• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theory of adaptive mechanical drive

    2021-09-17 09:05:00Ivanov

    K.S.Ivanov

    Almaty University of Power Engineering and Telecommunication, Almaty, 050013, Kazakhstan

    ABSTRACT A kinematic chain with two degrees of freedom and one input can have definability of motion only if there is an additional constraint of forces and velocities.Such a chain is a mechanism that has the brand new property of force adaptation.The article presents a kinematic and force analysis of two-mobile adaptive mechanisms and describes the principle of definability of motion.

    Keywords:Two-mobile mechanism Definability of motion Force-speed constraint

    The object of research is a kinematic chain with two degrees of freedom with one input and one output.Such chain can be the basis for creating an automatic transmission (CVT).

    Currently,CVT is widely used as an automatic transmission,combining a hydrodynamic converter and a step gear box [1] .The disadvantage of the transmission is the complex design,which contains a torque converter,a step gearbox and a step control system.

    Recently,attempts have been made to use a two-mobile kinematic chain to create a stepless transmission.Crockett [2] and Volkov [3] used a hydrodynamic converter in combination with a multi-link differential gear train.Gulia [4] proposed a multilink friction variator with centrifugal control.Harris [5] and Vedeneev [6] presented a planetary mechanism without a hydraulic converter.The main goal of the researchers is to create a compact,simple,stepless CVT with a wide control range and high efficiency.However,the proposed designs have complex schemes and low reliability.

    Recently,adaptive systems have been widely used in robotics,in autonomous transport technology and in the aerospace industry.However,little attention is paid to this topic in the academic and technical literature.Vaines presented a set of basic principles,engineering frameworks and adaptation applications in softwareintensive systems [7] .In his opinion,adaptation will be a crucial contributing function in solving the problems of new automatic executive systems.

    Bollinger presented an overview of automated drives and controls in the context of a wide variety of industrial and laboratory applications [8] .It is stated that a multi-axis robotic device is a highly sophisticated machine that can have The insuperable theoretical control problems.

    The adaptability can be significantly improved by using adaptive mechanical drives that independently adapt to the external load and do not require control of the power parameters.The control of such adaptive drives will consist only in the coordination of their actions.

    The author,based on the combination of a kinematic chain with a movable closed contour and an additional force-speed constraint,developed a theoretical justification for the possibility of creating a stepless transmission with a wide range of control [9,10].A twomobile kinematic chain with a closed contour and an additional constraint allows you to create a mechanism with two degrees of freedom which has the property of force adaptation.However,the developed theoretical justification based on the principle of virtual works was not performed correctly enough which reduces the level of reliability of the performed studies.

    In this paper,we use a research method that fully corresponds to the object of the study.In this paper,it is assumed that the two-mobile mechanism is able to exist in the mode of steady motion with equal work at the input and output.For this object,it is necessary to perform studies that ensure the definability of motion when there is only one input.The existing method of studying a kinematic chain with two inputs using the principle of possible displacements [11] does not correspond to the object under consideration.Therefore,a new formulation of the research problem is proposed:to ensure the definability of the motion of a two-mobile kinematic chain by introducing an additional constraint and to develop conditions for the relationship of the mechanism parameters for the steady-state motion mode.The relationship between the parameters is provided by the conditions of static equilibrium and the law of conservation of energy.The additional constraint in the object under consideration must comply with the law of conservation of energy.To do this,it must link forces and velocities(force-velocity constraint).

    Fig.1.a Kinematic chain of the mechanism with two degrees of freedom, b the plan of linear velocities of the chain and c link 5 with applied forces.

    The article presents the basics of the theory of mechanisms with two degrees of freedom with one input.The kinematic and force analysis of two-mobile adaptive mechanisms is developed and the principle of motion definability is described which allows to implement an additional constraint with a sufficiently high effi-ciency.

    The kinematic chain of a fundamentally new mechanism with two degrees of freedom and one input (Fig.1a) contains a rack 0,an input carrierH1,a movable closed contour with gears 1-2-3-6-5-4 and an output carrierH2.A closed contour having zero mobility contains a satellite 2,a solar wheel block 1-4,a ring wheel block 3-6,and a satellite 5.The carriersH1 andH2are the initial links of the mechanism.The initial links can have set angular velocityωH1 andωH2and the corresponding moments of forcesMH1andMH2.The momentMH1=const,the momentMH2can take different values within a given range.

    Linear kinematic and force parameters:

    HererH1,rH2are the radii of the pointsB,Kof application of forces.

    The presented two-mobile scheme of the mechanism with a movable closed contour allows you to build a plan of linear speeds according to the set speeds of the two initial links (Fig.1b) and bring the acting forces to the intermediate link 5 (Fig.1c).

