• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conceptual design and heat transfer performance of a flat-tile water-cooled divertor target

    2021-09-10 09:26:52LeiLI李磊LeHAN韓樂PengfeiZI訾鵬飛LeiCAO曹磊TiejunXU許鐵軍NanyuMOU牟南瑜ZhaoliangWANG王兆亮LeiYIN殷磊andDamaoYAO姚達(dá)毛
    Plasma Science and Technology 2021年9期
    關(guān)鍵詞:曹磊李磊鵬飛

    Lei LI (李磊),Le HAN (韓樂),Pengfei ZI (訾鵬飛),Lei CAO (曹磊),Tiejun XU (許鐵軍),Nanyu MOU (牟南瑜),Zhaoliang WANG (王兆亮),Lei YIN (殷磊) and Damao YAO (姚達(dá)毛)

    Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak (EAST) need to remove a heat flux of up to ~20 MW m?2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure (TTS)are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height (H),width (W*),thickness (T),and spacing (L),on the HTP.The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes,and the sensitivity is T>L>W*>H.The HTP first increases and then decreases with the increase of T,L,and W*and gradually increases with the increase of H.The optimal design parameters are as follows: H=5.5 mm, W*=25.8 mm, T=2.2 mm,and L=9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux(HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m?2 under the tungsten tile thickness<5 mm and the flow speed ≥7 m s?1.The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by ~13%and ~30%compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of 20 MW m?2 of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only ~930 °C.The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors.

    Keywords: CFETR,heat transfer performance,parametric design and optimization,HHF tests,flat-tile divertor target

    1.Introduction

    Particle and power exhaust are key issues for the next-step fusion reactors.Divertors must be designed to handle power exhaust.The power handling capacity of divertors is less than or comparable to that of the international thermonuclear experimental reactor(ITER)design of 10 MW m?2under the DEMO operation condition.It is 5–7 MW m?2for a conventional monoblock design with tungsten (W) and ferritic steel as the plasma-facing and structure materials,including the water-cooling pipe,respectively [1],and will increase to the 10 MW m?2level for advanced target designs with helium-cooled W-alloy and oxide dispersion-strengthened(ODS)/ferritic steels [2].Studies have indicated that the power decay length λq,which is a crucial quantity related to the divertor peak load(qmax),is predicted as λq≈1 mm withIp=15 MA for the ITER[3].This value is much lower than the previous projected width of ≈5 mm,suggesting a significantly larger divertor peak load to the divertor target.Therefore,a new divertor structure that can sustain the power exhaust strike of fusion devices like the CFETR must be developed.

    The EAST machine achieved a 101.2 s H-mode discharge target in 2017,and its next goal is to achieve more than 400 s in H-mode discharges.Its future goal is to achieve 1000 s [4–6].Therefore,the divertor heat load will be over 15 MW m?2in the future [7,8].However,the current EAST divertor structure cannot meet the future plasma configuration.As shown in figure 1,the lower divertor in the EAST is covered by water-cooled graphite tiles with a power handling capability of ~2 MW m?2.Although the upper divertor is a water-cooled full-tungsten divertor with a power handling capability of ~10 MW m?2[9,10],it is far from the requirements of future heat loads on divertor targets.Notably,the ITER-like monoblock structure has been successfully applied to some tokamak devices,such as EAST,WEST,and JT-60SA; however,the structure has some limitations.For example,the process involving different bonding technologies is complicated.The hot radial pressing and hot isostatic pressing technologies are applied to W/Cu and CuCrZr/Cu bonding.Electron beam welding is used in connection to monoblock PFUs and the end box.Meanwhile,inconel legs are bonded on monoblock by brazing.The high temperature during bonding can result in structural degradation.The W/Cu bonding temperature is up to 900 °C,which is maintained for approximately 2 h,whereas the CuCrZr/Cu bonding temperature is 500°C–600°C,which is maintained for approximately 3 h [9,10].The circular cooling pipe in the monoblock does not have a better heat exchange efficiency than the rectangular cooling pipe.This kind of structure leads to its heat transfer capability being unable to reliably sustain the steady-state heat load more than 20 MW m?2during several seconds [9–14].The forced-cooled monoblock-type CFC target on JT-60SA could withstand a maximum heat flux of ~15 MW m?2for 100 s [15].The high-performance W monoblock mock-up in EUDA could be subjected to HHF tests of 300 cycles at 20 MW m?2,which is not enough for fusion devices [16–20].The helium-cooled tungsten divertor designed for DEMO-type fusion reactors has a good heat load removal capability of 10–15 MW m?2,but its disadvantage is a complicated structure [21,22].Therefore,searching for a new divertor target design is very important both for CFETR and EAST.

    Figure 1.Material distribution of the plasma-facing components in the EAST machine.

    Explosive welding technology (EWT) and brazing technology(BT)have been widely used in recent years,especially in the welding of different metal materials,because of their advantages of high welding strength,low cost,simple process,and high production efficiency.EWT can be used for manufacturing an ITER-grade 316 L(N)/CuCrZr hollow structural member and W/CuCrZr plasma-facing components[23–25].BT could be used for bonding tungsten tiles to heat sinks.EWT and BT are currently being applied to the 2.45 GHz lower hybrid wave (LHW) antenna limiter in the EAST.The LHW antenna performed well after a round of experiments in 2020.

