• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    乳酸菌誘導(dǎo)線粒體生物發(fā)生對(duì)綿羊肌纖維特性和肉品質(zhì)的影響

    2021-09-02 12:59:46白艷蘋侯艷茹趙麗華劉瑞軍敖特恒格日樂
    關(guān)鍵詞:蘇尼特肌纖維乳酸菌

    白艷蘋,侯艷茹,蘇 琳,孫 冰,竇 露,趙麗華,劉瑞軍,敖特恒格日樂,靳 燁

    乳酸菌誘導(dǎo)線粒體生物發(fā)生對(duì)綿羊肌纖維特性和肉品質(zhì)的影響

    白艷蘋1,侯艷茹1,蘇 琳1,孫 冰1,竇 露1,趙麗華1,劉瑞軍2,敖特恒格日樂3,靳 燁1※

    (1. 內(nèi)蒙古農(nóng)業(yè)大學(xué)食品科學(xué)與工程學(xué)院,呼和浩特 010018;2. 內(nèi)蒙古富川飼料科技股份有限公司,巴彥淖爾 015000;3. 烏拉特中旗農(nóng)牧和科技局,巴彥淖爾 015000)

    為了研究乳酸菌對(duì)蘇尼特羊肌纖維特性和肉品質(zhì)的影響及其作用機(jī)理,選擇12只、3月齡健康無病的純種蘇尼特羊,隨機(jī)分為2組:對(duì)照組(基礎(chǔ)日糧)和乳酸菌組(基礎(chǔ)日糧、2 g/只(植物乳桿菌添加量為3×1010cfu/g)),進(jìn)行為期90 d的飼喂試驗(yàn)。屠宰后取其背最長(zhǎng)肌,利用ATPase組織化學(xué)染色法和實(shí)時(shí)熒光定量技術(shù)對(duì)肌纖維特性、肌球蛋白重鏈(Myosin Heavy Chains,)和線粒體生物發(fā)生相關(guān)基因的mRNA表達(dá)量進(jìn)行測(cè)定,此外測(cè)定代謝酶活力、生長(zhǎng)性能和肉品質(zhì),探究肌纖維特性存在差異的原因。結(jié)果表明:乳酸菌顯著提高了肌肉排酸24 h的pH值(<0.01),降低肉的黃度值(<0.05)和蒸煮損失(<0.01)。肌纖維分析結(jié)果顯示乳酸菌顯著提高了ⅡA型肌纖維的數(shù)量比例(<0.01),降低了ⅡB型肌纖維的數(shù)量比例(<0.01),同時(shí)(<0.05)、(<0.01)、(<0.01)mRNA表達(dá)量均顯著提高。乳酸菌顯著提高了琥珀酸脫氫酶(Succinate Dehydrogenase,SDH)的酶活力(<0.05),降低了乳酸脫氫酶(Lactic Dehydrogenase,LDH)的酶活力(<0.05)。此外,乳酸菌顯著提高了腺苷酸活化蛋白激酶1(AMP-activated protein kinase1,1)(<0.01)、沉默信息調(diào)節(jié)因子1(Sirtuin1,1)(<0.01)和細(xì)胞色素C氧化酶Ⅳ(Cytochrome c oxidase,)(<0.05)mRNA表達(dá)量。綜上所述,日糧添加乳酸菌可能通過提高11和mRNA表達(dá)量促進(jìn)骨骼肌線粒體生物發(fā)生,增強(qiáng)肌肉的氧化代謝能力,促進(jìn)蘇尼特羊的肌纖維類型發(fā)生轉(zhuǎn)化,進(jìn)而改善肉品質(zhì),研究結(jié)果為改善綿羊的肉用品質(zhì)提供參考。