    Presented in Fig.1a the scheme of a two-mobile mechanism with a movable closed contour allows you to create equilibrium conditions.(In a mechanism with two degrees of freedom,it is impossible to create equilibrium conditions without a closed contour).The equilibrium of the system leads to the implementation of the law of conservation of energy in the mode of steady motion.

    Closed-contour theorem 1

    A kinematic chain with two degrees of freedom,containing an input link,an output link,and a movable closed chain placed between them,can exist in a steady-state mode of motion.

    For the scheme (Fig.1a),it is necessary to prove that the work(or power) on the input linkH1is equal to the work (power) on the output linkH2,that is,

    We will assume that with the steady motion of the system in the form of a gear planetary mechanism,all the links move uniformly,and there are no inertia forces.

    To prove the theorem,we transfer all the acting forces to satellite 5 (Fig.1c).A movable closed contour allows you to perform this transfer.

    According to Fig.1a the forceFH1=MH1/rH1acting at the pointBis transmitted to the link 5 from the carrierH1to the satellite 2 through the wheel blocks 3–6 and 1–4 in the form of reactionsR65=0.5FH1r3/r6andR45=0.5FH1r1/r4.The input force reduced to link 5 is equal to the sum of these reactions=0.5FH1(r3r4+r1r6)/r4r6.Hereriis the radius of the wheeli.

    The position of the point of applicationBof the reduced forceis determined by the formulaKB=r5(r1?r4)/r4.Reduction of forceto a link 5 corresponds to the condition of equality the power of these forcesThe forceis applied at the pointK.

    Next,consider the equilibrium of link 5 (Fig.1c).The sum of the moments relative to the instantaneous centerPof the link velocities is zero ∑MP=0.Or

    HereKB=eis the eccentricity.From here,the position of the instantaneous velocity centerP(distancePK) can be determined through the given forces.

    Taking into account the motion of link 5 around a pointPwith an angular velocityω5,you can use the substitutions in Eq.(2)

    Substituting the values of the velocitiesVB=ωH1rH1,VK=ωH2rH2into this equation,we obtain the equation of equilibrium of the entire mechanism according to the law of conservation of energy

    quod Erat demonstrandum.

    At the same time,Eq.(4) corresponds to the principle of virtual work (capacity) but with a significant difference–using real speeds instead of virtual ones.

    From Eq.(4) follows the expression of force adaptation

    At a given constant input power on the linkH1the output angular velocityωH2adapts to the variable output resistance torqueMH2.

    Thus,a movable closed chain in a two-mobile kinematic chain with one input and one output creates the possibility of force adaptation.

    Equation (4) of the equilibrium of link 5 and the entire system corresponds to the principle of virtual work (capacity) using real displacements (speeds).A valid displacement is one of the virtual ones.It can be assumed that the equilibrium Eq.(4) proves the definability of the motion of the system according to the principle of virtual works.However,for the equilibrium of link 5,it is not enough to use only the condition Eq.(1) that the sum of moments is equal to zero.In the general case,whenFH2>FH1,at the instantaneous center of the velocitiesP,a forceR05=FH2?FH1will appear a conditional (not really existing) reaction from the rack.This force does not participate in the equilibrium condition according to the virtual work principle Eq.(4),since the velocity of its point of applicationPis zero.In the case under consideration,Eq.(4) is not a necessary and sufficient condition for equilibrium.Link 5 cannot start moving in the absence of a real forceR05.

    For the definability of motion at a pointP,it is necessary to create a real constraint,but this will contradict the possibility of creating an adaptation (the presence of two degrees of freedom).Definability of motion and the equilibrium can take place when forceR05 is taken into account only.

    To ensure the definability of motion it is necessary to replace the action of a force with the action of another force,which creates an appropriate additional constraint in the equilibrium Eq.(4).This additional constraint should connect the moment to the angular velocity (or connect a force with a speed).

    In the technique the constraint of the moment with the angular velocity is known -this constraint takes place between the moving links of the hydro-transformer and is determined by its characteristic.A similar constraint takes place between the links of the friction clutch.In the consider case,it is possible to use the relationship of the friction momentMfKin the hingeKof the satellite 5 with the angular velocity of the satellite relative to the output carrierω5 ?H2=ω5?ωH2.In Eq.(4) this constraint will be included in the form of power consumed by friction in the hingePfK=MfKω5?H2.

    Theorem 2 on the definability of motion

    The definability of motion of a kinematic chain with two degrees of freedom can be provided by an additional mobile-limiting constraint of force with speed (or moment with angular velocity)as a function of powerPfK=MfKω5?H2included in the equilibrium equation.

