• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simplified permeable surface correction for frequency-domain Ffowcs Williams and Hawkings integrals

    2021-09-17 09:04:52ZhitengZhouHongpingWangShizhaoWang

    Zhiteng Zhou ,Hongping Wang ,Shizhao Wang ,?

    a The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

    b School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 10 0 049, China

    ABSTRACT A simplified surface correction formulation is proposed to diminish the far-field spurious sound generated by the quadrupole source term in Ffowcs Williams and Hawkings (FW-H) integrals.The proposed formulation utilizes the far-field asymptotics of the Green’s function to simplify the computation of its high-order derivatives,which circumvents the difficulties reported in the original frequency-domain surface correction formulation.The proposed formulation has been validated by investigating the benchmark case of sound generated by a convecting vortex.The results show that the proposed formulation successfully eliminates the spurious sound.The applications of the proposed formulation to flows with some special parameters are also discussed.

    Keywords:FW-H integral Surface correction Quadrupole source Aeroacoustics

    The Ffowcs Williams and Hawkings (FW-H) equation extends Lighthill’s acoustic analogy method to flows with moving solid/permeable boundaries,resulting in an inhomogeneous wave equation that includes monopole,dipole and quadrupole sources on the right hand side.The solution to the FW-H equation can be expressed as integrals of the sources (hereinafter referred to as the FW-H integrals) by using the Green’s function.The integrals of monopole and dipole sources are surface integrals and that of quadrupole sources is a volume integral [1] .

    The computation of the volume integral is much more challenging than that of surface integrals [2,3].In computing the far-field sound generated by low Mach number flows,the volume integral is usually ignored with the assumption that the sound is dominated by the monopole and dipole sources.However,recent researches find that the ignoration of the quadrupole sources may generate spurious sound even though the flow is at low Mach numbers [4–8] .

    Different methods have been proposed to eliminate the spurious sound associated with the quadrupole sources [5,9,10].In particular,Wang et al.[11] found that the spurious sound is caused by the eddy crossing the surface of the integral domain.Then a new surface integral (hereinafter referred to as surface correction) is proposed to correct the contribution of quadrupole sources to the far-field sound.The surface correction formulation is constructed with the assumption that the eddy is frozen when it is convected across the integral surface.The convection velocity is usually computed by scaling the freestream velocity [11] .The spurious sound can be correctly eliminated as long as the eddy leaves the integral surfaces with relatively uniform velocity [11] .The surface correction formulation is then improved by Nitzkorski et al.[12],Rahier et al.[8] and Ikeda et al.[4] by taking into account the effects of non-uniform convection velocity.The above surface correction formulation is derived in a convective frame of reference and employed in the time-domain method for the FW-H integrals.The application of the above surface correction to the frequencydomain method is usually not straight forward,because most of the frequency-domain methods are derived in a laboratory frame of Ref.[11] .

    Ikeda et al.[13] examined the far-field approximation for the surface correction between the laboratory frame of reference and convective frame of reference and derived a frequency-domain formulation via a Fourier transform of the time-domain formulation.Lockard and Casper [12] proposed an alternative method to derive the surface correction formulation in the frequency domain.This alternative method converts the volume integral into a series of surface integrals by repeatedly using the formulation of integration by parts.The proposed surface correction is validated by computing the sound generated by a 2D convecting vortex.The advantage of this method is that the surface correction formulation is directly derived in the frequency domain without referring to the surface correction formulation in the time domain.The disadvantage is that the surface correction formulation involves high-order derivatives of the Green’s function.The computation of the highorder derivatives of the Green’s function are quite complicated and nontrivial [14].

    The objective of this letter is to propose a simplified surface correction formulation based on the work of Lockard and Casper[14].We simplify the computation of the high-order derivatives of the Green’s function based on its far-field approximations and validate the proposed formulation by using the 2D convecting vortex.

