• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A NEW ALGORITHM FOR MONOTONE INCLUSION PROBLEMS AND FIXED POINTS ON HADAMARD MANIFOLDS WITH APPLICATIONS?

    2021-09-06 07:54:56張石生
    關(guān)鍵詞:慶豐

    (張石生)

    Center for General Education,China Medical University,Taichung 40402,Taiwan,China E-mail:changss2013@163.com

    Jinfang TANG (唐金芳)

    Department of Mathematics,Yibin University,Yibin 644007,China E-mail:jinfangt 79@163.com

    Chingfeng WEN (溫慶豐)

    Department of Medical Research,Kaohsiung Medical University Hospital,Kaohsiung 80708,Taiwan,China E-mail:cfwen@kmu.edu.tw

    Abstract In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds.As applications,we use our results to study the minimization problems and equilibrium problems in Hadamard manifolds.

    Key words Monotone inclusion problem;quasi-pseudo-contractive mapping;demi-contraction mapping;maximal monotone vector field;quasi-nonexpansive mappings;Hadamard manifold

    1 Introduction

    Rockafellar[1]considered the inclusion problem of finding

    where

    B

    is a set-valued maximal monotone mapping de fined on a Hilbert space

    H

    .He developed an elegant method,known as the proximal point algorithm(PPA),to solve this inclusion problem.

    During the last two decades,inclusion problem(1.1)has been extended and generalized in many directions because of its applications to different areas in science,engineering,management and the social sciences(see,for example,[2–9]and the references therein).

    Recently,many convergence results attained by the proximal point algorithm have been extended from the classical linear spaces to the setting of manifolds(see,for examle,[10–14]).Li et al.[10]developed the proximal point method for problem(1.1)in the setting of Hadamard manifolds.Later,Li et al.[11]extended the Mann and Halpern iteration scheme for finding the fixed points of nonexpansive mappings from Hilbert spaces to Hadamard manifolds.Very recently,Ansari et al.[12]and Al-Homidan-Ansari-Babu[13]considered the problem of finding

    in a Hadamard manifold,where

    T

    is a nonexpansive mapping,

    B

    is a set-valued maximal monotone mapping,and

    A

    is a single-valued continuous and monotone mapping.They proposed some Halpern-type and Mann-type iterative methods.They proved that,under suitable conditions,the sequence generated by the algorithm converges strongly to a common element of the set of fixed points of the mapping

    T

    and the set of solutions of the inclusion problem.

    Motivated and inspired by the works in[5–8]and[11–14],in this article we consider the problem of finding

    in the setting of Hadamard manifolds,where

    S

    is a quasi-pseudo-contractive mapping,

    U

    is a demi-contractive mapping,

    B

    is a set-valued maximal monotone mapping and

    A

    is a singlevalued and monotone mapping such that

    A

    +

    B

    is maximal monotone.We propose a new type of algorithm and prove that the sequences generalized by the algorithm converge strongly to a common element of problem(1.3).As applications we apply our results to study the minimization problems and equilibrium problems in Hadamard manifolds.

    2 Preliminaries

    The Riemannian distance d(

    p,q

    )is the minimal length over the set of all such curves joining

    p

    to

    q

    ,which induces the original topology on

    M

    .A Riemannian manifold

    M

    is complete if,for any

    p

    M

    ,all geodesics emanating from

    p

    are de fined for all

    t

    ∈R.A geodesic joining

    p

    to

    q

    in

    M

    is said to be a minimal geodesic if its length is equal to d(

    p,q

    ).A Riemannian manifold

    M

    equipped with Riemannian distance d is a metric space(

    M,

    d).By the Hopf-Rinow Theorem[15],if

    M

    is complete,then any pair of points in

    M

    can be joined by a minimal geodesic.Moreover,(

    M,

    d)is a complete metric space and bounded closed subsets are compact.

    It is known that exp

    tv

    =

    γ

    (

    t,p

    )for each real number

    t

    .It is easy to see that exp0=

    γ

    (0

    ,p

    )=

    p

    ,where 0 is the zero tangent vector.Note that the exponential map expis differentiable on

    T

    M

    for any

    p

    M

    .

    De finition 2.2

    A complete simply connected Riemannian manifold of non-positive sectional curvature is called a Hadamard Manifold.

    Proposition 2.3

    ([15])Let

    M

    be a Hadamard manifold.Then,for any two points

    x,y

    M

    ,there exists a unique normalized geodesic

    γ

    :[0

    ,

    1]→

    M

    joining

    x

    =

    γ

    (0)to

    y

    =

    γ

    (1)which is in fact a minimal geodesic denoted by

    The following inequalities can be proved easily:

    Lemma 2.4

    Let

    M

    be a finite dimensional Hadamard manifold.(i)Let

    γ

    :[0

    ,

    1]→

    M

    be a geodesic joining

    x

    to

    y

    .Then we have

    (From now on d(

    x,y

    )denotes the Riemannian distance).(ii)For any

    x,y,z,u,w

    M

    and

    t

    ∈[0

    ,

    1],the following inequalities hold:

    Let

    M

    be a Hadamard manifold.A subset

    C

    ?