    肉;品質(zhì)控制;乳酸菌;線粒體生物發(fā)生;肌纖維特性;蘇尼特羊

    0 引 言

    基于國(guó)家限牧政策的實(shí)施,內(nèi)蒙古地區(qū)蘇尼特羊出現(xiàn)不同程度的肉品質(zhì)劣化現(xiàn)象,由此引發(fā)的肉品質(zhì)改善問題成為亟待解決的重點(diǎn)問題[1]。肌纖維是骨骼肌的基本結(jié)構(gòu)單位,成年骨骼肌顯示出很好的可塑性,可以響應(yīng)無數(shù)外部刺激并按照以下順序在不同肌纖維類型之間進(jìn)行轉(zhuǎn)化:I?IIa?IIx?IIb[2]。不同類型肌纖維的功能特性截然不同,會(huì)直接影響到畜禽肉品質(zhì),所以調(diào)控肌纖維類型轉(zhuǎn)化成為提高肉品質(zhì)的重要手段。

    日糧中的營(yíng)養(yǎng)物質(zhì)經(jīng)消化吸收后參與到機(jī)體能量和蛋白質(zhì)代謝中,進(jìn)而影響肌肉發(fā)育和肌纖維類型的轉(zhuǎn)化和組成。乳酸菌作為畜禽飼料添加劑,在提高飼料的營(yíng)養(yǎng)價(jià)值、動(dòng)物的生長(zhǎng)性能以及改善肉品質(zhì)方面均顯示出良好特性[3-4]。近年來也有研究顯示,乳酸菌在促進(jìn)肌纖維類型轉(zhuǎn)化、改善肌肉力量和肌肉抗疲勞能力方面表現(xiàn)出很好的作用潛力,但其機(jī)制仍不明確[5],且少有關(guān)于乳酸菌對(duì)綿羊肌肉微觀結(jié)構(gòu)影響的研究,因此利用組織化學(xué)法分析乳酸菌與肌纖維類型轉(zhuǎn)化信號(hào)分子之間的關(guān)系至關(guān)重要。

    線粒體是骨骼肌細(xì)胞中主要的ATP合成和能量轉(zhuǎn)換細(xì)胞器,其生物發(fā)生過程與肌纖維的氧化能力和類型轉(zhuǎn)化密切相關(guān)[6-7]。最近一項(xiàng)研究表明,給老年大鼠飼喂乳桿菌后會(huì)增強(qiáng)大鼠的運(yùn)動(dòng)能力,降低葡萄糖和胰島素水平,從而激活腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)[8]。AMPK是調(diào)控線粒體生物發(fā)生的關(guān)鍵因子,對(duì)線粒體生物發(fā)生有促進(jìn)作用?;诖吮驹囼?yàn)認(rèn)為乳酸菌可能通過激活A(yù)MPK信號(hào)通路促進(jìn)骨骼肌線粒體生物發(fā)生,進(jìn)而改變肌纖維特性。

    因此,本研究以蘇尼特羊?yàn)樵囼?yàn)動(dòng)物,通過測(cè)定肌纖維特性、肌肉相關(guān)代謝酶的活力和肉品質(zhì)指標(biāo),旨在研究日糧添加乳酸菌對(duì)肌纖維特性和肉品質(zhì)的影響,同時(shí)測(cè)定線粒體生物發(fā)生中關(guān)鍵基因表達(dá)量,進(jìn)一步探究乳酸菌調(diào)節(jié)肌纖維類型轉(zhuǎn)化的內(nèi)在機(jī)理,為提高綿羊的生產(chǎn)效率提供技術(shù)參考。

    1 材料與方法

    1.1 試驗(yàn)設(shè)計(jì)

    選取3月齡,平均體質(zhì)量為(19.77±4.05)kg,健康無病的純種蘇尼特羊共12只(產(chǎn)自內(nèi)蒙古巴彥淖爾市烏拉特中旗),采用單因素完全隨機(jī)化試驗(yàn),將蘇尼特羊隨機(jī)分為對(duì)照組和乳酸菌組,每組6只。對(duì)照組飼喂基礎(chǔ)日糧(以玉米、精飼料為主),不含任何抗生素,基礎(chǔ)日糧組成及營(yíng)養(yǎng)水平見表1。乳酸菌組在對(duì)照組日糧的基礎(chǔ)上補(bǔ)充植物乳桿菌(3×1010cfu/g),根據(jù)張?zhí)礻朳9]的研究確定其添加水平為2 g/只,每日飼喂1次。試驗(yàn)期自由活動(dòng)、飲水,預(yù)試驗(yàn)期7 d,試驗(yàn)期90 d。

    表1 基礎(chǔ)日糧組成及營(yíng)養(yǎng)水平

    注:維生素和礦物質(zhì)預(yù)混料中包括維生素A、維生素D3、維生素E、維生素K3、維生素B12、硫酸亞鐵、硫酸鋅、硫酸銅、硫酸錳等。

    Note: Vitamin and mineral premix includes vitamin A, vitamin D3, vitamin E, vitamin K3, vitamin B12, ferrous sulfate, zinc sulfate, copper sulfate, manganese sulfate, etc.

