represent the surface Sn atoms,and the theoretical atomic structure ofβ-Sn(001)surface is shown at the top right corner.(a)V=1.7 V,I=200 pA;(b)V=0.6 V,I=200 pA;(c)V=2.7 V,I=50 pA;(d)V=2.5 V,I=100 pA.

    Finally,the bilayerbybilayer growth mode and various superstructures of the epitaxialβ-Sn films are phenomenally discussed based on the structural transition ofβ-Sn toα-Sn at the two-dimensional limit.Firstly,the tentative structural transitions ofβ-Sn toα-Sn films adopt the whole bilayer transform due to their identical number of Sn atoms,as shown in Figs.1(b)and 1(c).Secondly,the first step of structural transition is the surface transformation ofβ-Sn(001)toα-Sn(001)by moving the central Sn atom upward to get the flat surface and reduce surface energy.In this step,the(001)surface of theβ-Sn films provides the most convenient relaxation mechanism for the structural transition,while the fourfold symmetry and size of the surface unit cell are still preserved.Thirdly,the high-symmetric superstructures with large square unit cells were formed with large surface corrugations(as shown in Fig.S5)to release the significant internal compressive strain during the further structural transition.In this step,the fourfold symmetry of the Sn films is still preserved,while the translation symmetry is reduced with large supercells of similar size.Fourthly,the above fourfold-symmetric superstructures were further distorted to tentatively transform into the most stable and close-packedα-Sn(111)surface with threefold symmetry.In a word,the epitaxial growth of ultrathinβ-Sn films is realized on the inert HOPG substrate.The Sn films stay long enough at room temperature and low temperature.However,the complete transition fromβ-toα-Sn was not observed.Theβ-Sn films have a trend to transform intoα-Sn films at low temperature.The unique arrangement of surface Sn atoms in the surface and multiple superstructures observed in our experiments were introduced due to the structural phase transition trend fromβ-Sn toα-Sn films at low temperature at the two-dimensional limit.

    Fig.4.Distorted superstructures of the domains within theβ-Sn films on HOPG substrate.(a)and(b)High resolution STM topography images of two distorted superstructures with parallelograms superlattice.The super cells are marked with the yellow solid parallelograms.(c)High-resolution STM image of striped superstructure with rectangular superlattice marked by the yellow solid rectangle.(d)–(f)The corresponding FFT images of panels(a)–(c),respectively.(g)Schematic illustrations of distorted[(a)and(b)]and striped(c)superstructures.The red dashed parallelograms represent distorted superstructures from the superstructures with rectangular superlattice marked by the blue-dashed rectangles.(a)V=2.2 V,I=100 pA;(b)V=0.4 V,I=300 pA;(c)V=1.9 V,I=200 pA.

    The electronic properties of the Sn films were further investigated by the scanning tunneling spectroscopy(STS)measurement.The similar dI/dV spectra taken at various structural domains is shown in Fig.S4 with finite local density of states(LDOS)at the Fermi energy(EF),indicating the metallic property of the Sn films.This result is consistent with the band structure of theβ-Sn films calculated by density functional theory(DFT).[42]The ultrathin Sn films with various superstructures could exhibit interesting modified superconductive and topological properties,which will inspire more experimental and theoretical work on this idea platform for topological superconductivity.

    4.Conclusion

    In summary,we have successfully grown ultrathinβ-Sn(001)films on HOPG substrates and systematically explored various superstructures observed in ultrathinβ-Sn(001)films.We confirm thatβ-Sn(001)films growth with a bilayer-bybilayer growth mode.The further study found that there are various domains in theβ-Sn(001)films.The long-range ordered superstructures in different domains,including highsymmetric and distorted superstructures,were systematically characterized.We assume that these superstructures are induced via structural phase transition ofβ-toα-Sn at the twodimensional limit.Our study not only demonstrates the importance of the structural phase transition during the formation of superstructures ofβ-Sn,but also opens a door for studying topological properties ofβ-Sn thin films in the future.