    M

    is said to be geodesic convex if,for any two points

    x

    and

    y

    in

    C

    ,the geodesic joining

    x

    to

    y

    is contained in

    C

    .In the sequel,unless otherwise speci fied,we always assume that

    M

    is a finite dimensional Hadamard manifold,and

    C

    is a nonempty,bounded,closed and geodesic convex set in

    M

    ,and Fix(

    S

    )is the fixed point set of a mapping

    S

    .A function

    f

    :

    C

    →(?∞

    ,

    ∞]is said to be geodesic convex if,for any geodesic

    γ

    (

    λ

    )(0≤

    λ

    ≤1)joining

    x,y

    C

    ,the function

    f

    ?

    γ

    is convex,that is,

    De finition 2.7

    A mapping

    S

    :

    C

    C

    is said to be(1)contractive if there exists a constant

    k

    ∈(0

    ,

    1)such that

    If

    k

    =1,then

    S

    is said to be nonexpansive,and(2)quasinonexpansive if Fix(

    S

    )/=?and

    (3) firmly nonexpansive[18]if for all

    x,y

    C

    ,the function

    φ

    :[0

    ,

    1]→[0

    ,

    ∞]de fined by

    is nonincreasing;

    (4)

    k

    -demicontractive[19]if Fix(

    S

    )/=?and there exists a constant

    k

    ∈[0

    ,

    1)such that

    (5)quasi-pseudo-contractive if Fix(

    S

    )/=?and

    Proposition 2.8

    ([18])Let

    S

    :

    C

    C

    be a mapping.Then the following statements are equivalent:(i)

    S

    is firmly nonexpansive;(ii)for any

    x,y

    C

    and

    t

    ∈[0

    ,

    1]

    (iii)for any

    x,y

    C

    Lemma 2.9

    If

    S

    :

    C

    C

    is a firmly nonexpansive mapping and Fix(

    S

    )/=?,then for any

    x

    C

    and

    p

    ∈Fix(

    S

    ),the following conclusion holds:

    Proof

    For given points

    x

    C,p

    ∈Fix(

    S

    )and

    Sx

    ,we consider a geodesic triangle△(

    p,Sx,x

    ).By a comparison theorem for triangle([15]Proposition 4.5),we have

    Since

    S

    :

    C

    C

    is firmly nonexpansive,taking

    y

    =

    p

    in(2.9),we have

    This,together with(2.11),shows that

    The conclusion of Lemma 2.9 is proved.

    Remark 2.10

    From De finition 2.7 and Lemma 2.9,it is easy to see that if Fix(

    S

    )/=?,then the following implications hold:

    but the converse is not true.In fact,if Fix(

    S

    )/=?and

    S

    is firmly nonexpansive,then,by(2.10),it is quasi-nonexpansive;therefore it is demicontractive and so it is quasi-pseudo-contractive.These show that the class of quasi-pseudo-contractive mappings is more general than the classes of quasinonexpansive mappings,firmly nonexpansive mappings and

    k

    -demicontractive mappings.In the sequel,we denote by X(

    M

    )the set of all set-valued vector fields

    A

    :

    M

    ?

    TM

    such that

    A

    (

    x

    )?

    T

    M

    for all

    x

    M

    ,and we let the domain D(

    A

    )of

    A

    be de fined by D(

    A

    )={

    x

    M

    :

    A

    (

    x

    )/=?}.

    De finition 2.11

    A set-valued vector field

    A

    ∈X(

    M

    )on a Hadamard manifold

    M

    is said to be(1)monotone if,for any

    x,y

    ∈D(

    A

    ),

    (2)maximal monotone if it is monotone and for all

    x

    ∈D(

    A

    )and

    u

    T

    M

    ,the condition

    implies

    u

    A

    (

    x

    );

    is called the resolvent of

    A

    of order

    λ>

    0.

    De finition 2.13

    A mapping

    T

    :

    C

    C

    is said to be demiclosed at 0 if,for any sequence{

    x

    }?

    C

    such that

    x

    x

    and d(

    x

    ,Tx

    )→0,then

    x

    ∈Fix(

    T

    ).

    3 Main Results

    First we give following Lemma,which will be needed in proving our main result:

    Lemma 3.1

    Let

    M

    be a Hadamard manifold and

    T

    :

    C

    C

    be a mapping which is

    L

    -Lipschitzian(

    L

    ≥1)and demiclosed at 0.Let

    G

    :

    C

    C

    and

    K

    :

    C

    C

    be two mappings de fined by

    (1)Fix(

    T

    )=Fix(

    T

    ?

