• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunnel effects on ring road traffic flow based on an urgent-gentle class traffic model

    2021-09-17 09:05:02YonglingZhngSmirnovJinSmirnovZuojinZhu

    Yongling Zhng ,M.N.Smirnov ,Jin M ,e,N.N.Smirnov ,Zuojin Zhu ,b,?

    a Faculty of Engineering Science, University of Science and Technology of China, Hefei 230026, China

    b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119992, Russian Federation

    c Moscow Center for Fundamental and Applied Mathematics, Moscow 119992, Russian Federation

    d Scientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow 119992, Russian Federation

    e Naval Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang 215600,China

    ABSTRACT To explore tunnel effects on ring road traffic flow,a macroscopic urgent-gentle class traffic model is put forward.The model identifies vehicles with urgent and gentle classes,chooses the tunnel speed limit as free flow speed to express the fundamental diagram in the tunnel,and adopts algebraic expressions to describe traffic pressure and sound speed.With two speed trajectories at the Kobotoke tunnel in Japan,the model is validated,with good agreement with observed data.Numerical results indicate that in the case of having no ramp effects,tunnel mean travel time is almost constant dependent on tunnel length.When initial density normalized by jam density is above a threshold of about 0.21,a traffic shock wave originates at the tunnel entrance and propagates backward.Such a threshold drops slightly as a result of on-ramp merging effect,the mean travel time drops as off-ramp diversion effect intensifies gradually.These findings deepen the understanding of tunnel effects on traffic flow in reality.

    Keywords:Tunnel effects Travel time Density threshold Ramp effects

    It is well known that freeway tunnel has bottleneck effects that cause capacity reduction as well as low acceleration rates when vehicles run away from the upstream queue.It was reported that mainstream traffic flow control strategies that use variable speed limits have the potential to improve substantially the performance of freeway networks containing sags [1] .As reported by Go?i-Ros et al.[2],there exists a potentially highly effective and innovative way to reduce congestion at sags,which could possibly be implemented using cooperative adaptive cruise control systems.

    To explain the bottleneck effects,Jin [3] presented a behavioral kinematic wave model,in which a tunnel time gap increasing with distance of the tunnel inlet was introduced.The model was expected to be helpful to develop better design and control strategies to improve the performance of a sag or tunnel bottleneck.

    To identify and explain prevalent tunnel congestion patterns using a data-driven approach,evaluate the effectiveness of different tunnel management strategies,and suggest suitable strategies to mitigate congestion,based on the congestion type,a methodology was presented by Tympakianakia et al.[4] highlighting the effectiveness of tunnel traffic management by identifying the reasons of congestion on a given day.

    A two lane model was proposed by Tang et al.[5],in which the lane-changing model is consistent with car-following behavior on a two-lane freeway,with another multi-lane traffic flow model accounting for lane width,lane-changing and the number of lanes reported [6] .Recently,a multiclass multilane model for freeway traffic mixed with connected automated vehicles and regular human-piloted vehicles was proposed by Pan et al.[7],with some results relating to microscopic multi-lane traffic modeling reported by Jia et al.[8] .

    In this letter,focusing on the tunnel effects,as differentiating vehicles to urgent and gentle classes,an urgent-gentle class traffic model (UGM) is proposed to simulate the evolution of vehicular stream on ring roads.The ring road has a tunnel having a speed limit below the free flow speed in the normal road segment.UGM combines the traffic flow model reported previously by Zhang et al.[9] with the particular description for traffic pressure [10] .The tunnel speed limit is used as free flow speed for tunnel traffic flow.

    Fig.1.a Macroscopic fundamental diagram (MFD) for urgent-gentle class traffic flows.b Schematic diagram of ring traffic flow with five initial jams located at XI(I=A,B,C,D,E).In part a of this figure,ρ is measured by jam density ρm,the flow rate has the unit of q0=ρmv0,and qesj=cτ j/e·[ρ?jvf j/ρ?2vf2],j=1,2, and 3 respectively for the urgent and gentle vehicles in normal road segment,and the vehicles in tunnel.In part b of this figure,the tunnel is located between the initial jam position XA and XB,the mid point of the tunnel is at Xtu,and the tunnel length is denoted by Ltu.

    As reported by Aw and Rascle [11],UGM uses pressure gradient to describe traffic acceleration,implying that negative speeds can possibly occur.However as pressure is expressed algebraically rather than described in a partial differential equation as in the gas-kinetic-based model [12,13],UGM is comparatively simple to implement,and as long as values of variables on the grid interface are given with care such as adopting geometric average to predict viscosity on the interface,the specific problem of traffic stoppage[14] can be well handled.

    The primary aim of this paper is to explore tunnel effects on ring road traffic flow with UGM.Travel time is predicted with the grid traffic speed obtained by numerical tests on the relevant simulation platform.UGM assumes that tunnel speed limit is equal to the free flow speed in the tunnel,irrespective of vehicular class.