    猜你喜歡
    程志尚志
    對(duì)一道高考?jí)狠S題的拓展與研究
    飄色,如詩(shī)如畫(huà)
    賡續(xù)紅色血脈 傳承紅色基因
    ——追憶夏尚志和中共大賚黨支部
    中醫(yī)情志關(guān)懷在婦產(chǎn)科護(hù)理中的應(yīng)用
    鄭尚志
    請(qǐng)你幫個(gè)忙
    故事林(2020年7期)2020-04-21 07:48:04
    快樂(lè)闖關(guān)
    程志宏印象
    尚志
    優(yōu)雅(2015年5期)2015-09-10 07:22:44
    小溪
    男女午夜视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 大码成人一级视频| 大片免费播放器 马上看| 不卡视频在线观看欧美| 99久久人妻综合| 热re99久久国产66热| 一区二区av电影网| 久久精品亚洲av国产电影网| 久久国产精品男人的天堂亚洲| 2021少妇久久久久久久久久久| 久久久精品94久久精品| 超色免费av| 日韩熟女老妇一区二区性免费视频| 18+在线观看网站| 欧美变态另类bdsm刘玥| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一区二区三区乱码不卡18| 丰满少妇做爰视频| 亚洲三区欧美一区| 男女午夜视频在线观看| 欧美激情 高清一区二区三区| 精品少妇黑人巨大在线播放| 人成视频在线观看免费观看| 国产欧美日韩综合在线一区二区| 伦理电影免费视频| 亚洲欧美一区二区三区久久| 国产免费视频播放在线视频| 超碰成人久久| 性色avwww在线观看| 丝袜美足系列| 秋霞在线观看毛片| 精品人妻一区二区三区麻豆| 赤兔流量卡办理| 国产在线免费精品| 欧美日韩综合久久久久久| 岛国毛片在线播放| 男女边摸边吃奶| 亚洲欧洲国产日韩| 丰满乱子伦码专区| 亚洲av免费高清在线观看| 麻豆精品久久久久久蜜桃| 久久精品久久久久久久性| 久久人人97超碰香蕉20202| 新久久久久国产一级毛片| 两个人免费观看高清视频| 日韩电影二区| 久久久国产精品麻豆| 亚洲一区二区三区欧美精品| 久久久精品国产亚洲av高清涩受| 国产av国产精品国产| 五月天丁香电影| 免费看av在线观看网站| 天天躁夜夜躁狠狠躁躁| 欧美激情极品国产一区二区三区| 亚洲精品自拍成人| 亚洲内射少妇av| 少妇猛男粗大的猛烈进出视频| 亚洲,一卡二卡三卡| 国产精品99久久99久久久不卡 | 午夜老司机福利剧场| 国产 精品1| 妹子高潮喷水视频| 赤兔流量卡办理| 亚洲人成77777在线视频| 高清黄色对白视频在线免费看| 午夜日本视频在线| 国产精品人妻久久久影院| 午夜av观看不卡| 久久精品久久久久久噜噜老黄| 国产精品免费大片| 精品国产国语对白av| 五月天丁香电影| 18禁观看日本| 亚洲男人天堂网一区| av.在线天堂| 大话2 男鬼变身卡| 极品人妻少妇av视频| 一级毛片电影观看| 精品国产国语对白av| 韩国高清视频一区二区三区| 精品一区二区三卡| 久久精品人人爽人人爽视色| 日韩av在线免费看完整版不卡| 99热网站在线观看| 日韩成人av中文字幕在线观看| 丰满少妇做爰视频| 纯流量卡能插随身wifi吗| 男女午夜视频在线观看| 国产精品国产三级国产专区5o| 高清av免费在线| 成人亚洲精品一区在线观看| 午夜福利影视在线免费观看| 激情五月婷婷亚洲| 少妇的丰满在线观看| 国产成人精品久久久久久| 亚洲伊人久久精品综合| 国产精品秋霞免费鲁丝片| 中国国产av一级| 日韩 亚洲 欧美在线| 日韩一区二区三区影片| 午夜91福利影院| 久久国内精品自在自线图片| 亚洲精品成人av观看孕妇| 