    Complex water-cooled channels,such as HyperVapotron,rectangles,and arbitrary shapes,which help improve the heat exchange efficiency of the structure,can easily be obtained based on EWT.A structure with water-cooled channels forms a closed and complete cooling structure called the divertor target heat sink by EWT [26–30].The heat sink bonded by two metal plates can be of different material combinations,such as CuCrZr/316 L,ODS-Cu/ODS-steel,and ODS-Cu/clam.CuCrZr and ODS-Cu have good thermal conductivities and can be used as the upper heat sink plate.316 L,ODS-steel,and clam steel have good mechanical performances,an excellent welding ability,and a higher degradation temperature.They can also be used as the lower heat sink plate.The lower heat sink plate can play a strengthening role when the high temperature in the bonding process of CuCrZr/W or ODS-Cu/W induces a decrease of the mechanical performance of the upper heat sink plate.

    Section 2 presents the conceptual design for the flat-tile divertor target.The influence of the TTS variation parameters on the flat-tile divertor target’s HTP is studied through the parametric design and optimization method in section 3 to obtain the best design parameters of the TTS.The flat-tile divertor target’s HTP is investigated by numerical simulation calculations and HHF tests in sections 4 and 5,respectively.Finally,section 6 provides the summary and outlook of the study.

    2.Conceptual design for the flat-tile divertor target

    Figure 2 shows that the flat-tile divertor target is mainly composed of seven parts,namely tungsten or tungsten alloy tiles(A),oxygen-free copper(OFC)interlayer(B),upper heat sink plate(C),lower heat sink plate(D),outlet pipe(E),inlet pipe (F),and support legs (G).The overall size of the structure is 217×162×20 mm3.The thicknesses of A–D are 2 mm,1 mm,11 mm,and 6 mm,respectively.The heat sink consists of parts C and D combined by EWT.Part A is bonded to part C by BT.Part B is used as the interlayer between parts A and C.Part E,part F and part G are bonded to the lower heat sink plate using argon arc welding.

    Figure 2.Schematic diagram of the flat-tile divertor target structure.

    Figure 3 depicts the water-cooled channels with special TTS made in the upper heat sink plate before explosive welding.Figures 4 and 5 show the cross-section and longitudinal section schematic diagrams of the flat-tile divertor target,respectively.

    This study focuses on the divertor HTP,not the material itself; hence,suitable materials can be chosen according to materials science development.The candidate material for part A is pure tungsten or potassium-doped tungsten (KW).The candidate material combination for the heat sink is CuCrZr/316 L or ODS-Cu/ODS-steel or ODS-Cu/clam.The candidate materials for the outlet pipe,inlet pipe and support legs are the same as the lower heat sink.

    After investigation,it is found that there are few manufacturers in China that can produce KW,ODS-Cu,and ODS-steel in large quantities,and they are still in the research and development stage.In addition,the good material properties claimed by many manufacturers,such as thermal conductivity,yield strength,degradation temperature,and other physical parameters,were very different from those in our actual test results.At present,we have not obtained real and reliable material property parameters.Therefore,the material combination W/CuCrZr/316 L(N) was selected for research to study the HTP of the flat-tile divertor target.

    Figure 3.Heat sink with water-cooled channels.

    3.Parametric design and optimization

    The water-cooled channel dimensions wereH0=8 mm andW0=30 mm(figures 4 and 5).The TTS design parameters are as follows: heightH=3.5–5.5 mm; widthW*=20–28 mm;thicknessT=1–3 mm; and spacingL=4–11 mm.The design parameters were relevant to the TTS; thus,the computational model was simplified to the model shown in figure 6.The cooling medium was water,regardless of the boiling phase.The inlet temperature and the inlet flow speed are 22 °C and 2 m s?1,respectively.The green surface shown in figure 6 was loaded with a heat flux of 10 MW m?2.Table 1 shows the material properties used in the calculations.

    To eliminate the grid size influence on the calculation results,the grid independence was analyzed by setting the coarse,medium,and fine grids to 0.6 mm,0.4 mm,and 0.2 mm,respectively.The calculated results were very close;thus,the grid size was selected as 0.4 mm (figure 7).Table 2 lists the parametric design schemes and steady-state thermal analysis results.The response surface optimization tool in ANSYS was used to analyze and optimize the schemes.The screening optimization method was chosen.The number of samples was 5000.The optimization goal was to minimize the maximum temperature of all materials.

    The curves in figure 8 show the local sensitivity of the maximum temperature as the design parameters change.The response point represents the optimal design point.The abscissa α indicates the relative location of the design parameter within its value range.Let us take parameterTas anexample:T=2 mm,α=(T?1 mm)/(3 mm?1 mm)=(2 mm?1 mm)/(3 mm?1 mm)=0.5.The maximum temperature gradually decreased asHincreased.The maximum temperature first decreased to the lowest point and then continuously increased asW*orTorLincreased.Therefore,the design parameter size changes significantly affected the cooling efficiency of the structure.The optimal design parameters are as follows:H=5.5 mm;W*=25.8 mm;T=2.2 mm; andL=9.7 mm.Figure 9 and table 3 present the calculation results using the optimal parameters,which were better than those in table 2.

    Table 1.Thermal physical properties of the materials.

    Figure 4.Longitudinal section view of the flat-tile divertor target.

    Figure 5.Cross-section view of the flat-tile divertor target.

    Figure 6.Simplified computational model used for the parametric design and optimization.