    G

    )=Fix(

    K

    );(2)

    K

    is also demiclosed at 0;(3)

    K

    :

    C

    C

    is

    L

    -Lipschitzian;(4)In addition,if

    T

    :

    C

    C

    is quasi-pseudo-contractive,then

    K

    :

    X

    X

    is a quasinonexpansive mapping,that is,for any

    x

    C

    and

    p

    ∈Fix(

    K

    )(=Fix(

    T

    )),

    (5)In particular,in addition,if

    T

    :

    C

    C

    is

    k

    -demi-contractive and

    k

    ∈(0

    ,

    1),then the mapping

    W

    :

    C

    →de fined by

    has the following properties:

    (a)Fix(

    T

    )=Fix(

    W

    );(b)

    W

    is

    L

    -Lipschitzian;(c)

    W

    is demiclosed at(0);(d)

    W

    is a quasi-nonexpansive mapping.

    Proof

    First we prove the conclusion(1)In fact,if

    u

    ∈Fix(

    T

    ),then

    If

    u

    ∈Fix(

    T

    ?

    G

    ),then it follows from(2.4)that

    If

    u

    ∈Fix(

    K

    ),then,from(2.4),we have

    Simplifying,we have

    Since

    Lη<

    1,this implies that

    u

    ∈Fix(

    T

    ).The conclusion(1)is proved.

    Now we prove the conclusion(2)

    Simplifying,we have

    This implies that

    By the assumption(1?

    )

    >

    0 and d(

    x

    ,Kx

    )→0,this implies that d(

    x

    ,Tx

    )→0.Since

    T

    is demiclosed at 0,

    x

    ∈Fix(

    T

    ).Hence

    x

    ∈Fix(

    K

    );that is,

    K

    is demiclosed at 0.

    Next we prove the conclusion(3)

    Since

    T L

    -Lipschitzian,for any

    x,y

    C

    it follows from(2.6)that

    Similarly,from(2.6)and(3.4),we have

    Now we prove the conclusion(4)

    For any

    p

    ∈Fix(

    T

    )and any

    x

    X

    ,it follows from(2.5)that

    Since

    T

    is quasi-pseudo-contractive,we have

    From(2.5)we have

    Substituting(3.6)and(3.7)into(3.5),after simplifying,we have

    Finally we prove the conclusion(5)

    It is easy to prove that

    W

    has the properties(a)–(c).Next we prove that

    W

    has the property(d).In fact,since Fix(

    T

    )=Fix(

    W

    ),for any

    p

    ∈Fix(

    T

    )=Fix(

    W

    )and

    x

    C

    it follows from(3.3),(2.5)and the de finition of

    k

    -demicontractive mapping that

    The conclusion(d)is proved.Therefore the proof of Lemma 3.1 is completed.

    In the sequel,we always assume that

    (1)

    M

    is a finite dimensional Hadamard manifold and

    C

    is a nonempty closed and bounded geodesic convex subset of

    M

    ;(2)

    B

    :

    C

    ?

    TM

    is a set-valued maximal monotone mapping and

    A

    :

    C

    TM

    is a single-valued and monotone mapping such that

    A

    +

    B

    is a set-valued maximal monotone vector field;

    (4)

    S

    :

    C

    C

    is a quasi-pseudo-contractive mapping,

    U

    :

    C

    C

    is a

    k

    -demi-contractive mapping,

    k

    ∈(0

    ,

    1),and that

    S

    and

    U

    both are demiclosed at 0 and

    L

    -Lipschitzian,

    L

    ≥1;(5)We can let

    G

    ,K

    :

    C

    C

    and

    K

    :

    C

    C

    be the mappings de fined by

    Proof

    (I)First we observe that by the assumptions of Theorem 3.2,Lemma 2.12 and Lemma 3.1,we have that

    Since

    K

    is quasi-nonexpansive,from Lemma 2.4 and(3.11)we have that

    Similarly,from Lemma 2.4 and(3.12),we have

    This implies that

    In fact,it follows from(3.13)that

    Since

    a

    (1?

    b

    )

    >

    0,this implies that

    From(3.16)and Lemma 2.4,we have

    Furthermore,it follows from Lemma 2.9 and(3.14)that,for each

    p

    ∈?,

    The conclusion of(3.15)is proved.

    (IV)Now we prove that{

    x

    }converges strongly to some point in ?.

    This completes the proof of Theorem 3.2.

    4 Applications

    Throughout this section we assume that

    M

    is a finite dimensional Hadamard manifold,and that

    C

    is a bounded closed and geodesic convex subset of

    M

    .

    4.1 Minimization problems on Hadamard manifolds

    Let

    f

    :

    M

    →(?∞

    ,

    +∞]be a proper,lower semicontinuous and geodesic convex function.Consider the minimization problem of finding a point

    x

    M

    such that

    We denote by ?the solution set of the minimization problem(4.1),that is,

    The subdifferential

    ?f

    (

    x

    )of

    f

    at

    x

    M

    [21]is de fined by

    Lemma 4.1

    ([10])Let

    f

    :

    M

    →(?∞

    ,

    +∞]be a proper,lower semicontinuous and geodesic convex function.Then,the subdifferential

    ?f

    of

    f

    is a maximal monotone vector field,and

    From Lemma 4.1,we know that if

    f

    :

    M

    →(?∞

    ,

    +∞]

    ,i

    =1

    ,

    2

    ,

    is a proper,lower semicontinuous and geodesic convex function,and

    ?f

    is the subdifferential of

    f

    ,so

    ?

