• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column

    2021-09-10 09:26:34ZheDING丁哲JingfengYAO姚靜鋒YingWANG王瑩ChengxunYUAN袁承勛ZhongxiangZHOU周忠祥AnatolyKUDRYAVTSEVRuilinGAO高瑞林andJieshuJIA賈潔姝
    Plasma Science and Technology 2021年9期
    關(guān)鍵詞:王瑩

    Zhe DING (丁哲),Jingfeng YAO (姚靜鋒),Ying WANG (王瑩),2,Chengxun YUAN (袁承勛),2,?,Zhongxiang ZHOU (周忠祥),2,Anatoly A KUDRYAVTSEV,2,3,Ruilin GAO (高瑞林) and Jieshu JIA (賈潔姝)

    1 School of Physics,Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    2 Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology,Harbin 150001,People’s Republic of China

    3 Physics Department,Saint Petersburg State University,St.Petersburg 198504,Russia

    4 Shanghai Electro-Mechanical Engineering Institute,Shanghai 201109,People’s Republic of China

    5 Science and Technology on Electromagnetic Scattering Laboratory,Shanghai 200438,People’s Republic of China

    Abstract This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma.Dust in a plasma has a large impact on the properties of the plasma.According to a probe diagnostic experiment on a dust-free plasma combined with machine learning,an experiment on a dusty plasma is designed and carried out.Using a specific experimental device,dusty plasma with a stable and controllable dust particle density is generated.A Langmuir probe is used to measure the electron density and electron temperature under different pressures,discharge currents,and dust particle densities.The diagnostic result is processed through a machine learning algorithm,and the error of the predicted results under different pressures and discharge currents is analyzed,from which the law of the machine learning results changing with the pressure and discharge current is obtained.Finally,the results are compared with theoretical simulations to further analyze the properties of the electron density and temperature of the dusty plasma.

    Keywords: dusty plasma,machine learning,Langmuir probe

    1.Introduction

    Dusty plasma is a plasma system formed by adding dust particles to a plasma [1].The dust particles become charged due to the nature of the plasma itself [2].Dusty plasmas are often not intentional but sometimes formed intentionally for certain applications.Because the properties of charged dust particles are different from those of electrons and ions,dusty plasma has many unique characteristics [3].It plays an important role in the field of space and engineering applications [4,5].In carrying out laboratory research on dusty plasma,it is important to understand the specific parameters of the dusty plasma [6,7],especially its electron density and electron temperature [8].The diagnostic method is therefore at the heart of experimental research on dusty plasma,so that improving the diagnostic method is of great significance [9].

    The very existence of the dust particles makes the diagnosis of dusty plasma in the laboratory a very challenging problem[10].Commonly used methods include spectrum diagnosis[11],microwave diagnosis[12],and probe diagnosis[13].In spectrum diagnosis,the fiber probe can usually diagnose only outside the plasma area[14].Dust particles in the dusty plasma interfere with the spectrum that the probe can receive,so that the measured spectrum cannot accurately reflect the real situation inside the dusty plasma.For microwave diagnosis,since the dust particles carry electric charges,they will,like electrons,interact with the electromagnetic waves passing through the plasma,causing attenuation of the waves and introducing errors in the measurement of parameters.For probe diagnosis [15],because the diagnostic system applies a voltage to the probe during the diagnostic process,the charged dust particles will adhere to the surface of the probe,preventing the probe from collecting the current in the plasma[10].Because the dust attachment process is relatively random,accurate corrections cannot be made during the diagnostic process and the probe data cannot be calculated correctly [16].So,the dust particles and especially the fact that they are charged prevent the accurate diagnosis of dusty plasma using conventional diagnostic methods.Therefore,improving the diagnostic methods is an important task in the study of dusty plasma [17].

    At the same time,machine learning methods have been used to solve the Boltzmann equation of weakly ionized plasma[18].In plasma diagnosis,Jonathan Chalaturnyk[19]studied the feasibility of machine learning to enhance the diagnosis of dust-free plasma probes.In previous experiments,machine learning has also been successfully implemented to enhance the diagnosis of plasma probes [20].We conclude that improvement in diagnosing dusty plasma is feasible.Since the amount of dust in the dusty plasma has a direct influence on the diagnostic result,the use of machine learning to process the data obtained from the diagnosis and thereby to reduce the error of the result has great research value.At the same time,considering that in common probe diagnostic methods dust particles have relatively little influence,probe diagnosis can be used as the data source for machine learning in order to study parameters such as the electron density and temperature of the dusty plasma.

    Here we present the results of a study in which diagnosing dusty plasma is combined with machine learning and probe diagnosis.The diagnostic result of a smaller dust density is input into the machine learning algorithm; then the result for a larger dust density is predicted,and the predicted result is analyzed.By comparing the results of machine learning with that of fluid model,the reliability of the machine learning algorithm is further verified,and the properties of electron density and temperature of the dust plasma are further analyzed by an improved probe diagnosis method.In section 2,the formulas and principles used in the simulation are introduced,and the machine learning algorithm is applied.In section 3,the experimental device and the process of carrying out the experiment are explained in detail,along with the specific research methods.In section 4,the results of the experiment are analyzed in detail and are compared with the results of a dust-free plasma.Finally,in section 5,conclusions are presented.

