• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile?

    2021-09-28 02:17:16XiaoFengShi石曉峰DongJunMa馬東軍ZongQiangMa馬宗強(qiáng)DeJunSun孫德軍andPeiWang王裴
    Chinese Physics B 2021年9期
    關(guān)鍵詞:馬東德軍

    Xiao-Feng Shi(石曉峰),Dong-Jun Ma(馬東軍),?,Zong-Qiang Ma(馬宗強(qiáng)),De-Jun Sun(孫德軍),and Pei Wang(王裴),2,?

    1Institute of Applied Physical and Computational Mathematics,Beijing 100094,China

    2Center for Applied Physics and Technology,Peking University,Beijing 100871,China

    3Department of Modern Mechanics,University of Science and Technology of China,Hefei 230027,China

    Keywords:bifurcation and continuation,symmetry-breaking,hysteresis,surface driven cavity flow

    1.Introduction

    The incompressible shear-driven flow inside a finite wallbounded cavity has been a typical hydrodynamic problem with rich nonlinear dynamics from stationary to time periodic and chaotic.[1–3]It has wide practical applications such as the built-in warehouse of fighter aircraft and the flow of lakes and oceans driven by wind.[4,5]Furthermore,it is a general benchmark example to verify the accuracy of numerical methods for the incompressible flow.[6]Although the geometry of the shear-driven cavity is simple,it contains complex nonlinear flow phenomena,and its flow stability and bifurcation behavior have been extensively studied.[1,2,7–10]

    The nonlinear dynamics and bifurcation of lid-driven cavity flows have been investigated with various numerical methods.[11]The simulations of full time-dependent Navier–Stokes equations can capture the stable bifurcation procedures from initial stationary state to time periodic oscillations and chaotic patterns.[12,13]The first two-dimensional instability of lid-driven square cavity flow is a supercritical Hopf bifurcation,and its exact occurrence in parameter space is extremely dependent on both resolution and the way by which the corner singularity is treated.When the Reynolds number exceeds about 7800,the steady flow field bifurcates to an oscillating periodic solution.When the Reynolds number exceeds 11000 or more,the chaotic state will appear.[7]

    The driving speed of the lid cover has important influences on the cavity flows and determines the nonlinear flow patterns.[2,4,5]In the flow of lakes and oceans driven by wind,the wind is usually non-uniform over the surface of lakes and oceans.Zeccheto and de Biasio indicted that the average wind changes direction approximately 180°along the basin in Alboran Sea.[14]To simulate such a driving condition,this paper focuses on the square cavity flow driven by a lid cover with antisymmetric sinusoidal velocity profile,which does not have the singularity of velocity boundary conditions near the corners,and is more suitable to be a general benchmark problem for computational fluid dynamics.Furthermore,the symmetric driven square cavity flow contains more nonlinear dynamic phenomena,such as symmetry breaking,coexistence of multiple steady solutions,hysteresis,and subcritical Hopf bifurcation.For such a complex flow problem,it is difficult to obtain the unstable steady solutions and quantitative bifurcation processes only by the direct numerical simulation.[15,16]

    The numerical modelling and analysis of bifurcation problems in fluid mechanics has been extensively discussed in literature,[15,17–20]where the numerical analysis of bifurcation problems in the incompressible fluid mechanics was discussed and the convergence theory for several important bifurcations was described for the projection-type,finite difference and mixed finite element methods.Generally,there are three sequential parts in the computational approach.[19]First a discrete representation of the model equations has to be obtained through some kind of discretization procedure.[17]The second part is to apply specific techniques of numerical bifurcation theory[15,18]to track the solution branches.The third part of the computational work is to access the linear stability of the solution state.Following this idea,Tuckerman et al.[15,20,21]have proposed a global instability analyzing methodology,by which an explicit-implicit time integration code could be easily transformed to carry out for steady-state solving,bifurcation points,continuation,linear stability analysis,and nonlinear transient growth analysis in fluid mechanics.Here,we use this methodology[16,22–26]of nonlinear global stability and bifurcation theory to solve the multiple solutions and hysteresis in the symmetric driven square cavity flow.

    Farias and McHugh used the lattice Boltzmann(LB)method to study the cavity flow with the same configuration and found two stable coexisting solutions.[4]Due to the limitation of research tools,they only gave qualitative intervals of the flow patterns and cannot capture the unstable solutions.Some important physical phenomena may be omitted.In this paper,the problem is studied from the view of nonlinear bifurcation,and the coexistence of multiple solutions is discussed for the Navier–Stokes equations at Re<2500.With a numerical continuation,all of the stable and unstable steady solutions are solved out,and the complete bifurcation curve with critical parameters for these flow patterns are presented.