    (

    f

    +

    f

    )=

    ?f

    +

    ?f

    and

    ?

    (

    f

    +

    f

    )is a maximal monotone vector field.Hence,from Theorem 3.2 and Lemma 4.1,we have the following result:

    where{

    β

    }

    ,

    {

    δ

    }?(0

    ,

    1)such that 0

    <a

    β

    b<

    1

    ,

    ?

    n

    ≥0 and

    K

    and

    K

    are mappings de fined by(3.9).If

    then the sequence{

    x

    }converges strongly to some point

    x

    ∈?.In particular,if

    S

    =

    U

    =

    I

    (the identity mapping on

    M

    )and

    f

    =

    f,f

    =0,then the sequence{

    x

    }de fined by

    converges strongly to a solution of minimization problem(4.1).

    4.2 Equilibrium problems on Hadamard manifolds

    Let

    F

    :

    C

    ×

    C

    →R be a bifunction.We assume that the following conditions are satis fied:

    The equilibrium problem(in short,EP)is to find

    x

    C

    such that

    The solution set of equilibrium problem(4.5)is denoted by EP(F).

    Lemma 4.4

    ([13])Let

    C

    be a nonempty closed and geodesic convex subset of a Hadamard manifold

    M

    .Let

    F

    :

    C

    ×

    C

    →R be a bifunction satisfying the conditions(A1)–(A4).Let

    H

    :

    M

    ?

    TM

    be a set-valued mapping de fined by

    In Theorem 3.2,taking

    B

    =

    H

    ,

    A

    =0 and

    S

    =

    U

    =

    I

    ,the following result can be obtained from Theorem 3.2 immediately:

    Theorem 4.5

    Let

    F

    :

    C

    ×

    C

    →R be a bifunction satisfying the conditions(A1)–(A4)and let

    H

    :

    M

    M

    be the mapping de fined by(4.7).For any given

    x

    C

    ,let{

    x

    }be the sequence de fined by

    If

    EP

    (

    F

    )/=?,then the sequence{

    x

    }converges strongly to a solution of equilibrium problem(4.5).

    5 Conclusion

    In this paper,an iterative algorithm to approximate a common element of the set of fixed points of a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds has been proposed.Under suitable conditions,we proved that the sequence generated by the algorithm converges strongly to a common solution of problem(1.3).Since the quasi-pseudo-contractive mapping and the demicontractive mapping is more general than the nonexpansive mapping,firmly nonexpansive mapping and quasi-nonexpansive mapping,problem(1.3)studied in our paper is quite general.It includes many kinds of problems,such as convex optimization problems,the fixed point problem,variational inclusion problems,and equilibrium problems as its special cases.Therefore the results presented in the paper not only improve and generalize some recent results,but also provide a powerful tool for solving other problems related to(1.3).