精品亚洲成国产av| 久久久久精品人妻al黑| 亚洲av欧美aⅴ国产| 久久久久久久久久久久大奶| 视频区图区小说| 国产精品亚洲av一区麻豆 | 成人毛片a级毛片在线播放| 满18在线观看网站| 麻豆av在线久日| 国产成人91sexporn| 校园人妻丝袜中文字幕| 中文字幕av电影在线播放| 亚洲欧美清纯卡通| 国产老妇伦熟女老妇高清| 久久热在线av| 国产免费视频播放在线视频| 国产精品久久久久久精品电影小说| 久久99热这里只频精品6学生| 国产片内射在线| 免费在线观看黄色视频的| 国产有黄有色有爽视频| 亚洲欧美成人精品一区二区| 国产午夜精品一二区理论片| 国产淫语在线视频| 成年女人在线观看亚洲视频| 人妻系列 视频| 麻豆精品久久久久久蜜桃| 啦啦啦啦在线视频资源| 精品卡一卡二卡四卡免费| 天堂8中文在线网| 黄片播放在线免费| 国产1区2区3区精品| 欧美日韩亚洲高清精品| 人人妻人人爽人人添夜夜欢视频| 日韩一本色道免费dvd| 国产精品亚洲av一区麻豆 | 中文字幕av电影在线播放| 少妇熟女欧美另类| 亚洲三级黄色毛片| 永久免费av网站大全| 久久这里只有精品19| 国产成人av激情在线播放| 亚洲精品国产av蜜桃| 男人舔女人的私密视频| 80岁老熟妇乱子伦牲交| 中文天堂在线官网| 国产成人av激情在线播放| 少妇人妻精品综合一区二区| 精品一区二区三卡| 久久99蜜桃精品久久| 大香蕉久久成人网| 夫妻性生交免费视频一级片| 久久久久人妻精品一区果冻| 99久久中文字幕三级久久日本| 婷婷色综合大香蕉| 精品福利永久在线观看| 看十八女毛片水多多多| 99国产综合亚洲精品| 考比视频在线观看| 欧美日韩亚洲高清精品| 日韩 亚洲 欧美在线| 久久精品久久精品一区二区三区| 欧美日韩视频高清一区二区三区二| 欧美少妇被猛烈插入视频| 亚洲内射少妇av| 大片电影免费在线观看免费| 国产精品 欧美亚洲| 校园人妻丝袜中文字幕| 少妇猛男粗大的猛烈进出视频| av女优亚洲男人天堂| 天天躁夜夜躁狠狠躁躁| 夜夜骑夜夜射夜夜干| 国产精品 国内视频| 成人亚洲欧美一区二区av| 午夜福利乱码中文字幕| 女的被弄到高潮叫床怎么办| 欧美成人精品欧美一级黄| 人人妻人人添人人爽欧美一区卜| 日韩制服丝袜自拍偷拍| 日韩一区二区三区影片| 国产亚洲一区二区精品| 日本欧美国产在线视频| 黄色毛片三级朝国网站| 久久热在线av| 多毛熟女@视频| 亚洲欧美成人综合另类久久久| 两性夫妻黄色片| 少妇人妻久久综合中文| 国产精品欧美亚洲77777| 天美传媒精品一区二区| 99久久精品国产国产毛片| 亚洲欧美中文字幕日韩二区| 一级黄片播放器| 韩国av在线不卡| 午夜影院在线不卡| 午夜福利一区二区在线看| 欧美在线黄色| 亚洲av综合色区一区| 国产1区2区3区精品| 91在线精品国自产拍蜜月| 国产视频首页在线观看| 国产成人av激情在线播放| 午夜免费鲁丝| 精品少妇久久久久久888优播| 国产成人精品婷婷| 国产国语露脸激情在线看| av免费在线看不卡| xxxhd国产人妻xxx| 亚洲精品国产av成人精品| 人妻系列 视频| 在线观看人妻少妇| 欧美+日韩+精品| 制服丝袜香蕉在线| 亚洲精品视频女| 美女主播在线视频| 日日撸夜夜添| 免费久久久久久久精品成人欧美视频| 亚洲,一卡二卡三卡| 日韩一区二区三区影片| 成年av动漫网址| 国产一区有黄有色的免费视频| 亚洲国产精品国产精品| 久久国产精品大桥未久av| 欧美亚洲日本最大视频资源| 亚洲一区中文字幕在线| 国产欧美日韩一区二区三区在线| 激情视频va一区二区三区| 老熟女久久久| 高清视频免费观看一区二区| 国产精品不卡视频一区二区| 十八禁网站网址无遮挡| 午夜免费观看性视频| 狂野欧美激情性bbbbbb| 亚洲国产色片| 在线免费观看不下载黄p国产| 