    1.2 試驗(yàn)試劑

    植物乳桿菌,山東寶來利來生物工程股份有限公司;Trizma?base,上海百研生物科技有限公司;三磷酸腺苷二鈉鹽,北京酷來搏科技有限公司;異戊烷,阿法埃莎(天津)化學(xué)有限公司;RNAiso Plus、PrimeScriptTM RT reagent Kit with gDNA Eraser、TB GreenTM Premix Ex TaqTM Ⅱ,大連寶生物工程有限公司;乳酸脫氫酶(Lactate Dehydrogenase,LDH)、蘋果酸脫氫酶(Malate Dehydrogenase,MDH)、琥珀酸脫氫酶(Succinate Dehydrogenase,SDH)試劑盒,南京建成生物工程研究所。

    1.3 儀器與設(shè)備

    MEV冰凍切片機(jī),德國(guó)SLEE公司;Leica 4000B顯微鏡,德國(guó)徠卡公司;Eppendorf 5417冷凍離心機(jī),德國(guó)Eppendorf生物公司;Biometra PCR擴(kuò)增儀,北京北方華奧貿(mào)易有限責(zé)任公司;LightCycler?96實(shí)時(shí)熒光定量PCR儀,羅氏診斷產(chǎn)品(上海)有限公司;SYNERGY H1多功能微孔板檢測(cè)儀,美國(guó)Bio-Tek Instruments公司;UV-1800型紫外/可見分光光度計(jì),上海美譜達(dá)儀器有限公司。

    1.4 測(cè)定指標(biāo)與方法

    1.4.1 肉品質(zhì)的測(cè)定

    屠宰45 min和靜置排酸24 h后分別測(cè)定蘇尼特羊的pH值,記為pH0和pH24。同時(shí)在屠宰1 h內(nèi)測(cè)定肌肉的亮度值()、紅度值()、黃度值()、剪切力值和蒸煮損失。

    1.4.2 肌纖維組織學(xué)特性的測(cè)定

    屠宰后迅速取其背最長(zhǎng)肌,沿肌纖維方向進(jìn)行切割,經(jīng)脫水、速凍,制成肌纖維樣品。將樣品包埋后進(jìn)行冰凍切片(厚度為10m),利用ATPase染色法進(jìn)行染色[10]。晾干后在顯微鏡下觀察,選取清晰視野進(jìn)行采片,保證每只羊統(tǒng)計(jì)的肌纖維總數(shù)達(dá)到1 000根。使用Leica Qwin V3纖維彩圖分析軟件統(tǒng)計(jì)分析不同類型肌纖維的數(shù)量、直徑和橫截面積。

    1.4.3 基因表達(dá)量的測(cè)定

    樣品的采集:宰后45 min內(nèi),在蘇尼特羊背最長(zhǎng)肌上取約100 mg肌肉放入無酶無菌凍存管中,保存于-80 ℃條件下,用于總RNA的提取。

    RNA的提?。翰捎肨rizol法提取肌肉中的總RNA,并用質(zhì)量分?jǐn)?shù)1%的瓊脂糖凝膠電泳和微量分光光度計(jì)檢測(cè)其完整性、濃度和純度。

    反轉(zhuǎn)錄:將提取的總RNA按照PrimeScriptTM RT reagent Kit with gDNA Eraser指導(dǎo)說明書進(jìn)行反轉(zhuǎn)錄,合成cDNA。