    Figure 1.Schematic diagram of discharge device: (a) anode,(b) cathode,(c) dust particle,(d) Langmuir probe.

    2.Setting up the experiment

    In this section,the plasma generator,parameter selection,and some early data processing methods are introduced.

    2.1.Dusty plasma generator and parameter selection

    In order to obtain results of the initial dusty plasma probe diagnosis,the dusty plasma generator used by Ding [21] is adopted,as shown in figure 1.The experimental device can completely trap the dust particles in the curved part of the tube and thereby control the distribution of dust particles in the plasma.Because the density of dust particlesndis difficult to control accurately in the experiment,it is impossible to analyze accurately the influence of dust density on the experimental results.But by injecting a known amount of dust particles in this experimental device,the density of local dust particles can be changed regularly with changing the pressure and voltage,although the density of dust cannot be accurately known.Furthermore,accurate collection of probe data is realized,which provides better data for the prediction of the algorithm.

    Figure 1 gives the overall structure of the plasma generator.It is bent 40 cm glass tube with an inside diameter of 3 cm.The electrode spacing is 25 cm.Some dust particles are placed in the glass tube,and after the discharge starts,they become suspended in the plasma to form a dusty plasma.The dust particles are made of aluminum oxide,there are about 200–300 dust particles in the bend.The dust particles are spherical and have a diameter of 5 μm.The plasma gas is helium,and DC glow discharge is used as the plasma environment in which the dust is suspended.The probe is at the curved part of the glass tube to measure the dusty plasma density and temperature in the positive column in that area.The probe used for measurement is the Impedans commercial probe system.By using high temperature to soften the wall of the glass tube,and passing the probe through the wall,the air tightness of the device is not affected.The plasma powersupply is a CE 1500 005T programed power-supply,which can directly read the power-supply current and voltage and continuously adjust its output parameters.The maximum power-supply voltage is 1500 V,and enough data can be obtained for machine learning training and verification.A 100 kW resistor is connected in series in the circuit.

    In the probe diagnosis of plasma [22],due to the difficulty in measuring discharge current,the pressure and the total voltage of the circuit were selected as the input parameters of the algorithm for analysis.When diagnosing dusty plasma,by improving the accuracy of discharge current diagnosis,more basic discharge current can be selected as the input parameter.Therefore,discharge current and gas pressure are used as input parameters,and electron temperature and electron density are used as output parameters.The diagnostic results at a specific dust particle density are used to train the machine learning algorithms,in order to obtain diagnostic results at other dust particle densities.

    2.2.Implementation details of machine learning

    Because of its scalability and data-fitting ability,the multilayer perceptron (MLP) algorithm,with excellent performance in machine learning,was selected.The number of input nodes of the multilayer perceptron,=d2,corresponds to the pressure and voltage of the plasma.Similarly,the number of nodes in the output layer,=q2,corresponds to the electron temperature and electron density.Through a large number of experimental measurements,the model achieves the best performance when the number of network layers is =l1.The optimal number of nodes in each hidden layer ish1=20,h2=40,h3=40,andh4=20.The code is implemented by Pytorch 1.0 in Python,and the computing device is a desktop computer with Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz and NVIDIA GeForce GTX 1060 3 GB.To achieve better convergence of the model and avoid gradient disappearance,Gaussian regularization is adopted for both input and output data.We take the electron density data measured by experiments as the true value as the standard to evaluate the accuracy of data prediction.

    The treatment method is as follows:

    wherexis the data vector to be regularized,xregis the result of regularization,andTis the length of the vector.To measure the accuracy of the predicted results,an accuracy calculation method Ac is designed:

    where(R∈0),1 is the maximum acceptable threshold,is the number of predicted data meeting condition equation(2)in the test phase.Ois the predicted result on the test set and is explained in detail in section 3.2.?Ois the true value of test data,andPtotalis the number of test data,while ?OandOare all the original values which are not regularized by equation (1).

    3.Theories of dusty plasma and machine learning

    After choosing the device to be used in the experiment and the selected parameters,the data obtained through the experiment need to be input into the machine learning algorithm for learning and training,and the predicted result needs to be compared with the simulation result of COMSOL Multiphysics software.In this section,the formulas for dusty plasma simulation and the machine learning algorithm that we used are introduced.

    3.1.Model formulation of dusty plasma

    We used Liang’s improved plasma fluid model [23] with the addition of the dust-charging process,and used helium as the gas.Simulations were performed using the finite element method in COMSOL Multiphysics software,which allows relatively simple solutions to complex problems in various fields.Below we briefly introduce the equations of the dusty plasma fluid model system.

    The absorption term of each charged particle by dust particles is added to the plasma particle continuity equation:

    where

    k=(e,i) represents electrons or ions,nkis the density of electrons or ions,Skrepresents the sources and sinks caused by the plasma chemical processes,Ikis the corresponding electron or ion charging current,Γkis the flux density,μkandDkare,respectively,the corresponding mobility and diffusion coefficients,andEis the electric field,zkis the number of charges of the charged particles in the plasma.

