• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase transition-induced superstructures ofβ-Sn films with atomic-scale thickness?

    2021-09-28 02:18:20LeLei雷樂(lè)FeiyueCao曹飛躍ShuyaXing邢淑雅HaoyuDong董皓宇JianfengGuo郭劍鋒ShangzhiGu顧尚志YanyanGeng耿燕燕ShuoMi米爍HanxiangWu吳翰翔FeiPang龐斐RuiXu許瑞WeiJi季威andZhihaiCheng程志海
    Chinese Physics B 2021年9期
    關(guān)鍵詞:程志尚志

    Le Lei(雷樂(lè)),Feiyue Cao(曹飛躍),Shuya Xing(邢淑雅),Haoyu Dong(董皓宇),Jianfeng Guo(郭劍鋒),Shangzhi Gu(顧尚志),Yanyan Geng(耿燕燕),Shuo Mi(米爍),Hanxiang Wu(吳翰翔),Fei Pang(龐斐),Rui Xu(許瑞),Wei Ji(季威),and Zhihai Cheng(程志海)

    Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-nano Devices,Department of Physics,Renmin University of China,Beijing 100872,China

    Keywords:epitaxial growth,β-Sn films,bilayer-by-bilayer,superstructures,structural transition,scanning tunneling microscopy,surface energy

    1.Introduction

    Since the discovery and characterization of graphene,[1,2]the novel two-dimensional(2D)materials,especially for monoelemental 2D materials,have been the subject of an increasing area of research due to their exotic non-trivial topological properties and potential applications.[3–10]In the periodic table,most of 2D monoelemental materials,consisting of the elements in the main group of IIIA,IVA,and VA,have been successfully prepared,such as borophene,[11–14]silicene,[15–17]antimonene,[18–21]bismuthine,[5,22,23]and so on.[24–26]Among them,the 2D materials consisted of heavy elements have been predicted as topological insulators with enhanced bulk gap and nontrivial edge state due to their strong spin–orbit coupling(SOC).[27–29]For instance,the bismuthine grown on SiC(0001)substrate shows a large gap of~0.8 eV and conductive edge states.[23]The ultraflat stanene on Cu(111)exhibits a topological bandgap(~0.3 eV)induced by SOC at theΓpoint.[30]The robust one-dimensional topological edge state of antimonene monolayer has been also observed experimentally.[31]

    It is well known that bulk Sn exhibits two kinds of phases.[32]The one is semiconductingα-Sn with diamond structure at low temperature,while the other one is metallic β-Sn at high temperature,which has a body-centered tetragonal(bct)structure.The bulk Sn undergoes a phase transition fromβ-Sn toα-Sn at 285 K upon cooling process.[33]The monolayerα-Sn(111)with honeycomb structure,known as stanene,has been theoretically predicted to be a topological insulator with nontrivial edge states.[28,34]The stanene has been further successfully prepared by molecular beam epitaxy(MBE).[30,35]In recent years,the search for Majorana bound states(MBSs)in condensed matter systems has attracted a great deal of interests for potential applications in topological quantum computing.[36–40]The bulkβ-Sn is a typical superconductor below 3.72 K.[41]The further theoretical exploration points out that the ultrathinβ-Sn(001)is an ideal platform for topological superconductor(TSC)with MBSs.[42]Recently,the strainedβ-Sn(001)thin films were obtained via phase transition engineering by leaving the fcc-Sn(111)at room temperature for some weeks.[43]Theα-Sn thin films can also transform into strainedβ-Sn films with the increase of thickness because of the large lattice mismatch and symmetry difference.[32,44]The one-step growth and the detailed structural characterization of ultrathinβ-Sn films are still lacking.

    2.Materials and methods

    The sample preparation and STM/AFM measurements are described below.Theβ-Sn thin film was grown on freshly cleaved highly oriented pyrolytic graphite(HOPG)substrates by standard MBE in ultra-high vacuum(UHV)chamber under a base pressure of 3.0×10?10Torr(1 Torr=1.33322×102Pa).The HOPG substrate was cleaved in air and immediately loaded into the MBE chamber,then annealed at 773 K overnight to remove contaminants.High purity Sn(99.999%)was evaporated from the Knudsen cell onto the HOPG kept at~500 K.After the growth experiment,the sample was first transferred to another UHV chamber with LTSTM(PanScan Freedom,RHK)for the following STM measurements.The low temperature STM measurements were performed at 9 K with chemical etched W tip calibrated on a clean Au(111)surface.All STM images were processed by Gwyddion and WSxM software.[45]The AFM measurements were performed on a commercial AFM system(MFP-3D Infinity,Asylum Research),in combination with a dynamic signal analyzer(HF2LI,Zurich Instruments)in the atmosphere circumstance.