    The solution to the FW-H equation in the frequency domain can be given by the FW-H integrals as follows

    where theITandILterms are the surface integrals of monopole sources and dipole sources,respectively,IQterm is the volume integral of quadrupole sources.is theith component of the velocity of the fluid,Uiis theith component of the freestream velocity,Pij=(p?p0)δij?τijis the compressive stress tensor andτijis viscous stress tensor.Here,we ignore the viscous part according to the work of Lockard and Casper[14].fis a level set function wheref=0 indicates the FW-H surface andf>0 is the region outside the FW-H surface.njis the unit normal of the FW-H surface.ρo,coandporepresent the density,speed of sound and pressure in the background flow,respectively.ρ′=ρ?ρoandp=p?poare perturbations of density and pressure,respectively.In accordance with the work of Lockard and Casper [14],we set theo?y1direction as the freestream flow direction.Hence,the Green’s functionsGin Eq.(1) for 2D and 3D flows are

    The termsITandILin Eq.(1) are surface integrals.IQis the volume integral over the regionf>0.The computation ofIQis much more challenging thanITandIL,because the Lighthill stress tensor at all grid points within the regionf>0 is needed to be experimentally measured or numerically simulated.Usually,the domainf>0 extends to far downstream of the wake for high Reynolds number flows.It is very difficult to measure or compute the large domain off>0 in flows of practical interest.To compute the contribution of the quadrupole term efficiently,many efforts have been devoted to transforming the quadrupole term from a volume integral to surface integrals [10,11,13].The frequency-domain surface correction proposed by Lockard and Casper [14] is as follows,

    To ensure the accuracy of the series,n≥2 is necessary [14].However,as pointed out by Lockard and Casper [14],the computation of high-order derivatives of the Green’s function is quite complicated.They refer to the work of Gloerfelt et al.[15] to compute the second derivatives of the Green’s function in two dimension and use a symbolic algebra package to obtain the higher-order derivatives.

    We propose a simplified surface correction formulation as follows to diminish the spurious far-field sound generated by the eddy crossing the FW-H integral surface,

    whereG=G3D,?=?3Dfor 3D flows andG=G2D,?=for 2D flows.G2Dis the asymptotic Green’s function in 2D space

    Equation (5) employs the approximations as follows to simplify the computation of the high-order derivatives of the Green’s function at the far-field

    The proof of Eq.(7) is briefly reported as follows.Thekth-order derivative ofG2Dwith respect toy1is

    whereh≥1.In the far field,α1andα2areO(1)and independent ofR[16].By using the first line of Eq.(10),thes1-order derivative of exp(?(x ;y))is approximated as follows

    Equation (7) is obtained by ignoring the small terms in Eq.(9) according to Eqs.(10) and (11).More details of the proof can be found in the supplementary material [14].Thus,Eq.(7) is proved.Eq.(8) can be proved by using the similar method.Compared with Eq.(4),the computation of the high-order derivativesare replaced by.The computation of high-order derivatives of the Green’s function is circumvented.

    Fig.1.Schematics of the FW-H surface position and pressure contours of the vortex.

    In accordance with the work of Lockard and Casper [14],we validate the simplified surface correction formulation (Eq.(5)) by using the benchmark case of spurious sound generated by a 2D convecting vortex crossing the FW-H integral surface.The normalized pressure and velocity of the 2D convecting vortex is given by[12]

    A permeable square with each side of 10 unit lengths centered at origin is used as the FW-H integral surface,as shown in Fig.1.The convecting vortex moves at the Mach number ofMa=0.2.The observer location is at(100,0)in the downstream of the convecting vortex.A spurious sound is generated when the vortex crosses through the FW-H surface.The spurious sound can be computed by usingIS=IT+ILfor this special flow,because sound pressure approaches to zero exponentially in the far-field.The negative of the spurious sound pressure generated by the vortex crossing the FW-H interface is plotted in Fig.2.The surface corrections computed by using Eq.(5) withn=1,2 and 3 are also plotted in Fig.2.The spurious sound pressure is correctly diminished by the proposed simplified surface correction withn≥2.The result is consistent with that of Lockard and Casper [14].