    2.Numerical methods

    Considering the two-dimensional unsteady incompressible flow where both the density and viscosity of the fluid are constant,the governing equations are the Navier–Stokes equations

    A high-order spectral/hp element method[26,27]with a domain decomposition Stokes solver is utilized to solve the governing Eq.(1).The computation domain is decomposed into non-overlapping structured or unstructured spectral elements.Within each element Gauss–Lobatto–Jacobi and Gauss-Radau-Jacobi quadrature points are used in two directions respectively in order to guarantee the integration conditions.The second-order stiff stable scheme is adopted for the unsteady time integration.The linear terms are treated implicitly and the nonlinear terms explicitly.Then the discretized equations can be re-formed with an unsteady Stokes operator on the left-hand side and explicit forcing terms on the right-hand side.[15]With the domain decomposition approach,the interior and marginal degrees of freedom are decoupled and the incompressible divergence-free condition is satisfied strictly.The resulting small linear system in each element can be solved by direct method.

    The governing equations can be re-formed as

    where N and L represent the nonlinear and linear operators,respectively.For semi-implicit scheme we have

    The steady-state solution for the Navier–Stokes equations with variables(u,Re)reads

    Applying Newton’s method to Eq.(4),the linear equation for the correctionδu is(Nu+L)δu=?(N+L)u where Nuis the Jocabian matrix associated with the nonlinear term N evaluated at state u.Following Tuckerman’s idea,[15]a Jacobian-free Newton–Krylov method[22,26]is used to obtain stable or unstable steady solutions.Using the Stokes operator P=(I?ΔtL)?1Δt as a preconditioner,the linear system can be reformulated as

    Inexact Newton iteration is used for accelerating convergence,where the right-and left-hand sides of Eq.(5)are calculated by a time-stepping based on Eq.(3).

    In order to follow the bifurcation path of the dynamic system,a pseudo-arclength numerical continuation[17,19,28]is used to avoid the difficulty due to the turning point.The extended linear system based on the vector(u,Re)is

    where Duand DReare the linearized operators for variables u and Re,respectively.This system is solved by a Jacobian-free Newton–Krylov method with a Householder transformation.[29]

    An iterative Arnoldi method is utilized to calculate the leading eigenvalues and their corresponding eigenvectors for the system.The detailed implementation can refer to the published papers.[16,22–26]

    The laminar flow past a stationary cylinder between two parallel plates is analyzed to verify the accuracy of the proposed method.Similar to lid-driven cavity flow,this flow also contains the vortexes,symmetrical crushing and supercritical Hopf bifurcation.Cliffe et al.showed that the flow will lose stability to a periodic flow at a supercritical Hopf bifurcation point as the flow rate is increased,and there is another Hopf bifurcation to re-stabilize the flow above a critical Reynolds number.[30]Furthermore,steady asymmetric flows exist at the same blockage ratio B(the ratio of cylindrical diameter to plate width).We performed the bifurcation analysis at the special blockage ratio B=0.7,where steady symmetric solutions,steady asymmetric solutions and periodic solutions can be obtained,and the critical Reynolds and Strouhal numbers are given in Table 1.The computational region is divided into 130 iso-parametric quadrilateral elements,each of which has an interpolation order of p=11.Table 1 shows the comparisons between the results of the present high-order spectral element method and those of finite element method.[30]The critical parameters agree well with the first two Hopf bifurcations.This agreement verifies the ability of the present numerical method to describe the flow bifurcation.Figure 1 shows the streamlines of different symmetric and asymmetric steady solutions near the critical bifurcation points.

    Table 1.Critical Reynolds and Strouhal numbers for blocked cylinder flow(B=0.7).

    Fig.1.Streamline for blockage ration B=0.7:(a)Re=90,(b)Re=175,(c)Re=185.

    3.Results and discussion

    The computational zone is set as a unit square cavity[0,1]×[0,1],as shown in Fig.2.The lid cover has an antisymmetric sinusoidal velocity boundary condition u(x)=sin(2πx),and the other three sides are set as fixed wall.The whole system is symmetric about the vertical central line,and there exists a basic symmetric numerical solution.Because of the simplicity of geometry,a spectral element method with 60 discrete points in each direction is adopted.The symmetric streamlines at Re=100 are demonstrated in Fig.3.Driven by the antisymmetric sinusoidal velocity,two main vortices are formed in the square cavity,and there are two secondary vortices at the corners.When the Re number increases,the symmetric solution may convert to be unstable or asymmetric.In order to characterize the final state of flow field,a symmetry parameter(integral of the absolute value of horizontal velocity along the centerline)is considered,

    Fig.2.Schematic diagram of cavity flow driven by lid cover with sinusoidal velocity profile.

    Fig.3.Streamlines for symmetric flow at Re=100.