亚洲精品成人av观看孕妇| 亚洲精品国产av蜜桃| 80岁老熟妇乱子伦牲交| 亚洲成人av在线免费| 婷婷色麻豆天堂久久| 亚洲熟女精品中文字幕| av又黄又爽大尺度在线免费看| 精品少妇久久久久久888优播| 不卡av一区二区三区| 天天躁夜夜躁狠狠躁躁| 深夜精品福利| 一级片免费观看大全| 一区二区av电影网| 波多野结衣一区麻豆| 久久精品亚洲av国产电影网| 天天躁夜夜躁狠狠久久av| 午夜福利网站1000一区二区三区| 精品国产乱码久久久久久男人| 免费观看在线日韩| 国产有黄有色有爽视频| 欧美精品人与动牲交sv欧美| 欧美日韩一级在线毛片| 激情五月婷婷亚洲| 男女边摸边吃奶| 久久精品久久久久久噜噜老黄| 欧美精品av麻豆av| 亚洲欧美清纯卡通| 欧美 日韩 精品 国产| 人妻 亚洲 视频| 永久网站在线| av免费在线看不卡| 搡老乐熟女国产| 亚洲国产色片| 亚洲国产成人一精品久久久| 欧美日韩av久久| 肉色欧美久久久久久久蜜桃| 一级,二级,三级黄色视频| 在线精品无人区一区二区三| 边亲边吃奶的免费视频| 一区在线观看完整版| 一本色道久久久久久精品综合| 亚洲美女黄色视频免费看| 成人国语在线视频| 高清不卡的av网站| 久久久精品区二区三区| 两个人免费观看高清视频| 免费观看av网站的网址| 久久久精品国产亚洲av高清涩受| 精品卡一卡二卡四卡免费| 中文字幕亚洲精品专区| 人妻 亚洲 视频| 免费观看av网站的网址| 欧美少妇被猛烈插入视频| 夜夜骑夜夜射夜夜干| 最近的中文字幕免费完整| 伊人久久国产一区二区| 欧美变态另类bdsm刘玥| 久久久久国产网址| 亚洲精品乱久久久久久| 水蜜桃什么品种好| 老汉色av国产亚洲站长工具| 久久99一区二区三区| 水蜜桃什么品种好| 亚洲精品日本国产第一区| 欧美精品av麻豆av| 一二三四中文在线观看免费高清| 少妇猛男粗大的猛烈进出视频| 久久 成人 亚洲| 美国免费a级毛片| 女人被躁到高潮嗷嗷叫费观| 国产又色又爽无遮挡免| 国产精品 国内视频| 国产精品无大码| 一本—道久久a久久精品蜜桃钙片| 国产精品熟女久久久久浪| 国产日韩欧美亚洲二区| 超色免费av| 婷婷色综合www| 精品酒店卫生间| 有码 亚洲区| 人妻少妇偷人精品九色| 熟妇人妻不卡中文字幕| 亚洲少妇的诱惑av| 久久国产精品男人的天堂亚洲| 天堂中文最新版在线下载| 又大又黄又爽视频免费| 亚洲,一卡二卡三卡| 精品卡一卡二卡四卡免费| 女的被弄到高潮叫床怎么办| 五月开心婷婷网| 国产欧美日韩综合在线一区二区| 国产成人免费观看mmmm| 91在线精品国自产拍蜜月| 亚洲精品国产av成人精品| 热99国产精品久久久久久7| 九色亚洲精品在线播放| 日日啪夜夜爽| 99精国产麻豆久久婷婷| 视频区图区小说| 日韩欧美精品免费久久| 久久人人97超碰香蕉20202| 午夜免费观看性视频| 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| 成年人免费黄色播放视频| 亚洲av福利一区| 国产欧美日韩一区二区三区在线| 天天躁夜夜躁狠狠久久av| 亚洲婷婷狠狠爱综合网| 赤兔流量卡办理| 99热网站在线观看| 热re99久久精品国产66热6| 亚洲国产精品国产精品| 大香蕉久久成人网| 不卡av一区二区三区| 国产欧美亚洲国产| 天美传媒精品一区二区| 久久毛片免费看一区二区三区| 七月丁香在线播放| 大片免费播放器 马上看| 国产伦理片在线播放av一区| 日韩一卡2卡3卡4卡2021年| 最近的中文字幕免费完整| 成人毛片a级毛片在线播放| 99九九在线精品视频| 亚洲三级黄色毛片| 亚洲精品国产一区二区精华液| 老熟女久久久| 黄色一级大片看看| 国产精品国产三级专区第一集| 久久影院123| 亚洲欧美日韩另类电影网站| 