    3.Results and discussion

    Bulk Sn is allotropic with two stable phases of whiteβ-Sn and grayα-Sn,and undergoes the structural phase transition at 286 K.The bulkβ-Sn has a body-centered tetragonal(bct)structure(A5,space group I4/amd)with lattice constants of a=5.82?A and c=3.18?A,as shown in Fig.1(a).Figure 1(c)illustrates the diamond crystal structure of bulkα-Sn(a=6.49?A,space group Fd3m).Figure 1(b)shows the bilayer structural model ofβ-Sn with double unit cells.The number 8 of Sn atoms in a unit cell ofα-Sn is identical with that of double unit cells ofβ-Sn,which could play important roles in the structural phase transition ofα-βSn.In bulk Sn,this phase transition is well known as tin pest[46]due to the powdering ofα-Sn fromβ-Sn when cooling.The volume of α-Sn(273?A3/unit cell)is pronouncedly larger than that of β-Sn(216?A3/double unit cell),which results in a~26%volume increase of phase transition fromβ-Sn toα-Sn.The bulk Sn occurred during phase transition is so structurally weak that readily crumbles into powder due to huge internal compressive strain.While the structural phase transition behavior of Sn films with atomic-scale thickness is still not clear,which may play important roles in determining their morphology,structures and properties significantly.

    Fig.1.Atomic structural models and phase transition of Sn.(a)and(b)Atomic structural models of monolayer(a)and bilayer(b)β-Sn(bct structure,white tin),respectively.(c)Atomic structural models ofα-Sn(diamond structure,grey tin).(d)Top view of atomic structure ofβ-Sn(001)surface.(e)Top view of atomic structure ofα-Sn(001)surface.(f)Top view(upper)and side view(lower)of atomic structure ofα-Sn(111)surface.Bulk tin undergoes a structural phase transition ofα-Sn toβ-Sn at~286 K.

    As we know,the Sn belongs to the elements of group IVA in the periodic table.Among of the elements of group IVA,C,Si,and Ge exhibit strong semiconducting property due to they have a tendency to form covalent diamond structure by strong sp3hybridization at ambient conditions.[47]The sp3hybridization becomes weaker as the atomic number increases in the elements of group IVA.The heavy element Pb shows a metallic fcc structure due to the prohibition of formation of sp3bonds.The position of Sn in the elements of group IVA is the borderline between light elements(C,Si,and Ge)and heavy element(Pb).Therefore,the covalent diamond structure ofα-Sn is relatively weak at low temperature[48]with zero-gap semiconducting property.Theβ-Sn is stable and metallic at high temperature due to the metallic bonding nature in body-centered tetragonal crystal structure.

    For ultrathin Sn film,it is clear that the surface structure and stability of ultrathin Sn film will pronouncedly affect the structural phase transition behaviors.The(001)surfaces of β-Sn films andα-Sn films are relatively stable with similar fourfold symmetric structure,as shown in Figs.1(d)and 1(e).The surface atoms ofα-Sn(001)surface is flat and more closepacked than that ofβ-Sn films.Therefore,it can be speculated that theβ-Sn(001)surface has a tendency to transform intoα-Sn(001)surface by the upward moving of central pink Sn atom to reduce the surface corrugation and surface energy.Theβ-Sn(001)surface of Sn films still have a tendency to further transform into the most stable and close-packed(111)surface ofα-Sn films with threefold symmetric structure.It is clear that the above surface transformation will introduce significantly interval in-plane compressive strain within the ultra Sn films,which may affect their surface morphology and lattice structures.

    The high-qualityβ-Sn films were successfully synthesized on HOPG,and further characterized by AFM and STM.Figure 2(a)shows a large-scale AFM topography images of the as-prepared Sn films with lateral sizes of~600 nm–800 nm.It seems that the Sn nanofilms were made of many merged small islands and represent a multi-domain crystalized structure.Figure 2(b)shows the typical large-scale STM topographic image of Sn nanofilms,in which the merged small islands with uniform thickness are clearly resolved in the Frankvan der Verwe(layer-by-layer)growth mode.

    Figure 2(c)shows the high-resolution STM image of Sn films with many step edges.The surface of Sn films was smooth and flat,suggesting their high crystallinity.Unexpectedly,all the step heights of Sn films are~0.6 nm,as shown in Fig.2(d),which is consistent with the bilayer height ofβ-Sn films.More line profiles are supplied in Fig.S1 to indicate the exclusive step heights of bilayer.As shown in Figs.1(b)and 1(c),the bilayer-by-bilayer growth mode of Sn films at here should be related with the similarity of unit cell for theα-Sn monolayer andβ-Sn bilayer during the structural transition of β-Sn toα-Sn.