    Figure 7.Mesh of the computational model.

    Table 2.Parametric design schemes and calculation results.

    Figure 10 shows the local sensitivity of the maximum temperature to different design parameters at the optimal response points.The greater the absolute value of the sensitivity,the greater the influence of the design parameter on the maximum temperature.The order of sensitivity from high to low isP3(T)>P4(L)>P2(W*)>P1(H).Therefore,the TTS thickness change had the greatest impact on the flat-tile divertor target’s HTP,followed by spacingLand widthW*.The least affected was the heightH.

    Figure 8.Local sensitivity curves of the maximum temperature as the design parameters change.

    4.Heat transfer performance

    The conceptual design for the flat-tile divertor tar get is mainly to provide support for the future EAST and CFETR divertors.Therefore,its HTP under 20 MW m?2must be studied.Figure 11 shows the calculated maximum tungsten surface temperature of the flat-tile divertor target at different flow speeds in the cooling channels (equivalent to the flow speeds in the Φ12 mm pipe).The maximum temperature gradually decreased as the flow speed increased; however,the relationship between the two was not linear,but similar to an exponential function.The improvement in the flat-tile divertor target HTP continuously became smaller as the flow velocity gradually increased.To obtain a fine removal of the 20 MW m?2heat flux,the flow speed should be ≥7 m s?1.Tungsten is currently used as a plasma-facing material for EAST divertors.It is also a candidate material for the CFETR divertors.A certain loss of tungsten material is observed during the operation of nuclear fusion tokamak devices.Accordingly,2 mm-thick tungsten tiles are sufficient for EAST divertors,but may not be enough for CFETR divertors.Therefore,as shown in figure 12,the HTP of the flat-tile divertor target under different tungsten tiles thicknesses was studied when the heat flux was up to 20 MW m?2(the flow velocity is ~7 m s?1,the inlet temperature is 22°C,and the inlet pressure is 1 MPa ).The maximum temperature linearly increased as the tungsten tile thickness increased.Meanwhile,the maximum temperature of Cu,CuCrZr,and 316 L decreased by only a few degrees celsius.Therefore,the influence of the tungsten tile thickness on the flat-tile divertor HTP was mainly reflected in the influence of the tungsten surface temperature,while the influence on Cu,CuCrZr,and 316 L was almost negligible.The maximum surface temperatures of W,Cu,CuCrZr,and 316 L are 1330 °C,509 °C,462 °C,and 177 °C,respectively,when the tungsten tile thickness reached 5 mm.The maximum temperature of W exceeded the allowable value of 1200 °C.The maximum temperature of Cu and CuCrZr slightly exceeded the allowable values of 500 °C and 450 °C,respectively.Therefore,the tungsten tile thickness did not exceed 5 mm when the heat flux reached 20 MW m?2.This analysis result was obtained under a peak heat flux width of 24 mm,which is larger than the predicted value of ~5 mm and may be narrower in the future.The allowable temperature of the materials may be greatly increased with the development of plasma-facing materials,such as KW and ODS-Cu.Therefore,this kind of flat-tile divertor target structure has great potential for handling the steady-state 20 MW m?2heat load.

    Figure 9.Temperature distribution calculated using the optimal parameters.

    Figure 10.Local sensitivity of the maximum temperature to different design parameters.

    Table 3.Calculated results using the optimal parameters.

    Figure 11.Maximum temperatures of the flat-tile divertor target under different flow velocities.

    Figure 12.Maximum temperatures of the flat-tile divertor target materials under different tungsten tile thicknesses at 20 MW m?2.

    Figure 13.Fluid velocity vector in the rectangular cooling channel of the flat-tile divertor target.

    Figure 14.Wall heat transfer coefficient of the rectangular cooling channel for the flat-tile divertor target.

    Figure 15.Wall heat transfer coefficient of the circular cooling channel for the flat-tile divertor mock-up.

    Figure 16.Wall heat transfer coefficient of the circular cooling pipe for the ITER-like monoblock.

    Figure 17.Temperature of the flat-tile divertor target with rectangular cooling channel (tungsten tile thickness: 4 mm).

    Figure 18.Temperature of the flat-tile divertor target with circular cooling channel (tungsten tile thickness: 4 mm).

    Figure 19.Temperature of the ITER-like monoblock with circular cooling pipe (distance from the W surface to the OFC: 4 mm).

    Figure 20.The flat-tile mock-up in the electron beam facility.

    Figure 13 shows the fluid velocity vector in the rectangular cooling channel.A strong disturbance zone was formed in the upper turbulence structure,which can improve the heat transfer efficiency.Heat was transferred to the lower smooth flow zone to be taken away by the water with a higher flow velocity.The heat transfer coefficient (HTC) range for the flat-tile divertor target with rectangular cooling channels is 32,608–65,669.1 W m?2K?1(figure 14),which is larger than the HTC for the flat-tile divertor target with circular cooling channels(31,520–64,450 W m?2K?1,see figure 15),and the HTC for the ITER-like monoblock with circular cooling pipe(31,407–42,370 W m?2K?1,see figure 16) under the same conditions of the heat flux (20 MW m?2),inlet flow velocity(~7 m s?1),and distance from the W surface to the OFC(4 mm).Compared with the circular cooling channel,the heat transfer efficiency of the rectangular cooling channel was increased by ~13% on average,and the maximum temperature was reduced by ~255°C(figures 17 and 18).Compared with the ITER-like monoblock,the heat transfer efficiency for the flat-tile divertor target with rectangular cooling channels increased by ~30% on average,and the maximum temperature decreased by ~776 °C (figures 17 and 19).

