• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the capability of the curvilinear immersed boundary method in predicting near-wall turbulence of turbulent channel flows

    2021-09-17 09:04:58FeiLiaoXiaoleiYang

    Fei Liao ,Xiaolei Yang

    aState Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

    bSchool of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

    cSchool of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 10 0 049, China

    ABSTRACT The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evaluate the capability of the curvilinear immersed boundary (CURVIB) method in predicting near-wall velocity and pressure fluctuations in turbulent channel flows.Simulation results show that quantities including the time-averaged streamwise velocity,the rms (root-mean-square) of velocity fluctuations,the rms of vorticity fluctuations,the shear stresses,and the correlation coefficients of u ′ and v ′computed from the CURVIB simulations are in good agreement with those from the body-fitted simulations.More importantly,it is found that the time-averaged pressure,the rms and wavenumber-frequency spectra of pressure fluctuations computed using the CURVIB method agree well with the body-fitted results.

    Key words:Immersed boundary method Turbulent channel flow Wavenumber-frequency spectra Near-wall turbulence

    Turbulent flows in real-world applications often happen with complex geometry.The immersed boundary (IB) method,which is based on non-body-fitted grids,does not require complicated grid generation process,providing an efficient approach for simulating flows with complex boundaries.Although the immersed boundary method has been applied to different flow problems [1-4],its capability in simulating near-wall turbulence has not been systematically evaluated,which is of vital importance for some applications,e.g.,the noise prediction [5,6].The fractional step method is often employed for solving the incompressible flows [7-9] .When the immersed boundary method is employed with the fractional step method,the velocity reconstruction is often applied at the intermediate velocity instead of the final velocity after the projection step.This causes an inconsistency between the reconstructed velocity boundary condition and the divergence free condition.To address this problem,Kim et al.[10] introduced a source/sink term to the continuity equation for cells containing the immersed boundary.Ikeno and Kajishima [11] proposed a consistent scheme and examined the capability of the proposed scheme in predicting the mean velocity and velocity fluctuations for incompressible flows in aligned channel,inclined channel,circular pipe and nuclear rodbundle.In the work by Kang et al.[12],the reconstructed velocity is corrected using the least square method to satisfy the constraint of global mass conservation.The capability of the proposed approach was then assessed for predicting the mean streamwise velocity,rms (root-mean-square) of velocity fluctuations and wallpressure power spectra in turbulent channel flows.In this work,the curvilinear immersed boundary (CURVIB) method [8,13] is employed,which adopts a curvilinear grid as the background grid and allows approximately distributing grid nodes in a way following the immersed boundaries whenever it is possible.In the CURVIB approach,a correction term,which is often very small,is uniformly applied to the reconstructed velocity to ensure the global mass conservation.The objective of this work is to systematically examine the CURVIB method in predicting near-wall velocity and pressure fluctuations of the turbulent channel flow atReτ=uτδ/ν=180,whereuτis the friction velocity,δis the half height of the channel andνis the kinematic viscosity.

    The virtual flow simulator (VFS) [14] is employed in this work for direct numerical simulation (DNS) of the fully developed turbulent channel flow.The governing equations are the threedimensional unsteady incompressible Navier-Stokes equations in curvilinear coordinates shown as follows:

    Fig.1.A schematic for a the reconstruction of the velocity at IB node and b the storage arrangement of velocity,pressure and contravariant velocity.

    Fig.2.A schematic for the setup of the immersed boundary simulation with a coordinate definition, b grid distribution and c grid nodes near the upper wall.Note that the grid for the immersed boundary simulation is designed in a way that the top and bottom walls do not coincide with grid nodes in the wall-normal direction.

    wherexiandξiare the Cartesian and curvilinear coordinates,respectively,are the transformation metrics,Jis the Jacobian of the geometric transformation,uiis thei-th component of the velocity vector in Cartesian coordinates,Ui=is the contravariant volume flux,gjk=are the components of the contravariant metric tensor,ρis the density,μis the dynamic viscosity,andpis the pressure.The governing equations are discretized in space using a second-order accurate central differencing scheme,and integrated in time using the fractional step method.An algebraic multigrid acceleration along with generalized minimal residual method (GMRES) solver is used to solve the pressure Poisson equation.A matrix-free Newton-Krylov method is used for solving the discretized momentum equation.More details about the flow solver can be found in Refs.[14-16].