    Maxwellian electron energy distribution function was used for the calculation of rate constants in this work.The electron energy balance equation is written as

    where

    Hereneis the electron energy density and Γεis the heat flux density,εDis the electron energy diffusion coefficient.The first term on the right side of equation (6) expresses the thermal conductivity and the second term describes heat transfer due to electron drift in the electric fieldE.In equation (5),εSis the electron energy change due to the elastic and inelastic collisions.Energy loss of a single electron to a dust particle is assumed to beeφd.

    The spatial distribution of the electric field is determined by the electric potential,obtained from the modified Poisson equation

    whereε0is the vacuum dielectric constant.

    The dust particle radiusrd=5μm.Assuming that at the center of the dust particle area,the electron density isne=4.01×1015m?3,the ion density isni=4.03×1015m?3,and the concentration of neutral molecules isng=1.56×1022m?3.

    We use the above formula to simulate dusty plasmas with different pressures,different discharge currents,and different dust particle densities,and compare the results obtained with the results obtained by the algorithm to further illustrate the feasibility of the algorithm and analyze the properties of electron density and temperature of the dusty plasma.

    3.2.Theories of machine learning

    MLP,also known as artificial neural network,is a neural network composed of fully connected layers with at least one hidden layer.The output of each hidden layer of the multilayer perceptron is transformed by the activation function so that the neural network can acquire the ability to fit a nonlinear function.Specifically,a small batch of sampleX∈Rn×dis given,with batch sizenand number of inputsd.For a MLP ofllayers,the number of hidden layers is ?l1,and the number of neurons in each hidden layer ishi.We let the output of each hidden layer beHi∈Rn×hi,and the weight and bias parameters of a hidden layer be,respectively,Wi∈Rhi?1×hiandbi∈Rn×hi,so the output of the networkO∈Rn×qcan be written

    whereqis the number of neurons in the output layer andφis the activation function.In our experiment,LeakyRelu [24] is selected as the activation function to avoid the problem of a vanishing gradient.This is expressed as

    whereais hyperparameters,we follow the original value of LeakyRelu[24],which is set to 0.01 in the experiment.Mean square error (MSE) is the most commonly used loss function in regression problems.It is the mean of the sum of squares of the difference between the predicted value and the target value,and can be expressed as:

    whereLis the loss function and ?Ois the true value of training data.In order to avoid falling into a local optimum in the training process,momentum parameters are added into the batch gradient descent,and the parameter update rule of the network is whereη> 0 is the learning rate,μis the hyperparameter of momentum,and ?Lmse(θt)is the gradient at the tunable hyperparameterθt(includingWandB).

    Figure 2.Distribution of probe measurement data.

    4.Result

    In the experiment,the plasma parameters under different dust injection volume,discharge currents,and pressures were measured.Regarding the distribution of pressure and discharge current in the probe data,as shown in figure 2,repeated measurements were made for different dust injection volumes,and 10%of the data were selected as the test set,the rest of the data being the training set.In the end,the machine learning algorithm was used to predict the electron temperature and electron density in a larger parameter range.The specific results are shown in figure 3.By fixing the volume of dust injected,the parameters of voltage and pressure will affect the dust density.Although it is difficult to directly control the dust density,the effect of the continuously changing dust density on the experimental results can clearly be seen and the machine learning algorithm allows the dust density to be simply used as an input parameter in subsequent applications.

    Figure 4 shows the loss rate and accuracy rate of the machine learning algorithm as functions of the number of iterations.In figure 4(a),under the 10% standard,the accuracy rate of the electron density is finally stable at 92.23%,and under the 30% standard,the final accuracy can reach 100%,indicating that all data errors are less than 30%,according to the probe equation,the electron density can be calculated:

    whereAis the surface area of the probe,andIesis the electron saturation current.

    Figure 3.Distribution of predicted data: (a) electron density,(b) electron temperature.

    Figure 4.Various results as functions of the number of iterations.(a)Accuracy of electron density,(b)accuracy of electron temperature,(c)loss rates of electron density and electron temperature.

    In the diagnosis of dust plasma,due to the adhesion of dust particles to the surface of the probe,Awill be reduced,but the originalAis still used in the calculation process,which causes the calculated electron density to be less than the true value.This is the reason why the accuracy rate of the electron density cannot reach 100%.As shown in figure 5,in the dust plasma,the electron saturation current measured by the probe decreases slightly,and the voltage that reaches the saturation current increases.The accuracy of parameters is corresponding to the situation of the probe surface influenced by dust.

    For the electron temperature,according to the equation of the probe,the electron temperature can be calculated

    whereIpis the probe current,VBis the probe potential,and ΦPis the plasma space potential.

    Figure 5.I–V characteristic curve of the probe with free-dust and dust.

    Figure 6.Error of each group of verification data: (a) electron density,(b) electron temperature.