    For proof consider the equilibrium of link 5 (Fig.1c).The forceR05is determined from the second condition of the link 5 equilibrium–the sum of the forces is zero ∑F=0.From this condition

    The definability of the motion of a two-mobile system can be achieved by replacing the momentM05of this unbalanced forceR05relative to the pointK(which is stationary at the start) with the friction momentMfKin the satellite hingeK.

    The replacement (balancing) moment of frictionMfK=M05=R05·PK.

    After substituting the valueR05from Eq.(6),we getMfK=(FH2?FH1)·PK.At a constant value of the input force the required friction moment depends on the output resistance forceFH2.

    It should be noted that the moment of friction will require the input power to overcome the friction in the hingeKof the mechanismPfK=M05ω5?H2,whereω5?H2=ω5?ωH2.This power must be included in Eq.(4) of the equilibrium of the entire mechanism according to the law of conservation of energy:

    The introduction of the expressionPfK=M05ω5 ?H2into the equation of the relationship of the parameters Eq.(4) corresponds to the introduction of an additional constraint that ensures the definability of motion.

    Thus,the definability of motion of a kinematic chain with two degrees of freedom can be provided by an additional mobilelimiting constraint of force with speed (or moment with angular velocity) as a function of powerPfK=MfKω5 ?H2included in the equilibrium equation,quod erat demonstrandum.

    The geometry of the hingeKprovides the required value of the friction moment

    Hereρ-the radius of the journal,f-the coefficient of friction,RH2?5=FH2-the reaction in the hingeK.According to Eq.(8) the required friction moment can be constantMfK=but the dependence on the reaction in the hingeKmakes it variableMfK=ρ fFH2.

    From the Eq.(8) follows

    To overcome the maximum resistance at the start the radius of the journalρmust be determined by the maximum value of the resistance forceFH2.A subsequent reduction in the resistance forceFH2 will result in a corresponding reduction in the required friction moment.

    From the Eq.(7) we get the efficiency value as the ratio of the useful power to the total spent

    Fig.2.Comparison of the traction characteristics of the drive 1 with a balancing friction coupling and the drive 2 without a balancing coupling.

    At the start (when starting from the place) we can acceptPfK=0.4MH1ωH1.The start is performed without using the clutch.We haveη=0.6.

    On direct transmission (atωH2=ωH1)PfK=0.We haveη=1.

    The use of a movable-limiting constraint with a balancing moment of friction in the hingeK(Fig.1b) will provide a wide range of control at a low relative speed of the links.The angular velocity lineω5can rotate under the action of the resistance forceFH2from the position providingωH2=0 (shown by the dotted line)untilωH2=ωH1,when the dotted line coincides with the lineωH1.Thus,the range of gear ratios of the mechanismuH1 ?H2=ωH1/ωH2will be within 1 ≤uH1?H2≤∞.

    The main task of the adaptive drive is to overcome a given variable moment of resistance corresponding to the output angular velocity.Let’s compare the two drives according to the criterion of overcoming the output moment of resistance.For comparison,we construct the traction characteristics of the drives as a function of the variable output moment of resistance from the output angular velocityMH2=MH2(ωH2).

    Traction characteristics (Fig.2) are calculated using the specified power and kinematic parameters of the drive.

    The input motor has constant parameters of powerPH1=MH1ωH1=10× 150=1500W.The output angular velocity will be set in the range 0 ≤ωH2≤110s?1with an interval 10s?1.

    According to the given initial parameters,we will determine the kinematic parameters according to the known formulas of the kinematics of a planetary mechanism with two degrees of freedom[9] and the overcome moments of resistance in the presence of a balancing frictional moment.

    For the drive 1 with a counterbalancing friction coupling,the output moment of resistance corresponds to the Eq.(7) and is expressed by the formula

    For the drive 2 without a balancing link,the traction characteristic is expressed by the formulaMH2=MH1·ωH1/ωH2.This dependency does not provide reliable operation in a mechanism with perfect connections.Even if there is a minimum moment of resistance,the output shaft stops,and the mechanism enters a state with one degree of freedom.In practice,the connections in the mechanism are not perfect.Friction power losses occurPf≈0.1MH1ωH1.This friction to a certain extent replaces the required calculated balancing moment of friction and allows overcoming the reduced moment of resistance (for example,in the presence of dry friction).The mechanism will overcome the variable moment of resistance,but within limited limits according to the formula

    It should be noted that the drive 2 will use only a part of the rated power of the engine,corresponding to the actual power consumed by friction.

    For the drive 1 (Fig.2),the motor power is equal toPH1=MH1ωH1=10× 150=1500 W.The starting point of the traction characteristicAon the ordinate axis corresponds to the following parameters:

    The end point of the traction characteristicBcorresponds to the following parameters:

    For the drive 2,the power consumption of the motor to overcome a relatively small moment of resistance will be equal

    The small motor torque is used to overcome the corresponding drag torque.