    In the CURVIB method,the background grid nodes are classified as solid nodes inside solid body and fluid nodes in the fluid.The fluid node with at least one neighbour of solid nodes is marked as the IB node (e.g.pointbin Fig.1a).The velocity of the IB node is reconstructed using the velocity at pointcand the velocity at the boundary to supply boundary conditions for the outer flow simulations,in which the velocity atcis interpolated from the surrounding fluid nodes.For DNS and wall-resolved large-eddy simulation,the linear interpolation is employed for the velocity reconstruction.For flows at high Reynolds number,computationally efficient wallmodeled large-eddy simulation is preferred,in which the velocity is reconstructed using a wall model [17-22].The CURVIB method employs a hybrid staggered/non-staggered grid layout,as shown in Fig.1b,for solving satisfying the divergence-free conditions.The equations are advanced in time using a second-order fractional step method.The procedure for advancing the flow field for one time step is summarized as follows:

    1 Solve the momentum equation for the intermediate velocity at volume centers,with the velocity reconstructed at the IB nodes serving as boundary conditions;

    2 Compute the contravariant velocity at the face centers using the velocities at volume centers;

    3 Correct the contravariant velocity at face centers,which are next to IB nodes,to satisfy the global mass conservation;

    4 Solve the Poisson equation with its right-hand-side term computed using the contravariant velocities;

    5 Obtain the final velocity and pressure for this time step.

    More details about the CURVIB method can be found in Refs.[8,9,23,24].

    We carry out simulations of fully developed turbulent channel flow to evaluate the capability of the CURVIB method in predicting the near-wall turbulence.The Reynolds number based on the wall friction velocity isReτ=uτδ/ν=180,whereνis the kinematic viscosity,uτ=is the wall friction velocity,andδis the half height of the channel.The flow is driven by a mean pressure gradient in the streamwise direction to maintain a constant mass flux.

    A schematic for the setup of the immersed boundary simulation is shown in Fig.2.The streamwise,wall-normal and spanwise directions are denoted byx,yandz,respectively.The size of the computational domain isLx×Ly×Lz=2πδ×2.02δ×πδ,in which the computational domain in wall-normal direction is set in the range ofy∈[?0.01,2.01] with two manually located walls aty=0 andy=2 between grid nodes.The numbers of grid nodes areNx×Ny×Nz=256×134×256.In order to fully examine the accuracy,the grid for the immersed boundary simulation is designed in a way that the top and bottom walls do not coincide with grid nodes in wall-normal direction.The wall-normal grid spacing near the upper and lower walls isΔy=0.0044δ,with the correspondingΔy+=Δyuτ/ν=0.80.The grid nodes are uniformly distributed in the streamwise and spanwise directions,respectively,with the grid spacings calculated to beΔx+=4.4 andΔz+=2.2,respectively.Periodic boundary conditions are applied in the streamwise and spanwise directions.The time step is set toΔt=0.004πδ/ub,which corresponds to a CFL (Courant–Friedrichs–Lewy) number ofubΔt/Δx=0.5,whereubis the bulk velocity.This setup for time step indicates about 500 steps for one flow through.For the body-fitted simulation,the size of the computational domain isLx×Ly×Lz=2πδ×2δ×πδwith the number of grid nodes ofNx×Ny×Nz=256×128×256.The height of the first off-wall grid node isΔy=0.004δ,with the correspondingΔy+=0.72.The time step for the body-fitted simulation is set to be the same with that of the immersed boundary simulation.Both simulations are firstly carried out until the flows are fully developed,then additional simulations are carried out to obtain turbulence statistics for about 100 flow throughs.

    Fig.3.Comparison of a time-averaged streamwise velocity and b root-mean-square of velocity fluctuations.

    Fig.4.Comparison of a total shear stress ?〈u v〉/+d〈u+〉/dy+ and b Reynolds shear stresses ?〈u v〉/ .

    We first compare the profiles of mean streamwise velocity in Fig.3a and the root-mean-square of the velocity fluctuations in Fig.3b from the immersed boundary simulation with those from the body-fitted simulation carried out by Kim et al.[25].As seen,the immersed boundary predictions agree well with the bodyfitted results and the reference.Then,we compare the profiles of total shear stress and Reynolds shear stress in Fig.4.As discussed in Ref.[26],the following equation leads to the profile of a straight line in Fig.4a for the total shear stress:

    Fig.5.Correlation coefficients of u′ and v′.