    猜你喜歡
    慶豐
    Photoinduced valley-dependent equal-spin Andreev reflection in Ising superconductor junction
    最美慶豐湖
    上海慶豐彩印有限公司
    綠色包裝(2022年9期)2022-10-12 12:18:10
    給父親做一回“父親”
    Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions*
    金慶豐3D 硬金新展廳隆重開業(yè)
    中國寶玉石(2018年2期)2018-04-11 07:43:26
    山東慶豐餐飲公司侵害“慶豐”商標(biāo)及不正當(dāng)競爭
    “慶豐包子”案翻天大逆轉(zhuǎn)
    人民周刊(2017年10期)2017-08-04 21:31:40
    從“慶豐包子”看時(shí)評(píng)對(duì)新聞的點(diǎn)化魅力
    新聞傳播(2015年6期)2015-07-18 11:13:15
    AltBOC navigation signal quality assessment and measurement*
    男女床上黄色一级片免费看| 亚洲九九香蕉| 欧美在线黄色| 亚洲精品一区av在线观看| 国产精品香港三级国产av潘金莲| 巨乳人妻的诱惑在线观看| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕人妻丝袜一区二区| 美女高潮喷水抽搐中文字幕| 久久天堂一区二区三区四区| 亚洲人成电影免费在线| 亚洲免费av在线视频| 国产色视频综合| 日韩大码丰满熟妇| 69精品国产乱码久久久| 免费搜索国产男女视频| 亚洲狠狠婷婷综合久久图片| 视频区欧美日本亚洲| 国产欧美日韩精品亚洲av| videosex国产| 欧美日韩乱码在线| 欧美成人一区二区免费高清观看 | 黄色视频不卡| 精品国产一区二区三区四区第35| 亚洲 国产 在线| 亚洲精品久久成人aⅴ小说| 两性午夜刺激爽爽歪歪视频在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 国产av一区在线观看免费| 中文字幕色久视频| 男人舔女人下体高潮全视频| 好男人电影高清在线观看| 国产av在哪里看| 岛国视频午夜一区免费看| 精品人妻在线不人妻| 啦啦啦免费观看视频1| 亚洲自拍偷在线| 女人高潮潮喷娇喘18禁视频| 美女大奶头视频| 国产蜜桃级精品一区二区三区| 欧美黄色片欧美黄色片| 久久久国产精品麻豆| 搡老妇女老女人老熟妇| e午夜精品久久久久久久| 在线国产一区二区在线| av中文乱码字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产欧美一区二区综合| 久久这里只有精品19| 丝袜美足系列| 久久久国产欧美日韩av| 大型av网站在线播放| 欧美一级毛片孕妇| 搞女人的毛片| 久久久国产欧美日韩av| 久久久久久久精品吃奶| 国产av一区在线观看免费| 少妇 在线观看| 黄色女人牲交| 欧美成狂野欧美在线观看| 欧美久久黑人一区二区| ponron亚洲| 日韩三级视频一区二区三区| 69精品国产乱码久久久| 精品久久久久久久人妻蜜臀av | 国产精品久久久久久人妻精品电影| 大码成人一级视频| 亚洲欧美精品综合一区二区三区| 亚洲,欧美精品.| 大香蕉久久成人网| 成人欧美大片| 亚洲美女黄片视频| 啪啪无遮挡十八禁网站| 久久热在线av| 好男人电影高清在线观看| 久久久久久大精品| 久久草成人影院| 国产精品乱码一区二三区的特点 | 久久午夜综合久久蜜桃| 成人av一区二区三区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 很黄的视频免费| 久久精品影院6| 在线观看www视频免费| 成人三级黄色视频| 国产精品av久久久久免费| 久久性视频一级片| 国产aⅴ精品一区二区三区波| 一本综合久久免费| 此物有八面人人有两片| 他把我摸到了高潮在线观看| 日本免费a在线| 99久久精品国产亚洲精品| 看免费av毛片| 精品国产亚洲在线| 他把我摸到了高潮在线观看| 夜夜爽天天搞| 亚洲精品国产一区二区精华液| 两性午夜刺激爽爽歪歪视频在线观看 | 一a级毛片在线观看| 天堂√8在线中文| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| 成人精品一区二区免费| 午夜福利高清视频| 亚洲精品美女久久久久99蜜臀| 日本 欧美在线| 精品国产一区二区久久| 精品第一国产精品| 国产乱人伦免费视频| 免费看a级黄色片| 国产免费av片在线观看野外av| 琪琪午夜伦伦电影理论片6080| 国产高清有码在线观看视频 | 久久精品亚洲精品国产色婷小说| 啦啦啦免费观看视频1| 一级片免费观看大全| 中文字幕最新亚洲高清| av天堂在线播放| 黄频高清免费视频| 