    實(shí)時(shí)熒光定量PCR(Real Time PCR):以cDNA為模板,利用實(shí)時(shí)熒光定量PCR試劑盒進(jìn)行Real Time PCR反應(yīng)。PCR 程序?yàn)椋?5 ℃預(yù)變性30 s;95 ℃變性5 s,57 ℃退火30 s,72 ℃延伸30 s,共40個(gè)循環(huán);72 ℃延伸10 min。擴(kuò)增結(jié)束后根據(jù)溶解曲線評(píng)估引物特異性,以甘油醛-3-磷酸脫氫酶(Glyceraldehyde-3-Phosphate Dehydrogenase,)作為內(nèi)參基因,采用2-ΔΔCt法對(duì)數(shù)據(jù)進(jìn)行處理。引物均由上海生工公司合成,引物序列見表2。

    1.4.4 代謝酶活力的測(cè)定

    取0.5 g背最長(zhǎng)肌樣品,加入生理鹽水制成10%的勻漿液,冰浴勻漿(3 500 r/min,30 s)后4 ℃離心(4 000 r/min,10 min),取上清液,按照試劑盒說明書對(duì)LDH、MDH和SDH活力進(jìn)行測(cè)定。

    1.5 數(shù)據(jù)統(tǒng)計(jì)分析

    利用SPASS19.0軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析(ANOVA)。所有數(shù)據(jù)均用平均值±標(biāo)準(zhǔn)差表示,以<0.05和<0.01為顯著和極顯著性檢驗(yàn)標(biāo)準(zhǔn)。

    表2 目的基因及內(nèi)參基因引物

    2 結(jié)果與分析

    2.1 日糧添加乳酸菌對(duì)蘇尼特羊肌纖維組織學(xué)特性的影響

    2.1.1 肌纖維ATPase染色結(jié)果

    根據(jù)不同肌纖維內(nèi)ATPase的酸堿穩(wěn)定性的差異,利用ATPase組織化學(xué)染色法對(duì)蘇尼特羊背最長(zhǎng)肌的肌纖維進(jìn)行染色,可以將肌纖維可分為Ⅰ型(慢速氧化型,黑色)、ⅡA型(快速氧化型,白色)和ⅡB型(快速酵解型,棕色),結(jié)果如圖1所示。

    2.1.2 日糧添加乳酸菌對(duì)蘇尼特羊肌纖維數(shù)量比例的影響

    由圖2可知,蘇尼特羊背最長(zhǎng)肌中肌纖維以ⅡB型為主,氧化型肌纖維占40%以上,日糧添加乳酸菌后不同類型肌纖維的數(shù)量比例在兩組間存在差異,其中乳酸菌組ⅡA型肌纖維的數(shù)量比例極顯著高于對(duì)照組(<0.01),ⅡB型肌纖維的數(shù)量比例極顯著低于對(duì)照組(<0.01),而Ⅰ型肌纖維在兩組間無顯著性差異(>0.05),說明肌纖維的數(shù)量比例受到乳酸菌的影響。據(jù)報(bào)道植物源乳酸菌可以顯著提高生長(zhǎng)育肥豬背最長(zhǎng)肌中氧化型肌纖維數(shù)量比,相應(yīng)地降低酵解型肌纖維數(shù)量比例[11]。Chen等[5]研究也發(fā)現(xiàn)長(zhǎng)期補(bǔ)充植物乳桿菌TWK10可以增加小鼠的肌肉質(zhì)量和腓腸肌中氧化型肌纖維的數(shù)量,且具有劑量依賴性。由此可知日糧添加乳酸菌對(duì)改變蘇尼特羊背最長(zhǎng)肌的肌纖維組成有顯著作用,可以促進(jìn)肌纖維由酵解型向氧化型轉(zhuǎn)化。