    The starting point of the traction characteristicCon the ordinate axis corresponds to the following parameters:

    The end point of the traction characteristicDcorresponds to the following parameters:

    The traction characteristics of the drive 1 and drive 2 are shown in Fig.2.

    Thus,the drive 1 overcomes the variable output moment of resistance corresponding to the input power.Drive 1 provides motion definability and reliable operation in adaptive mode.

    The drive 2 can overcome a significantly reduced output moment of resistance if there is friction in the drive connections.

    The drive 2 can transfer considerably smaller power and does not provide definability of motion and reliability of work in an adaptation regime.

    Theoretical results coincide with experimental data earlier gained for the drive 2 [10].

    The performed research allows us to formulate the following general principles for creating definable mechanisms with two degrees of freedom and with one input:

    1) The basis of a two-mobile mechanism is a kinematic chain with two degrees of freedom,having one input,one output and a movable closed chain placed between them.

    2) The definability of the motion of the mechanism is provided by the mobile-limiting constraint of force and speed in the form of a friction hinge on the output satellite.

    3) The mobile-limiting constraint is a fundamentally new type of force-speed constraint (or moment and angular velocity constraint).This constraint can be provided by a friction hinge.

    4) A comparative analysis of the drive 1 with a balancing link and the drive 2 without such a link showed that the drive 1 provides the transmission of the calculated torque,and the drive 2 under the action of a similar resistance moment goes into a state with one degree of freedom-it turns out to be inoperable.The drive 2 can provide the transmission of a significantly reduced variable moment of resistance,corresponding to the friction losses in the mechanism.

    The two-mobile mechanism with one input has a fundamentally new property of force adaptation.The absence of a control system in the drive greatly simplifies the design of the adaptive mechanism and increases its reliability.The adaptive mechanism has a wide range of gear ratios.The two-mobile mechanism has a relatively high efficiency due to the low power loss due to friction in the intermediate hinge.

    The simplicity of the design,small dimensions and weight make the design of the mechanism competitive and suitable for use in the automotive industry,robotics,aerospace,and in mobile transport engineering.

    The presented material defines the technology of creating fundamentally new adaptive mechanisms.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    The research was supported by Grant No.AP09258712“Development of self-adjusting electric drives for spacecrafts”,planned at the Almaty University of Energy and Communication.