    The multi-domain structures of Sn nanofilms were further clearly resolved,as shown in the STM topography and corresponding current images of Figs.2(e)and 2(f).The various domains were only vaguely observed in the topographic images due to their very small apparent height difference,while can be clearly resolved in the current images via their different long-range ordered surface structures.The apparent height difference between the domains is far less than the thickness(~0.32 nm)of monolayerβ-Sn(001)monolayer,as shown in Figs.2(g)and 2(h).More STM images of Sn nanofilms with multi structural domains were supplied in Fig.S2.

    Fig.2.Epitaxially growth of theβ-Sn films on HOPG substrate.(a)AFM morphology image of Sn films.(b)Large-scale STM topographic image of Sn films.(c)High-resolution STM topographic image of the Sn films.(d)Line profile taken along the black line in panel(c).The bilayer-by-bilayer growth mode of Sn films is confirmed by the step heights of~0.6 nm.(e)and(f)STM topography(e)and corresponding current(f)images of Sn films.The various structural domains were clearly resolved within the Sn films and highlighted with the domain walls marked by blue dashed lines.(g)High-resolution STM image with domains.(h)Line profile taken along the black line in panel(g).The small topography difference is observed between different domains of Sn films.(b)V=1.6 V,I=200 pA;(c):V=?2.4 V,I=?300 pA;(e)–(f):V=1.8 V,I=100 pA;(g):V=?0.8 V,I=?200 pA.

    The high-symmetric superstructures of the domains within theβ-Sn films were first carefully investigated via the high-resolution STM images.Figure 3(a)shows the atomically resolved STM image of the domain with the flat surface atoms and smallest(1×1)square lattice.The corresponding unit cell(marked with red solid square)is measured to be 0.41 nm×0.41 nm,which is not consistent with the pristine surface structure ofβ-Sn(001)in Fig.1(d).If the central pink Sn atoms ofβ-Sn(001)move upward to form the flat and close-packed(001)surface to reduce the surface energy,the arrangement of surface Sn atoms in the surface will be almost identical with those in Fig.3(a),as shown by the schematic modes of Fig.3(i).Actually,this unique flat surface structure in Fig.3(a)is very similar to theα-Sn(001)surface in Fig.1(f),

    Fig.3.High-symmetric superstructures of the domains within theβ-Sn nanofilms on HOPG substrate.(a)–(d)Atomic-resolution STM images of theβ-Sn domains.The unit cells are marked with red and yellow solid squares.(e)–(h)The corresponding FFT images of panels(a)–(d),respectively.(i)Schematic models of the observed surface superstructures.The green spheres represent the surface Sn atoms,and the theoretical atomic structure ofβ-Sn(001)surface is shown at the top right corner.(a)V=1.7 V,I=200 pA;(b)V=0.6 V,I=200 pA;(c)V=2.7 V,I=50 pA;(d)V=2.5 V,I=100 pA.

    Finally,the bilayerbybilayer growth mode and various superstructures of the epitaxialβ-Sn films are phenomenally discussed based on the structural transition ofβ-Sn toα-Sn at the two-dimensional limit.Firstly,the tentative structural transitions ofβ-Sn toα-Sn films adopt the whole bilayer transform due to their identical number of Sn atoms,as shown in Figs.1(b)and 1(c).Secondly,the first step of structural transition is the surface transformation ofβ-Sn(001)toα-Sn(001)by moving the central Sn atom upward to get the flat surface and reduce surface energy.In this step,the(001)surface of theβ-Sn films provides the most convenient relaxation mechanism for the structural transition,while the fourfold symmetry and size of the surface unit cell are still preserved.Thirdly,the high-symmetric superstructures with large square unit cells were formed with large surface corrugations(as shown in Fig.S5)to release the significant internal compressive strain during the further structural transition.In this step,the fourfold symmetry of the Sn films is still preserved,while the translation symmetry is reduced with large supercells of similar size.Fourthly,the above fourfold-symmetric superstructures were further distorted to tentatively transform into the most stable and close-packedα-Sn(111)surface with threefold symmetry.In a word,the epitaxial growth of ultrathinβ-Sn films is realized on the inert HOPG substrate.The Sn films stay long enough at room temperature and low temperature.However,the complete transition fromβ-toα-Sn was not observed.Theβ-Sn films have a trend to transform intoα-Sn films at low temperature.The unique arrangement of surface Sn atoms in the surface and multiple superstructures observed in our experiments were introduced due to the structural phase transition trend fromβ-Sn toα-Sn films at low temperature at the two-dimensional limit.