    We also compared the details of the simplified surface correction (Eq.(5)) with the original surface correction (Eq.(4)) proposed by Lockard and Casper [14].The surface corrections computed by using these two equations are plotted in Fig.3.The results show that the surface corrections computed by using the simplified surface correction (Eq.(5)) are in good agreement with the corresponding results of the original surface correction (Eq.(4)) withn=1,2 and 3 at the downstream observer (100,0).Figure 4 plots the surface correction computed by Eq.(5) withn=2 and 3 at different downstream observers when the non-dimensional time ist=120.The distance between the downstream observer and the initial vortex center is denoted byR.It is observed that the surface correction computed by using Eq.(5) withn=2 and 3 can correctly diminish the spurious sound whenR>60.The results show that the simplified surface correction proposed by this work is valid for computing the far-field sound.

    Fig.2.Negative of the spurious sound pressure and the correction computed by using the proposed simplified surface correction for the sound generated by a convecting vortex crossing the FW-H integral surface.

    The simplified surface correction formulation (Eq.(5)) not only provides a simplified surface correction but also helps to identify the limitations of the previous surface correction.As pointed out by Lockard and Casper [14],the series of surface integrals of Eq.(4) is divergent when the convecting vortex moves atMa=0.6.The divergence of the series can be clearly inferred from Eq.(5),since Eq.(5) is the approximation of Eq.(4) at the far field.We note that Eq.(5) is a geometric series with a ratio of.The series is divergent when>1.Therefore,the divergence of Eq.(4) may occur when the convection velocity is larger than the phase velocity

    Fig.3.Comparison between the simplified surface correction proposed in the present work (Eq.(5)) and the surface correction proposed by Lockard and Casper [12] (Eq.(4))with a n=1, b n=2, c n=3.

    Fig.4.The instantaneous surface correction at the downstream observer at t=120.

    Whennis even,Eq.(15) reduces to the identityIQ=IQ.Whennis odd,Eq.(15) reduces to

    Equation (16) is much simpler than Eq.(5) for the surface correction,because Eq.(16) consists of only one surface integral instead of the series of surface integrals in Eq.(5).Equation (16) can be utilized for surface correction for the special case of=?1.

    It is also worth noting that another much simpler surface correction formula consisted of only one surface integral for surface correction can be derived for the special case of nearly uniform Lighthill stress distributionnear the FW-H integral surface.The simplified surface correction for this special case is

    withl=1.More detailed derivation of Eq.(19) can be found in the supplementary material [14].Combination of Eq.(19) with Eq.(18) results in the simplified surface correction Eq.(17).

    We have proposed a simplified surface correction formulation for the quadrupole source term of the Ffowcs Williams and Hawkings integrals in frequency domain.The proposed surface correction consists of a series of surface integrals and is applicable to eliminating the spurious sound at far field.The simplified formulation improves the original surface correction by circumventing the difficulties in computing the high-order derivatives of the Green’s function.An easy-to-use expression is derived to compute the high-order derivatives by referring tothe far-field asymptotic of the Green’s function.The spurious sound generated by a convecting vortex crossing the FW-H integral surface is investigated to validate the proposed surface correction formulation.The results show that the proposed formulation can successfully eliminate the spurious sound generated by the quadrupole term.The terms of the simplified surface correction formulation are consistent with these of the original surface correction formulation at the far field.The proposed formulation also helps to analyse the failure of the original surface correction formulation and further simplify the surface correction to a formulation with only one surface integral when the magnitude of the convection velocity equals to the phase velocityor the flow with nearly uniform Lighthill stress distribution(≈0)near the FW-H integral surface.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China Basic Science Center Program for "Multiscale Problems in Nonlinear Mechanics" (Grant 11988102),the National Natural Science Foundation of China (Grants 11922214 and 91952301),and the National Numerical Windtunnel project.