    There is noAterm in this equation,and it can be considered that the electron temperature diagnosis process is less affected by dust particles.Therefore,the machine learning algorithm can get good prediction results.One can see the expected results in figure 4(b).At the same time,for the same reason,the loss rate of electron temperature is also significantly lower than that of the electron density(figure 4(c)).

    To get the error of the test set,we divide the data into two parts.The detailed error of the data of the test set is shown in figure 6.Due to the influence of dust on the probe,the error of the electron temperature is significantly less than that of the electron density.But as can be seen in figure 7,for large-scale prediction data,the distribution of the prediction results in figures 7(b) and (d) is well summarized and reflects the distribution of training data in figures 7(a)and(c).Especially for the electron temperature,the distribution of exploration data in the training set is relatively insignificant,and machine learning algorithms can also achieve good prediction results.In the experimental results,the law of electron density and temperature changing with pressure and discharge current is not clear.At the same time,due to the random nature of dust pollution,the law is difficult to formulate.But machine learning algorithms can reproduce this law well and make it more obvious.At the same time,figure 6(a) shows the obvious periodic distribution of the error distribution in the test set.

    In order to study the periodic distribution of errors in detail,when the pressure is 120 Pa,discharge current is selected as the variable for studying the prediction data,and compared with the test set.Figure 8 shows that the difference between the predicted value and the measured value of the electron density gradually decreases when the discharge current increases.Combining with the experimental phenomenon shown in figure 8(c),it can be seen that when the discharge current increases,the dust density of the measuring part decreases.From equation (13) it can be concluded that when the dust density decreases,the surface area of the probe is less affected during the measurement,so the deviation between the measured value and the predicted value is also reduced.In the same way,the error of the electron temperature in figure 8(b) should remain stable(equation(14)),and the law of the prediction error changing with the discharge current is in good agreement with the experimental phenomenon and theory.One can compare the results of the modified plasma fluid model with the probe results after the machine learning correction.As shown in figure 9,compared with the predicted data and the simulated data,a better match is achieved.Evidently,machine learning has achieved a good prediction of electron density and electron temperature,and successfully demonstrated the influence of dust particles on the plasma diagnostic results.

    Figure 7.Comparison of predicted data and training data: (a) training data of electron density,(b) predicted data of electron density,(c) training data of electron temperature,(d) predicted data of electron temperature.

    5.Conclusions

    In the traditional probe diagnosis method,when diagnosing dust plasma,dust particles will be adsorbed on the surface of the probe during the diagnostic process,which causes the diagnostic result of the probe to deviate from the true value.The adsorption process of dust particles is random,so this effect cannot be corrected physically.For this reason,we extended the machine learning algorithm applied to the traditional probe theory to the probe diagnosis of dust plasma.

    Our probe diagnosis used dusty plasma and processed the measurements using machine learning algorithms.The results show that for the electron density,under the 10% standard,a high accuracy rate cannot be achieved,while the electron temperature has a better accuracy rate.Through the analysis of the principle of probe diagnosis,we believe that such a result conforms to the rule governing the influence of dust particles on the probe.When comparing the predicted results and the measured results in detail,we found that the error showed a periodic distribution.In order to try to understand the reason,the change of the error was observed in detail,with the discharge current as the independent variable.By comparing with the dust density in the dusty plasma experiment,the law of change of the error and the law of change of the dust density were in good agreement.Finally,the results are compared with the results of the fluid mechanics model,and better results are obtained than for the data measured by the probe.We conclude that the machine learning algorithm shows great advantages in the diagnosis of dusty plasma.While revealing the dust’s influence on plasma,it can also correct this influence to a certain extent,achieving a good correction effect on the probe.

    Figure 8.Differences in data:(a)electron density,(b)electron temperature.Image dust particle of different discharge currents:(c)5.9 mA,(d)8.8 mA.

    Figure 9.Comparisons of predictions and simulations.

    Acknowledgments

    The research has been financially supported by National Natural Science Foundation of China (Nos.11775062,11805130 and 11905125) and the Shanghai Sailing Program (Nos.19YF1420900 and 18YF1422200).