    Fig.4.Distorted superstructures of the domains within theβ-Sn films on HOPG substrate.(a)and(b)High resolution STM topography images of two distorted superstructures with parallelograms superlattice.The super cells are marked with the yellow solid parallelograms.(c)High-resolution STM image of striped superstructure with rectangular superlattice marked by the yellow solid rectangle.(d)–(f)The corresponding FFT images of panels(a)–(c),respectively.(g)Schematic illustrations of distorted[(a)and(b)]and striped(c)superstructures.The red dashed parallelograms represent distorted superstructures from the superstructures with rectangular superlattice marked by the blue-dashed rectangles.(a)V=2.2 V,I=100 pA;(b)V=0.4 V,I=300 pA;(c)V=1.9 V,I=200 pA.

    The electronic properties of the Sn films were further investigated by the scanning tunneling spectroscopy(STS)measurement.The similar dI/dV spectra taken at various structural domains is shown in Fig.S4 with finite local density of states(LDOS)at the Fermi energy(EF),indicating the metallic property of the Sn films.This result is consistent with the band structure of theβ-Sn films calculated by density functional theory(DFT).[42]The ultrathin Sn films with various superstructures could exhibit interesting modified superconductive and topological properties,which will inspire more experimental and theoretical work on this idea platform for topological superconductivity.

    4.Conclusion

    In summary,we have successfully grown ultrathinβ-Sn(001)films on HOPG substrates and systematically explored various superstructures observed in ultrathinβ-Sn(001)films.We confirm thatβ-Sn(001)films growth with a bilayer-bybilayer growth mode.The further study found that there are various domains in theβ-Sn(001)films.The long-range ordered superstructures in different domains,including highsymmetric and distorted superstructures,were systematically characterized.We assume that these superstructures are induced via structural phase transition ofβ-toα-Sn at the twodimensional limit.Our study not only demonstrates the importance of the structural phase transition during the formation of superstructures ofβ-Sn,but also opens a door for studying topological properties ofβ-Sn thin films in the future.