    The roadway is assumed to be a ring with five initial jams and a tunnel,as shown schematically in Fig.1.Vehicles in the ring road are differentiated to urgent or gentle class accordingly.To simplify the traffic model,instantaneous speeds for both classes are the same.Labeling urgent density and gentle density of traffic flow byρ1andρ2respectively,taking total traffic densityρ(=ρ1+ρ2),urgent density fractions(=ρ1/ρ)and traffic flow rateq(=ρu)as mandatory variables,using ramp parameterσas reported by Zhang et al.[9],and defining traffic elasticity byγ=0.68ντ,the UGM equations can be written as

    whereRsatisfies the expression [15-17]

    withl0being the length scale of traffic flow,ρν1=3ργ ux,qeis equilibrium traffic flow rate obtained by the macroscopic fundamental diagrams in Fig.1,R/ρis the acceleration of traffic flow,ν=2Gτ/ρis the kinematic viscosity of traffic flows,withGandτdenoting modulus of vehicular fluid elasticity and relaxation time of traffic flow respectively.Traffic pressurepis defined by combining the approaches reported previously by Zhang et al.[9,10].

    To describe ramp flow effect,it is assumed that the ramp parameterσcan be predicted by a random number generator with Gaussian normal distribution,that uses mean,variance and number seed as dummy variables.When local traffic flow rateqis zero,the source term caused by ramp flow vanishes,which is naturally true at off-ramp intersections.

    Unless in the tunnel,or in normal road segment,urgent and gentle classes vehicles have different free flow speeds and braking distances,indicating that equilibrium traffic speeds for the urgent and gentle classes are also different,as shown by the fundamental diagrams in Fig.1.Let the jam density beρm,free flow speed bevf j,equilibrium traffic flow rate can be written as [9].

    whereΛj=cτ j/uc2,equilibrium speeduc2at second critical densityρc2jis assumed to be a constant such as 18 km/h,and

    and the subscriptjis road condition dependent such that in the normal road segment,j=1 and 2,represent the corresponding variables of the urgent and gentle vehicles respectively and,in the tunnel,j=3,denotes the relevant variables of all vehicles that must be driven under the tunnel speed limit.Therefore,in the normal road segment,using the urgent density fractions,qecan be calculated by

    but in the tunnel,it is given by

    To solve UGM equations numerically,a third-order Runge-Kutta method [18,19] is used to handle the time derivative term,and a fifth-order weighted essentially non-oscillatory scheme is adopted to calculate numerical flux,as reported by Zhang et al.[20].To validate the reliability and feasibility of UGM,a Navier-Stokes like model [21] extended as extended Zhang’s model (EZM) is adopted to provide alternative numerical results for comparison.Distributions of the time averaged traffic speed near the tunnel are compared with speed curves recorded at Kobotoke tunnel in Japan[22].

    As shown in Table 1,the tunnel has a speed limit ofvf3=80 km/h,the free flow speed for the gentle class isvf2=100 km/h,and withvf1=120 km/h for the urgent class.The positions for three ramp intersections are given in Table 1,i.e.,XR1=20 km,XR2=60 km,andXR3=100 km.Mid point of the tunnelXtuis set as 30 km,and the total length of the ring roadLis 120 km.The second critical speeduc2is set as 18 km/h as shown in Table 1.

    To explore tunnel effects on the evolution of ring road traffic flow,as schematically shown in Fig.1b,numerical tests are conducted by solving UGM equations,with the fundamental diagrams shown in Fig.1a.The length of tunnel is generally assumed to be 5 km,but the length is chosen as 1.5 km for comparison with the two speed trajectories recorded at the Kobotoke in Japan [22],or 3 km,and 1 km to determine the effects of tunnel length change.Five initial jams on the ring road are located atXI,(I=A,B,C,D,E),other traffic flow parameters are also given in Table 1.

    Table 1 Parameters of traffic flow on the ring road.

    Fig.2.Spatiotemporal evolution of traffic density on the ring road without ramp effects,a ρ0=0.20,b ρ0=0.21 with Ltu=1 and 5 km for the patterns in the left and right respectively.

    Initial density is assumed to be

    withq(0,x)=qe(ρ(0,x)).

    The primary aim of this paper is to explore tunnel effects on ring road traffic flow,using UGM to build a simulation platform,to determine whether the tunnel plays a role of traffic shock wave generation.Spatiotemporal evolution of traffic density in the case without ramp effects is useful to determine the density threshold of traffic shock formation.As the evolution has illustrated ring road traffic flow pattern,we simply refer it to traffic flow pattern for the rest of this paper.