    Meanwhile,in the middle of the channel aty/δ=1,due to d〈u+〉/dy+=0,the Reynolds shear stress ?should have a slope of ?1 with respect toy/δ,as shown in Fig.4b.It is observed clearly that both total shear stress and Reynolds stress from the immersed boundary simulations agree well with body-fitted simulation and the reference.We further compare the correlation coefficients ofu′andv′in Fig.5.It can be seen that there is a relatively strong correlation betweenu′ andv′ in a wide range ofy/δnear the wall,which indicates certain coherent motions in the wall region.As discussed in Ref.[25],an observed weak peak aty+≈12 shows the location of the maximum production and the maximum streamwise velocity fluctuation.It is observed that all these features are well predicted by the immersed boundary simulations.

    Fig.6.Root-mean-square of vorticity fluctuations a ωx,rms, b ωy,rms and c ωz,rms,normalized by mean shear.

    Fig.7.Comparison of the near-wall behavior of velocity fluctuations:/y+,/y+2 and /y+.

    Next,we compare the profiles of rms of the vorticity fluctuations in Fig.6.It can be seen the immersed boundary simulation can accurately predict the vorticity fluctuations.As is explained in Ref.[25],the local minimum and the local maximum of the streamwise vorticity indicate the edge and centre of the vortex,respectively,leading to an estimation of the centre of the streamwise vortex located aty+=20 with radiusr+=15.

    Then,we examine the near-wall scaling of velocity fluctuationsui,rmsin Fig.7 to evaluate the capability of the employed CURVIB method in predicting the near-wall behavior,where the boundary conditions are not directly applied at the wall.Applying the no-slip boundary condition and continuity equation to the Taylor series expansion of the velocity components [26],it can be obtained that the streamwiseand spanwisew+rms have a linear scaling ofy+,while the wall-normalhas a behavior ofy+2scaling,as shown in Fig.7.It is observed that the immersed boundary method can accurately predict such scalings.

    At last,we focus on the capability of the immersed boundary method in predicting time-averaged pressure and statistics of pressure fluctuations.We show the profiles of time-averaged pressure and rms of pressure fluctuations in Fig.8.It is observed that the predictions of the immersed boundary simulation agree well with those from the body-fitted simulations,although somewhat differences are observed for the peak of the time-averaged pressure.In Fig.9,we compare the normalized wavenumber-frequency spectra of the pressure fluctuations at two wall-normal locations,which are compted using the following equations:

    wherekxandωare the streamwise wavenumber and frequency,respectively,andp′(y;kx,ω)is the spatial-temporal discrete Fourier transform (DFT) of pressure fluctuationp′(y;x,t)=p(y;x,t)?〈p(y;x,t)〉.Ensemble averaging for|p′(y;kx,ω)|2is carried out in the spanwise direction and in time with 50% overlapping.To make comparisons between the two simulations,the body-fitted result is shown by contour floods,whereas the immersed boundary result is indicated by red solid contour lines.It is observed that the energy-containing regions of pressure fluctuations predicted by the two simulations are almost identical at the considered wall-normal locations with slight differences observed at high wavenumber and frequency for the spectra at the wall,which indicates that the immersed boundary method is able to predict the space-time structure of pressure fluctuations at the same accuracy as the body-fitted method.

    Fig.8.Comparison of a time-averaged pressure and b root-mean-square of the pressure fluctuations.

    Fig.9.Normalized wavenumber-frequency spectra of pressure fluctuations at a wall and b y+=30 computed from the two simulations.To make comparisons,the bodyfitted result is shown by contour floods,whereas the immersed boundary result is indicated by red solid contour lines.

    In this work,we examine the capability of the curvilinear immersed boundary method in predicting near-wall turbulence of the turbulent channel flow at Reynolds numberReτ=180 by comparing its predictions with those from the simulation of a body-fitted method.Quantities including mean and fluctuations of velocity,vorticity and pressure,shear stresss,correlation coefficient ofu′andv′,near-wall scaling of velocity fluctuations and wavenumberfrequency spectra of pressure fluctuations are compared.Two conclusions can be drawn as follows:(1) The accuracy of the curvilinear immersed boundary method in predicting statistics of velocity and pressure fluctuations is almost the same as that of the body-fitted method;(2) For the wavenumber-frequency spectra of pressure fluctuations,minor fluctuations are observed at high wavenumber and high frequency for the immersed boundary predictions,which might not be of great significance as the energy at that wave number and frequency is several orders of magnitude smaller than the maximum value.