    ORCID iDs

    猜你喜歡
    王瑩
    Valley-dependent topological edge states in plasma photonic crystals
    鋼琴性能對音樂創(chuàng)作風(fēng)格的影響
    音樂探索(2022年2期)2022-05-30 21:01:37
    巧用比較策略,突破學(xué)生的學(xué)習(xí)難點
    王瑩作品
    王瑩作品賞析
    王瑩作品
    王瑩作品賞析
    萊儷青年藝術(shù)獎獲獎?wù)?王瑩:《租賃一平方米》的力量
    Theoretical research on the transport and ionization rate coefficients in glow discharge dusty plasma
    王瑩作品
    久久韩国三级中文字幕| 久久午夜亚洲精品久久| 老司机影院成人| 国产亚洲精品久久久com| 亚洲精品久久国产高清桃花| 嫩草影院入口| 性插视频无遮挡在线免费观看| 日本免费a在线| 嫩草影院新地址| 国内精品宾馆在线| 老司机影院成人| 麻豆成人午夜福利视频| aaaaa片日本免费| 国产欧美日韩一区二区精品| 99久国产av精品国产电影| 人妻少妇偷人精品九色| 非洲黑人性xxxx精品又粗又长| 可以在线观看的亚洲视频| 午夜亚洲福利在线播放| 色综合站精品国产| 99九九线精品视频在线观看视频| 国产成人影院久久av| 亚洲最大成人手机在线| 精品久久久久久久末码| 午夜爱爱视频在线播放| 久久99热6这里只有精品| 亚洲美女搞黄在线观看 | 欧美最新免费一区二区三区| 亚洲av五月六月丁香网| 女同久久另类99精品国产91| 国产乱人视频| 日韩人妻高清精品专区| 亚洲精品成人久久久久久| 久久婷婷人人爽人人干人人爱| 亚洲自偷自拍三级| 国产高清视频在线观看网站| 日韩制服骚丝袜av| 激情 狠狠 欧美| 噜噜噜噜噜久久久久久91| 我要搜黄色片| 精品欧美国产一区二区三| 日韩 亚洲 欧美在线| 一进一出抽搐动态| 如何舔出高潮| 亚洲人成网站在线观看播放| .国产精品久久| 欧美日韩综合久久久久久| 精品一区二区三区视频在线观看免费| 高清午夜精品一区二区三区 | 免费观看在线日韩| 永久网站在线| 国产极品精品免费视频能看的| 国产午夜精品久久久久久一区二区三区 | av专区在线播放| 不卡视频在线观看欧美| 国产免费男女视频| 国产成人一区二区在线| 亚洲无线观看免费| 国产毛片a区久久久久| 三级国产精品欧美在线观看| 国产免费一级a男人的天堂| 日韩精品青青久久久久久| 久久精品人妻少妇| 村上凉子中文字幕在线| 精品国产三级普通话版| 黑人高潮一二区| 我要看日韩黄色一级片| 久久综合国产亚洲精品| 成人午夜高清在线视频| 日韩成人av中文字幕在线观看 | 18+在线观看网站| 欧美人与善性xxx| 日本与韩国留学比较| 听说在线观看完整版免费高清| 色视频www国产| 午夜视频国产福利| 黄片wwwwww| 国产高清有码在线观看视频| 久久精品国产亚洲av天美| 人人妻人人澡人人爽人人夜夜 | 一级av片app| 国产免费男女视频| 国产精品一及| 非洲黑人性xxxx精品又粗又长| 在线国产一区二区在线| 婷婷色综合大香蕉| 99riav亚洲国产免费| 国产大屁股一区二区在线视频| 99视频精品全部免费 在线| 日韩欧美三级三区| 日韩 亚洲 欧美在线| 亚洲国产日韩欧美精品在线观看| 蜜臀久久99精品久久宅男| 最近视频中文字幕2019在线8| 久久精品国产亚洲网站| 精品福利观看| 日韩欧美一区二区三区在线观看| 国产精品一区www在线观看| 日日摸夜夜添夜夜添小说| 91午夜精品亚洲一区二区三区| 国产精品人妻久久久影院| 最近在线观看免费完整版| 国产精品野战在线观看| av中文乱码字幕在线| 我要搜黄色片| 国产色爽女视频免费观看| av在线蜜桃| 最后的刺客免费高清国语| 国产综合懂色| 亚洲激情五月婷婷啪啪| av卡一久久| 国产综合懂色| 国产熟女欧美一区二区| 国产一区二区亚洲精品在线观看| 亚洲va在线va天堂va国产| 高清毛片免费看| 老熟妇乱子伦视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 91在线观看av| 国产伦精品一区二区三区视频9| 18禁在线无遮挡免费观看视频 | 最近视频中文字幕2019在线8| 成年女人毛片免费观看观看9| 亚洲经典国产精华液单| 女生性感内裤真人,穿戴方法视频| 在线看三级毛片| 伊人久久精品亚洲午夜| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 久久鲁丝午夜福利片| 