    一级毛片电影观看| 最黄视频免费看| 亚洲欧美精品自产自拍| 国产伦人伦偷精品视频| 欧美在线一区亚洲| 国产成人精品久久二区二区91| 十八禁人妻一区二区| 亚洲五月婷婷丁香| 国产黄色免费在线视频| 国产视频一区二区在线看| 亚洲精品国产av成人精品| 欧美激情高清一区二区三区| a级片在线免费高清观看视频| 在线精品无人区一区二区三| 亚洲av日韩精品久久久久久密| 国产成人影院久久av| 久久久久视频综合| 久久国产亚洲av麻豆专区| 久久人人爽人人片av| 搡老岳熟女国产| 国产精品二区激情视频| 99精品欧美一区二区三区四区| 日本欧美视频一区| 国产精品久久久久久精品古装| 免费高清在线观看日韩| 国产又爽黄色视频| 欧美日韩福利视频一区二区| 黑人巨大精品欧美一区二区蜜桃| 中文字幕高清在线视频| av国产精品久久久久影院| 丝袜美足系列| 欧美性长视频在线观看| 色老头精品视频在线观看| 黑人巨大精品欧美一区二区mp4| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区三区在线| 欧美精品高潮呻吟av久久| 精品一品国产午夜福利视频| 国产一区二区激情短视频 | 青春草亚洲视频在线观看| 日韩 亚洲 欧美在线| 欧美在线黄色| 久久天躁狠狠躁夜夜2o2o| 日本猛色少妇xxxxx猛交久久| 99国产精品一区二区三区| 精品亚洲成国产av| cao死你这个sao货| 青春草亚洲视频在线观看| 麻豆乱淫一区二区| 捣出白浆h1v1| 极品人妻少妇av视频| 丝袜美足系列| 日韩 欧美 亚洲 中文字幕| 男女免费视频国产| 久久影院123| 国产精品国产三级国产专区5o| 久久天堂一区二区三区四区| a在线观看视频网站| 亚洲国产精品一区三区| 欧美日韩亚洲高清精品| 国产在线免费精品| 国产成人一区二区三区免费视频网站| 无限看片的www在线观看| 国产成人系列免费观看| 狠狠狠狠99中文字幕| 午夜激情久久久久久久| 9热在线视频观看99| 欧美黑人精品巨大| 亚洲一区二区三区欧美精品| 中国国产av一级| 黄网站色视频无遮挡免费观看| 人妻一区二区av| 大香蕉久久成人网| 久久青草综合色| 久久久久久久大尺度免费视频| 啦啦啦 在线观看视频| 69精品国产乱码久久久| 一级毛片精品| 国产精品久久久av美女十八| 午夜福利在线观看吧| 国产亚洲午夜精品一区二区久久| 秋霞在线观看毛片| 亚洲精品美女久久久久99蜜臀| 麻豆国产av国片精品| 亚洲 欧美一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲人成77777在线视频| 最黄视频免费看| 久久精品亚洲av国产电影网| 高清黄色对白视频在线免费看| 美女视频免费永久观看网站| 国产精品熟女久久久久浪| 色婷婷久久久亚洲欧美| 亚洲五月色婷婷综合| 飞空精品影院首页| 波多野结衣av一区二区av| 午夜福利一区二区在线看| 中文字幕人妻丝袜一区二区| 免费观看人在逋| 国产精品成人在线| 亚洲精品乱久久久久久| 丰满迷人的少妇在线观看| 脱女人内裤的视频| 日韩 亚洲 欧美在线| 男女午夜视频在线观看| 精品视频人人做人人爽| 亚洲天堂av无毛| 日日爽夜夜爽网站| 亚洲国产看品久久| 免费观看a级毛片全部| 国产成人免费无遮挡视频| 亚洲伊人色综图| 中文字幕另类日韩欧美亚洲嫩草| av网站在线播放免费| 老司机在亚洲福利影院| 日韩,欧美,国产一区二区三区| 女警被强在线播放| 9热在线视频观看99| 久久亚洲国产成人精品v| 波多野结衣一区麻豆| 黄色怎么调成土黄色| 久久久久久久精品精品| 国产亚洲欧美在线一区二区| 久久中文看片网| 