    亚洲国产精品999| 老司机影院成人| 国产伦精品一区二区三区视频9| 人妻 亚洲 视频| 国产 精品1| 色吧在线观看| 亚洲av欧美aⅴ国产| 国产探花在线观看一区二区| av女优亚洲男人天堂| 国产视频首页在线观看| 高清午夜精品一区二区三区| 在线亚洲精品国产二区图片欧美 | 欧美激情久久久久久爽电影| 国产 精品1| 国产精品三级大全| 成人高潮视频无遮挡免费网站| 久久久久精品性色| 国产成人福利小说| 国产成人精品久久久久久| 亚洲国产精品国产精品| 高清欧美精品videossex| 大片电影免费在线观看免费| 欧美亚洲 丝袜 人妻 在线| 成年女人在线观看亚洲视频 | 亚洲精品aⅴ在线观看| 国产一区有黄有色的免费视频| 青春草国产在线视频| 国产高清国产精品国产三级 | 免费av不卡在线播放| 久久久久久久亚洲中文字幕| 黄色怎么调成土黄色| freevideosex欧美| 日韩成人伦理影院| 日本三级黄在线观看| 男人和女人高潮做爰伦理| 我的女老师完整版在线观看| 你懂的网址亚洲精品在线观看| 国产欧美日韩精品一区二区| 麻豆成人午夜福利视频| 国产高清国产精品国产三级 | av.在线天堂| 亚洲精华国产精华液的使用体验| 亚洲不卡免费看| 免费黄色在线免费观看| 性插视频无遮挡在线免费观看| 国产成人精品婷婷| 精品人妻视频免费看| 免费看不卡的av| 直男gayav资源| 免费黄色在线免费观看| 在线 av 中文字幕| 久久久久久久精品精品| 黄片wwwwww| 在线天堂最新版资源| 伦精品一区二区三区| 亚洲av成人精品一区久久| 麻豆乱淫一区二区| 一区二区三区乱码不卡18| 日韩成人av中文字幕在线观看| 国产精品无大码| 久久久a久久爽久久v久久| 香蕉精品网在线| 久久精品久久精品一区二区三区| 久久久久精品久久久久真实原创| 国产精品偷伦视频观看了| 永久网站在线| 国产精品一区二区在线观看99| 99久久精品一区二区三区| 免费黄频网站在线观看国产| 如何舔出高潮| 亚洲人与动物交配视频| 国产av国产精品国产| 搡老乐熟女国产| 18禁裸乳无遮挡动漫免费视频 | 97热精品久久久久久| 青春草亚洲视频在线观看| 亚洲av成人精品一二三区| 91aial.com中文字幕在线观看| 国内精品美女久久久久久| 人人妻人人爽人人添夜夜欢视频 | 国产白丝娇喘喷水9色精品| 秋霞伦理黄片| 亚洲天堂国产精品一区在线| 亚洲国产成人一精品久久久| 国产精品国产三级国产专区5o| 毛片一级片免费看久久久久| 成人特级av手机在线观看| 男女下面进入的视频免费午夜| 中文字幕av成人在线电影| 国产毛片a区久久久久| 伦精品一区二区三区| 国产成人a区在线观看| 久久精品国产鲁丝片午夜精品| 三级国产精品片| 亚洲国产色片| 禁无遮挡网站| av国产久精品久网站免费入址| 国产免费视频播放在线视频| 爱豆传媒免费全集在线观看| 婷婷色综合大香蕉| 国产亚洲5aaaaa淫片| 免费高清在线观看视频在线观看| 国产高清不卡午夜福利| av福利片在线观看| 亚洲av二区三区四区| 成人亚洲欧美一区二区av| 黄色配什么色好看| av在线亚洲专区| 人人妻人人爽人人添夜夜欢视频 | 国产免费福利视频在线观看| 国产午夜福利久久久久久| 亚洲国产日韩一区二区| 日韩,欧美,国产一区二区三区| 国产精品人妻久久久久久| 亚洲在线观看片| 国产综合懂色| 成年av动漫网址| 国产视频内射| 久久午夜福利片| 97在线视频观看| 99热网站在线观看| 97超视频在线观看视频| 看非洲黑人一级黄片| 深夜a级毛片| 免费看a级黄色片| 国产女主播在线喷水免费视频网站| 国产黄色免费在线视频| 亚洲激情五月婷婷啪啪| 一级毛片黄色毛片免费观看视频| 夫妻性生交免费视频一级片| 人体艺术视频欧美日本| 午夜福利在线观看免费完整高清在| 身体一侧抽搐| 美女脱内裤让男人舔精品视频| 亚洲最大成人中文| 国产伦理片在线播放av一区| 国产成人一区二区在线| 美女被艹到高潮喷水动态| 国产免费又黄又爽又色| 大又大粗又爽又黄少妇毛片口| 又爽又黄a免费视频| 午夜精品国产一区二区电影 | 中文在线观看免费www的网站| 女人被狂操c到高潮| 精品人妻熟女av久视频| 国内精品宾馆在线| 久久久久精品性色| 国产精品一二三区在线看| 欧美丝袜亚洲另类| 亚洲国产色片| 秋霞在线观看毛片| 狠狠精品人妻久久久久久综合| 特大巨黑吊av在线直播| 亚洲aⅴ乱码一区二区在线播放| 