最近最新中文字幕大全电影3 | 免费少妇av软件| 国产精品久久久久久人妻精品电影| 亚洲精品国产色婷婷电影| 欧美日韩黄片免| 久久久久久国产a免费观看| 欧美色欧美亚洲另类二区 | 丝袜人妻中文字幕| 午夜日韩欧美国产| 婷婷六月久久综合丁香| 精品熟女少妇八av免费久了| 欧美绝顶高潮抽搐喷水| 亚洲av美国av| 最新在线观看一区二区三区| 中文亚洲av片在线观看爽| 精品乱码久久久久久99久播| av片东京热男人的天堂| 精品不卡国产一区二区三区| 亚洲中文av在线| 十分钟在线观看高清视频www| 老熟妇乱子伦视频在线观看| 在线天堂中文资源库| 亚洲欧美激情综合另类| 一级黄色大片毛片| 国产成人精品在线电影| 久久伊人香网站| 国产一级毛片七仙女欲春2 | 免费久久久久久久精品成人欧美视频| 老熟妇仑乱视频hdxx| 俄罗斯特黄特色一大片| 黄片播放在线免费| 欧美在线黄色| 日韩有码中文字幕| 国产精品99久久99久久久不卡| 精品乱码久久久久久99久播| 老司机午夜福利在线观看视频| 久久精品国产综合久久久| 欧美激情久久久久久爽电影 | 又紧又爽又黄一区二区| 欧美日本亚洲视频在线播放| 日韩 欧美 亚洲 中文字幕| 亚洲av第一区精品v没综合| 桃红色精品国产亚洲av| 国产成人影院久久av| 国产亚洲欧美98| 亚洲在线自拍视频| 国产精品国产高清国产av| 久久久久亚洲av毛片大全| 中文字幕人妻丝袜一区二区| 人人妻人人澡人人看| 亚洲成国产人片在线观看| 免费观看精品视频网站| 又紧又爽又黄一区二区| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| 欧美人与性动交α欧美精品济南到| 成年女人毛片免费观看观看9| 成人精品一区二区免费| 日韩欧美一区二区三区在线观看| 在线观看日韩欧美| 九色亚洲精品在线播放| 天天添夜夜摸| 精品国产乱子伦一区二区三区| 99国产极品粉嫩在线观看| 久久久久久久久久久久大奶| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久精品电影 | 精品国产乱子伦一区二区三区| 亚洲自拍偷在线| 嫁个100分男人电影在线观看| 精品卡一卡二卡四卡免费| 男女下面进入的视频免费午夜 | 成人国语在线视频| 麻豆成人av在线观看| av有码第一页| xxx96com| 男女下面进入的视频免费午夜 | 精品日产1卡2卡| 久久精品91蜜桃| 免费观看人在逋| 国产精品一区二区在线不卡| 日韩精品青青久久久久久| 久久久久久久久久久久大奶| 国产精品亚洲美女久久久| 一进一出好大好爽视频| 精品日产1卡2卡| 女人被躁到高潮嗷嗷叫费观| www.www免费av| 91在线观看av| 国产午夜精品久久久久久| 色av中文字幕| 亚洲 国产 在线| 最近最新免费中文字幕在线| 国产99久久九九免费精品| 日韩 欧美 亚洲 中文字幕| 69精品国产乱码久久久| 欧美成人午夜精品| 欧美在线一区亚洲| 好看av亚洲va欧美ⅴa在| 久久中文看片网| 亚洲成a人片在线一区二区| 国产亚洲av高清不卡| av在线天堂中文字幕| 欧美久久黑人一区二区| 久热这里只有精品99| 很黄的视频免费| 午夜两性在线视频| 两个人视频免费观看高清| 啦啦啦观看免费观看视频高清 | 黄色a级毛片大全视频| 亚洲国产精品999在线| 成年人黄色毛片网站| 搞女人的毛片| 久久久精品欧美日韩精品| 国产片内射在线| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 国产精品98久久久久久宅男小说| 午夜亚洲福利在线播放| 91在线观看av| 成人免费观看视频高清| 精品一区二区三区av网在线观看| 国产蜜桃级精品一区二区三区| av片东京热男人的天堂| 久久人人97超碰香蕉20202| 欧美成人一区二区免费高清观看 | 99riav亚洲国产免费| 中文字幕精品免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 级片在线观看| 欧美黑人精品巨大| 在线av久久热| 此物有八面人人有两片| av福利片在线| 亚洲精品在线美女| 丝袜人妻中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成77777在线视频| 久久人人爽av亚洲精品天堂| 精品国产美女av久久久久小说| 夜夜夜夜夜久久久久| 老司机靠b影院| 老鸭窝网址在线观看| 亚洲午夜理论影院| 久久精品人人爽人人爽视色| 国产99久久九九免费精品| 丰满的人妻完整版| 美女扒开内裤让男人捅视频| 啦啦啦免费观看视频1| 非洲黑人性xxxx精品又粗又长| 精品少妇一区二区三区视频日本电影| 久久亚洲真实| 一边摸一边抽搐一进一出视频| 91成年电影在线观看| 欧美久久黑人一区二区| 黄色女人牲交| 自拍欧美九色日韩亚洲蝌蚪91| 乱人伦中国视频| 好男人在线观看高清免费视频 | 国产精品,欧美在线| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久久亚洲av鲁大| 