    5.High-heat flux tests (HHF)

    Figure 20 shows a kind of flat-tile divertor mock-up that contains nine thin tungsten tiles brazed to a copper alloy heat sink with 1 mm OFC as an interlayer.The flat-tile mock-up has a dimension of 163.5 mm (length)×44.5 mm(width)×22.5 mm (height).The W-tiles are 44.5 mm width,2 mm thickness and 11.5 mm axial length.The HHF tests of the flat-tile mock-up were performed using a 30 KW electron beam facility.The tungsten surface temperature was measured using a non-contact stationary digital infrared pyrometer and ranged from 300 °C to 2000 °C.

    Figure 21.The flat-tile mock-up after 1000 cycles of 20 MW m?2 heat load.

    Figure 22.Initial ultrasonic flaw detection image of the flat-tile mock-up.

    The scanning area of the tungsten surface was 42 mm×14 mm.The mock-up was loaded with 15 s on and 15 s off and actively cooled by water with an inlet temperature of ~25 °C and a flow speed of ~7 m s?1(inlet pipe of Φ12 mm).The absorbed power densityPabswas calculated using formula (1):

    where ρ is the water density (kg m?3);cis the specific heat of water (J kg?1K?1);Qis the flow rate (m3s?1); ΔTis the temperature difference between the outlet and inlet(°C);andS0is the scanned area of the mock-up surface(m2).The absorption coefficient ε is defined in formula (2):

    whereUis the acceleration voltage (kV),andIis the incident current (mA).

    The ε value is ~61%under different electron beam powers.The mock-up successfully withstood a heat load of 20 MW m?2for 1000 cycles without visible damage and deformation(figures 21–23).Figure 24 shows the surface temperature values of the mock-up under 1–1000 cycles of heat loads.The maximum surface temperature was ~820°C at the first cycle,which is in a good agreement with the numerical simulation calculation result(~810 °C,figure 25).The maximum surface temperature was stable at approximately 930 °C at the 200–1000th cycle,indicating no significant degradation of the mock-up HTP between the first and last cycles.The surface temperatures of the tested ITER-like monoblock mock-ups under 20 MW m?2heat flux were>2000°C[17].The surface temperatures of the flat-tile mock-ups for WEST divertor(W-tiles of 30 mm-width,2 mmthickness and 12 mm axial length) were typically ~1290 °C[31].Therefore,the heat removal capacity of this flat-tile mockup based on rectangular (hypervapotron) water-cooled channels has a great advantage over the ITER-like monoblock and the WEST flat-tile mock-up.

    Figure 23.Ultrasonic flaw detection image of the flat-tile mock-up after a heat load of 20 MW m?2 for 1000 cycles.

    Figure 24.Surface temperature values of the flat-tile mock-up under a cyclic heat load of 20 MW m?2 at the 1st,200th,400th,600th,800th,and 1000th cycles.

    Figure 25.Calculated temperature image of the flat-tile mock-up under the 20 MW m?2 heat load.

    6.Summary and outlook

    A conceptual design for the flat-tile divertor target with rectangular water-cooled channels and special TTS inside was proposed herein.The parametric design and response surface optimization method was applied to study and improve the HTP of the flat-tile divertor target.

    The research results indicated that the special TTS parameters greatly influenced the HTP of the flat-tile divertor target,and the influence degree wasT>L>W*>H.The optimal design parameters are as follows:H=5.5 mm;W*=25.8 mm;T=2.2 mm; andL=9.7 mm.

    The HTP of the optimized flat-tile divertor target was studied by numerical simulation calculations and HHF tests.The numerical simulation calculations showed that the heat transfer efficiency for the flat-tile divertor target with rectangular cooling channels was ~13% and ~30% higher than that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.A flat-tile divertor mock-up was manufactured through EWT and BT,and tested on an electron beam facility.The HHF test results indicated no obvious HTP degradation and no visible damage and deformation of the mockup during the 1000 cycles of 20 MW m?2heat load.The surface temperature of the mock-up ranged from ~820 °C to ~930 °C during the 1st to the 1000th cycles,which is in a good agreement with the numerical simulation results.However,the HTP of the flat-tile divertor target was greatly improved by the parametric design and response surface optimization method,and was better than the ITER-like divertor monoblock and the WEST flat-tile divertor mock-ups.

    This work is pre-research work for the CFETR and future EAST divertors.The conceptual design of the flat-tile divertor target is currently applied in the engineering design for the CFETR flat-tile divertor targets(figure 26).The latest plan for the upgrade of the EAST lower divertors is that three-quarters of the lower divertors are designed to be an ITER-like monoblock structure similar to the EAST upper divertors,and the other quarter is designed to be a flat-tile divertor structure(figure 27).These are in the manufacturing process,and are expected to be installed in EAST in the first half of 2021.

    Figure 26.The flat-tile outer divertor target for CFETR.

    Figure 27.The model and prototype components of the flat-tile outer divertor target for EAST.

    Acknowledgments

    The study was supported by the National MCF Energy R&D Program (No.2018YFE0312300),the National Key Research and Development Program of China (No.2017YFA0402500),and the Science Foundation of the Institute of Plasma Physics,Chinese Academy of Sciences(No.Y45ETY2302).