美女高潮到喷水免费观看| 国产精品二区激情视频| 欧美黄色片欧美黄色片| 欧美日韩视频精品一区| 亚洲综合色网址| av在线播放精品| 下体分泌物呈黄色| 欧美+亚洲+日韩+国产| 国产又色又爽无遮挡免| 成人亚洲精品一区在线观看| 中国美女看黄片| 在线av久久热| 中文字幕高清在线视频| 亚洲国产欧美日韩在线播放| 他把我摸到了高潮在线观看 | 美女中出高潮动态图| 国产在线视频一区二区| 国产精品久久久久久精品电影小说| 91老司机精品| 亚洲国产中文字幕在线视频| 精品高清国产在线一区| 亚洲欧美日韩另类电影网站| 国产精品久久久久久精品古装| 成年动漫av网址| 久久精品人人爽人人爽视色| 汤姆久久久久久久影院中文字幕| 首页视频小说图片口味搜索| 国精品久久久久久国模美| 亚洲精品在线美女| 亚洲精品国产精品久久久不卡| tocl精华| 国产高清videossex| 国产精品国产三级国产专区5o| 国产一区二区激情短视频 | av天堂在线播放| 欧美在线一区亚洲| 久久青草综合色| 一个人免费看片子| 欧美日韩成人在线一区二区| 中文字幕精品免费在线观看视频| 亚洲成av片中文字幕在线观看| 久久久精品国产亚洲av高清涩受| 亚洲精品一卡2卡三卡4卡5卡 | www.熟女人妻精品国产| 国产亚洲精品第一综合不卡| 亚洲激情五月婷婷啪啪| 欧美日韩国产mv在线观看视频| 午夜影院在线不卡| 久久天堂一区二区三区四区| 久久精品国产亚洲av香蕉五月 | 亚洲精品一区蜜桃| 午夜福利视频在线观看免费| 精品少妇黑人巨大在线播放| 电影成人av| 精品欧美一区二区三区在线| 热re99久久国产66热| 999精品在线视频| 热99久久久久精品小说推荐| cao死你这个sao货| 久久久久视频综合| 在线观看舔阴道视频| 婷婷成人精品国产| 久久中文看片网| 美女大奶头黄色视频| 亚洲av男天堂| 在线观看舔阴道视频| 天天躁夜夜躁狠狠躁躁| 久久精品国产a三级三级三级| 日日摸夜夜添夜夜添小说| 亚洲中文日韩欧美视频| 99久久99久久久精品蜜桃| 日韩一区二区三区影片| 国产淫语在线视频| 中文字幕另类日韩欧美亚洲嫩草| 日本撒尿小便嘘嘘汇集6| 中文字幕av电影在线播放| 欧美成人午夜精品| 精品人妻在线不人妻| 亚洲七黄色美女视频| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区久久| 在线亚洲精品国产二区图片欧美| 亚洲精品美女久久久久99蜜臀| 欧美人与性动交α欧美精品济南到| 黄片播放在线免费| 亚洲精品国产区一区二| 纵有疾风起免费观看全集完整版| 亚洲精品av麻豆狂野| 美女中出高潮动态图| 别揉我奶头~嗯~啊~动态视频 | 欧美xxⅹ黑人| 日日夜夜操网爽| 国产精品香港三级国产av潘金莲| 18禁黄网站禁片午夜丰满| 国产精品久久久久久精品电影小说| 亚洲精品粉嫩美女一区| 久久久久精品国产欧美久久久 | 两性夫妻黄色片| 无限看片的www在线观看| 深夜精品福利| 中文字幕色久视频| 好男人电影高清在线观看| 老鸭窝网址在线观看| 亚洲中文日韩欧美视频| 精品少妇黑人巨大在线播放| 777米奇影视久久| 欧美 日韩 精品 国产| 国产精品久久久久久人妻精品电影 | 亚洲成人国产一区在线观看| 大码成人一级视频| 少妇粗大呻吟视频| 亚洲人成电影观看| 一边摸一边抽搐一进一出视频| 欧美日本中文国产一区发布| 国产一区二区 视频在线| 久久久国产欧美日韩av| 国产麻豆69| 亚洲中文字幕日韩| 交换朋友夫妻互换小说| 两性午夜刺激爽爽歪歪视频在线观看 | 两人在一起打扑克的视频| 亚洲国产成人一精品久久久| 精品免费久久久久久久清纯 | a 毛片基地| 欧美一级毛片孕妇| 亚洲国产欧美网| 国产精品久久久av美女十八| 亚洲国产日韩一区二区| 午夜精品久久久久久毛片777| 高潮久久久久久久久久久不卡| a级毛片黄视频| 国产野战对白在线观看| 久久中文字幕一级| 桃花免费在线播放| 不卡av一区二区三区| 免费少妇av软件| 满18在线观看网站| 男女高潮啪啪啪动态图| 国产精品一区二区精品视频观看| 久久久久久免费高清国产稀缺| 午夜福利一区二区在线看| 一级黄色大片毛片| 亚洲久久久国产精品| 日本a在线网址| 成人国产av品久久久| 国产精品九九99| 人成视频在线观看免费观看| 欧美国产精品一级二级三级| 99久久综合免费| 国产在线一区二区三区精| 久久中文字幕一级| 欧美另类亚洲清纯唯美| 国产日韩欧美视频二区| 老汉色av国产亚洲站长工具| 女警被强在线播放| 精品国产国语对白av| 国产精品久久久av美女十八| av网站免费在线观看视频| 久久影院123| 久久人人97超碰香蕉20202| 黄色视频,在线免费观看| 熟女少妇亚洲综合色aaa.| 97精品久久久久久久久久精品| 精品少妇黑人巨大在线播放| 亚洲国产av影院在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 美女主播在线视频| 国产一级毛片在线| 香蕉国产在线看| 久久国产精品影院| 最近最新免费中文字幕在线| 水蜜桃什么品种好| 老鸭窝网址在线观看| 中文字幕精品免费在线观看视频| 久久中文字幕一级| 99九九在线精品视频| 成年人免费黄色播放视频| 欧美大码av| 国产主播在线观看一区二区| 日本猛色少妇xxxxx猛交久久| tube8黄色片| 午夜老司机福利片| 亚洲专区中文字幕在线| 99久久国产精品久久久| 亚洲 国产 在线| 久久九九热精品免费| 亚洲精品第二区| 永久免费av网站大全| 亚洲专区字幕在线| 精品国产乱码久久久久久男人| 精品高清国产在线一区| 亚洲第一av免费看| 久久人妻熟女aⅴ| 亚洲熟女毛片儿| 亚洲av美国av| 人人妻人人澡人人看| 一二三四在线观看免费中文在| 日本91视频免费播放| 天天操日日干夜夜撸| 久久久久久久久免费视频了| 人人妻,人人澡人人爽秒播| 免费高清在线观看视频在线观看| 美女福利国产在线| 人人妻,人人澡人人爽秒播| 中文欧美无线码| 国产在视频线精品| 日韩欧美一区二区三区在线观看 | 男女高潮啪啪啪动态图| 久久久久久久大尺度免费视频| 精品免费久久久久久久清纯 | 51午夜福利影视在线观看| 2018国产大陆天天弄谢| 国产无遮挡羞羞视频在线观看| 五月开心婷婷网| av又黄又爽大尺度在线免费看| 热re99久久精品国产66热6| 国产精品自产拍在线观看55亚洲 | 久久中文字幕一级| 男女国产视频网站| 亚洲少妇的诱惑av| 一级,二级,三级黄色视频| 国产亚洲精品一区二区www | 啦啦啦 在线观看视频| 国产成人av激情在线播放| 欧美老熟妇乱子伦牲交| 丰满迷人的少妇在线观看| 亚洲视频免费观看视频| 黑人欧美特级aaaaaa片| 午夜福利,免费看| 亚洲精品乱久久久久久| 91九色精品人成在线观看| 丰满人妻熟妇乱又伦精品不卡| 一边摸一边抽搐一进一出视频| 国产日韩欧美亚洲二区| 亚洲黑人精品在线| 亚洲 欧美一区二区三区| 国产精品麻豆人妻色哟哟久久| 欧美日韩视频精品一区| 久久精品亚洲熟妇少妇任你| 亚洲成人国产一区在线观看| 中文字幕人妻熟女乱码| 老熟妇乱子伦视频在线观看 | 一边摸一边抽搐一进一出视频| 欧美激情极品国产一区二区三区| 日本一区二区免费在线视频| 97精品久久久久久久久久精品| 欧美激情 高清一区二区三区| 