    In Fig.2,traffic flow patterns on the left and right parts respectively correspond to tunnel lengthand 5 km forρ0=0.2,0.21.Forρ0=0.21,as shown in Fig.2a,the traffic density in the tunnel is generally higher than the density in the normal road segment.The initial jams and spontaneously generated jams,or queue trajectories,terminate at tunnel entrance.However,at the downstream tunnel exit,a series of spontaneous jams form and propagate forward.Comparing the patterns on the left with those on the right,it can seen than the flow pattern depends on the tunnel lengthLtu.Forρ0=0.21,as shown in Fig.2b,a traffic shock occurs just at the tunnel entrance.Naturally,the threshold relies on the fundamental diagrams as shown in Fig.1a.

    When there are ramp effects,for the cases ofρ0=0.2 traffic flow patterns are shown in Fig.3,where the left and right parts respectively correspond toσ2av=?0.1,and ?0.4 atXR2,withσ1av=0.05 at ramp intersectionXR1,σ3av=0.05 at ramp intersectionXR3.It is noted spill-back of vehicles at the ramp intersectionXR2 is not permitted,the ramp flow parameterσ2is predicted by a random number generator,σ2is always negative and has an offramp diversion effect.

    Forρ0=0.20,as can be seen in Fig.3,in the case ofσ2av=?0.1,in the left part,a traffic shock occurs at the tunnel entrance.This can be explained as the on-ramp of vehicles atXR1 has increased the traffic density in the normal segment upstream the tunnel entrance,implying that density threshold of shock formation is influenced by on ramp flow.While in the right part,in the case ofσ2av=?0.4,due to the larger effect of ramp diversion,the tunnel-triggered traffic shock disappears whent>3.27 h.

    Fig.3.Spatiotemporal evolution of traffic density on the ring road with ramp effects for ρ0=0.2 with σ2av(a=?0.1,and b ?0.4) for the patterns in the left and right respectively.

    Fig.4.Distributions of a urgent density fraction s, b traffic speed u for Ltu=5 km, ρ0=0.21 at t=0.5 h.

    The propagation speeds of traffic jams depends closely on the wave interactions and the fundamental diagram used in numerical tests,as explained by Daganzo [23] and reported in recent studies[24–27].

    When initial density is set asρ0=0.21,and tunnel length is taken asLtu=5 km,for (i)σ1=σ2=σ3=0 in the case without ramp effects,and (ii)σ2av=?0.1,σ1av=σ3av=+0.05,and (iii)σ2av=?0.4,σ1av=σ3av=+0.05 in the case of ramp effects,the instantaneous distributions of urgent density fractionson the ring road at the timet=0.5 h are shown in Fig.4a.From Eq.(1),the equation of urgent mass fraction can be derived in the form of

    indicating that propagation speed of any fraction disturbance is local traffic speedu,but not?q/?ρ.For the case without ramp effects:σ1=σ2=σ3=0,the black solid line shows that the fivespeaks initially located atXI,I=A,B,C,D,E,at the timet=0.5 h,move forward to the positions in Fig.4a at an average speed of vQwithin the queue [23] in the periodt∈[0,0.5h].The peak atx=19.9 km is initially located atXC=12 km,implying that its moving speed is 15.8 km/h.

    On the other hand,both effects of the tunnel and ramp on the distributions of traffic speeducan be seen in Fig.4b.The tunnel is shown by the solid square with a width 5 km,due to the traffic shock formation at tunnel entrance,uis lower in the segment close to tunnel entrance.

    The ramp diversion atXR2=60 km plays an important role in smoothing the segment downstream the ramp intersection.The black solid curves reflect the impact of tunnel on the traffic flow for the case without ramp effects:σ1=σ2=σ3av=0.The spatial variation of speed att=0.5 h also shows the results of the interactions of traffic waves.The green dashed curves and the blue dash-dotted curves reveal the joint effects of ramp flow and the tunnel.

    Fig.5.Comparison of time-averaged speed uav for ρ0=0.25, 0.3, and 0.368 with two speed trajectories recorded at the Kobotoke tunnel in Japan [22] and the data extracted from Ref.[3],normalized by vf2.

    To compare the time averaged traffic speed with the speed trajectories recorded at the Kobotoke tunnel in Japan,the tunnel length is set asLtu=1.5 km,and the time averaged speed near the tunnel is calculated forρ0=0.25,0.3,or 0.368 in the case without ramp effects,as shown in Fig.5.The speed curves predicted by the UGM agree well with the observed data [22] as well as the calculated speed evaluated on the basis of a behavioral kinematic wave model developed by Jin [3].Indeed,this comparison is used just to indicate UGM has its practical reasonability.How much is the uncertainty of the average speed is not crucial as the traffic flow conditions are naturally different.