    Farias and McHugh gave one bifurcation curve of the flow,[4]indicated that there is a subcritical bifurcation with symmetry breaking.When the Re number is less than the critical Rec,only one stable symmetric solution with two principal vortices exists;when the Re number is larger than Rec,there will be multiple stable solutions,and only stable asymmetric solutions were shown in the paper of Farias and McHugh.

    3.1.Bifurcation of asymmetric solutions

    The bifurcation curve of asymmetric solutions calculated in this paper is given in Fig.4 when Re<2500.The symmetric solutions are stable in the range of Reynolds number,which are not given in the figure.Periodic oscillations occur when Re is around 2500,but only the cases of steady solutions are considered here.The pseudo-arclength numerical continuation technique is used to follow all the solution branches including bifurcation and turning points.At the beginning,the initial symmetric solution at Re=100 was obtained by time integration,and the symmetric solution at Re=500 was calculated by the Newton method.Then a small asymmetric perturbation was added to the symmetric Re=500 solution,and the asymmetric stable solution could be obtained by unsteady time integration method.Therefore,we made the switch from the symmetric branch to the asymmetric stable branch.All the steady solutions then could be followed by the continuation method through increasing or decreasing the Reynolds number.Three turning points on the asymmetric branch were captured by the pseudo-arclength technique.The stable or unstable properties of these branch states have to be determined by linear stability analysis or verified by unsteady time integration where the unstable solution would be divergence.

    Figure 4(a)shows all branches of the asymmetric solutions,and Fig.4(b)gives the enlarged display of the hysteresis curve in Fig.4(a).There are three turning points TP1(Re?320),TP2(Re?2208)and TP3(Re?2262).The bifurcation curve is divided into four branches by these three turning points:(1)left branch(TP1 to TP3,320≤Re≤2262);(2)right branch(TP2 to right end,Re≥2208);(3)down branch(below TP1,Re≥320);(4)hysteretic branch(TP3 to TP2,2208≤Re≤2262).

    Fig.4.Bifurcation curve for symmetric driven square cavity flow.The asymmetric solutions:(1)square:stable solutions,left branch;(2)circle:stable solutions,right branch;(3)cross:unstable solution,down branch;(4)triangle:unstable solution,hysteretic branch.

    In these four branches,the left and right branches are stable,which are represented by squares and circles in Fig.4,respectively,whereas the down and hysteretic branches are unstable,which are represented by cross and triangle symbols.In the Reynolds number range(320,2208)and(2262,2500),there are one stable and one unstable asymmetric flow patterns.In the Reynolds number range(2208,2262),the pair number of stable and unstable asymmetric solutions changes to be two simultaneously.

    3.2.Multiple solutions at the same Reynolds number

    Firstly,we discuss the cases of simple multiple solutions(Re in(320,2208)or(2262,2500)).Subcritical bifurcation with broken symmetry can easily lead to the coexistence of multiple solutions under the same Re number.According to the bifurcation theory of dynamical system,there must be at least one unstable steady solution between the stable symmetric and asymmetric flow patterns.In Refs.[4,5],it was difficult to obtain unstable steady solutions by the explicit time marching method,so that the corresponding flow patterns could not be obtained.Figure 5 shows the present results of streamlines at Re=330,1000,1500,including the stable symmetric and asymmetric solutions,and the corresponding unstable asymmetric solutions.The mirror images of the asymmetric solutions are omitted here.

    Near the turning point,such as Re=330,the asymmetric solutions have just appeared,and the stable and unstable asymmetric flow patterns are similar.They are the structures of one pair of primary vortices in the cavity center and the secondary vortices in the corners.When Re=1000,the cores of the main vortex in these three solutions move downward gradually.In the stable asymmetric pattern,the secondary vortices in the upper right corner become smaller due to the squeezing of the main vortices,while the secondary vortices in the lower left corner become stronger gradually.In the unstable asymmetric pattern,only the lower left secondary vortex has a slight enhancement.When Re=1500,there is no remarkable change of the main vortices in the three solutions,expect some flow separations and small vortices appear on the side walls in both the symmetric and unstable asymmetric solutions.These flow separations begin to appear on the side wall around Re=1090,which leads to the bifurcation of the flow topology.However,according to the bifurcation curve and stability analysis,there is no bifurcation of the solutions of Navier–Stokes equations.

    In order to verify the correctness of the results presented here,both the steady SIMPLE method and the stream function method[31]are used to simulate this problem.Because the SIMPLE method does not adopt Newton iteration,it is difficult to converge to the unstable asymmetric solution.However,the stream function method with inexact Newton algorithm can obtain the unstable solution,and the results are in good agreement with those obtained by the present spectral element method.In order to verify the stability of the flow states,unsteady computations are carried out for the evolution of each steady solution with small perturbations.The perturbations of the stable steady states will gradually decay and the states converge to the original solutions,whereas the perturbations of the unstable steady states will continue to increase and eventually the states converge to one of the stable branches,which is consistent with the linear stability analysis.