    猜你喜歡
    程志尚志
    對(duì)一道高考?jí)狠S題的拓展與研究
    飄色,如詩(shī)如畫(huà)
    賡續(xù)紅色血脈 傳承紅色基因
    ——追憶夏尚志和中共大賚黨支部
    中醫(yī)情志關(guān)懷在婦產(chǎn)科護(hù)理中的應(yīng)用
    鄭尚志
    請(qǐng)你幫個(gè)忙
    故事林(2020年7期)2020-04-21 07:48:04
    快樂(lè)闖關(guān)
    程志宏印象
    尚志
    優(yōu)雅(2015年5期)2015-09-10 07:22:44
    小溪
    少妇被粗大的猛进出69影院| 亚洲乱码一区二区免费版| 国产一区在线观看成人免费| 日本精品一区二区三区蜜桃| 欧美日韩亚洲综合一区二区三区_| 俺也久久电影网| a在线观看视频网站| 可以在线观看的亚洲视频| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久末码| 51午夜福利影视在线观看| 午夜福利在线观看吧| 在线观看午夜福利视频| 国产欧美日韩一区二区精品| 午夜精品久久久久久毛片777| 国模一区二区三区四区视频 | 亚洲九九香蕉| 欧美日韩乱码在线| 精品免费久久久久久久清纯| 老司机午夜十八禁免费视频| 丁香六月欧美| 国产一级毛片七仙女欲春2| 亚洲精品久久成人aⅴ小说| 亚洲av第一区精品v没综合| 国内精品久久久久久久电影| 国产激情欧美一区二区| 久久婷婷成人综合色麻豆| 亚洲,欧美精品.| 色精品久久人妻99蜜桃| 精品日产1卡2卡| 搞女人的毛片| 亚洲成人精品中文字幕电影| 舔av片在线| 美女 人体艺术 gogo| 99精品在免费线老司机午夜| 人妻夜夜爽99麻豆av| 亚洲av美国av| 午夜福利视频1000在线观看| 制服人妻中文乱码| 又紧又爽又黄一区二区| 精华霜和精华液先用哪个| 亚洲九九香蕉| 亚洲一区高清亚洲精品| 91九色精品人成在线观看| 波多野结衣高清无吗| 国产精品日韩av在线免费观看| 久9热在线精品视频| 精品一区二区三区av网在线观看| 成人特级黄色片久久久久久久| 精品国产美女av久久久久小说| 中亚洲国语对白在线视频| 亚洲国产精品久久男人天堂| 国语自产精品视频在线第100页| 国产精品香港三级国产av潘金莲| 大型av网站在线播放| 欧美成人免费av一区二区三区| 国产免费男女视频| 成人三级黄色视频| 亚洲七黄色美女视频| 狂野欧美激情性xxxx| 欧美乱色亚洲激情| 成人三级黄色视频| 国产成人精品无人区| 欧美另类亚洲清纯唯美| 婷婷亚洲欧美| 国产av一区二区精品久久| 午夜福利在线观看吧| 亚洲欧洲精品一区二区精品久久久| 变态另类成人亚洲欧美熟女| 国产主播在线观看一区二区| 麻豆av在线久日| 亚洲第一电影网av| 一级黄色大片毛片| 日韩欧美三级三区| 毛片女人毛片| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 久久精品综合一区二区三区| 非洲黑人性xxxx精品又粗又长| 国产成人精品久久二区二区免费| 久久久久亚洲av毛片大全| 国产一区二区三区在线臀色熟女| 国产区一区二久久| 亚洲自偷自拍图片 自拍| 18禁黄网站禁片免费观看直播| 亚洲欧美一区二区三区黑人| 成人亚洲精品av一区二区| 白带黄色成豆腐渣| 男女做爰动态图高潮gif福利片| 又大又爽又粗| 久久国产精品人妻蜜桃| 亚洲精品中文字幕在线视频| 又大又爽又粗| 欧美黄色淫秽网站| 国产伦一二天堂av在线观看| 美女免费视频网站| 99国产精品一区二区蜜桃av| 精品久久久久久久久久久久久| 日本熟妇午夜| 男女做爰动态图高潮gif福利片| 18禁裸乳无遮挡免费网站照片| 精品第一国产精品| 少妇粗大呻吟视频| 黄色女人牲交| 久久中文字幕一级| 免费在线观看亚洲国产| 精品久久久久久久久久久久久| 亚洲人成网站在线播放欧美日韩| 国产高清视频在线观看网站| 别揉我奶头~嗯~啊~动态视频| 亚洲国产欧美网| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 亚洲国产中文字幕在线视频| 久热爱精品视频在线9| 99热只有精品国产| 久99久视频精品免费| 人人妻人人看人人澡| 俄罗斯特黄特色一大片| 国产单亲对白刺激| av免费在线观看网站| 美女黄网站色视频| 欧美人与性动交α欧美精品济南到| 天堂av国产一区二区熟女人妻 | 久久久久九九精品影院| 国产探花在线观看一区二区| 又粗又爽又猛毛片免费看| av在线天堂中文字幕| 亚洲欧美精品综合久久99| 777久久人妻少妇嫩草av网站| 少妇人妻一区二区三区视频| 