亚洲,一卡二卡三卡| 国产av不卡久久| 毛片女人毛片| 国产成人一区二区在线| 精品久久久噜噜| 亚洲第一区二区三区不卡| 日本猛色少妇xxxxx猛交久久| 老司机影院成人| 另类亚洲欧美激情| 久久精品久久久久久噜噜老黄| 69av精品久久久久久| 国产亚洲av片在线观看秒播厂| 成年女人看的毛片在线观看| 国国产精品蜜臀av免费| 如何舔出高潮| 寂寞人妻少妇视频99o| 国产成人精品婷婷| 18禁动态无遮挡网站| 亚洲经典国产精华液单| 亚洲精品国产成人久久av| 美女视频免费永久观看网站| 1000部很黄的大片| 69av精品久久久久久| 夜夜爽夜夜爽视频| 少妇被粗大猛烈的视频| 久久久久九九精品影院| 80岁老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 久久精品国产亚洲网站| 一级毛片黄色毛片免费观看视频| 美女xxoo啪啪120秒动态图| 高清毛片免费看| 在线看a的网站| 听说在线观看完整版免费高清| 国产91av在线免费观看| 男女啪啪激烈高潮av片| 国产av国产精品国产| 国产 一区 欧美 日韩| 日韩一本色道免费dvd| 69人妻影院| 久久久a久久爽久久v久久| 日韩av不卡免费在线播放| 啦啦啦中文免费视频观看日本| 国产 一区 欧美 日韩| 日日啪夜夜撸| 日本一二三区视频观看| 在线精品无人区一区二区三 | 一级av片app| 欧美日韩综合久久久久久| 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 国产精品久久久久久久电影| 天美传媒精品一区二区| 久久精品熟女亚洲av麻豆精品| 日韩欧美精品v在线| 一区二区三区免费毛片| 18+在线观看网站| 精品国产三级普通话版| 麻豆精品久久久久久蜜桃| 黄色日韩在线| 99九九线精品视频在线观看视频| 国产一区有黄有色的免费视频| 婷婷色麻豆天堂久久| 午夜福利视频精品| 国产精品不卡视频一区二区| 国产精品一及| 嘟嘟电影网在线观看| 国产熟女欧美一区二区| 深爱激情五月婷婷| 亚洲av成人精品一区久久| 亚洲欧美精品自产自拍| 大片电影免费在线观看免费| 熟妇人妻不卡中文字幕| 欧美xxⅹ黑人| 九色成人免费人妻av| 91精品国产九色| 永久网站在线| 嫩草影院入口| 亚洲性久久影院| 免费电影在线观看免费观看| 久热久热在线精品观看| 日韩av不卡免费在线播放| 少妇猛男粗大的猛烈进出视频 | 免费观看性生交大片5| 观看免费一级毛片| 国产一区二区在线观看日韩| 久久人人爽人人片av| 波野结衣二区三区在线| 欧美日韩视频高清一区二区三区二| 老师上课跳d突然被开到最大视频| 亚洲精品视频女| 久久午夜福利片| 午夜免费男女啪啪视频观看| 国产成年人精品一区二区| 欧美丝袜亚洲另类| 九九在线视频观看精品| 欧美激情在线99| 亚洲丝袜综合中文字幕| 国产精品一及| 蜜桃久久精品国产亚洲av| 欧美精品人与动牲交sv欧美| 亚洲综合精品二区| 大香蕉久久网| 一级二级三级毛片免费看| 国产大屁股一区二区在线视频| 国产亚洲5aaaaa淫片| 久久久久九九精品影院| 人人妻人人澡人人爽人人夜夜| 久久久久久国产a免费观看| 亚洲不卡免费看| 亚洲av中文av极速乱| 97热精品久久久久久| 91精品一卡2卡3卡4卡| 色吧在线观看| 精品99又大又爽又粗少妇毛片| 亚洲精品视频女| 禁无遮挡网站| 人人妻人人澡人人爽人人夜夜| 听说在线观看完整版免费高清| 国产成人精品一,二区| 五月伊人婷婷丁香| 三级国产精品片| 肉色欧美久久久久久久蜜桃 | 肉色欧美久久久久久久蜜桃 | 日本黄大片高清| 亚洲欧美日韩卡通动漫| 日韩成人伦理影院| 夫妻午夜视频| 精品久久久噜噜| 国产精品秋霞免费鲁丝片| 韩国av在线不卡| 精品熟女少妇av免费看| 欧美成人一区二区免费高清观看| 免费大片黄手机在线观看| 97在线视频观看| 亚洲天堂国产精品一区在线| 又大又黄又爽视频免费| 中文字幕制服av| 亚洲精品久久久久久婷婷小说| 国产亚洲av嫩草精品影院| 人妻制服诱惑在线中文字幕| 午夜亚洲福利在线播放| 亚洲精品一二三| 啦啦啦在线观看免费高清www| 熟妇人妻不卡中文字幕| 欧美bdsm另类| 亚洲成人一二三区av| 边亲边吃奶的免费视频| 国产亚洲av嫩草精品影院| h日本视频在线播放| 18禁在线播放成人免费| 久久久欧美国产精品| 在线观看三级黄色| 最近最新中文字幕大全电影3| 