99精品久久久久人妻精品| 国产视频一区二区在线看| 亚洲七黄色美女视频| 亚洲中文日韩欧美视频| 日韩三级视频一区二区三区| 啦啦啦观看免费观看视频高清 | 国产成人精品久久二区二区免费| 日韩三级视频一区二区三区| 脱女人内裤的视频| 亚洲av成人av| 级片在线观看| 91麻豆精品激情在线观看国产| 精品日产1卡2卡| av中文乱码字幕在线| 中文字幕人妻熟女乱码| 身体一侧抽搐| 青草久久国产| 久久久久久免费高清国产稀缺| 亚洲精华国产精华精| 无限看片的www在线观看| 国产一区二区激情短视频| 欧美久久黑人一区二区| 午夜福利,免费看| 亚洲国产中文字幕在线视频| 亚洲片人在线观看| 亚洲第一欧美日韩一区二区三区| 久久久国产欧美日韩av| 性欧美人与动物交配| 国产精品久久久久久亚洲av鲁大| 非洲黑人性xxxx精品又粗又长| 老司机靠b影院| 大香蕉久久成人网| 女同久久另类99精品国产91| 1024视频免费在线观看| 黄色成人免费大全| 电影成人av| 又黄又爽又免费观看的视频| 久久久久久久精品吃奶| 老司机在亚洲福利影院| 国产精品 国内视频| 国产免费男女视频| 欧美日韩乱码在线| 天天一区二区日本电影三级 | 国产精品1区2区在线观看.| 日本免费a在线| 91在线观看av| 日韩欧美免费精品| 日日爽夜夜爽网站| 欧美黑人精品巨大| 免费在线观看黄色视频的| 亚洲一区二区三区色噜噜| 在线天堂中文资源库| 成人亚洲精品av一区二区| 国产一区二区三区视频了| 亚洲性夜色夜夜综合| 老司机福利观看| 老熟妇仑乱视频hdxx| 电影成人av| 精品高清国产在线一区| 色在线成人网| 大型av网站在线播放| 国产激情久久老熟女| 亚洲 欧美 日韩 在线 免费| 91成年电影在线观看| 亚洲男人的天堂狠狠| 12—13女人毛片做爰片一| 琪琪午夜伦伦电影理论片6080| 久久久久久亚洲精品国产蜜桃av| 又紧又爽又黄一区二区| 国产精品久久久人人做人人爽| 午夜老司机福利片| 亚洲专区字幕在线| 宅男免费午夜| 亚洲人成伊人成综合网2020| 国语自产精品视频在线第100页| 一二三四社区在线视频社区8| 国产单亲对白刺激| 不卡一级毛片| 国产精品av久久久久免费| 正在播放国产对白刺激| 日本免费一区二区三区高清不卡 | 高潮久久久久久久久久久不卡| 一级a爱片免费观看的视频| 99在线视频只有这里精品首页| av天堂在线播放| 精品无人区乱码1区二区| 日韩欧美国产一区二区入口| e午夜精品久久久久久久| 男女午夜视频在线观看| 精品欧美一区二区三区在线| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 色综合亚洲欧美另类图片| 日本三级黄在线观看| 男女做爰动态图高潮gif福利片 | 搡老岳熟女国产| 亚洲欧美精品综合久久99| 国产在线观看jvid| 亚洲avbb在线观看| 日韩欧美一区二区三区在线观看| 两个人看的免费小视频| 亚洲av成人av| 午夜日韩欧美国产| 性色av乱码一区二区三区2| 在线十欧美十亚洲十日本专区| av视频在线观看入口| 国产精品乱码一区二三区的特点 | 老汉色∧v一级毛片| 久久午夜亚洲精品久久| 欧美一区二区精品小视频在线| 亚洲人成电影免费在线| 人人妻人人澡欧美一区二区 | 亚洲视频免费观看视频| 我的亚洲天堂| 午夜福利免费观看在线| 老司机深夜福利视频在线观看| 欧美成人性av电影在线观看| av免费在线观看网站| 中亚洲国语对白在线视频| 久久香蕉精品热| 午夜精品在线福利| 韩国精品一区二区三区| 国产单亲对白刺激| 两个人免费观看高清视频| 亚洲第一电影网av| 国产精品一区二区三区四区久久 | 日韩国内少妇激情av| 大型av网站在线播放| 九色亚洲精品在线播放| 欧美成狂野欧美在线观看| 亚洲精品中文字幕在线视频| 人人妻人人澡人人看| 涩涩av久久男人的天堂| 欧美中文综合在线视频| 日韩欧美三级三区| 啦啦啦韩国在线观看视频| 国产精品日韩av在线免费观看 | 最近最新免费中文字幕在线| 999久久久精品免费观看国产| 69精品国产乱码久久久| 男女午夜视频在线观看| 欧美中文综合在线视频| 99精品欧美一区二区三区四区| 精品国内亚洲2022精品成人| or卡值多少钱| 亚洲最大成人中文| 日韩欧美三级三区| 国产成人精品久久二区二区免费| 久久精品国产亚洲av高清一级| 欧美不卡视频在线免费观看 | av视频在线观看入口| 国产精品免费视频内射| 一区在线观看完整版| 很黄的视频免费| 最好的美女福利视频网| 99久久综合精品五月天人人| 午夜福利欧美成人| 亚洲情色 制服丝袜| 变态另类丝袜制服| 91九色精品人成在线观看| 51午夜福利影视在线观看| 熟妇人妻久久中文字幕3abv| 欧美激情高清一区二区三区| 国产精品国产高清国产av| 久久精品国产亚洲av高清一级| 手机成人av网站| 久久久久九九精品影院| 国产欧美日韩一区二区三区在线| 少妇的丰满在线观看| 午夜福利一区二区在线看| 国产精品永久免费网站| 