    Fig.5.Streamlines for symmetric,asymmetric stable and asymmetric unstable solutions of cavity flow at Re=330,1000,1500.

    3.3.Hysteresis for asymmetric solutions

    In addition to the multiple coexisting solutions,there is a novel hysteresis phenomenon in the range of 2208

    The typical solutions in the hysteresis at Re=2230 are given in Fig.6.The flow patterns of these symmetric and asymmetric solutions are similar to those at Re=1500,except that the secondary vortices on the corner develop more completely.For the stable asymmetric solutions,a new flow separation appears in the left side wall and generates a new secondary vortex.The wall secondary vortex is separated with the corner secondary vortex by the main vortex in the asymmetric solution of left branch,while these two secondary vortexes contact with each other and are ready to merge in the corresponding right branch.The flow field of the unstable solution in the hysteresis is between these two stable asymmetric states,where the wall and corner secondary vortexes just come into contact with each other.The main difference between the solutions of the left and right branches is the relationship of secondary vortices near the wall and corner.The growth competition and merger of these two secondary vortices result in the hysteresis phenomenon.The down branch is always alone,so its solution has a remarkable difference with the other asymmetric solutions.

    Fig.6.Streamlines for multiple coexisting solutions of cavity flow at Re=2230 in the hysteresis.

    4.Conclusion

    In this paper,the steady flow in a square cavity driven by a lid cover with antisymmetric sinusoidal velocity profile is numerically studied.By the bifurcation analysis and numerical continuation,the coexistence of multiple solutions of the Navier–Stokes equations at Re<2500 is obtained.The new bifurcation curve of symmetric and asymmetric steady states are presented,and the corresponding flow patterns are discussed.The critical Re number of asymmetric solutions is found to be 320.The stable symmetric and asymmetric solutions are consistent with those in literature,and a new set of unstable asymmetric solutions are obtained.When Re<320,there is only one stable symmetric solution for the flow;when 320