    As every traveler expects to arrive at his destination on time,travel time is an important factor.Contrary to the study of Chang and Mahmassani [28],in which two heuristic rules were examined and proposed to describe urban commuters’ predictions of travel time as well as the adjustments of departure time in response to unacceptable arrivals in their daily commute and the method reported by Wang et al.[29],which estimated the travel time using a regression model.In this paper,the travel time through the ring road,as described previously [9,10],is calculated with the local average speed based on a pre-assigned time periodΔ0,the road length.While the tunnel mean travel time is predicted using the local average speed for every grid in the tunnel,,k∈[ktu1,ktu2],it can be written as

    Fig.6.Distributions of a mean travel time Tt,av, b tunnel mean travel time Ttu,av without ramp effects.

    Fig.7.Distributions of a mean travel time Tt,av, b tunnel mean travel time Ttu,av for Ltu=5 km with ramp effects.

    with

    wheretendis termination time of numerical simulation,l0is uniform grid length.

    Without ramp effects,the distributions of mean travel timeTt,av,and tunnel mean travel timeTtu,avwith initial densityρ0are shown in Fig.6.UGM predicts a curve ofTt,avclosely with those given by red filled squares estimated by the model of Zhang[21] extended as EZM.In Fig.6a,it can be seen that whenLtu=0,tunnel vanishes,the mean travel time is shorter.Whenρ0>0.368,the decrease of tunnel lengthLtushortens the mean travel time,and the increase of tunnel length enhances mean travel time.

    From Fig.6b,it can be seen that tunnel mean travel timeTtu,avincreases with the increase ofρ0whenρ0≤0.21.Otherwise,Ttu,avis almost constant and shows a time plateau that depends on tunnel lengthLtu.The longer the tunnel length,the higher the time plateau height.

    As shown in Fig.7a,whenσ1avandσ2avare fixed as 0.05,σ2avchanges from–0.1 to–0.4,Tt,avdrops correspondingly as the off-ramp diversion effect intensifies gradually.While Fig.7b indicatesTtu,avis smaller for a smaller value ofσ2avwhenρ0is lower than the threshold of shock formation (~0.2) forLtu=5 km.Asσ1av=0.05,it indicates the existence of on-ramp merging effect causes slightly a reduction of initial density threshold of traffic shock formation.

    To explore tunnel effects on the evolution of ring road traffic flow,a macroscopic UGM is developed.The exploration via extensive numerical tests has the following conclusions:

    1.UGM can be used to build a simulation platform for exploring properties of tunnel bottleneck.

    2.Under simulation conditions of this paper,in the case without ramp effects,the tunnel generates a traffic shock when initial density normalized by jam density reaches a threshold of 0.21,over which the tunnel mean travel time is almost constant.The mean travel time through the ring road increases with the increase of tunnel length,such a variation trend becomes more obviously in over-saturated traffic situations.While in the case with ramp effect,the mean travel time drops correspondingly as off-ramp diversion effect intensifies.

    3.When the normalized initial density is above the threshold of shock formation,a tunnel-triggered traffic shock occurs at the entrance and propagates in the upstream direction.The threshold of traffic shock formation drops slightly as a result of on-ramp merging effect.

    Declaration of Competing Interest

    For the paper titled "Tunnel effects on ring road traffic flow",there is no any conflict of interest.Between authors Dr.Zuojin Zhu on behalf of all coauthors.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Grant 11972341) and the fundamental research project of Lomonosov Moscow State University "Mathematical models for multi-phase media and wave processes in natural,technical and social systems".We thank Dr.Y.L.Li at Peking University for some useful private communications.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.taml.2021.100283.