中文字幕人妻丝袜一区二区| 中文字幕熟女人妻在线| 亚洲成av人片免费观看| 亚洲成人久久爱视频| 一进一出抽搐动态| 亚洲国产中文字幕在线视频| 免费一级毛片在线播放高清视频| 欧美日韩精品网址| 午夜视频精品福利| 久久精品aⅴ一区二区三区四区| 久久久久久久午夜电影| 最近最新免费中文字幕在线| 亚洲成a人片在线一区二区| 成人18禁高潮啪啪吃奶动态图| 亚洲专区字幕在线| 久久人人精品亚洲av| 亚洲av熟女| 91大片在线观看| 天天躁夜夜躁狠狠躁躁| 性色av乱码一区二区三区2| 亚洲国产精品久久男人天堂| 黄色 视频免费看| 极品教师在线免费播放| 国内久久婷婷六月综合欲色啪| 老司机靠b影院| 丝袜美腿诱惑在线| 欧美国产日韩亚洲一区| 两个人的视频大全免费| 在线观看美女被高潮喷水网站 | 人人妻人人澡欧美一区二区| 亚洲国产欧美一区二区综合| 免费观看精品视频网站| 色在线成人网| 又大又爽又粗| 午夜日韩欧美国产| 国产主播在线观看一区二区| 国产真实乱freesex| 国产亚洲精品一区二区www| 国产精品香港三级国产av潘金莲| 久久午夜亚洲精品久久| 91九色精品人成在线观看| 久久这里只有精品中国| av福利片在线| 国内精品一区二区在线观看| 亚洲av美国av| 欧美3d第一页| 久久香蕉精品热| or卡值多少钱| 色尼玛亚洲综合影院| 欧美一区二区精品小视频在线| 日本免费a在线| 国产高清videossex| 精品电影一区二区在线| 亚洲av熟女| 精品国产乱子伦一区二区三区| 色在线成人网| 国产精华一区二区三区| 91九色精品人成在线观看| 日韩欧美一区二区三区在线观看| 热99re8久久精品国产| 又黄又爽又免费观看的视频| 亚洲精品美女久久av网站| 亚洲一区高清亚洲精品| 久久精品91蜜桃| 最近视频中文字幕2019在线8| 欧美国产日韩亚洲一区| 日韩欧美国产一区二区入口| 夜夜爽天天搞| 99国产精品99久久久久| 亚洲片人在线观看| 日本一区二区免费在线视频| 老熟妇乱子伦视频在线观看| 色综合站精品国产| www.精华液| 免费在线观看影片大全网站| 亚洲av熟女| 成人欧美大片| 日本 av在线| 日本一区二区免费在线视频| 亚洲欧美精品综合一区二区三区| 视频区欧美日本亚洲| 精品久久久久久成人av| 好男人电影高清在线观看| 日本 欧美在线| 中文字幕av在线有码专区| 国产精品久久久av美女十八| 国产欧美日韩一区二区精品| 曰老女人黄片| 九九热线精品视视频播放| www.熟女人妻精品国产| 久久欧美精品欧美久久欧美| 高清毛片免费观看视频网站| 亚洲专区字幕在线| 久久精品影院6| 人妻久久中文字幕网| 国产高清视频在线播放一区| 欧美在线一区亚洲| 亚洲av片天天在线观看| 黄片小视频在线播放| 久久久久久亚洲精品国产蜜桃av| 成人18禁在线播放| 手机成人av网站| 国产亚洲欧美在线一区二区| 国内久久婷婷六月综合欲色啪| 国产精品影院久久| 久久性视频一级片| 757午夜福利合集在线观看| 国产av不卡久久| 欧美成人免费av一区二区三区| 久久久久久人人人人人| 老鸭窝网址在线观看| 看黄色毛片网站| 丰满的人妻完整版| 国产成人欧美在线观看| 麻豆久久精品国产亚洲av| 国产成人精品无人区| 中文字幕av在线有码专区| 91麻豆精品激情在线观看国产| aaaaa片日本免费| 在线观看www视频免费| 一夜夜www| 免费一级毛片在线播放高清视频| 久久精品国产清高在天天线| 亚洲一区高清亚洲精品| 又紧又爽又黄一区二区| 免费高清视频大片| 久久香蕉激情| 日日夜夜操网爽| 12—13女人毛片做爰片一| 亚洲中文av在线| 亚洲成人久久爱视频| 色综合婷婷激情| 亚洲乱码一区二区免费版| 黄频高清免费视频| 色av中文字幕| 麻豆成人av在线观看| 久久中文看片网| 麻豆国产av国片精品| 国产成人精品久久二区二区免费| 国产野战对白在线观看| 亚洲av第一区精品v没综合| 亚洲精品国产一区二区精华液| 一级黄色大片毛片| 18禁国产床啪视频网站| 欧美黄色淫秽网站| 伊人久久大香线蕉亚洲五| 国产亚洲av嫩草精品影院| 激情在线观看视频在线高清| 丝袜美腿诱惑在线| 国产1区2区3区精品| 他把我摸到了高潮在线观看| 免费看日本二区| 亚洲 国产 在线| 两性夫妻黄色片| 亚洲av五月六月丁香网| 国内毛片毛片毛片毛片毛片| 99热这里只有是精品50| 黄色女人牲交| 色av中文字幕| 亚洲自拍偷在线| 无人区码免费观看不卡| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 精品福利观看| 一个人免费在线观看电影 | 午夜激情av网站| 久久久水蜜桃国产精品网| 后天国语完整版免费观看| 日日摸夜夜添夜夜添小说| 