    ORCID iDs

    猜你喜歡
    曹磊李磊鵬飛
    MAPS PRESERVING THE NORM OF THE POSITIVE SUM IN Lp SPACES*
    一葉知秋
    科教新報(2022年35期)2022-05-30 22:17:42
    黛云
    寶藏(2021年7期)2021-12-06 03:31:12
    天花亂墜
    寶藏(2021年4期)2021-12-02 21:49:57
    奔騰
    寶藏(2021年4期)2021-12-02 21:49:57
    佛緣
    寶藏(2021年4期)2021-05-27 08:10:52
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    我要看黄色一级片免费的| 久久6这里有精品| 免费播放大片免费观看视频在线观看| 欧美精品人与动牲交sv欧美| 国产一区二区三区综合在线观看 | 纵有疾风起免费观看全集完整版| 日韩av在线免费看完整版不卡| 熟女电影av网| 熟女电影av网| 肉色欧美久久久久久久蜜桃| 亚洲精品自拍成人| 中文在线观看免费www的网站| 久久精品国产a三级三级三级| 国产精品一二三区在线看| 九草在线视频观看| 另类亚洲欧美激情| 国产探花极品一区二区| 蜜桃亚洲精品一区二区三区| 国产片特级美女逼逼视频| 观看美女的网站| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品亚洲一区二区| 国产精品一区二区三区四区免费观看| 一级毛片aaaaaa免费看小| 日本黄色片子视频| videossex国产| 亚洲国产精品一区三区| 免费播放大片免费观看视频在线观看| 成年美女黄网站色视频大全免费 | 99re6热这里在线精品视频| 中文字幕人妻熟人妻熟丝袜美| 色视频www国产| 成人无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91 | 天天躁夜夜躁狠狠久久av| 久久久欧美国产精品| 女的被弄到高潮叫床怎么办| 麻豆成人午夜福利视频| 亚洲成人手机| 偷拍熟女少妇极品色| 亚洲精品色激情综合| 久久久亚洲精品成人影院| 国产精品一区二区三区四区免费观看| 欧美高清成人免费视频www| 九九爱精品视频在线观看| 免费在线观看成人毛片| 亚洲精品国产av成人精品| 久久精品久久精品一区二区三区| 国产男人的电影天堂91| 午夜激情久久久久久久| 久久青草综合色| av.在线天堂| 人妻夜夜爽99麻豆av| 亚洲欧美精品自产自拍| 欧美变态另类bdsm刘玥| av线在线观看网站| 国产老妇伦熟女老妇高清| 王馨瑶露胸无遮挡在线观看| 天美传媒精品一区二区| 成人特级av手机在线观看| 777米奇影视久久| 91在线精品国自产拍蜜月| 亚洲国产高清在线一区二区三| 99re6热这里在线精品视频| 另类亚洲欧美激情| 国产伦精品一区二区三区四那| 一个人免费看片子| 欧美高清性xxxxhd video| 中文字幕人妻熟人妻熟丝袜美| 高清视频免费观看一区二区| 日韩,欧美,国产一区二区三区| 成年美女黄网站色视频大全免费 | 夫妻午夜视频| 国产伦精品一区二区三区视频9| 午夜福利在线在线| 高清午夜精品一区二区三区| 色5月婷婷丁香| 久久国产精品男人的天堂亚洲 | 亚洲精品日韩av片在线观看| 成人免费观看视频高清| 人妻 亚洲 视频| 亚洲精品国产av蜜桃| 亚洲人与动物交配视频| av国产久精品久网站免费入址| 成人影院久久| 丰满人妻一区二区三区视频av| 国产亚洲5aaaaa淫片| 永久免费av网站大全| 国产在线免费精品| 97超碰精品成人国产| 国产色婷婷99| 伊人久久国产一区二区| 热re99久久精品国产66热6| 简卡轻食公司| 成人无遮挡网站| 啦啦啦中文免费视频观看日本| 各种免费的搞黄视频| 国产精品成人在线| 亚洲av欧美aⅴ国产| 国产免费福利视频在线观看| 99久久精品热视频| 91久久精品国产一区二区三区| 人人妻人人添人人爽欧美一区卜 | av国产精品久久久久影院| 色视频在线一区二区三区| 夜夜骑夜夜射夜夜干| 日韩亚洲欧美综合| 精品99又大又爽又粗少妇毛片| 少妇的逼水好多| 人体艺术视频欧美日本| 国产精品久久久久久精品古装| 中文乱码字字幕精品一区二区三区| 亚洲精品一区蜜桃| 欧美激情极品国产一区二区三区 | 九色成人免费人妻av| 最近手机中文字幕大全| 久久久久久久久久久丰满| 日韩,欧美,国产一区二区三区| 国产精品福利在线免费观看| 色吧在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产视频内射| 在线观看一区二区三区激情| 