    美女大奶头黄色视频| 午夜影院在线不卡| av国产精品久久久久影院| 亚洲一区二区三区欧美精品| 波野结衣二区三区在线| 人妻 亚洲 视频| 国内精品宾馆在线| 日韩成人av中文字幕在线观看| 99久久中文字幕三级久久日本| 亚洲美女视频黄频| 如日韩欧美国产精品一区二区三区 | 亚洲久久久国产精品| 精品亚洲成a人片在线观看| 另类精品久久| 91久久精品国产一区二区成人| 男女边吃奶边做爰视频| 亚洲综合色惰| 婷婷色综合大香蕉| 人妻夜夜爽99麻豆av| 内射极品少妇av片p| 久久精品熟女亚洲av麻豆精品| 美女中出高潮动态图| 久热久热在线精品观看| 成年人午夜在线观看视频| 国产视频首页在线观看| 亚洲美女视频黄频| 久久精品久久久久久噜噜老黄| 91久久精品电影网| 久久女婷五月综合色啪小说| av专区在线播放| 免费少妇av软件| 亚洲国产精品国产精品| 一级av片app| 国产黄色视频一区二区在线观看| 色婷婷久久久亚洲欧美| 国产av国产精品国产| 午夜福利视频精品| 美女主播在线视频| 人体艺术视频欧美日本| 伦精品一区二区三区| 男人添女人高潮全过程视频| 国产一区有黄有色的免费视频| 国产日韩欧美在线精品| 国产日韩欧美在线精品| 99久久精品一区二区三区| 日日撸夜夜添| 男女免费视频国产| 国产精品国产三级国产av玫瑰| 3wmmmm亚洲av在线观看| 亚洲av男天堂| 少妇的逼好多水| 国产黄片视频在线免费观看| 好男人视频免费观看在线| 99久久精品国产国产毛片| 免费黄色在线免费观看| 国产一级毛片在线| 老女人水多毛片| 人妻 亚洲 视频| 亚洲久久久国产精品| 寂寞人妻少妇视频99o| 日韩人妻高清精品专区| 五月伊人婷婷丁香| 亚洲美女视频黄频| xxx大片免费视频| 一级毛片电影观看| av在线播放精品| a 毛片基地| 韩国高清视频一区二区三区| 久久久久久久国产电影| 亚洲国产毛片av蜜桃av| 久久这里有精品视频免费| 日韩成人伦理影院| 日韩,欧美,国产一区二区三区| 波野结衣二区三区在线| 男女免费视频国产| 伊人亚洲综合成人网| 成人毛片60女人毛片免费| 在线看a的网站| 三级国产精品欧美在线观看| 你懂的网址亚洲精品在线观看| 女人久久www免费人成看片| 亚洲欧美日韩东京热| 九草在线视频观看| 精品熟女少妇av免费看| 久久久午夜欧美精品| 久久99精品国语久久久| 久久久久久久久久久久大奶| 国产熟女欧美一区二区| 国产黄片美女视频| 日韩熟女老妇一区二区性免费视频| 欧美日本中文国产一区发布| 亚洲精品一二三| 久久久精品免费免费高清| 97超碰精品成人国产| 久热这里只有精品99| 欧美一级a爱片免费观看看| 十八禁高潮呻吟视频 | 全区人妻精品视频| 美女脱内裤让男人舔精品视频| www.av在线官网国产| 日本黄色日本黄色录像| 在线精品无人区一区二区三| av视频免费观看在线观看| 久久精品熟女亚洲av麻豆精品| 午夜影院在线不卡| 美女中出高潮动态图| 免费人成在线观看视频色| 国产亚洲av片在线观看秒播厂| 观看免费一级毛片| 久久久久久久久久久丰满| 午夜精品国产一区二区电影| 特大巨黑吊av在线直播| 91精品国产九色| 国产精品伦人一区二区| 久久久久久人妻| 亚洲人成网站在线播| 特大巨黑吊av在线直播| 亚洲精品中文字幕在线视频 | 观看免费一级毛片| 国产一区有黄有色的免费视频| av在线老鸭窝| 久久精品国产鲁丝片午夜精品| 成年av动漫网址| 亚洲国产精品国产精品| 精品亚洲成a人片在线观看| 精品一区二区三卡| 久久这里有精品视频免费| 秋霞伦理黄片| 久久这里有精品视频免费| 秋霞伦理黄片| 夜夜爽夜夜爽视频| 亚洲三级黄色毛片| 精品亚洲成国产av| 丝袜喷水一区| 久久久久久久亚洲中文字幕| 精品亚洲成国产av| 国产一区有黄有色的免费视频| 一个人免费看片子| av在线老鸭窝| 久久久久久久亚洲中文字幕| 日韩电影二区| 中文资源天堂在线| 久久人妻熟女aⅴ| 天天躁夜夜躁狠狠久久av| 免费人妻精品一区二区三区视频| 亚洲欧美成人综合另类久久久| 少妇人妻久久综合中文| 2018国产大陆天天弄谢| 一二三四中文在线观看免费高清| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区国产| 国产日韩欧美视频二区| 韩国高清视频一区二区三区| 久久精品国产鲁丝片午夜精品| 在线观看人妻少妇| 