亚洲全国av大片| 91成年电影在线观看| 夜夜夜夜夜久久久久| 国产熟女xx| 午夜福利18| 欧美zozozo另类| 一级毛片女人18水好多| 我的老师免费观看完整版| av有码第一页| www国产在线视频色| 又紧又爽又黄一区二区| 久久久久久国产a免费观看| 国产单亲对白刺激| 精品不卡国产一区二区三区| 19禁男女啪啪无遮挡网站| 免费在线观看亚洲国产| 老熟妇乱子伦视频在线观看| 男女床上黄色一级片免费看| 亚洲欧美激情综合另类| 手机成人av网站| 亚洲av成人av| 免费在线观看亚洲国产| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av高清一级| 国产亚洲精品综合一区在线观看 | 成人永久免费在线观看视频| 一个人免费在线观看的高清视频| 免费一级毛片在线播放高清视频| 国产黄a三级三级三级人| 国产在线精品亚洲第一网站| 国产精品一及| www.熟女人妻精品国产| 男女做爰动态图高潮gif福利片| 色av中文字幕| 午夜福利欧美成人| 精品久久蜜臀av无| 一级a爱片免费观看的视频| x7x7x7水蜜桃| 午夜福利在线在线| 国产麻豆成人av免费视频| 99久久久亚洲精品蜜臀av| 亚洲成av人片免费观看| 久久久久久免费高清国产稀缺| 午夜免费激情av| 日本成人三级电影网站| 日韩高清综合在线| 麻豆成人av在线观看| 国产精品 国内视频| 国产成+人综合+亚洲专区| 国产精品自产拍在线观看55亚洲| 黄色丝袜av网址大全| 日韩 欧美 亚洲 中文字幕| 女人被狂操c到高潮| 亚洲乱码一区二区免费版| av片东京热男人的天堂| 午夜福利在线在线| 亚洲成a人片在线一区二区| 精品人妻1区二区| 中文字幕精品亚洲无线码一区| 老熟妇仑乱视频hdxx| 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| 别揉我奶头~嗯~啊~动态视频| 免费在线观看影片大全网站| 在线观看日韩欧美| 大型黄色视频在线免费观看| 久久这里只有精品19| 亚洲全国av大片| 黄色片一级片一级黄色片| 亚洲 国产 在线| 日韩成人在线观看一区二区三区| 欧美中文日本在线观看视频| 精品久久久久久,| 久久久国产成人精品二区| 村上凉子中文字幕在线| 老司机午夜福利在线观看视频| 少妇人妻一区二区三区视频| 特大巨黑吊av在线直播| 亚洲国产看品久久| e午夜精品久久久久久久| 好男人电影高清在线观看| 国产成人一区二区三区免费视频网站| 亚洲av成人不卡在线观看播放网| 老司机午夜十八禁免费视频| 久久国产乱子伦精品免费另类| 久久这里只有精品19| 12—13女人毛片做爰片一| 精品欧美国产一区二区三| 不卡一级毛片| 国产成人aa在线观看| 久久精品人妻少妇| 无人区码免费观看不卡| 男女午夜视频在线观看| 狂野欧美激情性xxxx| 五月伊人婷婷丁香| 熟女少妇亚洲综合色aaa.| 久久这里只有精品中国| 国产又黄又爽又无遮挡在线| 91麻豆精品激情在线观看国产| 中文字幕最新亚洲高清| 亚洲18禁久久av| 怎么达到女性高潮| 变态另类丝袜制服| 中文字幕av在线有码专区| 欧美性猛交╳xxx乱大交人| 国产精品亚洲美女久久久| 亚洲av第一区精品v没综合| 日韩精品中文字幕看吧| a级毛片在线看网站| 国产视频一区二区在线看| 午夜福利视频1000在线观看| 国产精品综合久久久久久久免费| 美女 人体艺术 gogo| 人人妻人人澡欧美一区二区| 99久久综合精品五月天人人| 久久精品国产亚洲av香蕉五月| 国产av一区在线观看免费| 免费在线观看完整版高清| 中文字幕久久专区| 九九热线精品视视频播放| 中文资源天堂在线| 久久久久久国产a免费观看| 国产av一区在线观看免费| 在线视频色国产色| 国产av又大| 三级男女做爰猛烈吃奶摸视频| videosex国产| 国内久久婷婷六月综合欲色啪| av天堂在线播放| 午夜免费激情av| 免费在线观看视频国产中文字幕亚洲| 国产精品免费一区二区三区在线| 免费在线观看亚洲国产| 亚洲精品在线美女| 俄罗斯特黄特色一大片| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 青草久久国产| 亚洲专区字幕在线| 日本精品一区二区三区蜜桃| 亚洲avbb在线观看| 99久久久亚洲精品蜜臀av| 大型av网站在线播放| 香蕉久久夜色| av有码第一页| 中文字幕久久专区| 国产精品一及| 欧洲精品卡2卡3卡4卡5卡区| www.