    2.1.3 日糧添加乳酸菌對(duì)蘇尼特羊肌纖維直徑和橫截面積的影響

    肌纖維的數(shù)量在動(dòng)物出生前基本確定,出生后肌肉組織的發(fā)育主要體現(xiàn)在現(xiàn)有肌纖維的增粗和延長(zhǎng)。由圖3所示,蘇尼特羊的平均肌纖維直徑和橫截面積在兩組間均無顯著性差異(>0.05),說明日糧添加乳酸菌對(duì)背最長(zhǎng)肌的肌纖維特性無顯著影響。張應(yīng)漢等[12]研究顯示,給小鼠灌胃鼠李糖乳桿菌沒有改變其股四頭肌的肌纖維橫截面積,對(duì)小鼠的生長(zhǎng)發(fā)育沒有顯著影響,然而,還有試驗(yàn)表明長(zhǎng)期日糧補(bǔ)充羅伊氏乳桿菌可以顯著降低豬背最長(zhǎng)肌的肌纖維直徑和橫截面積[13]??梢娙樗峋鷮?duì)肌纖維特性的影響各不相同,這取決于所使用的乳酸菌的種類、使用劑量和時(shí)間、試驗(yàn)動(dòng)物、日糧組成及與其他膳食補(bǔ)充劑的相互作用[14]。

    2.2 日糧添加乳酸菌對(duì)蘇尼特羊MyHC mRNA相對(duì)表達(dá)量的影響

    免疫組織化學(xué)研究表明,根據(jù)肌球蛋白重鏈(Myosin Heavy Chains,)的類型可將肌纖維分為Ⅰ型(慢速氧化型),Ⅱa型(快速氧化型),Ⅱx型(中間型)和Ⅱb型(快速酵解型)[15]。由圖4可知,乳酸菌組和mRNA表達(dá)量極顯著高于對(duì)照組(<0.01),mRNA表達(dá)量顯著高于對(duì)照組(<0.05),而mRNA表達(dá)量無顯著差異(>0.05)。這說明mRNA表達(dá)量對(duì)肌纖維的分型結(jié)果與ATPase染色法基本一致,日糧添加乳酸菌對(duì)提高蘇尼特羊背最長(zhǎng)肌中氧化型肌纖維的比例有顯著作用。李敏華[16]的研究也顯示,乳酸菌可以顯著增加育肥豬背最長(zhǎng)肌中mRNA表達(dá)量,與本文結(jié)果一致。

    2.3 日糧添加乳酸菌對(duì)蘇尼特羊代謝酶活力的影響

    肌肉的代謝類型可大致分為氧化型、酵解型和中間型,相同條件下,肌肉處于何種代謝類型與肌肉自身狀況有關(guān)。肌肉中LDH、MDH和SDH活力能在一定程度上反映肌肉能量代謝情況。LDH是參與糖酵解途徑的重要酶類,其活力可反映肌肉無氧酵解的活躍程度[17]。MDH是合成蘋果酸的關(guān)鍵酶之一,也是三羧酸循環(huán)中的一種酶,廣泛存在于線粒體上[18]。與參與三羧酸循環(huán)的其他酶類不同,SDH是唯一結(jié)合到線粒體內(nèi)膜的多亞基酶,可為真核細(xì)胞線粒體呼吸鏈提供電子[19]。MDH和SDH均為有氧代謝途徑關(guān)鍵酶,其活力可反映肌肉的有氧代謝程度。

    如表3所示,日糧添加乳酸菌可以顯著降低蘇尼特羊背最長(zhǎng)肌的LDH活力(<0.05),顯著提高SDH活力(<0.05),但對(duì)MDH活力無顯著影響(>0.05)。該試驗(yàn)結(jié)果說明乳酸菌能夠提高肌肉的氧化代謝水平,這與乳酸菌組氧化型肌纖維比例較高,酵解型肌纖維比例較低一致。

    表3 日糧添加乳酸菌對(duì)蘇尼特羊代謝酶活力的影響

    2.4 日糧添加乳酸菌對(duì)蘇尼特羊生長(zhǎng)性能和肉品質(zhì)的影響

    從表4可以看出,兩組蘇尼特羊的初始體質(zhì)量無顯著差異(>0.05),飼喂90 d后,與對(duì)照組相比,日糧添加乳酸菌對(duì)蘇尼特羊的末體質(zhì)量、平均日增質(zhì)量均無顯著影響(>0.05),說明日糧添加乳酸菌對(duì)蘇尼特羊的生長(zhǎng)性能無明顯作用。