    Since the Cartesian grid is employed in this work,similar conclusions are expected for the immersed boundary method based on the Cartesian grid with similar near wall treatments.Only the case of the turbulent channel flow at a low Reynolds number is tested in this work for which DNS is feasible.Further studies need to be carried out using cases at high Reynolds numbers to test LES and the immersed boundary method with wall models.Furthermore,evaluation on the near wall accuracy of the CURVIB method will be carried out in the future work for cases with complex boundaries.

    Declaration of Competing Interest

    The authors declare that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China (NSFC) Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102) and the Strategic Priority Research Program,Chinese Academy of Sciences(CAS) (No.XDB22040104).

    欧美成人一区二区免费高清观看 | 中国美女看黄片| 男男h啪啪无遮挡| 两性夫妻黄色片| 90打野战视频偷拍视频| 亚洲少妇的诱惑av| 久久久久国产精品人妻aⅴ院| 夜夜夜夜夜久久久久| 黄频高清免费视频| 亚洲av日韩精品久久久久久密| 少妇被粗大的猛进出69影院| 波多野结衣高清无吗| 麻豆一二三区av精品| 欧美黄色淫秽网站| 国产伦人伦偷精品视频| 国产不卡一卡二| 老司机在亚洲福利影院| 亚洲欧美日韩高清在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产精品成人综合色| 亚洲成人国产一区在线观看| 免费少妇av软件| 大型黄色视频在线免费观看| 久久青草综合色| av福利片在线| 丝袜美腿诱惑在线| 一进一出好大好爽视频| 亚洲国产高清在线一区二区三 | 黄网站色视频无遮挡免费观看| 久久 成人 亚洲| 亚洲第一欧美日韩一区二区三区| 亚洲精品久久国产高清桃花| 亚洲精品美女久久av网站| 国产亚洲精品第一综合不卡| 亚洲欧美精品综合一区二区三区| 最新美女视频免费是黄的| 久久久精品国产亚洲av高清涩受| 欧美日韩亚洲综合一区二区三区_| 女人被躁到高潮嗷嗷叫费观| 精品久久久久久久人妻蜜臀av | 国产高清videossex| 成人国语在线视频| 久久九九热精品免费| 丝袜在线中文字幕| 国产成人一区二区三区免费视频网站| 国产精品自产拍在线观看55亚洲| 亚洲第一av免费看| 亚洲中文字幕日韩| 在线国产一区二区在线| 午夜福利成人在线免费观看| 99香蕉大伊视频| 男女下面插进去视频免费观看| 国产精品免费一区二区三区在线| 国产av在哪里看| 成人特级黄色片久久久久久久| 亚洲精品国产一区二区精华液| 久久久久久久久久久久大奶| 久久中文字幕一级| 日韩三级视频一区二区三区| 国产99白浆流出| 亚洲欧美日韩高清在线视频| bbb黄色大片| 日韩大码丰满熟妇| 日日干狠狠操夜夜爽| 成人免费观看视频高清| 无遮挡黄片免费观看| 欧美日韩瑟瑟在线播放| 精品高清国产在线一区| 