日韩视频在线欧美| av视频免费观看在线观看| a级片在线免费高清观看视频| 少妇的逼水好多| 国产一区二区三区综合在线观看 | 国产av精品麻豆| 久久女婷五月综合色啪小说| 寂寞人妻少妇视频99o| 国产精品成人在线| 欧美精品一区二区免费开放| 亚洲美女黄色视频免费看| 国产亚洲5aaaaa淫片| 国产午夜精品久久久久久一区二区三区| 美女主播在线视频| 精品久久久久久电影网| 亚洲av男天堂| 桃花免费在线播放| 久久人人爽人人爽人人片va| 欧美国产精品一级二级三级 | 亚洲人成网站在线播| 大又大粗又爽又黄少妇毛片口| 赤兔流量卡办理| 成人亚洲精品一区在线观看| 美女大奶头黄色视频| 亚洲精品日韩av片在线观看| 中文精品一卡2卡3卡4更新| 偷拍熟女少妇极品色| 王馨瑶露胸无遮挡在线观看| 黄色视频在线播放观看不卡| 青春草国产在线视频| 亚洲av在线观看美女高潮| 成年女人在线观看亚洲视频| 久久av网站| 一级毛片黄色毛片免费观看视频| 久久久久久久久久久久大奶| 国产伦精品一区二区三区视频9| 免费不卡的大黄色大毛片视频在线观看| 久久影院123| 大香蕉97超碰在线| 免费在线观看成人毛片| 国产欧美日韩一区二区三区在线 | 中文在线观看免费www的网站| 欧美97在线视频| 99视频精品全部免费 在线| 亚洲国产av新网站| 亚洲欧美日韩卡通动漫| 春色校园在线视频观看| 亚洲精品成人av观看孕妇| 亚洲av不卡在线观看| 亚洲第一av免费看| 国产有黄有色有爽视频| 亚洲国产精品一区二区三区在线| 看非洲黑人一级黄片| 日韩av免费高清视频| 日日爽夜夜爽网站| a级毛色黄片| av线在线观看网站| 成人午夜精彩视频在线观看| a级片在线免费高清观看视频| 伦理电影大哥的女人| a级毛片在线看网站| 国内揄拍国产精品人妻在线| 久久久国产一区二区| 卡戴珊不雅视频在线播放| 国产日韩欧美视频二区| 97在线人人人人妻| 三级经典国产精品| 伊人亚洲综合成人网| 日韩三级伦理在线观看| 亚洲高清免费不卡视频| 亚洲精品456在线播放app| 女的被弄到高潮叫床怎么办| 国产在线男女| 美女脱内裤让男人舔精品视频| 街头女战士在线观看网站| 午夜久久久在线观看| 日韩免费高清中文字幕av| 自线自在国产av| 午夜视频国产福利| 亚洲中文av在线| 国产永久视频网站| 草草在线视频免费看| 一级二级三级毛片免费看| 一本大道久久a久久精品| 久久人人爽人人片av| 亚洲国产精品国产精品| 国产又色又爽无遮挡免| 亚洲成人av在线免费| 婷婷色麻豆天堂久久| 亚洲国产av新网站| 多毛熟女@视频| 久久 成人 亚洲| 国产精品嫩草影院av在线观看| 另类精品久久| 国产免费又黄又爽又色| 九草在线视频观看| 日韩欧美 国产精品| 国产欧美日韩综合在线一区二区 | 欧美xxxx性猛交bbbb| 99热这里只有是精品50| av福利片在线观看| 日本色播在线视频| 国产综合精华液| 亚洲人与动物交配视频| 免费av中文字幕在线| 日本欧美国产在线视频| 亚洲美女搞黄在线观看| 国产伦理片在线播放av一区| 伊人亚洲综合成人网| 国产成人免费观看mmmm| 在线观看美女被高潮喷水网站| 一本一本综合久久| 久久精品国产亚洲av天美| 黄色配什么色好看| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频| 欧美xxxx性猛交bbbb| 久久精品熟女亚洲av麻豆精品| 成人亚洲欧美一区二区av| 视频区图区小说| 久久人人爽av亚洲精品天堂| 水蜜桃什么品种好| 欧美精品高潮呻吟av久久| 日本黄大片高清| 日本色播在线视频| 国产精品一区二区在线不卡| 五月天丁香电影| 亚洲国产毛片av蜜桃av| 久久女婷五月综合色啪小说| 哪个播放器可以免费观看大片| 亚洲av电影在线观看一区二区三区| 国产视频内射| 国产av一区二区精品久久| 熟女电影av网| 免费观看a级毛片全部| 在线观看国产h片| 久久精品夜色国产| 人妻 亚洲 视频| 两个人的视频大全免费| 日日撸夜夜添| 国产精品嫩草影院av在线观看| 精品99又大又爽又粗少妇毛片| 人人妻人人看人人澡| 国产免费福利视频在线观看| 少妇丰满av| 18禁在线播放成人免费| 最近2019中文字幕mv第一页| 日本91视频免费播放| 亚洲国产日韩一区二区| 男女边摸边吃奶| 亚洲av福利一区| 18禁在线无遮挡免费观看视频| 一级av片app| 人妻 亚洲 视频| 性高湖久久久久久久久免费观看| 