亚洲中文av在线| 日本av免费视频播放| 亚洲欧洲日产国产| 高清欧美精品videossex| 国产一级毛片在线| 97超碰精品成人国产| 交换朋友夫妻互换小说| 久久久久视频综合| 女人十人毛片免费观看3o分钟| 三级国产精品片| 免费人成在线观看视频色| 网址你懂的国产日韩在线| 久久99精品国语久久久| 色婷婷av一区二区三区视频| 国产伦精品一区二区三区视频9| 国产精品欧美亚洲77777| 成人影院久久| 色视频www国产| 18+在线观看网站| 免费观看av网站的网址| 草草在线视频免费看| 中文精品一卡2卡3卡4更新| 久久国内精品自在自线图片| 久久精品国产鲁丝片午夜精品| 国产在线视频一区二区| 国产黄色免费在线视频| 一级二级三级毛片免费看| 性色av一级| 在线观看免费视频网站a站| 精品国产露脸久久av麻豆| 又大又黄又爽视频免费| 高清av免费在线| 国产国拍精品亚洲av在线观看| 99久国产av精品国产电影| 九九爱精品视频在线观看| 久久鲁丝午夜福利片| 少妇丰满av| videossex国产| 日日啪夜夜爽| 欧美日韩一区二区视频在线观看视频在线| 久久久久视频综合| 国产精品久久久久久精品电影小说 | videos熟女内射| 肉色欧美久久久久久久蜜桃| 日韩av免费高清视频| 日韩一区二区三区影片| 精品少妇黑人巨大在线播放| 精品国产三级普通话版| 成人无遮挡网站| 国产免费又黄又爽又色| 欧美精品一区二区大全| 久久ye,这里只有精品| 国产黄色视频一区二区在线观看| 黄色欧美视频在线观看| freevideosex欧美| 午夜免费鲁丝| 久久久久久人妻| av福利片在线观看| 99久久中文字幕三级久久日本| 亚洲国产精品成人久久小说| 免费黄频网站在线观看国产| 亚洲av日韩在线播放| 有码 亚洲区| 色哟哟·www| 国产精品熟女久久久久浪| 久久这里有精品视频免费| 日产精品乱码卡一卡2卡三| 偷拍熟女少妇极品色| 国产91av在线免费观看| 全区人妻精品视频| 国产成人精品婷婷| 最近的中文字幕免费完整| 午夜免费男女啪啪视频观看| 久久热精品热| 欧美国产精品一级二级三级 | 麻豆乱淫一区二区| 国产毛片在线视频| 亚洲激情五月婷婷啪啪| 成人影院久久| 青春草国产在线视频| 亚洲人成网站在线观看播放| 亚洲国产高清在线一区二区三| 男人狂女人下面高潮的视频| 小蜜桃在线观看免费完整版高清| 久久久午夜欧美精品| 日韩av免费高清视频| 国产精品一区www在线观看| 精品一品国产午夜福利视频| 中文天堂在线官网| 日韩av免费高清视频| 国产 精品1| 尾随美女入室| 男的添女的下面高潮视频| 日韩av免费高清视频| 国产亚洲一区二区精品| 91狼人影院| 黄片wwwwww| 中文字幕精品免费在线观看视频 | 亚洲精品日韩在线中文字幕| 我要看日韩黄色一级片| 晚上一个人看的免费电影| 色5月婷婷丁香| 亚洲av日韩在线播放| 国产亚洲午夜精品一区二区久久| 最近2019中文字幕mv第一页| 久久精品熟女亚洲av麻豆精品| 天堂中文最新版在线下载| 国产成人91sexporn| 人人妻人人澡人人爽人人夜夜| 国产精品秋霞免费鲁丝片| 亚洲人成网站在线播| 欧美精品亚洲一区二区| 亚洲高清免费不卡视频| 男人爽女人下面视频在线观看| 久久国内精品自在自线图片| 中文字幕精品免费在线观看视频 | 又黄又爽又刺激的免费视频.| 五月天丁香电影| 久久久久精品性色| 亚洲成人一二三区av| 熟女人妻精品中文字幕| 中文字幕免费在线视频6| 久久精品熟女亚洲av麻豆精品| 日韩,欧美,国产一区二区三区| 欧美日韩综合久久久久久| 我的老师免费观看完整版| 婷婷色麻豆天堂久久| 少妇人妻一区二区三区视频| www.色视频.com| 啦啦啦中文免费视频观看日本| 日韩亚洲欧美综合| 亚洲人成网站在线播| 亚洲精品一二三| 久久人妻熟女aⅴ| 欧美精品一区二区免费开放| 一级a做视频免费观看| 日韩亚洲欧美综合| 久久婷婷青草| 国产免费福利视频在线观看| 亚洲怡红院男人天堂| 国产视频首页在线观看| 在线亚洲精品国产二区图片欧美 | 日日摸夜夜添夜夜添av毛片| 一级毛片黄色毛片免费观看视频| 少妇被粗大猛烈的视频| 高清不卡的av网站| 特大巨黑吊av在线直播| 高清视频免费观看一区二区| 午夜日本视频在线| a级毛片免费高清观看在线播放| 亚洲精品第二区| 亚洲丝袜综合中文字幕| 男的添女的下面高潮视频| 国产男人的电影天堂91| 亚洲高清免费不卡视频| av线在线观看网站| 高清视频免费观看一区二区| 少妇丰满av| 国产成人a∨麻豆精品| 国产久久久一区二区三区| 黑丝袜美女国产一区| 国产一区二区在线观看日韩| 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 