婷婷丁香在线五月| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲av嫩草精品影院| 国产91精品成人一区二区三区| 老汉色∧v一级毛片| 亚洲专区字幕在线| 日韩欧美在线二视频| 久久精品成人免费网站| 国产精品精品国产色婷婷| 亚洲精品一区av在线观看| 曰老女人黄片| 91在线观看av| 在线av久久热| 性色av乱码一区二区三区2| 91精品三级在线观看| 国产精品,欧美在线| 久久精品亚洲熟妇少妇任你| 中出人妻视频一区二区| av网站免费在线观看视频| 国产精品二区激情视频| 91成人精品电影| 麻豆国产av国片精品| 88av欧美| 久久婷婷人人爽人人干人人爱 | cao死你这个sao货| 日韩三级视频一区二区三区| 国产精品久久久人人做人人爽| 日本 av在线| 91在线观看av| 午夜免费鲁丝| av天堂久久9| 欧美中文综合在线视频| 国产色视频综合| 欧美激情极品国产一区二区三区| 99re在线观看精品视频| 午夜福利18| 日本五十路高清| 国产精品综合久久久久久久免费 | 成人永久免费在线观看视频| 美女扒开内裤让男人捅视频| 国产精品精品国产色婷婷| 国产不卡一卡二| 女性被躁到高潮视频| 中文字幕av电影在线播放| 很黄的视频免费| 夜夜爽天天搞| 天天添夜夜摸| 在线永久观看黄色视频| 国产精品久久久av美女十八| 国产午夜福利久久久久久| 亚洲色图av天堂| 精品福利观看| 国产乱人伦免费视频| 九色亚洲精品在线播放| 人妻丰满熟妇av一区二区三区| 女人被狂操c到高潮| 性少妇av在线| 操美女的视频在线观看| 亚洲av第一区精品v没综合| 国产精品自产拍在线观看55亚洲| 亚洲精品国产色婷婷电影| 69精品国产乱码久久久| 亚洲性夜色夜夜综合| 国产成年人精品一区二区| 国产精品久久久av美女十八| 亚洲第一av免费看| 一级黄色大片毛片| 久久国产亚洲av麻豆专区| 精品第一国产精品| 在线观看日韩欧美| 免费看十八禁软件| 久久精品91无色码中文字幕| 电影成人av| 国产精品久久视频播放| 亚洲五月天丁香| 一级,二级,三级黄色视频| 99国产精品一区二区蜜桃av| 搡老妇女老女人老熟妇| 少妇裸体淫交视频免费看高清 | 亚洲精品久久国产高清桃花| www.www免费av| 亚洲人成电影观看| 人人妻人人爽人人添夜夜欢视频| 一区福利在线观看| 巨乳人妻的诱惑在线观看| 欧美av亚洲av综合av国产av| 国产高清视频在线播放一区| 色播在线永久视频| 久久热在线av| 久久青草综合色| 国产亚洲精品综合一区在线观看 | 久久精品人人爽人人爽视色| 91av网站免费观看| 乱人伦中国视频| 韩国精品一区二区三区| 国产真人三级小视频在线观看| 久久香蕉国产精品| 俄罗斯特黄特色一大片| 深夜精品福利| 色综合亚洲欧美另类图片| 亚洲av成人不卡在线观看播放网| 一区二区三区高清视频在线| 亚洲中文字幕日韩| 欧美国产精品va在线观看不卡| 亚洲欧美精品综合一区二区三区| 一本综合久久免费| 欧美日本视频| 亚洲人成网站在线播放欧美日韩| 悠悠久久av| 精品久久久久久,| 亚洲五月色婷婷综合| 老熟妇乱子伦视频在线观看| 国产免费男女视频| 欧美日韩精品网址| 国产精品亚洲一级av第二区| 亚洲欧美激情在线| 每晚都被弄得嗷嗷叫到高潮| 91字幕亚洲| 午夜免费成人在线视频| 嫩草影视91久久| 日本五十路高清| 国产成人系列免费观看| 国产精品香港三级国产av潘金莲| 久久精品国产亚洲av香蕉五月| 国产91精品成人一区二区三区| 免费在线观看完整版高清| 亚洲av美国av| 99在线人妻在线中文字幕| 国产一区二区三区在线臀色熟女| 久久中文字幕一级| 欧美黑人精品巨大| 一级a爱片免费观看的视频| 久久国产精品男人的天堂亚洲| 午夜免费观看网址| 国产亚洲精品第一综合不卡| 自线自在国产av| 亚洲国产看品久久| 成人国产一区最新在线观看| 大型黄色视频在线免费观看| 日韩欧美一区二区三区在线观看| 少妇粗大呻吟视频| 在线国产一区二区在线| 99精品在免费线老司机午夜| 国产精品野战在线观看| 亚洲色图综合在线观看| 