91午夜精品亚洲一区二区三区| 国产成人免费观看mmmm| 免费观看无遮挡的男女| 三级国产精品片| 赤兔流量卡办理| 两个人的视频大全免费| 国产成人91sexporn| 久久99热这里只频精品6学生| 99热6这里只有精品| 国产淫语在线视频| 国产有黄有色有爽视频| 亚洲欧洲国产日韩| 久久人人爽av亚洲精品天堂| 亚洲欧美一区二区三区国产| 欧美一级a爱片免费观看看| 大陆偷拍与自拍| 一区二区av电影网| 啦啦啦视频在线资源免费观看| 99热6这里只有精品| 国产在线男女| 交换朋友夫妻互换小说| 国产成人免费观看mmmm| 久久97久久精品| 国产亚洲一区二区精品| 午夜视频国产福利| av网站免费在线观看视频| 免费不卡的大黄色大毛片视频在线观看| av卡一久久| 熟妇人妻不卡中文字幕| 免费看光身美女| 深夜a级毛片| 亚洲情色 制服丝袜| 51国产日韩欧美| av专区在线播放| 一区二区三区精品91| 校园人妻丝袜中文字幕| 精品99又大又爽又粗少妇毛片| 亚洲av二区三区四区| 精品一区二区免费观看| 一级毛片我不卡| 久久久久久久亚洲中文字幕| 国产精品一区二区性色av| 欧美少妇被猛烈插入视频| 久久久久国产精品人妻一区二区| 国产av一区二区精品久久| 天天躁夜夜躁狠狠久久av| 国产精品欧美亚洲77777| 简卡轻食公司| 国产毛片在线视频| 国产精品福利在线免费观看| 激情五月婷婷亚洲| 国产精品国产三级国产专区5o| 国产伦理片在线播放av一区| 国产黄频视频在线观看| 偷拍熟女少妇极品色| 亚洲国产成人一精品久久久| .国产精品久久| 搡女人真爽免费视频火全软件| 97在线视频观看| 黄色视频在线播放观看不卡| 国产又色又爽无遮挡免| 免费人妻精品一区二区三区视频| 美女xxoo啪啪120秒动态图| 亚洲精品成人av观看孕妇| 色5月婷婷丁香| 欧美精品人与动牲交sv欧美| 国产一区亚洲一区在线观看| 免费观看的影片在线观看| 国产色爽女视频免费观看| 欧美亚洲 丝袜 人妻 在线| 亚洲成人手机| 欧美97在线视频| 久久久亚洲精品成人影院| 国产精品一区二区在线不卡| 秋霞在线观看毛片| 日韩,欧美,国产一区二区三区| 亚洲美女视频黄频| 亚洲四区av| 蜜桃在线观看..| 日本wwww免费看| 国产精品熟女久久久久浪| 男女无遮挡免费网站观看| 男女边摸边吃奶| 精品一区在线观看国产| 亚洲欧美日韩另类电影网站| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 久久综合国产亚洲精品| 国产乱人偷精品视频| 制服丝袜香蕉在线| 亚洲精品色激情综合| 韩国av在线不卡| 伊人久久精品亚洲午夜| 99热网站在线观看| 亚洲国产精品成人久久小说| 大香蕉久久网| 97超视频在线观看视频| 色视频www国产| av福利片在线观看| 亚洲av福利一区| 午夜激情福利司机影院| 麻豆成人av视频| 日韩精品有码人妻一区| 国语对白做爰xxxⅹ性视频网站| 国产日韩欧美在线精品| a级毛片在线看网站| 欧美性感艳星| 国产爽快片一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 我的女老师完整版在线观看| 女性被躁到高潮视频| 赤兔流量卡办理| 国产一区二区三区av在线| 男男h啪啪无遮挡| 久久久国产欧美日韩av| 天天躁夜夜躁狠狠久久av| 视频中文字幕在线观看| 中文在线观看免费www的网站| 精品人妻偷拍中文字幕| 少妇裸体淫交视频免费看高清| 黑人巨大精品欧美一区二区蜜桃 | 亚洲色图综合在线观看| 日本欧美视频一区| 欧美日韩在线观看h| 精品久久久精品久久久| 精品一品国产午夜福利视频| 精华霜和精华液先用哪个| 在现免费观看毛片| 日韩成人伦理影院| 日日撸夜夜添| 国产精品国产三级国产专区5o| 波野结衣二区三区在线| √禁漫天堂资源中文www| 亚洲精品国产av蜜桃| 亚洲精品aⅴ在线观看| 最近中文字幕高清免费大全6| 一级爰片在线观看| 哪个播放器可以免费观看大片| av国产久精品久网站免费入址| 久久久精品免费免费高清| 观看av在线不卡| 免费观看的影片在线观看| 色5月婷婷丁香| 18禁裸乳无遮挡动漫免费视频| 国产一级毛片在线| 纵有疾风起免费观看全集完整版| 国产av国产精品国产| 人妻 亚洲 视频| 女人精品久久久久毛片| a级毛色黄片| 精品熟女少妇av免费看| 嫩草影院新地址| 国产一区有黄有色的免费视频| 