自偷自拍.com| 欧美成狂野欧美在线观看| 手机成人av网站| 久久精品影院6| 级片在线观看| 亚洲国产精品999在线| 精品熟女少妇八av免费久了| 国产精品免费视频内射| 我要搜黄色片| 日韩大尺度精品在线看网址| 久久精品国产清高在天天线| 中出人妻视频一区二区| 国产爱豆传媒在线观看 | 久久久久国产精品人妻aⅴ院| 欧美精品亚洲一区二区| 99久久无色码亚洲精品果冻| 国产一区二区三区视频了| x7x7x7水蜜桃| 搡老岳熟女国产| 国产亚洲欧美98| 亚洲 国产 在线| 精品久久蜜臀av无| 久久精品国产亚洲av香蕉五月| 欧美一级毛片孕妇| 巨乳人妻的诱惑在线观看| 欧美大码av| 欧美日韩中文字幕国产精品一区二区三区| 欧美乱色亚洲激情| 久久久久九九精品影院| 久久久久亚洲av毛片大全| 欧美极品一区二区三区四区| 精品乱码久久久久久99久播| 黑人操中国人逼视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美黄色淫秽网站| 久久精品国产清高在天天线| 中文字幕av在线有码专区| 最近最新中文字幕大全免费视频| 欧美三级亚洲精品| 97超级碰碰碰精品色视频在线观看| 国产精品香港三级国产av潘金莲| 怎么达到女性高潮| 男女之事视频高清在线观看| 动漫黄色视频在线观看| 最新在线观看一区二区三区| 亚洲成人国产一区在线观看| 国产亚洲精品av在线| 老鸭窝网址在线观看| 999精品在线视频| 国产69精品久久久久777片 | 91国产中文字幕| 亚洲精品在线观看二区| www.熟女人妻精品国产| 午夜福利免费观看在线| 亚洲av五月六月丁香网| 欧美日韩福利视频一区二区| 国产又色又爽无遮挡免费看| 夜夜躁狠狠躁天天躁| 俄罗斯特黄特色一大片| 亚洲成人免费电影在线观看| 两人在一起打扑克的视频| 国产精品av视频在线免费观看| 夜夜躁狠狠躁天天躁| 我要搜黄色片| 精品国产超薄肉色丝袜足j| 两人在一起打扑克的视频| 丰满的人妻完整版| 亚洲av成人一区二区三| 亚洲五月天丁香| 精品电影一区二区在线| 国产精品久久电影中文字幕| 国产精品日韩av在线免费观看| 亚洲最大成人中文| 一本一本综合久久| 18禁黄网站禁片免费观看直播| 久久国产精品人妻蜜桃| 91av网站免费观看| 国产精品久久久久久久电影 | 别揉我奶头~嗯~啊~动态视频| 美女免费视频网站| 免费在线观看日本一区| 亚洲一码二码三码区别大吗| 老熟妇仑乱视频hdxx| 亚洲精品国产一区二区精华液| АⅤ资源中文在线天堂| 亚洲国产精品合色在线| 国产真实乱freesex| 一a级毛片在线观看| 精品国产乱子伦一区二区三区| 日本a在线网址| 人妻夜夜爽99麻豆av| 精品午夜福利视频在线观看一区| 99在线人妻在线中文字幕| 日本熟妇午夜| 在线观看日韩欧美| 亚洲美女视频黄频| 中文字幕av在线有码专区| 麻豆av在线久日| 精品人妻1区二区| 国产又黄又爽又无遮挡在线| 我要搜黄色片| 身体一侧抽搐| 成人亚洲精品av一区二区| 国产精品九九99| 亚洲av五月六月丁香网| 美女 人体艺术 gogo| 丰满的人妻完整版| 香蕉久久夜色| 真人一进一出gif抽搐免费| 18禁黄网站禁片免费观看直播| 一进一出抽搐动态| 久久这里只有精品中国| 亚洲av成人一区二区三| 午夜免费激情av| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区av网在线观看| 最近最新中文字幕大全免费视频| 国内少妇人妻偷人精品xxx网站 | 成年版毛片免费区| 热99re8久久精品国产| 香蕉av资源在线| 亚洲专区字幕在线| 久久久国产成人免费| 国产高清激情床上av| 人人妻人人看人人澡| 日韩大码丰满熟妇| 少妇人妻一区二区三区视频| 99精品在免费线老司机午夜| a级毛片在线看网站| 人人妻人人澡欧美一区二区| 国产成人av激情在线播放| 久久久久久久精品吃奶| 此物有八面人人有两片| 最近最新中文字幕大全电影3| 亚洲九九香蕉| 久久婷婷成人综合色麻豆| www.精华液| av在线天堂中文字幕| 999精品在线视频| 法律面前人人平等表现在哪些方面| 亚洲人成77777在线视频| 成人特级黄色片久久久久久久| 婷婷丁香在线五月| 久久久国产精品麻豆| 一区二区三区激情视频| 久久草成人影院| 久久精品综合一区二区三区| 熟女电影av网| 老司机福利观看| a级毛片a级免费在线| 精品国产超薄肉色丝袜足j| 欧美另类亚洲清纯唯美| 最近视频中文字幕2019在线8| 精品少妇一区二区三区视频日本电影| 18禁黄网站禁片午夜丰满| 亚洲片人在线观看| 精品久久久久久久人妻蜜臀av| 一级片免费观看大全| www.自偷自拍.com| 国产av一区在线观看免费| 国产一区二区三区在线臀色熟女| 日本成人三级电影网站| 99久久精品国产亚洲精品| 国产91精品成人一区二区三区| 国产伦一二天堂av在线观看| 毛片女人毛片| av国产免费在线观看|