国产毛片在线视频| 亚洲自偷自拍三级| 精品人妻一区二区三区麻豆| 又大又黄又爽视频免费| 中文字幕免费在线视频6| 日日啪夜夜撸| 麻豆乱淫一区二区| 蜜臀久久99精品久久宅男| 老司机影院成人| 美女脱内裤让男人舔精品视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产精品999| 国产黄a三级三级三级人| 精品人妻一区二区三区麻豆| 国产成人91sexporn| 国产一级毛片在线| 在线观看av片永久免费下载| 下体分泌物呈黄色| 亚洲精品aⅴ在线观看| 欧美日韩国产mv在线观看视频 | 成人国产麻豆网| 成人鲁丝片一二三区免费| 久久久亚洲精品成人影院| 亚洲四区av| 国产高清不卡午夜福利| 久久午夜福利片| 三级经典国产精品| 久久韩国三级中文字幕| 国产精品.久久久| 亚洲,一卡二卡三卡| 国产探花极品一区二区| 欧美另类一区| 小蜜桃在线观看免费完整版高清| 欧美国产精品一级二级三级 | 高清在线视频一区二区三区| 久久99热这里只有精品18| 18禁动态无遮挡网站| 久久国产乱子免费精品| 美女视频免费永久观看网站| 看非洲黑人一级黄片| 又爽又黄无遮挡网站| 国产精品国产三级专区第一集| 乱系列少妇在线播放| 日本黄大片高清| 2021少妇久久久久久久久久久| 国产男女超爽视频在线观看| 嫩草影院入口| 在线天堂最新版资源| 亚洲va在线va天堂va国产| 一个人看的www免费观看视频| 亚洲色图综合在线观看| 亚洲经典国产精华液单| 亚洲精品国产av成人精品| 在线a可以看的网站| 国产成人a∨麻豆精品| 看免费成人av毛片| 国产成人免费无遮挡视频| 伊人久久精品亚洲午夜| 国精品久久久久久国模美| 亚洲在久久综合| 午夜免费鲁丝| 看免费成人av毛片| 亚洲精品影视一区二区三区av| 色综合色国产| 精品久久久久久久末码| 九九在线视频观看精品| 日韩亚洲欧美综合| 亚洲av欧美aⅴ国产| 久久久久网色| 22中文网久久字幕| 国产中年淑女户外野战色| 神马国产精品三级电影在线观看| 建设人人有责人人尽责人人享有的 | 日本黄色片子视频| 日韩欧美精品v在线| 国产精品伦人一区二区| 亚洲欧洲国产日韩| 日日啪夜夜爽| 国产成人精品婷婷| 看黄色毛片网站| 欧美另类一区| 欧美+日韩+精品| 少妇裸体淫交视频免费看高清| 人妻一区二区av| 偷拍熟女少妇极品色| 中国美白少妇内射xxxbb| 我要看日韩黄色一级片| 在线精品无人区一区二区三 | 国产久久久一区二区三区| 精品一区二区免费观看| 免费少妇av软件| 亚洲国产欧美在线一区| 赤兔流量卡办理| 亚洲精品国产色婷婷电影| 中文资源天堂在线| 国产黄片视频在线免费观看| 大香蕉久久网| 婷婷色综合www| 亚洲av日韩在线播放| 精品人妻熟女av久视频| 蜜臀久久99精品久久宅男| 又爽又黄无遮挡网站| 国产一区二区在线观看日韩| 亚洲天堂国产精品一区在线| 一级片'在线观看视频| 一级毛片aaaaaa免费看小| 激情五月婷婷亚洲| 亚洲性久久影院| 一区二区三区四区激情视频| 国产精品一区二区在线观看99| 国模一区二区三区四区视频| 两个人的视频大全免费| 亚洲欧美日韩另类电影网站 | 精品一区二区免费观看| 亚洲三级黄色毛片| 久久久精品94久久精品| 18+在线观看网站| 日韩成人av中文字幕在线观看| 伊人久久精品亚洲午夜| 能在线免费看毛片的网站| 寂寞人妻少妇视频99o| 亚洲欧美一区二区三区国产| 国产 一区精品| 国产久久久一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品成人久久久久久| 中文字幕亚洲精品专区| 中国三级夫妇交换| 美女被艹到高潮喷水动态| 亚洲精品国产成人久久av| 搞女人的毛片| 美女内射精品一级片tv| 国产有黄有色有爽视频| 狂野欧美白嫩少妇大欣赏| 欧美日韩在线观看h| 在线亚洲精品国产二区图片欧美 | 欧美老熟妇乱子伦牲交| 国产成人免费无遮挡视频| 九九在线视频观看精品| 最近2019中文字幕mv第一页| 精华霜和精华液先用哪个| 免费黄网站久久成人精品| 亚洲av男天堂| 可以在线观看毛片的网站| 亚洲最大成人av| 搞女人的毛片| 18禁裸乳无遮挡免费网站照片| 国产免费福利视频在线观看| 建设人人有责人人尽责人人享有的 | 亚洲精品视频女| 免费看日本二区| 亚洲国产成人一精品久久久| 搡女人真爽免费视频火全软件| 成年av动漫网址| 