国产精品无大码| 日韩亚洲欧美综合| 国产探花极品一区二区| 各种免费的搞黄视频| 五月玫瑰六月丁香| 秋霞在线观看毛片| 老司机影院毛片| 黄色怎么调成土黄色| 国产色婷婷99| 人人妻人人澡人人看| 一级黄片播放器| 三级国产精品欧美在线观看| 免费观看无遮挡的男女| 日韩一区二区视频免费看| 欧美bdsm另类| 亚洲国产色片| 日韩熟女老妇一区二区性免费视频| 久久ye,这里只有精品| 青春草视频在线免费观看| 久久久久久伊人网av| 日本黄色片子视频| 久久久亚洲精品成人影院| 国产亚洲精品久久久com| 不卡视频在线观看欧美| 日韩av免费高清视频| 免费黄频网站在线观看国产| 欧美bdsm另类| 久久精品久久久久久久性| 欧美日韩一区二区视频在线观看视频在线| 日韩强制内射视频| 丁香六月天网| 精华霜和精华液先用哪个| 熟女人妻精品中文字幕| 国产熟女欧美一区二区| 亚洲婷婷狠狠爱综合网| 国产精品99久久久久久久久| 亚洲av.av天堂| 嘟嘟电影网在线观看| 日韩欧美 国产精品| 热re99久久国产66热| 亚洲国产精品999| 又粗又硬又长又爽又黄的视频| 免费黄网站久久成人精品| 免费高清在线观看视频在线观看| 国产精品久久久久成人av| 看免费成人av毛片| av天堂久久9| 国产一区有黄有色的免费视频| 免费播放大片免费观看视频在线观看| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在| 日本爱情动作片www.在线观看| 亚洲,欧美,日韩| 久久午夜综合久久蜜桃| 亚洲性久久影院| 久久久国产一区二区| 99热这里只有是精品50| 色婷婷av一区二区三区视频| 久热久热在线精品观看| 日本av免费视频播放| 另类精品久久| 亚洲精品,欧美精品| 国产精品99久久99久久久不卡 | 啦啦啦视频在线资源免费观看| 亚洲性久久影院| 91久久精品国产一区二区三区| 丝瓜视频免费看黄片| 婷婷色综合大香蕉| 青春草国产在线视频| 在线看a的网站| 能在线免费看毛片的网站| 久久精品国产亚洲av涩爱| 91久久精品国产一区二区三区| 久久久久久久亚洲中文字幕| 一本色道久久久久久精品综合| av在线老鸭窝| 亚洲综合色惰| 老女人水多毛片| 久久精品久久久久久噜噜老黄| 日韩一区二区三区影片| 永久免费av网站大全| 欧美日韩国产mv在线观看视频| 精品少妇黑人巨大在线播放| 一边亲一边摸免费视频| 国产色爽女视频免费观看| 少妇丰满av| 欧美丝袜亚洲另类| 22中文网久久字幕| 日韩免费高清中文字幕av| 免费看光身美女| 多毛熟女@视频| 中文字幕久久专区| 女人精品久久久久毛片| 丝瓜视频免费看黄片| 只有这里有精品99| 精品一区二区三区视频在线| 内射极品少妇av片p| 国产精品免费大片| 国产日韩欧美在线精品| 一区在线观看完整版| 性色av一级| 亚洲精品,欧美精品| av女优亚洲男人天堂| 国产成人精品久久久久久| 午夜91福利影院| 成人免费观看视频高清| 欧美性感艳星| 免费看不卡的av| 黑人猛操日本美女一级片| 国产日韩欧美在线精品| 桃花免费在线播放| 中文字幕人妻熟人妻熟丝袜美| 久久久久精品久久久久真实原创| 极品教师在线视频| 一区在线观看完整版| 免费看av在线观看网站| 久久99蜜桃精品久久| 三级国产精品片| 街头女战士在线观看网站| a级毛色黄片| 只有这里有精品99| 欧美日韩av久久| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 大话2 男鬼变身卡| 亚洲av免费高清在线观看| 永久网站在线| 日本欧美国产在线视频| 日本黄大片高清| av不卡在线播放| 大话2 男鬼变身卡| av不卡在线播放| 人妻夜夜爽99麻豆av| 国产精品嫩草影院av在线观看| 男女免费视频国产| 国产精品熟女久久久久浪| 制服丝袜香蕉在线| 亚洲av免费高清在线观看| 男女免费视频国产| 亚洲国产色片| 久久久久久久久久久久大奶| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 国产精品一区www在线观看| 纵有疾风起免费观看全集完整版| 亚洲国产色片| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 在线观看免费日韩欧美大片 | 插阴视频在线观看视频| 99精国产麻豆久久婷婷| 亚洲精品国产av成人精品|