国产老妇伦熟女老妇高清| 日日摸夜夜添夜夜爱| 国产亚洲午夜精品一区二区久久| 多毛熟女@视频| 亚洲,一卡二卡三卡| 精品国产超薄肉色丝袜足j| 亚洲国产欧美日韩在线播放| 男人添女人高潮全过程视频| 久久精品国产亚洲av高清一级| 久久青草综合色| 久热这里只有精品99| 极品人妻少妇av视频| 国产精品一二三区在线看| 日韩欧美一区视频在线观看| 中文欧美无线码| 亚洲精品中文字幕在线视频| 亚洲av中文av极速乱| 丰满乱子伦码专区| videos熟女内射| 成人国产av品久久久| 伊人久久国产一区二区| 免费人妻精品一区二区三区视频| 在线免费观看不下载黄p国产| 久久人妻熟女aⅴ| 2021少妇久久久久久久久久久| 男女免费视频国产| 97精品久久久久久久久久精品| 1024视频免费在线观看| 热re99久久精品国产66热6| 男人操女人黄网站| 亚洲图色成人| 成人国语在线视频| 国产亚洲av片在线观看秒播厂| 中文字幕色久视频| 成人午夜精彩视频在线观看| 国产综合精华液| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 日韩,欧美,国产一区二区三区| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看| 一区二区三区乱码不卡18| 精品人妻熟女毛片av久久网站| 欧美国产精品一级二级三级| 丁香六月天网| 啦啦啦在线观看免费高清www| 日日啪夜夜爽| 日本wwww免费看| 狂野欧美激情性bbbbbb| 亚洲av国产av综合av卡| 欧美国产精品va在线观看不卡| 女性生殖器流出的白浆| 黄色怎么调成土黄色| 韩国精品一区二区三区| 亚洲第一区二区三区不卡| 在线观看一区二区三区激情| 精品国产一区二区三区久久久樱花| 中国三级夫妇交换| 亚洲综合精品二区| 男女无遮挡免费网站观看| 欧美日韩成人在线一区二区| xxx大片免费视频| 秋霞在线观看毛片| 国产男女超爽视频在线观看| 国产男人的电影天堂91| 美女国产高潮福利片在线看| 多毛熟女@视频| 精品少妇一区二区三区视频日本电影 | 久久精品夜色国产| 午夜免费男女啪啪视频观看| 91国产中文字幕| 午夜日韩欧美国产| 日韩欧美精品免费久久| 99久国产av精品国产电影| 精品亚洲成a人片在线观看| 国产白丝娇喘喷水9色精品| 国产麻豆69| www日本在线高清视频| 巨乳人妻的诱惑在线观看| 久久99一区二区三区| 亚洲欧洲日产国产| 国产精品一二三区在线看| 国产女主播在线喷水免费视频网站| 丰满少妇做爰视频| 久久久久久久久久久免费av| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 国产成人精品婷婷| 一个人免费看片子| 美女主播在线视频| 男女边摸边吃奶| 国产精品欧美亚洲77777| 精品视频人人做人人爽| 亚洲国产欧美在线一区| 日本欧美视频一区| av在线观看视频网站免费| 建设人人有责人人尽责人人享有的| 日韩av不卡免费在线播放| 欧美日韩av久久| 天天躁夜夜躁狠狠久久av| 另类精品久久| 欧美bdsm另类| www.自偷自拍.com| 高清av免费在线| 美女中出高潮动态图| 日日撸夜夜添| 少妇的逼水好多| 国产亚洲午夜精品一区二区久久| 日韩视频在线欧美| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 国产男人的电影天堂91| 日韩电影二区| 桃花免费在线播放| 18+在线观看网站| 伦理电影免费视频| 久久久国产精品麻豆| 高清不卡的av网站| 国产精品.久久久| 日韩中文字幕视频在线看片| 欧美97在线视频| 欧美国产精品一级二级三级| kizo精华| www.