丰满人妻一区二区三区视频av| 秋霞伦理黄片| 天美传媒精品一区二区| 国产av码专区亚洲av| 中文乱码字字幕精品一区二区三区| 亚洲精品自拍成人| 欧美成人精品欧美一级黄| 久久99热这里只有精品18| 大又大粗又爽又黄少妇毛片口| 一级二级三级毛片免费看| 亚洲成色77777| 欧美日韩国产mv在线观看视频 | 亚洲精品国产成人久久av| 日韩,欧美,国产一区二区三区| 久久午夜福利片| 成人毛片a级毛片在线播放| 国产视频内射| 草草在线视频免费看| 精品一区二区三区视频在线| 日产精品乱码卡一卡2卡三| 国产91av在线免费观看| 大片电影免费在线观看免费| 亚洲在久久综合| 亚洲精品国产av成人精品| 亚洲精品视频女| 国产91av在线免费观看| 一边亲一边摸免费视频| 在线精品无人区一区二区三 | 日日啪夜夜爽| a级毛片免费高清观看在线播放| 在线精品无人区一区二区三 | 成人美女网站在线观看视频| 舔av片在线| 欧美最新免费一区二区三区| 狂野欧美白嫩少妇大欣赏| 日韩伦理黄色片| 欧美97在线视频| 99九九线精品视频在线观看视频| 久久久久久久久久人人人人人人| 国产 精品1| 亚洲欧美日韩无卡精品| 中文在线观看免费www的网站| 国产精品三级大全| 国产一区二区三区综合在线观看 | 午夜精品一区二区三区免费看| 18禁在线播放成人免费| 国产有黄有色有爽视频| 韩国高清视频一区二区三区| 99久久精品热视频| 久久精品熟女亚洲av麻豆精品| 久久99热这里只频精品6学生| 欧美三级亚洲精品| 欧美丝袜亚洲另类| av免费在线看不卡| 亚洲无线观看免费| 日韩欧美精品免费久久| 国产亚洲5aaaaa淫片| 尤物成人国产欧美一区二区三区| 亚洲欧洲日产国产| 成人亚洲精品一区在线观看 | 极品教师在线视频| 亚洲精品色激情综合| 熟女av电影| 久久午夜福利片| 亚洲一区二区三区欧美精品 | 久久久久久国产a免费观看| 国产精品一区二区三区四区免费观看| 亚洲av免费高清在线观看| 亚洲欧美日韩无卡精品| 欧美一级a爱片免费观看看| 精品少妇久久久久久888优播| 永久网站在线| 如何舔出高潮| 亚洲内射少妇av| 99久久九九国产精品国产免费| 一本一本综合久久| 精品人妻视频免费看| 真实男女啪啪啪动态图| 青青草视频在线视频观看| 精品国产露脸久久av麻豆| 99热这里只有是精品在线观看| 精品久久久久久电影网| 亚洲人成网站在线观看播放| 国模一区二区三区四区视频| 一区二区三区精品91| 精品人妻一区二区三区麻豆| 美女xxoo啪啪120秒动态图| 亚洲国产高清在线一区二区三| 国产视频内射| 精品午夜福利在线看| 内射极品少妇av片p| 久久国内精品自在自线图片| 亚洲自拍偷在线| 天堂网av新在线| 校园人妻丝袜中文字幕| 亚洲精品aⅴ在线观看| 免费黄网站久久成人精品| 亚洲精品国产成人久久av| 美女脱内裤让男人舔精品视频| 国产亚洲一区二区精品| 各种免费的搞黄视频| 伦精品一区二区三区| 国产精品嫩草影院av在线观看| 欧美日韩视频精品一区| 欧美97在线视频| 少妇猛男粗大的猛烈进出视频 | 国产久久久一区二区三区| 亚洲最大成人av| 肉色欧美久久久久久久蜜桃 | 自拍欧美九色日韩亚洲蝌蚪91 | 91狼人影院| 高清欧美精品videossex| 免费观看a级毛片全部| 国产高清三级在线| 亚洲,一卡二卡三卡| 亚洲精品自拍成人| 丝袜喷水一区| 久久久久久久精品精品| 22中文网久久字幕| 新久久久久国产一级毛片| 偷拍熟女少妇极品色| 1000部很黄的大片| av线在线观看网站| 在线观看国产h片| 日本免费在线观看一区| 人妻系列 视频| 一本色道久久久久久精品综合| 看免费成人av毛片| 午夜激情福利司机影院| 爱豆传媒免费全集在线观看| 亚洲国产日韩一区二区| 国产片特级美女逼逼视频| 久久久久精品久久久久真实原创| 国产一区有黄有色的免费视频| 一二三四中文在线观看免费高清| 久久久亚洲精品成人影院| 99热这里只有精品一区| 各种免费的搞黄视频| 91精品一卡2卡3卡4卡| 最近手机中文字幕大全| 少妇被粗大猛烈的视频| av专区在线播放| 啦啦啦中文免费视频观看日本| 国产精品久久久久久久电影| 热re99久久精品国产66热6| 777米奇影视久久| 夫妻性生交免费视频一级片| 天堂俺去俺来也www色官网| 高清av免费在线| 国产精品一区二区在线观看99| 女人被狂操c到高潮| 亚洲国产欧美人成| 国产老妇女一区|