伦精品一区二区三区| 日韩不卡一区二区三区视频在线| 亚洲一级一片aⅴ在线观看| 亚洲,一卡二卡三卡| 亚洲精品国产av蜜桃| 99视频精品全部免费 在线| 日韩三级伦理在线观看| 亚洲精品日本国产第一区| 国产午夜精品一二区理论片| 91午夜精品亚洲一区二区三区| 99九九线精品视频在线观看视频| 嘟嘟电影网在线观看| 波野结衣二区三区在线| 26uuu在线亚洲综合色| 亚洲av福利一区| 我要看黄色一级片免费的| 大又大粗又爽又黄少妇毛片口| 久久久午夜欧美精品| 一区二区三区四区激情视频| 国产精品麻豆人妻色哟哟久久| 国产精品偷伦视频观看了| 卡戴珊不雅视频在线播放| 新久久久久国产一级毛片| 国内少妇人妻偷人精品xxx网站| 午夜免费鲁丝| 国产亚洲av片在线观看秒播厂| 男女啪啪激烈高潮av片| 在线观看免费高清a一片| 久久久a久久爽久久v久久| 寂寞人妻少妇视频99o| 18禁裸乳无遮挡动漫免费视频| 日本一二三区视频观看| 联通29元200g的流量卡| 婷婷色麻豆天堂久久| 少妇猛男粗大的猛烈进出视频| 高清在线视频一区二区三区| 免费观看av网站的网址| 少妇裸体淫交视频免费看高清| 久久精品久久久久久久性| 三级经典国产精品| 欧美国产精品一级二级三级 | 在线免费观看不下载黄p国产| 国产毛片在线视频| 搡女人真爽免费视频火全软件| 日本欧美国产在线视频| 精品99又大又爽又粗少妇毛片| 久久久久国产网址| 这个男人来自地球电影免费观看 | 91久久精品国产一区二区成人| 中文字幕制服av| 人人妻人人看人人澡| 在线观看av片永久免费下载| 久久人人爽人人爽人人片va| 一本一本综合久久| 国产久久久一区二区三区| 免费看光身美女| 亚洲真实伦在线观看| 男女边吃奶边做爰视频| 国产亚洲欧美精品永久| 欧美少妇被猛烈插入视频| 国产 精品1| 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 黑人猛操日本美女一级片| 下体分泌物呈黄色| 涩涩av久久男人的天堂| 黑丝袜美女国产一区| 在线观看一区二区三区| 噜噜噜噜噜久久久久久91| 91在线精品国自产拍蜜月| 日韩一区二区三区影片| 国产 一区 欧美 日韩| 国产伦理片在线播放av一区| 欧美激情极品国产一区二区三区 | 91狼人影院| 少妇人妻 视频| 一区二区三区乱码不卡18| 秋霞伦理黄片| 欧美精品一区二区免费开放| 国产综合精华液| 国产乱来视频区| 五月开心婷婷网| 高清日韩中文字幕在线| 五月天丁香电影| 一个人看视频在线观看www免费| 汤姆久久久久久久影院中文字幕| 黄色怎么调成土黄色| 蜜桃久久精品国产亚洲av| 看十八女毛片水多多多| 日韩大片免费观看网站| 国产人妻一区二区三区在| 久久婷婷青草| 91午夜精品亚洲一区二区三区| 日本av手机在线免费观看| 久久99热6这里只有精品| 尾随美女入室| 国产亚洲5aaaaa淫片| 搡女人真爽免费视频火全软件| 国产黄片视频在线免费观看| 极品少妇高潮喷水抽搐| 永久免费av网站大全| 国产精品人妻久久久影院| 2021少妇久久久久久久久久久| 直男gayav资源| 肉色欧美久久久久久久蜜桃| 久久久久久伊人网av| 久久久久精品性色| 99热这里只有是精品50| 成年美女黄网站色视频大全免费 | 国产黄色视频一区二区在线观看| kizo精华| 日韩伦理黄色片| 久久韩国三级中文字幕| 乱码一卡2卡4卡精品| 22中文网久久字幕| 久久国产亚洲av麻豆专区| 涩涩av久久男人的天堂| 国产精品一区二区性色av| 观看美女的网站| 少妇精品久久久久久久| 3wmmmm亚洲av在线观看| 成年人午夜在线观看视频| 麻豆成人av视频| av免费在线看不卡| 国语对白做爰xxxⅹ性视频网站| av在线老鸭窝| 日韩av在线免费看完整版不卡| 久久影院123| 国产精品一二三区在线看| av视频免费观看在线观看| 中文字幕av成人在线电影| 我要看日韩黄色一级片| 一级av片app| 少妇高潮的动态图| 我的女老师完整版在线观看| 亚洲精品日本国产第一区| 蜜桃在线观看..| 亚洲欧洲国产日韩| 国产在视频线精品| 午夜视频国产福利| 日本与韩国留学比较| 国产成人a∨麻豆精品| 夜夜爽夜夜爽视频| 久久久亚洲精品成人影院| 一级二级三级毛片免费看| 国产在线一区二区三区精| 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 乱系列少妇在线播放| 国产成人freesex在线| 18禁裸乳无遮挡动漫免费视频| 国产成人91sexporn| 又黄又爽又刺激的免费视频.