    表4 日糧添加乳酸菌對(duì)蘇尼特羊生長(zhǎng)性能和肉品質(zhì)的影響

    pH值是評(píng)價(jià)肉品質(zhì)的重要指標(biāo),宰后肌肉pH值的下降不僅會(huì)破壞水與蛋白質(zhì)的結(jié)合,而且還會(huì)影響肌肉蛋白特性進(jìn)而對(duì)肉質(zhì)產(chǎn)生不利影響[20]。由表4可知,兩組的初始pH值無顯著差異(>0.05),經(jīng)靜置排酸24 h后,乳酸菌組的pH24值極顯著高于對(duì)照組(<0.01),這說明日糧添加乳酸菌可以降低宰后肌肉pH值的下降速率。色澤是直接影響消費(fèi)者購(gòu)買意愿的重要指標(biāo),乳酸菌組的b值顯著低于對(duì)照組(<0.05),而L值和a值在兩組間無統(tǒng)計(jì)學(xué)差異(>0.05)。這與Rabelo等[21]試驗(yàn)結(jié)果一致,即用乳酸菌接種玉米青貯可以顯著降低綿羊肌肉的b值。剪切力值在兩組間無顯著性差異(>0.05),表明日糧添加乳酸菌對(duì)肌肉嫩度無顯著影響。乳酸菌組的蒸煮損失極顯著低于對(duì)照組(<0.01),說明日糧添加乳酸菌可以提高蘇尼特羊肌肉的系水力,增加肉的多汁性。Dowarah等[22]同樣研究發(fā)現(xiàn),飼糧中添加乳酸菌能提高宰后豬肉的系水力。

    肌纖維的特性和類型對(duì)肉品質(zhì)形成的重要性不言而喻[23]。乳酸菌組的pH24值極顯著高于對(duì)照組(<0.01),這可能是因?yàn)槿樗峋M的氧化型肌纖維比例較高。氧化型肌纖維由于糖原含量低,糖酵解速率慢,因此宰后乳酸的積累慢,導(dǎo)致pH值下降速率也較慢[24]。動(dòng)物屠宰后,肌紅蛋白成為肉的主要呈色物質(zhì),其含量和所處的化學(xué)狀態(tài)決定著肉的色澤[25]。由于氧化型肌纖維的細(xì)胞色素和肌紅蛋白含量較高,因此氧化型肌纖維越多肌肉色澤越好[26]。本試驗(yàn)中乳酸菌組b值顯著低于對(duì)照組(<0.05),這可能與乳酸菌組Ⅱa型肌纖維比例較高有關(guān)。同時(shí)肌肉氧化后導(dǎo)致氧合肌紅蛋白變?yōu)楦哞F肌紅蛋白,肉色變差,而植物乳桿菌具有抗氧化作用,因此能在一定程度上抑制該氧化進(jìn)程,從而發(fā)揮護(hù)色作用。研究顯示,Ⅰ型肌纖維的數(shù)量與滴水損失呈負(fù)相關(guān)[27]。本試驗(yàn)中乳酸菌組蒸煮損失極顯著低于對(duì)照組(<0.01),同時(shí)mRNA表達(dá)量顯著高于對(duì)照組(<0.05),與上述結(jié)果相似。

    2.5 日糧添加乳酸菌對(duì)蘇尼特羊骨骼肌線粒體生物發(fā)生的影響

    線粒體是半自主遺傳細(xì)胞器,其生物發(fā)生受到線粒體DNA和核DNA的雙重調(diào)控。當(dāng)細(xì)胞核接收到外部環(huán)境刺激的信號(hào)時(shí),以AMPK為傳遞者,與沉默信息調(diào)節(jié)因子1(Sirtuin1,SIRT1)進(jìn)行正反饋循環(huán)[28],進(jìn)而激活過氧化物酶體增殖物激活受體共激活因子1-(Peroxisome proliferator-activated receptor gamma co-activator 1-alpha,PGC-1),促進(jìn)線粒體生物發(fā)生[29]。此外,AMPK也可直接調(diào)控細(xì)胞核的PGC-1基因產(chǎn)生第一種生物發(fā)生反應(yīng)的控制蛋白質(zhì)PGC-1,PGC-1蛋白繼續(xù)調(diào)控細(xì)胞核基因制造各種核呼吸因子(Nuclear Respiratory Factors,NRFs),刺激線粒體轉(zhuǎn)錄因子A(Mitochondrial Transcription Factor A,TFAM)的表達(dá),TFAM作為調(diào)控因子,調(diào)控線粒體自身DNA的復(fù)制和基因轉(zhuǎn)錄,從而啟動(dòng)線粒體蛋白的協(xié)同表達(dá)[30]。因此,本試驗(yàn)對(duì)AMPK-SIRT1-PGC-l信號(hào)軸上基因的mRNA表達(dá)量進(jìn)行測(cè)定,研究乳酸菌對(duì)蘇尼特羊骨骼肌線粒體生物發(fā)生的影響。