国产蜜桃级精品一区二区三区| 亚洲最大成人手机在线| 国产探花极品一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久久av| 晚上一个人看的免费电影| 黄色日韩在线| 九九热线精品视视频播放| 国产69精品久久久久777片| 亚洲最大成人中文| 长腿黑丝高跟| 中文字幕免费在线视频6| 国产熟女欧美一区二区| 免费观看人在逋| 亚洲不卡免费看| 欧美不卡视频在线免费观看| 精品午夜福利在线看| 午夜爱爱视频在线播放| 波野结衣二区三区在线| 亚洲国产欧美人成| 成年女人毛片免费观看观看9| 三级男女做爰猛烈吃奶摸视频| 黑人高潮一二区| 久久人人爽人人片av| 国产精品一区二区三区四区免费观看 | 成人二区视频| 1000部很黄的大片| 免费大片18禁| 成人美女网站在线观看视频| 欧美日韩精品成人综合77777| 乱人视频在线观看| 亚洲在线观看片| 神马国产精品三级电影在线观看| 一边摸一边抽搐一进一小说| 亚洲,欧美,日韩| 亚洲美女视频黄频| 一本一本综合久久| 少妇高潮的动态图| 丰满乱子伦码专区| 精品人妻一区二区三区麻豆 | 亚洲va在线va天堂va国产| 欧美潮喷喷水| 男女下面进入的视频免费午夜| 久久天躁狠狠躁夜夜2o2o| 啦啦啦观看免费观看视频高清| 国产三级在线视频| 给我免费播放毛片高清在线观看| 亚洲国产精品合色在线| 亚洲av免费在线观看| 国产美女午夜福利| 亚洲中文字幕日韩| 午夜亚洲福利在线播放| av专区在线播放| av国产免费在线观看| 国产亚洲精品久久久com| 91在线观看av| 免费高清视频大片| 性欧美人与动物交配| 在线a可以看的网站| 有码 亚洲区| 蜜桃亚洲精品一区二区三区| av.在线天堂| 综合色av麻豆| 中文在线观看免费www的网站| 精品人妻偷拍中文字幕| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| 日本黄大片高清| 舔av片在线| 九九爱精品视频在线观看| 国内少妇人妻偷人精品xxx网站| 在线观看美女被高潮喷水网站| 久久久a久久爽久久v久久| 最好的美女福利视频网| 亚洲av免费高清在线观看| 91狼人影院| 色综合亚洲欧美另类图片| 国产黄色视频一区二区在线观看 | 看黄色毛片网站| 亚洲自拍偷在线| 嫩草影院入口| 国产伦精品一区二区三区四那| 精品久久久久久久久亚洲| 美女cb高潮喷水在线观看| 亚洲国产日韩欧美精品在线观看| 丰满的人妻完整版| 最近的中文字幕免费完整| 伦理电影大哥的女人| 久久精品影院6| 欧美极品一区二区三区四区| 国内精品美女久久久久久| 深爱激情五月婷婷| 午夜久久久久精精品| 日本与韩国留学比较| 国产亚洲精品久久久com| 国产探花极品一区二区| 亚洲av成人av| 成熟少妇高潮喷水视频| 欧美一区二区精品小视频在线| 亚洲av熟女| 免费人成在线观看视频色| 男女下面进入的视频免费午夜| 国产欧美日韩一区二区精品| 欧美最新免费一区二区三区| 最近视频中文字幕2019在线8| 精品久久久久久久久久久久久| 蜜臀久久99精品久久宅男| 超碰av人人做人人爽久久| 丝袜喷水一区| 成人三级黄色视频| 熟女人妻精品中文字幕| 成人亚洲欧美一区二区av| or卡值多少钱| 大又大粗又爽又黄少妇毛片口| 亚洲精品成人久久久久久| 可以在线观看的亚洲视频| 老熟妇乱子伦视频在线观看| 国国产精品蜜臀av免费| 国产在视频线在精品| 99国产极品粉嫩在线观看| 18禁裸乳无遮挡免费网站照片| 中文字幕av在线有码专区| 色综合亚洲欧美另类图片| 亚洲国产精品sss在线观看| 国内精品宾馆在线| 日本熟妇午夜| 黑人高潮一二区| 人妻久久中文字幕网| 中文亚洲av片在线观看爽| 久久久久久大精品| 国产又黄又爽又无遮挡在线| 九九久久精品国产亚洲av麻豆| 午夜激情福利司机影院| 成人av一区二区三区在线看| 亚洲七黄色美女视频| 日韩大尺度精品在线看网址| 99热网站在线观看| 男人狂女人下面高潮的视频| 国产精品综合久久久久久久免费| 高清毛片免费观看视频网站| h日本视频在线播放| 亚洲精品粉嫩美女一区| 国产 一区 欧美 日韩| 黄片wwwwww| aaaaa片日本免费| 国产免费一级a男人的天堂| 美女内射精品一级片tv| 国产伦在线观看视频一区| 国产一区二区在线av高清观看| 欧美国产日韩亚洲一区| 一级a爱片免费观看的视频| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看| 91在线精品国自产拍蜜月| 日韩欧美在线乱码| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆 | 简卡轻食公司| 99视频精品全部免费 在线| а√天堂www在线а√下载| 