    猜你喜歡
    馬東德軍
    捐 款
    躬耕(2023年1期)2023-03-07 01:03:25
    汽車發(fā)動機(jī)常見故障維修與保養(yǎng)技術(shù)
    城市道路規(guī)劃設(shè)計發(fā)展趨勢探討
    馬東生 作品
    二戰(zhàn)德軍變身解放者?
    百家講壇(2017年16期)2017-11-07 10:06:41
    馬東的世界
    作品(2014年11期)2014-11-15 01:30:04
    用足數(shù)年功 佳景一朝成
    正在到來的雪
    不走運(yùn)的“水下幽靈”——德軍潛艇
    軍事歷史(1997年2期)1997-08-21 02:28:58
    第二次世界大戰(zhàn)剪影——德軍入侵波蘭
    軍事歷史(1993年2期)1993-08-21 06:13:20
    国产毛片在线视频| 久久毛片免费看一区二区三区| 国产一区二区激情短视频 | 侵犯人妻中文字幕一二三四区| 国产精品久久久久久久久免| 天堂俺去俺来也www色官网| 午夜日韩欧美国产| 在线观看一区二区三区激情| 国产 精品1| 我要看黄色一级片免费的| 久久久久精品性色| 麻豆精品久久久久久蜜桃| 国产精品久久久久久精品古装| 18禁动态无遮挡网站| 久久久a久久爽久久v久久| 久久久久精品人妻al黑| 日韩伦理黄色片| 天堂8中文在线网| 亚洲精品第二区| 亚洲精品久久成人aⅴ小说| 制服丝袜香蕉在线| 欧美日韩亚洲国产一区二区在线观看 | 一级爰片在线观看| 久久99一区二区三区| 日韩大片免费观看网站| 国产成人a∨麻豆精品| 美女视频免费永久观看网站| 女性生殖器流出的白浆| 免费在线观看黄色视频的| 精品第一国产精品| 欧美成人午夜精品| 赤兔流量卡办理| 久久久久久久久久久久大奶| 国产精品亚洲av一区麻豆 | 伊人久久国产一区二区| 精品99又大又爽又粗少妇毛片| 男人舔女人的私密视频| 亚洲成人一二三区av| 国产在线一区二区三区精| 一区福利在线观看| 成年人免费黄色播放视频| 国产成人精品久久久久久| 日本av免费视频播放| 搡老乐熟女国产| 97人妻天天添夜夜摸| 亚洲国产看品久久| 欧美日韩成人在线一区二区| 亚洲精品久久午夜乱码| 丝袜在线中文字幕| 国产一区二区激情短视频 | 丝袜喷水一区| 欧美日韩一区二区视频在线观看视频在线| 国产一区亚洲一区在线观看| a 毛片基地| 在线观看一区二区三区激情| 老鸭窝网址在线观看| xxx大片免费视频| 免费日韩欧美在线观看| 国产高清国产精品国产三级| 在线观看www视频免费| 少妇被粗大的猛进出69影院| 国产精品偷伦视频观看了| 精品一区在线观看国产| 三级国产精品片| 亚洲欧美成人精品一区二区| 街头女战士在线观看网站| 黑人欧美特级aaaaaa片| www.自偷自拍.com| 肉色欧美久久久久久久蜜桃| 国产精品 欧美亚洲| 欧美 亚洲 国产 日韩一| 天堂俺去俺来也www色官网| 亚洲欧洲国产日韩| 日韩伦理黄色片| 日韩成人av中文字幕在线观看| 免费日韩欧美在线观看| 欧美 亚洲 国产 日韩一| 国产精品99久久99久久久不卡 | 亚洲欧美一区二区三区久久| 97精品久久久久久久久久精品| 国产深夜福利视频在线观看| 天天影视国产精品| 女性生殖器流出的白浆| 国产色婷婷99| 不卡视频在线观看欧美| 天堂中文最新版在线下载| 制服诱惑二区| 2018国产大陆天天弄谢| 中文字幕精品免费在线观看视频| 久久久久久久大尺度免费视频| 亚洲精品一二三| 免费观看av网站的网址| 性高湖久久久久久久久免费观看| 90打野战视频偷拍视频| 亚洲一区二区三区欧美精品| 成人亚洲精品一区在线观看| 久久精品亚洲av国产电影网| 亚洲一级一片aⅴ在线观看| 可以免费在线观看a视频的电影网站 | 久久人妻熟女aⅴ| 国产黄频视频在线观看| 久久久久精品久久久久真实原创| 久久久久视频综合| 大片电影免费在线观看免费| av网站在线播放免费| 国产国语露脸激情在线看| 欧美另类一区| 欧美 亚洲 国产 日韩一| 水蜜桃什么品种好| 欧美 日韩 精品 国产| 久久久精品区二区三区| 精品国产一区二区三区四区第35| 久久精品国产亚洲av涩爱| 熟女av电影| 一区福利在线观看| 亚洲视频免费观看视频| 国产精品av久久久久免费| 欧美日韩视频精品一区| av免费观看日本| 一本色道久久久久久精品综合| 综合色丁香网| 国产精品嫩草影院av在线观看| 亚洲精品中文字幕在线视频| 亚洲国产成人一精品久久久| 新久久久久国产一级毛片| 欧美+日韩+精品| 亚洲第一青青草原| 亚洲一码二码三码区别大吗| 亚洲色图 男人天堂 中文字幕| 一级,二级,三级黄色视频| 亚洲天堂av无毛| 