亚洲在线自拍视频| 日韩大尺度精品在线看网址 | 国产又色又爽无遮挡免费看| 免费高清在线观看日韩| 亚洲成人国产一区在线观看| 在线天堂中文资源库| 97人妻天天添夜夜摸| 亚洲国产精品合色在线| 国产一级毛片七仙女欲春2 | 99国产极品粉嫩在线观看| 久久人人精品亚洲av| 国产又色又爽无遮挡免费看| 亚洲精品美女久久久久99蜜臀| 老鸭窝网址在线观看| 亚洲成a人片在线一区二区| 性少妇av在线| 精品午夜福利视频在线观看一区| 天堂影院成人在线观看| 亚洲精品国产色婷婷电影| 免费久久久久久久精品成人欧美视频| 久久国产精品人妻蜜桃| 国产成人av激情在线播放| 国产熟女xx| 夜夜看夜夜爽夜夜摸| 亚洲五月色婷婷综合| 精品电影一区二区在线| 他把我摸到了高潮在线观看| 国产成人精品久久二区二区91| 黄色片一级片一级黄色片| 国产精品美女特级片免费视频播放器 | 九色亚洲精品在线播放| 成人av一区二区三区在线看| 国产成人系列免费观看| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久久毛片微露脸| 免费人成视频x8x8入口观看| 中文字幕人妻熟女乱码| 少妇的丰满在线观看| 亚洲在线自拍视频| 日韩国内少妇激情av| 国产精品亚洲一级av第二区| 乱人伦中国视频| 欧美午夜高清在线| av在线天堂中文字幕| 亚洲精品久久国产高清桃花| 亚洲人成伊人成综合网2020| 国产精品永久免费网站| 久久久久久久久中文| 亚洲一区中文字幕在线| 日本免费一区二区三区高清不卡 | 午夜精品久久久久久毛片777| 欧美黄色淫秽网站| 国内精品久久久久久久电影| 亚洲一卡2卡3卡4卡5卡精品中文| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美精品济南到| 成年女人毛片免费观看观看9| 视频在线观看一区二区三区| 久久久久九九精品影院| 成年女人毛片免费观看观看9| 免费久久久久久久精品成人欧美视频| 黑人欧美特级aaaaaa片| 熟妇人妻久久中文字幕3abv| 身体一侧抽搐| 搡老岳熟女国产| 久久香蕉国产精品| 久久精品成人免费网站| 十分钟在线观看高清视频www| 精品久久久久久久久久免费视频| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区三区在线| 亚洲精品久久成人aⅴ小说| 成人免费观看视频高清| 丝袜人妻中文字幕| 大码成人一级视频| 怎么达到女性高潮| 久热爱精品视频在线9| 亚洲美女黄片视频| 长腿黑丝高跟| 一级,二级,三级黄色视频| 99久久精品国产亚洲精品| 夜夜躁狠狠躁天天躁| 手机成人av网站| 涩涩av久久男人的天堂| 欧美日本中文国产一区发布| 两个人视频免费观看高清| 岛国视频午夜一区免费看| 亚洲精品国产精品久久久不卡| 女生性感内裤真人,穿戴方法视频| 亚洲五月婷婷丁香| 色精品久久人妻99蜜桃| 一级作爱视频免费观看| 午夜成年电影在线免费观看| 99久久99久久久精品蜜桃| 12—13女人毛片做爰片一| 精品乱码久久久久久99久播| 电影成人av| 成人亚洲精品av一区二区| 亚洲av成人一区二区三| 久久久久久人人人人人| 午夜a级毛片| 欧美日本中文国产一区发布| 男人操女人黄网站| 一级毛片精品| 人人妻,人人澡人人爽秒播| 欧美激情极品国产一区二区三区| 视频区欧美日本亚洲| 禁无遮挡网站| 精品一区二区三区av网在线观看| 97人妻天天添夜夜摸| 亚洲少妇的诱惑av| 国产精品免费视频内射| 99国产极品粉嫩在线观看| 又黄又爽又免费观看的视频| 精品电影一区二区在线| 色综合亚洲欧美另类图片| 欧美日韩亚洲综合一区二区三区_| 亚洲成a人片在线一区二区| 免费在线观看日本一区| 欧美不卡视频在线免费观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图综合在线观看| 欧美不卡视频在线免费观看 | 国产av又大| 成人18禁高潮啪啪吃奶动态图| 国产精品99久久99久久久不卡| 精品久久久久久,| av在线天堂中文字幕| 