熟女人妻精品国产| 在线观看免费视频网站a站| 精品一区在线观看国产| 在线观看免费视频网站a站| 日本爱情动作片www.在线观看| 国产一区二区三区综合在线观看| 亚洲精品久久午夜乱码| 赤兔流量卡办理| av天堂久久9| 人妻一区二区av| 精品国产国语对白av| 亚洲精品一二三| 日韩中文字幕视频在线看片| 日韩中文字幕欧美一区二区 | 亚洲精品一二三| 一区在线观看完整版| 日韩 亚洲 欧美在线| 美女大奶头黄色视频| 亚洲国产精品成人久久小说| 成人毛片60女人毛片免费| 亚洲精品在线美女| 亚洲天堂av无毛| 纯流量卡能插随身wifi吗| 久久久久国产一级毛片高清牌| 欧美97在线视频| 多毛熟女@视频| 黄片小视频在线播放| av国产精品久久久久影院| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 最近中文字幕2019免费版| 五月天丁香电影| 久久久久久久久久久久大奶| 亚洲精品成人av观看孕妇| 日日撸夜夜添| 免费在线观看完整版高清| 性色avwww在线观看| 欧美亚洲 丝袜 人妻 在线| av在线app专区| 国产片内射在线| 久久久久久久久久人人人人人人| 亚洲欧美精品综合一区二区三区 | 国产精品99久久99久久久不卡 | 亚洲成人手机| 久久免费观看电影| 伊人久久国产一区二区| 青春草亚洲视频在线观看| 国产av码专区亚洲av| 精品少妇一区二区三区视频日本电影 | 伊人亚洲综合成人网| 国产爽快片一区二区三区| 欧美国产精品一级二级三级| 波野结衣二区三区在线| 国产乱来视频区| 18禁裸乳无遮挡动漫免费视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产毛片在线视频| 午夜福利影视在线免费观看| 国产精品一国产av| 国产日韩欧美在线精品| 国产成人精品婷婷| 97在线人人人人妻| av在线观看视频网站免费| 亚洲国产色片| 欧美激情极品国产一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 人妻少妇偷人精品九色| 在线天堂最新版资源| 99久久综合免费| 人人妻人人爽人人添夜夜欢视频| 日韩精品有码人妻一区| 亚洲欧美中文字幕日韩二区| 成年美女黄网站色视频大全免费| 国精品久久久久久国模美| 1024香蕉在线观看| 极品人妻少妇av视频| 一边摸一边做爽爽视频免费| 国产成人精品久久久久久| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| 一级片'在线观看视频| 久久久精品区二区三区| 中文天堂在线官网| 日日爽夜夜爽网站| 欧美av亚洲av综合av国产av | 777久久人妻少妇嫩草av网站| 成人亚洲欧美一区二区av| 天美传媒精品一区二区| 久久久a久久爽久久v久久| 欧美bdsm另类| 性色avwww在线观看| 久久鲁丝午夜福利片| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 免费人妻精品一区二区三区视频| 亚洲综合精品二区| 亚洲在久久综合| 欧美精品av麻豆av| 亚洲视频免费观看视频| 国产激情久久老熟女| 伊人久久国产一区二区| 亚洲精品日韩在线中文字幕| 我要看黄色一级片免费的| 亚洲欧美成人精品一区二区| 亚洲一级一片aⅴ在线观看| 久久精品久久久久久久性| 亚洲av成人精品一二三区| 巨乳人妻的诱惑在线观看| 成人18禁高潮啪啪吃奶动态图| 另类亚洲欧美激情| 中文字幕av电影在线播放| 丝袜美腿诱惑在线| 美女视频免费永久观看网站| 女人精品久久久久毛片| 免费大片黄手机在线观看| 欧美人与性动交α欧美软件| 大香蕉久久成人网| 欧美精品高潮呻吟av久久| 高清不卡的av网站| 欧美日韩成人在线一区二区| 日韩电影二区|