视频区图区小说| 精品第一国产精品| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区久久| 色播在线永久视频| 亚洲综合精品二区| 久久热在线av| 国产成人av激情在线播放| 日韩欧美精品免费久久| 国产1区2区3区精品| 亚洲av免费高清在线观看| 亚洲av在线观看美女高潮| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久精品国产亚洲av涩爱| 下体分泌物呈黄色| 久久久久久久国产电影| 高清视频免费观看一区二区| 美女脱内裤让男人舔精品视频| 国产精品偷伦视频观看了| 一级毛片电影观看| 丝袜脚勾引网站| 极品少妇高潮喷水抽搐| 人体艺术视频欧美日本| 久久精品久久久久久噜噜老黄| 欧美另类一区| 国产 精品1| av视频免费观看在线观看| 亚洲精品aⅴ在线观看| 大码成人一级视频| 免费在线观看视频国产中文字幕亚洲 | 国语对白做爰xxxⅹ性视频网站| 免费黄网站久久成人精品| 十八禁网站网址无遮挡| 国产精品 国内视频| 欧美精品亚洲一区二区| 一个人免费看片子| a级片在线免费高清观看视频| 国产有黄有色有爽视频| 国产极品粉嫩免费观看在线| 伦理电影免费视频| 女性被躁到高潮视频| 老汉色∧v一级毛片| 五月开心婷婷网| 亚洲av男天堂| 建设人人有责人人尽责人人享有的| 不卡视频在线观看欧美| 中文精品一卡2卡3卡4更新| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久久久99蜜臀 | 男的添女的下面高潮视频| 国产视频首页在线观看| 免费黄网站久久成人精品| 亚洲av日韩在线播放| 9色porny在线观看| 国产日韩欧美在线精品| 国产一区二区三区av在线| 久久 成人 亚洲| 亚洲国产毛片av蜜桃av| 免费人妻精品一区二区三区视频| 美女福利国产在线| 成年动漫av网址| 中文欧美无线码| 美女福利国产在线| 两个人免费观看高清视频| 两性夫妻黄色片| 91在线精品国自产拍蜜月| 精品国产国语对白av| 精品一区二区三区四区五区乱码 | 男女边摸边吃奶| 精品久久久久久电影网| 精品第一国产精品| 久久精品夜色国产| 日韩视频在线欧美| 欧美最新免费一区二区三区| 美女主播在线视频| 亚洲精品久久午夜乱码| 老女人水多毛片| 满18在线观看网站| 久久国产亚洲av麻豆专区| 国产一区有黄有色的免费视频| 亚洲av中文av极速乱| 一二三四中文在线观看免费高清| 欧美变态另类bdsm刘玥| av免费在线看不卡| 一级黄片播放器| 黄色配什么色好看| 国产精品欧美亚洲77777| 国产精品蜜桃在线观看| 电影成人av| 啦啦啦在线免费观看视频4| 欧美在线黄色| 亚洲欧洲国产日韩| 国产一级毛片在线| 国产精品不卡视频一区二区| 在线免费观看不下载黄p国产| 精品国产超薄肉色丝袜足j| 老熟女久久久| 精品一品国产午夜福利视频| 香蕉丝袜av| 日本vs欧美在线观看视频| 国产成人a∨麻豆精品| 性色av一级| 午夜福利一区二区在线看| 久久免费观看电影| 亚洲国产最新在线播放| 国产av一区二区精品久久| 久久久久精品久久久久真实原创| 欧美国产精品va在线观看不卡| 美女午夜性视频免费| 国产成人精品在线电影| 香蕉精品网在线| 国产精品麻豆人妻色哟哟久久| 久久亚洲国产成人精品v| 欧美日韩成人在线一区二区| 国产成人精品婷婷| 亚洲美女黄色视频免费看| 欧美中文综合在线视频| 国产精品熟女久久久久浪| 成年女人在线观看亚洲视频| 久久人妻熟女aⅴ| 自拍欧美九色日韩亚洲蝌蚪91| 国产av国产精品国产| 九色亚洲精品在线播放| 午夜免费观看性视频| 久久免费观看电影| 国产精品欧美亚洲77777| 午夜激情av网站| h视频一区二区三区| 国产黄频视频在线观看| av一本久久久久| 丝瓜视频免费看黄片| 亚洲一区二区三区欧美精品| a级毛片黄视频| 大香蕉久久网| 一级毛片电影观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av成人精品一二三区| 免费黄色在线免费观看| 欧美xxⅹ黑人| 天天躁日日躁夜夜躁夜夜| 欧美黄色片欧美黄色片| 欧美国产精品一级二级三级| 国产精品久久久av美女十八| 少妇被粗大猛烈的视频| 侵犯人妻中文字幕一二三四区| 99国产综合亚洲精品| 成人18禁高潮啪啪吃奶动态图| 在线观看人妻少妇| 亚洲欧美成人综合另类久久久| 久久久久国产精品人妻一区二区| 日本-黄色视频高清免费观看| 黄片播放在线免费| 两个人免费观看高清视频| 色吧在线观看| 91成人精品电影| 午夜av观看不卡| 99久国产av精品国产电影| 精品人妻熟女毛片av久久网站| 一级片'在线观看视频| 久久精品国产亚洲av天美| 亚洲精品,欧美精品| 女性被躁到高潮视频| 国产在线免费精品| 青青草视频在线视频观看| 日本欧美视频一区| 日日撸夜夜添| www.