| 精品国产一区二区三区久久久樱花 | 99热这里只有是精品在线观看| 另类亚洲欧美激情| 欧美精品一区二区免费开放| 五月天丁香电影| 免费大片黄手机在线观看| 精品久久国产蜜桃| 成年免费大片在线观看| 亚洲色图av天堂| 男女边吃奶边做爰视频| 中文字幕免费在线视频6| 午夜福利在线观看免费完整高清在| 97在线视频观看| 丝瓜视频免费看黄片| 国产女主播在线喷水免费视频网站| 精品一区在线观看国产| 亚洲成人一二三区av| 久久女婷五月综合色啪小说| 一边亲一边摸免费视频| 国产视频内射| 亚洲成人av在线免费| 国产精品三级大全| 国产无遮挡羞羞视频在线观看| 黄色配什么色好看| 亚洲国产精品专区欧美| 在线免费十八禁| 久久国产精品大桥未久av | 国产极品天堂在线| av在线播放精品| 日本欧美视频一区| 又大又黄又爽视频免费| 久久99热6这里只有精品| 国产精品成人在线| 成人影院久久| 精品久久久噜噜| 色婷婷av一区二区三区视频| 亚洲不卡免费看| 少妇被粗大猛烈的视频| 下体分泌物呈黄色| 免费观看在线日韩| 久久 成人 亚洲| 国产 一区 欧美 日韩| 亚洲国产精品专区欧美| 老熟女久久久| 男女下面进入的视频免费午夜| 成年免费大片在线观看| 大话2 男鬼变身卡| 一本久久精品| 久久精品国产亚洲av涩爱| 国产欧美另类精品又又久久亚洲欧美| a级毛色黄片| 人体艺术视频欧美日本| 亚洲精品国产色婷婷电影| 纯流量卡能插随身wifi吗| 人妻夜夜爽99麻豆av| 女人十人毛片免费观看3o分钟| 国产高清三级在线| 国产精品国产三级专区第一集| 一区二区三区四区激情视频| 日韩视频在线欧美| 五月伊人婷婷丁香| 热99国产精品久久久久久7| 欧美+日韩+精品| 欧美精品国产亚洲| 美女高潮的动态| 亚洲国产精品一区三区| a级毛色黄片| 制服丝袜香蕉在线| 日本av手机在线免费观看| 少妇精品久久久久久久| 亚洲成人中文字幕在线播放| 性色avwww在线观看| 欧美老熟妇乱子伦牲交| 七月丁香在线播放| 婷婷色av中文字幕| 久久人妻熟女aⅴ| 日日摸夜夜添夜夜爱| 日韩电影二区| 最黄视频免费看| 国产片特级美女逼逼视频| 久久久久国产网址| 国产精品免费大片| 丝袜喷水一区| 日韩伦理黄色片| 97精品久久久久久久久久精品| 网址你懂的国产日韩在线| 国产精品免费大片| 熟妇人妻不卡中文字幕| 亚洲精品自拍成人| 日韩免费高清中文字幕av| 欧美人与善性xxx| 一本—道久久a久久精品蜜桃钙片| 国产一级毛片在线| 国产女主播在线喷水免费视频网站| 国产av国产精品国产| 80岁老熟妇乱子伦牲交| 草草在线视频免费看| 少妇熟女欧美另类| 天堂中文最新版在线下载| 久久97久久精品| 国产伦精品一区二区三区四那| 亚洲av.av天堂| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| 大香蕉97超碰在线| 大香蕉久久网| 天堂8中文在线网| av视频免费观看在线观看| 亚洲av福利一区| 在线观看一区二区三区激情| 国产成人免费观看mmmm| 久热久热在线精品观看| 三级国产精品欧美在线观看| 18禁在线播放成人免费| 国产久久久一区二区三区| 亚洲欧洲国产日韩| 国产91av在线免费观看| 99久久精品热视频| 纯流量卡能插随身wifi吗| 少妇人妻久久综合中文| 丝袜喷水一区| 黑人高潮一二区| 久久婷婷青草| 久久久精品94久久精品| 欧美日本视频| 九色成人免费人妻av| 中文字幕亚洲精品专区| 亚洲美女视频黄频| 国产精品国产三级国产专区5o| 亚洲一区二区三区欧美精品| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av涩爱| 久久久久久久精品精品| kizo精华| 一级毛片久久久久久久久女| 久久精品国产亚洲av涩爱| 久久韩国三级中文字幕| 人体艺术视频欧美日本| 亚洲av免费高清在线观看| 人妻夜夜爽99麻豆av| 热99国产精品久久久久久7| 日韩成人伦理影院| 亚洲av电影在线观看一区二区三区| 国产伦精品一区二区三区四那| 欧美另类一区| 99re6热这里在线精品视频| 少妇猛男粗大的猛烈进出视频| h日本视频在线播放| 嫩草影院入口| 黄色一级大片看看| 大片免费播放器 马上看| 夫妻性生交免费视频一级片| 性色avwww在线观看| 你懂的网址亚洲精品在线观看| 卡戴珊不雅视频在线播放| 老司机影院毛片| 一区二区三区乱码不卡18| 亚洲av日韩在线播放| 欧美精品亚洲一区二区| 边亲边吃奶的免费视频| 97精品久久久久久久久久精品| 久久精品人妻少妇| 美女视频免费永久观看网站| 婷婷色综合大香蕉| 亚洲av不卡在线观看| 久久久成人免费电影| 亚洲国产成人一精品久久久| 亚洲一区二区三区欧美精品| 少妇熟女欧美另类| 国产精品无大码| 婷婷色av中文字幕| 国内揄拍国产精品人妻在线| 丝瓜视频免费看黄片| 黑人高潮一二区| 成人午夜精彩视频在线观看|