欧美一级毛片孕妇| 国产亚洲av高清不卡| 国产一区二区三区在线臀色熟女 | 真人做人爱边吃奶动态| 无遮挡黄片免费观看| 亚洲精品日韩在线中文字幕| 我的亚洲天堂| 一边摸一边抽搐一进一出视频| 高清视频免费观看一区二区| 国产成人免费观看mmmm| 精品福利观看| 人人妻人人澡人人爽人人夜夜| 夫妻午夜视频| 亚洲精品一区蜜桃| 交换朋友夫妻互换小说| 男男h啪啪无遮挡| 国产不卡av网站在线观看| 欧美黄色淫秽网站| 亚洲精品国产区一区二| 满18在线观看网站| 丝袜美足系列| 18禁国产床啪视频网站| 亚洲成国产人片在线观看| 婷婷成人精品国产| 高清黄色对白视频在线免费看| 午夜福利视频精品| 黄片小视频在线播放| av网站在线播放免费| 亚洲精品一区蜜桃| 亚洲天堂av无毛| 国产精品免费视频内射| 色94色欧美一区二区| 黄片播放在线免费| 黄色视频不卡| 在线观看免费高清a一片| 国产精品自产拍在线观看55亚洲 | 91精品伊人久久大香线蕉| videosex国产| 两性午夜刺激爽爽歪歪视频在线观看 | 成人国产av品久久久| a级片在线免费高清观看视频| 欧美久久黑人一区二区| 大香蕉久久网| 国产亚洲精品一区二区www | 国产伦人伦偷精品视频| 亚洲精品一卡2卡三卡4卡5卡 | a 毛片基地| 亚洲av国产av综合av卡| 欧美 日韩 精品 国产| 国产成人一区二区三区免费视频网站| 天天躁狠狠躁夜夜躁狠狠躁| √禁漫天堂资源中文www| 国产91精品成人一区二区三区 | 黄色 视频免费看| 久久精品久久久久久噜噜老黄| 精品人妻1区二区| 久久久久国产一级毛片高清牌| 免费少妇av软件| 欧美少妇被猛烈插入视频| 亚洲男人天堂网一区| 国产av国产精品国产| 一个人免费在线观看的高清视频 | 久久久精品国产亚洲av高清涩受| 女人被躁到高潮嗷嗷叫费观| 久久久久久亚洲精品国产蜜桃av| 欧美黑人精品巨大| 50天的宝宝边吃奶边哭怎么回事| 91成年电影在线观看| 人妻人人澡人人爽人人| 最近最新免费中文字幕在线| 岛国在线观看网站| 久久人妻福利社区极品人妻图片| 纵有疾风起免费观看全集完整版| 亚洲av电影在线观看一区二区三区| 丝袜喷水一区| 国产一区二区三区av在线| 亚洲熟女毛片儿| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 久久女婷五月综合色啪小说| 成人18禁高潮啪啪吃奶动态图| 人妻 亚洲 视频| 国产男人的电影天堂91| 国产日韩欧美亚洲二区| 精品国产一区二区久久| av免费在线观看网站| 永久免费av网站大全| 精品少妇久久久久久888优播| 1024香蕉在线观看| 多毛熟女@视频| 考比视频在线观看| 欧美国产精品一级二级三级| 久久精品aⅴ一区二区三区四区| 2018国产大陆天天弄谢| 免费少妇av软件| 久久这里只有精品19| av线在线观看网站| 极品人妻少妇av视频| av天堂在线播放| 老司机午夜十八禁免费视频| 男人舔女人的私密视频| 精品福利永久在线观看| 亚洲欧洲日产国产| 日韩视频在线欧美| 欧美日韩亚洲国产一区二区在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 久久热在线av| 一区二区日韩欧美中文字幕| 久久久久国产一级毛片高清牌| 丝袜在线中文字幕| 欧美成狂野欧美在线观看| 777久久人妻少妇嫩草av网站| 性色av乱码一区二区三区2| 亚洲精品久久午夜乱码| kizo精华| 狂野欧美激情性xxxx| 欧美+亚洲+日韩+国产| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 