自偷自拍.com| 街头女战士在线观看网站| a 毛片基地| 叶爱在线成人免费视频播放| 国产白丝娇喘喷水9色精品| 国产人伦9x9x在线观看 | 午夜av观看不卡| 97人妻天天添夜夜摸| 精品国产乱码久久久久久男人| 91在线精品国自产拍蜜月| 精品人妻在线不人妻| 亚洲av.av天堂| 蜜桃国产av成人99| 这个男人来自地球电影免费观看 | 国产日韩欧美在线精品| av免费在线看不卡| 日本91视频免费播放| 欧美日韩一级在线毛片| 韩国高清视频一区二区三区| 国产精品国产三级专区第一集| 在现免费观看毛片| 你懂的网址亚洲精品在线观看| 黄色毛片三级朝国网站| 精品人妻熟女毛片av久久网站| 欧美另类一区| 秋霞伦理黄片| 一级片'在线观看视频| av在线app专区| 久久久久精品久久久久真实原创| 女人被躁到高潮嗷嗷叫费观| 婷婷色综合大香蕉| 老汉色∧v一级毛片| 日韩av不卡免费在线播放| 美国免费a级毛片| 伦理电影大哥的女人| 久久人人爽av亚洲精品天堂| 免费看不卡的av| 日韩大片免费观看网站| 精品亚洲成a人片在线观看| 少妇被粗大猛烈的视频| 婷婷色av中文字幕| 中文天堂在线官网| 黄色视频在线播放观看不卡| 美女脱内裤让男人舔精品视频| 国产男女内射视频| 免费黄频网站在线观看国产| 视频区图区小说| 欧美国产精品va在线观看不卡| 老汉色av国产亚洲站长工具| 黄色毛片三级朝国网站| 黄色一级大片看看| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀 | 亚洲av福利一区| 老熟女久久久| 中文字幕人妻熟女乱码| 亚洲精品国产av蜜桃| 成人黄色视频免费在线看| 在线观看www视频免费| 丝袜人妻中文字幕| 三级国产精品片| 亚洲精品自拍成人| 狂野欧美激情性bbbbbb| 亚洲人成电影观看| 妹子高潮喷水视频| 亚洲色图 男人天堂 中文字幕| 激情视频va一区二区三区| 日韩av不卡免费在线播放| 下体分泌物呈黄色| 婷婷色麻豆天堂久久| 一二三四在线观看免费中文在| 成人毛片a级毛片在线播放| 一本大道久久a久久精品| 免费高清在线观看日韩| 性色avwww在线观看| 久久精品人人爽人人爽视色| 精品国产国语对白av| 国产男女超爽视频在线观看| 亚洲欧美清纯卡通| 亚洲中文av在线| www.精华液| 国产1区2区3区精品| 国产免费一区二区三区四区乱码| 男女午夜视频在线观看| 美女脱内裤让男人舔精品视频| 国产亚洲最大av| 久久精品国产鲁丝片午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 欧美另类一区| www.自偷自拍.com| 日韩av不卡免费在线播放| 久久 成人 亚洲| 久久久精品免费免费高清| 国产精品秋霞免费鲁丝片| 狂野欧美激情性bbbbbb| 午夜福利在线免费观看网站| 亚洲精品国产色婷婷电影| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩在线中文字幕| 99九九在线精品视频| 中文字幕人妻丝袜一区二区 | 精品久久久久久电影网| 99热全是精品| 黄色一级大片看看| 免费av中文字幕在线| 精品亚洲乱码少妇综合久久| 最新的欧美精品一区二区| 久久国内精品自在自线图片| 欧美人与善性xxx| 亚洲精品乱久久久久久| av卡一久久| 热re99久久国产66热| 精品一区二区三卡| av福利片在线| 免费观看av网站的网址| 丰满乱子伦码专区| 国产精品一二三区在线看| 亚洲,欧美,日韩| 日韩三级伦理在线观看| 三级国产精品片| 国产一区二区三区综合在线观看| 极品人妻少妇av视频| 精品少妇一区二区三区视频日本电影 | 国产精品一区二区在线不卡| 日本91视频免费播放| 精品国产乱码久久久久久小说| 在线亚洲精品国产二区图片欧美| 国产精品秋霞免费鲁丝片| 日日啪夜夜爽| 可以免费在线观看a视频的电影网站 | 宅男免费午夜| 精品少妇久久久久久888优播| 日韩,欧美,国产一区二区三区| 亚洲色图综合在线观看| 国产免费现黄频在线看| 亚洲综合精品二区| 国产成人精品久久二区二区91 | 国产一级毛片在线| 视频区图区小说| 亚洲精品一区蜜桃| 中国三级夫妇交换| 成年动漫av网址| av一本久久久久| 黄片小视频在线播放| 观看美女的网站| 成年人免费黄色播放视频| 卡戴珊不雅视频在线播放| 免费高清在线观看日韩| 热99国产精品久久久久久7| 欧美精品人与动牲交sv欧美| 建设人人有责人人尽责人人享有的| 欧美人与性动交α欧美精品济南到 | 