国产精品电影一区二区三区| 免费av毛片视频| 欧美色欧美亚洲另类二区| 亚洲一区二区三区色噜噜| av卡一久久| 天天一区二区日本电影三级| 男女之事视频高清在线观看| 欧美日本视频| 亚洲精品国产成人久久av| 午夜精品一区二区三区免费看| 热99在线观看视频| 高清毛片免费看| 一级a爱片免费观看的视频| 精品无人区乱码1区二区| 1000部很黄的大片| 国产淫片久久久久久久久| 在线天堂最新版资源| 天天躁日日操中文字幕| 国语自产精品视频在线第100页| 观看美女的网站| 亚洲欧美成人精品一区二区| 国产一区二区在线av高清观看| 亚洲人成网站高清观看| 国产一区亚洲一区在线观看| 内地一区二区视频在线| 男女做爰动态图高潮gif福利片| 极品教师在线视频| 美女大奶头视频| 国产麻豆成人av免费视频| 国内精品美女久久久久久| 亚洲va在线va天堂va国产| 老熟妇乱子伦视频在线观看| 毛片一级片免费看久久久久| 国产探花极品一区二区| av在线播放精品| 搞女人的毛片| 偷拍熟女少妇极品色| 国产亚洲精品综合一区在线观看| 亚洲最大成人av| 国产精品野战在线观看| 久久久久久久午夜电影| 欧美最黄视频在线播放免费| 久久精品影院6| 老女人水多毛片| 草草在线视频免费看| 国产亚洲欧美98| 婷婷精品国产亚洲av在线| 国产人妻一区二区三区在| 国产一级毛片七仙女欲春2| 男女视频在线观看网站免费| 成年版毛片免费区| 男女视频在线观看网站免费| 亚洲av五月六月丁香网| 亚洲婷婷狠狠爱综合网| 看十八女毛片水多多多| 国产成人a∨麻豆精品| 国产探花极品一区二区| 综合色丁香网| 亚洲欧美日韩东京热| 18禁在线播放成人免费| 精品少妇黑人巨大在线播放 | 九色成人免费人妻av| 真实男女啪啪啪动态图| 欧美精品国产亚洲| 99久久精品一区二区三区| 国产亚洲91精品色在线| a级一级毛片免费在线观看| 麻豆国产97在线/欧美| 成人一区二区视频在线观看| 国产一区二区激情短视频| 成人欧美大片| 亚洲熟妇熟女久久| 看黄色毛片网站| 综合色av麻豆| 午夜免费男女啪啪视频观看 | 人妻制服诱惑在线中文字幕| 99国产精品一区二区蜜桃av| 国产免费男女视频| 亚洲国产欧美人成| 99热这里只有是精品50| 国产成人福利小说| 亚洲av成人精品一区久久| 深夜a级毛片| 精品无人区乱码1区二区| 日日啪夜夜撸| 夜夜夜夜夜久久久久| 亚洲乱码一区二区免费版| 少妇熟女欧美另类| 深夜a级毛片| 国产v大片淫在线免费观看| 亚洲精品成人久久久久久| 老司机福利观看| 少妇丰满av| 亚洲美女搞黄在线观看 | 天堂av国产一区二区熟女人妻| 国产av不卡久久| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 免费人成在线观看视频色| 国产精品三级大全| 亚洲无线观看免费| 女人十人毛片免费观看3o分钟| 色综合色国产| 97热精品久久久久久| 免费av不卡在线播放| 成人无遮挡网站| 亚洲国产高清在线一区二区三| 99久国产av精品国产电影| 亚洲成人久久性| 国产精品美女特级片免费视频播放器| 日韩精品青青久久久久久| 亚洲成a人片在线一区二区| 欧美日韩在线观看h| 晚上一个人看的免费电影| 午夜a级毛片| 国产乱人偷精品视频| 久久久久久久久久黄片| a级一级毛片免费在线观看| 噜噜噜噜噜久久久久久91| 国产伦一二天堂av在线观看| av在线播放精品| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美日韩东京热| 亚洲国产精品成人综合色| 在线观看66精品国产| 国产精华一区二区三区| 一进一出抽搐gif免费好疼| 在线免费观看不下载黄p国产| 自拍偷自拍亚洲精品老妇| 欧美3d第一页| 国内揄拍国产精品人妻在线| 老师上课跳d突然被开到最大视频| av免费在线看不卡| 国内精品久久久久精免费| 成年女人永久免费观看视频| 欧美人与善性xxx| 亚洲国产精品成人综合色| 在线观看免费视频日本深夜| 久久久国产成人免费| 国产精品久久久久久亚洲av鲁大| 女人被狂操c到高潮| 久久精品夜夜夜夜夜久久蜜豆| 国产在视频线在精品| 十八禁网站免费在线| 亚洲人成网站在线观看播放| а√天堂www在线а√下载| 国产精品1区2区在线观看.