99国产精品一区二区蜜桃av | 精品免费久久久久久久清纯 | av网站免费在线观看视频| 我要看黄色一级片免费的| 老司机影院毛片| 少妇猛男粗大的猛烈进出视频| 人妻一区二区av| 亚洲欧洲精品一区二区精品久久久| 日韩 欧美 亚洲 中文字幕| 两人在一起打扑克的视频| 韩国精品一区二区三区| 久久香蕉激情| 99热全是精品| 日本a在线网址| 美国免费a级毛片| 捣出白浆h1v1| 啦啦啦在线免费观看视频4| 久久精品国产亚洲av香蕉五月 | 欧美变态另类bdsm刘玥| 91麻豆av在线| 水蜜桃什么品种好| 大陆偷拍与自拍| 黑人操中国人逼视频| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 欧美精品高潮呻吟av久久| 国产区一区二久久| 国产亚洲精品第一综合不卡| 国产极品粉嫩免费观看在线| 成人av一区二区三区在线看 | 午夜福利视频精品| 黄色视频不卡| 丰满少妇做爰视频| 成年美女黄网站色视频大全免费| 亚洲精品一卡2卡三卡4卡5卡 | 国产av国产精品国产| 精品久久久久久久毛片微露脸 | 久久亚洲精品不卡| 正在播放国产对白刺激| 久久久欧美国产精品| 国产高清videossex| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区在线不卡| 亚洲国产看品久久| 亚洲第一欧美日韩一区二区三区 | av不卡在线播放| 免费观看人在逋| 国产精品久久久久成人av| 日韩欧美免费精品| 在线十欧美十亚洲十日本专区| 久久久久久久久久久久大奶| 亚洲欧美精品综合一区二区三区| 啪啪无遮挡十八禁网站| a 毛片基地| a在线观看视频网站| 超碰97精品在线观看| 一区在线观看完整版| 老熟妇仑乱视频hdxx| 一区二区av电影网| 97在线人人人人妻| 精品久久蜜臀av无| 人妻 亚洲 视频| 丰满迷人的少妇在线观看| 精品少妇黑人巨大在线播放| av国产精品久久久久影院| 色94色欧美一区二区| 无限看片的www在线观看| 天天操日日干夜夜撸| 亚洲欧美激情在线| av福利片在线| 国产在线一区二区三区精| 午夜久久久在线观看| 国产一区二区激情短视频 | 国产黄频视频在线观看| 秋霞在线观看毛片| 18在线观看网站| 婷婷色av中文字幕| 99热网站在线观看| 精品一品国产午夜福利视频| 青青草视频在线视频观看| 90打野战视频偷拍视频| 欧美性长视频在线观看| 久久人妻熟女aⅴ| 国产精品1区2区在线观看. | 欧美精品啪啪一区二区三区 | 黄色a级毛片大全视频| 亚洲精品美女久久av网站| 女人爽到高潮嗷嗷叫在线视频| 99国产精品一区二区蜜桃av | 亚洲综合色网址| 国产又色又爽无遮挡免| 精品国内亚洲2022精品成人 | 国产日韩一区二区三区精品不卡| 亚洲成av片中文字幕在线观看| 男男h啪啪无遮挡| 性色av乱码一区二区三区2| 九色亚洲精品在线播放| 久久性视频一级片| 纯流量卡能插随身wifi吗| 热99re8久久精品国产| 在线观看人妻少妇| 国产激情久久老熟女| 国产又色又爽无遮挡免| 91老司机精品| 欧美黄色片欧美黄色片| 国产成人免费无遮挡视频| 亚洲九九香蕉| 一级a爱视频在线免费观看| 汤姆久久久久久久影院中文字幕| 黄色 视频免费看| 国产一区二区在线观看av| 国产精品香港三级国产av潘金莲| 青青草视频在线视频观看| 老司机影院毛片| 曰老女人黄片| 国产色视频综合| 亚洲av成人不卡在线观看播放网 | 亚洲全国av大片| 免费在线观看黄色视频的| 少妇精品久久久久久久| 一级毛片电影观看| 国产伦理片在线播放av一区| 午夜日韩欧美国产| 麻豆av在线久日| 91字幕亚洲|