国产精品二区激情视频| 观看av在线不卡| 母亲3免费完整高清在线观看 | 久久99精品国语久久久| 色播在线永久视频| 亚洲成av片中文字幕在线观看 | 精品少妇久久久久久888优播| 日本欧美视频一区| 婷婷色综合大香蕉| 免费日韩欧美在线观看| 精品少妇黑人巨大在线播放| 大片电影免费在线观看免费| 少妇熟女欧美另类| 欧美激情高清一区二区三区 | 久久国产亚洲av麻豆专区| 欧美精品高潮呻吟av久久| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 边亲边吃奶的免费视频| 亚洲欧美一区二区三区久久| 国产在线视频一区二区| 成人18禁高潮啪啪吃奶动态图| 一区二区日韩欧美中文字幕| 大码成人一级视频| 亚洲av在线观看美女高潮| 两性夫妻黄色片| 久久精品夜色国产| 黄色一级大片看看| 精品第一国产精品| 精品一品国产午夜福利视频| 亚洲成国产人片在线观看| 成年av动漫网址| 欧美日韩视频精品一区| 少妇 在线观看| 性高湖久久久久久久久免费观看| www.熟女人妻精品国产| 国产亚洲av片在线观看秒播厂| 午夜日本视频在线| 欧美人与性动交α欧美软件| 国产精品.久久久| 人人妻人人添人人爽欧美一区卜| 国产精品久久久av美女十八| 99热网站在线观看| 成人二区视频| 免费观看av网站的网址| 欧美日韩一级在线毛片| 下体分泌物呈黄色| 国产成人精品福利久久| 天堂8中文在线网| 久久毛片免费看一区二区三区| 少妇人妻 视频| 欧美日韩亚洲高清精品| 亚洲精品,欧美精品| 国产精品国产三级国产专区5o| 最新的欧美精品一区二区| 97精品久久久久久久久久精品| 国产精品 国内视频| 欧美日韩精品网址| 美女大奶头黄色视频| 国产 精品1| 久久久久久久久久久久大奶| 在线免费观看不下载黄p国产| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区国产| 国产成人精品无人区| 欧美 亚洲 国产 日韩一| 中文字幕另类日韩欧美亚洲嫩草| 亚洲婷婷狠狠爱综合网| 老司机影院毛片| 欧美日韩国产mv在线观看视频| 熟女电影av网| 亚洲综合精品二区| 国产av精品麻豆| 丰满少妇做爰视频| 人妻少妇偷人精品九色| 欧美日韩一区二区视频在线观看视频在线| 色播在线永久视频| 90打野战视频偷拍视频| 精品少妇内射三级| 高清视频免费观看一区二区| 综合色丁香网| 不卡视频在线观看欧美| 亚洲国产精品一区三区| 18禁国产床啪视频网站| 国产日韩一区二区三区精品不卡| av在线app专区| 另类亚洲欧美激情| 欧美少妇被猛烈插入视频| 国产淫语在线视频| 亚洲综合色网址| 巨乳人妻的诱惑在线观看| 免费不卡的大黄色大毛片视频在线观看| 在线观看www视频免费| 国产黄频视频在线观看| 少妇人妻精品综合一区二区| 视频在线观看一区二区三区| 久久精品夜色国产| 街头女战士在线观看网站| 热re99久久精品国产66热6| 精品国产露脸久久av麻豆| 天堂中文最新版在线下载| 日韩欧美精品免费久久| 精品酒店卫生间| 欧美日韩视频高清一区二区三区二| 日本欧美国产在线视频| 午夜福利,免费看| 天美传媒精品一区二区| 亚洲国产精品999| 亚洲情色 制服丝袜| 伦精品一区二区三区| 观看美女的网站| 在线天堂中文资源库| 日韩成人av中文字幕在线观看| 成年动漫av网址| 伦理电影免费视频| 国产午夜精品一二区理论片| 日日撸夜夜添| 精品亚洲成a人片在线观看| 国产精品人妻久久久影院| 自线自在国产av| 桃花免费在线播放| 美女午夜性视频免费| 国产精品免费大片| 午夜福利乱码中文字幕| √禁漫天堂资源中文www| 亚洲精品一二三| 亚洲av电影在线观看一区二区三区| 欧美+日韩+精品| 少妇猛男粗大的猛烈进出视频| 色94色欧美一区二区| 亚洲欧美清纯卡通| 高清黄色对白视频在线免费看| 亚洲国产精品成人久久小说| 在线看a的网站| 午夜激情av网站| 超色免费av| 久热久热在线精品观看| 少妇被粗大猛烈的视频| 亚洲伊人色综图| 日本wwww免费看| 老女人水多毛片| 十分钟在线观看高清视频www| 韩国精品一区二区三区| 性少妇av在线| 国产一区有黄有色的免费视频| 国产精品免费大片| 国产又色又爽无遮挡免| 久久综合国产亚洲精品| 精品酒店卫生间| 一本久久精品| 久久99一区二区三区| 久久久久网色| 在线看a的网站| 九色亚洲精品在线播放| 国产黄频视频在线观看| 超碰成人久久| 女人久久www免费人成看片| 99久国产av精品国产电影| 最新的欧美精品一区二区| 晚上一个人看的免费电影| 亚洲av男天堂| 日韩一区二区视频免费看| 日本av手机在线免费观看| 亚洲av电影在线进入| 欧美精品亚洲一区二区| 看非洲黑人一级黄片|