久久久精品国产亚洲av高清涩受| 怎么达到女性高潮| 在线观看www视频免费| 国产91精品成人一区二区三区| 欧美在线一区亚洲| 成人三级做爰电影| 久久精品亚洲熟妇少妇任你| 91成人精品电影| 亚洲性夜色夜夜综合| 国产麻豆69| 久久 成人 亚洲| 老熟妇仑乱视频hdxx| 黄色视频,在线免费观看| 免费av毛片视频| 久久精品国产清高在天天线| 亚洲精华国产精华精| 最新在线观看一区二区三区| 在线十欧美十亚洲十日本专区| 18禁观看日本| 精品人妻1区二区| 久久精品影院6| 美女 人体艺术 gogo| 女人爽到高潮嗷嗷叫在线视频| 精品电影一区二区在线| 国产精品九九99| 欧美日韩一级在线毛片| 日韩大尺度精品在线看网址 | 亚洲七黄色美女视频| 亚洲欧美精品综合久久99| 老司机深夜福利视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成77777在线视频| 免费不卡黄色视频| 国产精品亚洲一级av第二区| 巨乳人妻的诱惑在线观看| 国产高清有码在线观看视频 | 搡老熟女国产l中国老女人| 日韩 欧美 亚洲 中文字幕| 制服丝袜大香蕉在线| 两人在一起打扑克的视频| 亚洲国产欧美网| 国产在线观看jvid| 电影成人av| 最新美女视频免费是黄的| 亚洲专区字幕在线| 精品久久久久久,| 69av精品久久久久久| 国产精品 欧美亚洲| 亚洲三区欧美一区| 亚洲精品粉嫩美女一区| 非洲黑人性xxxx精品又粗又长| 成人永久免费在线观看视频| 亚洲国产看品久久| a在线观看视频网站| 一级毛片女人18水好多| av天堂在线播放| 极品教师在线免费播放| 十分钟在线观看高清视频www| 黑人巨大精品欧美一区二区mp4| АⅤ资源中文在线天堂| 少妇的丰满在线观看| 亚洲电影在线观看av| 91成年电影在线观看| 国内精品久久久久久久电影| 国产成人精品久久二区二区免费| 亚洲国产精品999在线| 国产精品久久视频播放| 欧美大码av| 国产精品乱码一区二三区的特点 | 一进一出抽搐动态| 热re99久久国产66热| 乱人伦中国视频| 母亲3免费完整高清在线观看| 久久久久久久久免费视频了| 亚洲电影在线观看av| 在线天堂中文资源库| 亚洲第一欧美日韩一区二区三区| 一区二区三区激情视频| 叶爱在线成人免费视频播放| 亚洲精品国产色婷婷电影| 亚洲精品国产区一区二| 99在线人妻在线中文字幕| 久99久视频精品免费| 99久久99久久久精品蜜桃| 亚洲第一av免费看| www.www免费av| 欧美最黄视频在线播放免费| 最好的美女福利视频网| 久久亚洲真实| 怎么达到女性高潮| 国产男靠女视频免费网站| 精品国产乱码久久久久久男人| 亚洲人成伊人成综合网2020| 久久久久久久久中文| 大型黄色视频在线免费观看| 老鸭窝网址在线观看| 日韩大尺度精品在线看网址 | 男人的好看免费观看在线视频 | 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡| 免费无遮挡裸体视频| 黄色视频不卡| 欧美中文综合在线视频| 久久精品91蜜桃| 精品国产美女av久久久久小说| 欧美乱妇无乱码| 久久精品国产综合久久久| 久久精品国产亚洲av香蕉五月| 69av精品久久久久久| 黄片播放在线免费| 久久久久亚洲av毛片大全| 69av精品久久久久久| 一级毛片女人18水好多| 久久国产乱子伦精品免费另类| 一级,二级,三级黄色视频| 国产激情欧美一区二区| 午夜影院日韩av| 丝袜人妻中文字幕| 国产亚洲精品综合一区在线观看 | 99久久精品国产亚洲精品| 老司机在亚洲福利影院| 亚洲精品粉嫩美女一区| 亚洲第一欧美日韩一区二区三区| 日本免费一区二区三区高清不卡 | 一本大道久久a久久精品| 国产欧美日韩一区二区三| 成年女人毛片免费观看观看9| 每晚都被弄得嗷嗷叫到高潮| 99国产精品一区二区蜜桃av| 国产激情欧美一区二区| 免费av毛片视频| 欧美黄色淫秽网站| 国产亚洲精品久久久久久毛片| 俄罗斯特黄特色一大片| 国产精品一区二区免费欧美| 国产亚洲精品第一综合不卡| 