| 男插女下体视频免费在线播放| 国产女主播在线喷水免费视频网站 | 精华霜和精华液先用哪个| 色尼玛亚洲综合影院| 99热只有精品国产| 免费人成在线观看视频色| 我要看日韩黄色一级片| 成年版毛片免费区| 好男人在线观看高清免费视频| 日本免费一区二区三区高清不卡| 一级av片app| 日韩制服骚丝袜av| 可以在线观看毛片的网站| 18禁在线播放成人免费| 波野结衣二区三区在线| 白带黄色成豆腐渣| 国产高清有码在线观看视频| 免费一级毛片在线播放高清视频| 国产麻豆成人av免费视频| 国产精品久久久久久亚洲av鲁大| 午夜福利成人在线免费观看| 亚洲av免费在线观看| 天堂网av新在线| 天堂动漫精品| 国产 一区 欧美 日韩| 日韩欧美三级三区| 国产成人a区在线观看| 深夜a级毛片| 在线免费观看不下载黄p国产| 我的老师免费观看完整版| 麻豆成人午夜福利视频| 在线观看av片永久免费下载| 国产片特级美女逼逼视频| 国产高清视频在线播放一区| 欧美色视频一区免费| 亚洲,欧美,日韩| 永久网站在线| av卡一久久| 伊人久久精品亚洲午夜| 成人午夜高清在线视频| 波野结衣二区三区在线| 亚洲性夜色夜夜综合| 伦精品一区二区三区| 日日干狠狠操夜夜爽| 精品少妇黑人巨大在线播放 | 欧美日韩国产亚洲二区| 亚洲av第一区精品v没综合| 少妇熟女aⅴ在线视频| 亚洲av一区综合| 久久亚洲国产成人精品v| 国产av不卡久久| 亚洲av中文字字幕乱码综合| a级毛片免费高清观看在线播放| 美女被艹到高潮喷水动态| 亚洲精品粉嫩美女一区| 国产亚洲精品av在线| 18禁在线播放成人免费| 在线国产一区二区在线| 我要搜黄色片| 人妻制服诱惑在线中文字幕| av卡一久久| 你懂的网址亚洲精品在线观看 | av中文乱码字幕在线| 99热这里只有是精品在线观看| 国产爱豆传媒在线观看| 久久精品国产亚洲网站| 亚洲精品在线观看二区| 老司机午夜福利在线观看视频| 国产一区二区在线观看日韩| 尤物成人国产欧美一区二区三区| 深夜精品福利| 国产色婷婷99| 天堂动漫精品| 淫妇啪啪啪对白视频| 精品久久久久久久久av| 欧美日本视频| а√天堂www在线а√下载| 波野结衣二区三区在线| 国内精品宾馆在线| 久久热精品热| 性欧美人与动物交配| 国产精品av视频在线免费观看| 亚洲精品乱码久久久v下载方式| 91av网一区二区| 久久久久精品国产欧美久久久| 深夜精品福利| 成人一区二区视频在线观看| or卡值多少钱| 国产精品一区二区三区四区免费观看 | 国产v大片淫在线免费观看| 亚洲精品日韩av片在线观看| 国产精品伦人一区二区| 日韩精品有码人妻一区| 亚洲av成人精品一区久久| 色综合站精品国产| 亚洲中文日韩欧美视频| 99九九线精品视频在线观看视频| 久久精品国产亚洲av涩爱 | 99在线视频只有这里精品首页| 人人妻,人人澡人人爽秒播| 如何舔出高潮| 男女做爰动态图高潮gif福利片| 日本一本二区三区精品| 99热网站在线观看| 色尼玛亚洲综合影院| 国产精品一及| 小蜜桃在线观看免费完整版高清| 国产精品精品国产色婷婷| 亚洲欧美成人精品一区二区| 91在线精品国自产拍蜜月| 又黄又爽又免费观看的视频| 亚洲欧美清纯卡通| 91久久精品电影网| 国产精品伦人一区二区| 亚洲av.av天堂| 国产av麻豆久久久久久久| av在线天堂中文字幕| 亚洲国产日韩欧美精品在线观看| 久久综合国产亚洲精品| .国产精品久久| 99在线视频只有这里精品首页| 嫩草影视91久久| 欧美成人免费av一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产高清在线一区二区三| 亚洲av免费高清在线观看| 一进一出抽搐gif免费好疼| 99热6这里只有精品| 国产午夜精品久久久久久一区二区三区 | 99热全是精品| 亚洲欧美日韩无卡精品| 亚洲人成网站在线播| 久久中文看片网| 99久久精品一区二区三区| 久久久久久国产a免费观看| 亚洲av五月六月丁香网| 久久精品夜色国产| 日本 av在线| 成人精品一区二区免费| 亚洲精品国产av成人精品 | 在线播放国产精品三级| 偷拍熟女少妇极品色| 国产精品一区二区性色av| 欧美成人精品欧美一级黄| 九色成人免费人妻av| 老熟妇乱子伦视频在线观看| 国产人妻一区二区三区在| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人aa在线观看| 国产伦精品一区二区三区视频9| 日日摸夜夜添夜夜添av毛片| 免费观看的影片在线观看| 91av网一区二区| 午夜视频国产福利| 日本一二三区视频观看| 日本色播在线视频| 国产精品电影一区二区三区| 夜夜爽天天搞| 国产三级在线视频| 免费人成在线观看视频色| 欧美xxxx黑人xx丫x性爽| 大型黄色视频在线免费观看| 久久精品国产鲁丝片午夜精品| 观看美女的网站| 国产乱人视频| 午夜久久久久精精品| 一区二区三区四区激情视频 | 男女做爰动态图高潮gif福利片| 中文字幕av在线有码专区| 久久九九热精品免费| 久久这里只有精品中国| 伦精品一区二区三区| 熟女人妻精品中文字幕| 我的女老师完整版在线观看| 精品少妇黑人巨大在线播放 | 一本久久中文字幕| 97人妻精品一区二区三区麻豆| 小蜜桃在线观看免费完整版高清|