国产精品二区激情视频| 亚洲av成人一区二区三| 高清黄色对白视频在线免费看| 国产精品免费视频内射| 在线观看免费午夜福利视频| 国产精品久久久av美女十八| 久久午夜综合久久蜜桃| 淫秽高清视频在线观看| 亚洲av五月六月丁香网| 男人操女人黄网站| 涩涩av久久男人的天堂| 黄色丝袜av网址大全| 国产黄a三级三级三级人| 精品久久久精品久久久| 国产精品久久视频播放| 亚洲电影在线观看av| 精品国产一区二区久久| 亚洲精品久久成人aⅴ小说| 精品久久久久久久久久免费视频| 国产精品精品国产色婷婷| 97人妻天天添夜夜摸| 波多野结衣一区麻豆| 欧美日本亚洲视频在线播放| 国产片内射在线| 欧美激情极品国产一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 日韩大码丰满熟妇| 神马国产精品三级电影在线观看 | 波多野结衣一区麻豆| 男女午夜视频在线观看| 正在播放国产对白刺激| 91成年电影在线观看| 午夜福利影视在线免费观看| 国产精品av久久久久免费| 91九色精品人成在线观看| 日韩欧美免费精品| 少妇熟女aⅴ在线视频| 18禁美女被吸乳视频| 欧美国产精品va在线观看不卡| 亚洲七黄色美女视频| 天天一区二区日本电影三级 | 美女免费视频网站| 日韩高清综合在线| 黄色成人免费大全| 久久久久国内视频| 侵犯人妻中文字幕一二三四区| 日本 欧美在线| 精品不卡国产一区二区三区| 亚洲国产欧美一区二区综合| 国产免费男女视频| 国产精品爽爽va在线观看网站 | 两个人看的免费小视频| 少妇被粗大的猛进出69影院| 女人被狂操c到高潮| 午夜两性在线视频| 麻豆国产av国片精品| 91字幕亚洲| 久久久久久亚洲精品国产蜜桃av| 久久久国产欧美日韩av| 色综合欧美亚洲国产小说| 国产又色又爽无遮挡免费看| 性欧美人与动物交配| 男女下面进入的视频免费午夜 | 亚洲七黄色美女视频| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久人妻精品电影| 国产精品乱码一区二三区的特点 | 欧美 亚洲 国产 日韩一| 国产成人精品无人区| 黑人巨大精品欧美一区二区mp4| 久久久久久久久久久久大奶| 亚洲国产日韩欧美精品在线观看 | 亚洲国产高清在线一区二区三 | 男女做爰动态图高潮gif福利片 | 亚洲av五月六月丁香网| av超薄肉色丝袜交足视频| 国产精品国产高清国产av| 狠狠狠狠99中文字幕| 欧美 亚洲 国产 日韩一| 亚洲av第一区精品v没综合| 不卡av一区二区三区| 亚洲一码二码三码区别大吗| 欧美绝顶高潮抽搐喷水| cao死你这个sao货| 女性被躁到高潮视频| 国产精品 国内视频| 在线观看免费视频日本深夜| 欧美乱妇无乱码| 国产欧美日韩一区二区三区在线| 午夜老司机福利片| 韩国精品一区二区三区| 操美女的视频在线观看| 好男人电影高清在线观看| 国产成人一区二区三区免费视频网站| www.自偷自拍.com| 亚洲一区高清亚洲精品| 村上凉子中文字幕在线| 黄色丝袜av网址大全| 嫩草影院精品99| 亚洲欧美日韩另类电影网站| 18禁黄网站禁片午夜丰满| 黄色女人牲交| 美国免费a级毛片| 欧美乱妇无乱码| 国产真人三级小视频在线观看| 欧美最黄视频在线播放免费| 久久久久久久久久久久大奶| 大型黄色视频在线免费观看| 国产精品 欧美亚洲| 亚洲av日韩精品久久久久久密| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产成人免费| 中文字幕人成人乱码亚洲影| 一级毛片高清免费大全| www.www免费av| 此物有八面人人有两片| 九色国产91popny在线| 午夜亚洲福利在线播放| 国产精品综合久久久久久久免费 | 久久婷婷成人综合色麻豆| 可以免费在线观看a视频的电影网站| 久久精品影院6| 国产精品一区二区精品视频观看| 国产精品秋霞免费鲁丝片| 18禁国产床啪视频网站| 亚洲专区字幕在线| av福利片在线| 在线永久观看黄色视频| 国产免费男女视频| 欧美日韩福利视频一区二区| 国产蜜桃级精品一区二区三区| 国产亚洲精品一区二区www| 亚洲色图 男人天堂 中文字幕| 国产又爽黄色视频| 成人精品一区二区免费| 日韩高清综合在线| 巨乳人妻的诱惑在线观看| 亚洲精品av麻豆狂野| 欧美成人一区二区免费高清观看 | 日韩精品免费视频一区二区三区| 一进一出抽搐动态| 日本黄色视频三级网站网址| 久9热在线精品视频| 欧美日本亚洲视频在线播放| 高清在线国产一区| 国产三级黄色录像| 天天一区二区日本电影三级 | 国产视频一区二区在线看| 久久香蕉激情| 日韩成人在线观看一区二区三区| 国内久久婷婷六月综合欲色啪| 亚洲成人国产一区在线观看| 精品久久久久久久人妻蜜臀av | 久久性视频一级片| www.自偷自拍.com| 亚洲欧美精品综合久久99| 91麻豆精品激情在线观看国产| 亚洲色图综合在线观看| 香蕉丝袜av| 侵犯人妻中文字幕一二三四区| 99精品久久久久人妻精品| 亚洲国产毛片av蜜桃av|