亚洲人成电影观看| 亚洲专区字幕在线| 久久久水蜜桃国产精品网| 国产成人啪精品午夜网站| 日韩欧美国产一区二区入口| a在线观看视频网站| 搞女人的毛片| 黄色视频不卡| 亚洲第一电影网av| av天堂在线播放| 好男人在线观看高清免费视频 | 色综合婷婷激情| 日韩欧美三级三区| 一卡2卡三卡四卡精品乱码亚洲| 成人国产一区最新在线观看| 国产亚洲av嫩草精品影院| 手机成人av网站| 午夜福利免费观看在线| 久久人人爽av亚洲精品天堂| 一a级毛片在线观看| 欧美色欧美亚洲另类二区 | 午夜亚洲福利在线播放| 国产激情欧美一区二区| 1024香蕉在线观看| 熟女少妇亚洲综合色aaa.| 亚洲伊人色综图| 午夜福利视频1000在线观看 | 免费看美女性在线毛片视频| 成人欧美大片| 午夜福利,免费看| 成人三级做爰电影| 亚洲少妇的诱惑av| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区mp4| 久久精品国产亚洲av高清一级| 色播在线永久视频| АⅤ资源中文在线天堂| 日韩欧美国产在线观看| 精品久久久久久,| 久99久视频精品免费| 亚洲五月色婷婷综合| 黄频高清免费视频| 免费一级毛片在线播放高清视频 | 久久久国产成人精品二区| 午夜视频精品福利| 18禁裸乳无遮挡免费网站照片 | 99久久国产精品久久久| 中文亚洲av片在线观看爽| 18禁美女被吸乳视频| 在线观看舔阴道视频| 女生性感内裤真人,穿戴方法视频| 亚洲天堂国产精品一区在线| av欧美777| 亚洲第一欧美日韩一区二区三区| 此物有八面人人有两片| 日韩有码中文字幕| 亚洲精品在线美女| 十八禁人妻一区二区| 在线观看免费视频日本深夜| 中亚洲国语对白在线视频| 亚洲专区字幕在线| 亚洲性夜色夜夜综合| 丝袜美足系列| 久久久久久久午夜电影| 国产激情欧美一区二区| 亚洲第一青青草原| 国产成人啪精品午夜网站| 在线视频色国产色| 99久久精品国产亚洲精品| 午夜精品国产一区二区电影| 91国产中文字幕| 一级黄色大片毛片| 亚洲国产精品成人综合色| 韩国av一区二区三区四区| 亚洲精品国产精品久久久不卡| 黑人欧美特级aaaaaa片| 他把我摸到了高潮在线观看| 美女扒开内裤让男人捅视频| 亚洲国产精品999在线| e午夜精品久久久久久久| 自线自在国产av| 欧美日韩一级在线毛片| 国产99白浆流出| 男人的好看免费观看在线视频 | 男女之事视频高清在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲国产欧美网| 欧美日韩中文字幕国产精品一区二区三区 | 操美女的视频在线观看| www.自偷自拍.com| 国产欧美日韩综合在线一区二区| 一区二区三区高清视频在线| 一级作爱视频免费观看| 午夜视频精品福利| 欧美日韩福利视频一区二区| 免费在线观看影片大全网站| 久久性视频一级片| 成人特级黄色片久久久久久久| 久久天躁狠狠躁夜夜2o2o| 国产精品99久久99久久久不卡| 人成视频在线观看免费观看| 美女国产高潮福利片在线看| 最近最新免费中文字幕在线| 精品国产超薄肉色丝袜足j| 欧美色视频一区免费| 韩国精品一区二区三区| 欧美中文日本在线观看视频| 色在线成人网| 亚洲欧美精品综合久久99| 久久狼人影院| 国产激情久久老熟女| 久久人人精品亚洲av| 美女 人体艺术 gogo| av中文乱码字幕在线| 亚洲免费av在线视频| 搡老岳熟女国产| 国产成人啪精品午夜网站| 少妇被粗大的猛进出69影院| 九色国产91popny在线| 中文字幕人妻丝袜一区二区| 欧美最黄视频在线播放免费| 亚洲精品国产精品久久久不卡| 久久久久久久久中文| 国产精品av久久久久免费| 超碰成人久久| 一个人观看的视频www高清免费观看 | 国产三级黄色录像| netflix在线观看网站| 天天添夜夜摸| 女人爽到高潮嗷嗷叫在线视频| 香蕉丝袜av| 美女国产高潮福利片在线看| 麻豆av在线久日| 国产午夜福利久久久久久| 男人操女人黄网站| 国产欧美日韩一区二区三区在线| 精品国产一区二区久久| 亚洲自拍偷在线|