    如圖5所示,與對(duì)照組相比,乳酸菌組1、1mRNA表達(dá)量極顯著升高(<0.01),mRNA表達(dá)量顯著升高(<0.05),其他線粒體生物發(fā)生的關(guān)鍵調(diào)節(jié)因子差異不顯著(>0.05)。AMPK是介導(dǎo)線粒體生物發(fā)生的一個(gè)關(guān)鍵因素,Hor等[8]研究發(fā)現(xiàn),給老年大鼠飼喂乳酸桿菌可以通過降低葡萄糖和胰島素水平激活A(yù)MPK,與本試驗(yàn)研究結(jié)果一致。這說明乳酸菌有望成為AMPK磷酸化的誘導(dǎo)因子。SIRT1是機(jī)體內(nèi)另一重要能量感受器,當(dāng)骨骼肌中SIRT1表達(dá)量升高時(shí)線粒體生物發(fā)生增加,肌纖維類型發(fā)生轉(zhuǎn)變[31]。相關(guān)研究表明,短乳桿菌T2102可以促進(jìn)SIRT1表達(dá)[32]。Jang等[33]研究也發(fā)現(xiàn),給雄性小鼠飼喂清酒乳桿菌可以誘導(dǎo)AMPK磷酸化,促進(jìn)SIRT1、PGC-1的表達(dá)。PGC-1是銜接線粒體生物發(fā)生和肌纖維類型轉(zhuǎn)化的關(guān)鍵樞紐。本試驗(yàn)中對(duì)照組-1mRNA表達(dá)量為1.18,乳酸菌組為1.81,差異雖不顯著但有增高趨勢(shì)(=0.061)。可見,乳酸菌可能作用于AMPK-SIRT1-PGC-l信號(hào)通路。此外,細(xì)胞色素C氧化酶Ⅳ(Cytochrome c oxidase,COXⅣ)是反映組織有氧氧化能力的標(biāo)志酶,位于線粒體內(nèi)膜上,其活力的高低決定了線粒體生物發(fā)生水平,因此本試驗(yàn)對(duì)該基因進(jìn)行了測(cè)定,結(jié)果顯示,對(duì)照組mRNA表達(dá)量為1.44,乳酸菌組為2.27,顯著高于對(duì)照組(<0.05),該結(jié)果說明日糧添加乳酸菌對(duì)提高蘇尼特羊骨骼肌的線粒體生物發(fā)生水平有積極作用。綜上所述,乳酸菌介導(dǎo)AMPK-SIRT1-PGC-l信號(hào)通路,刺激TFAM的表達(dá),促進(jìn)mtDNA的復(fù)制和基因轉(zhuǎn)錄,進(jìn)而激活線粒體內(nèi)膜上的COXⅣ,增強(qiáng)骨骼肌的線粒體生物發(fā)生。

    骨骼肌的線粒體生物發(fā)生與肌纖維的氧化能力和類型轉(zhuǎn)化密切相關(guān)。在氧化代謝較活躍的氧化型肌纖維中線粒體的含量相對(duì)較高,通過增加肌肉線粒體DNA含量可以促進(jìn)-1和mRNA的表達(dá),提高線粒體生物發(fā)生,同時(shí)增加Ⅰ型肌纖維比例,降低Ⅱb型肌纖維的比例[6]。說明氧化型肌纖維所占比例較高的肌肉其線粒體生物發(fā)生程度也較高,通過增加線粒體生物發(fā)生促進(jìn)肌纖維類型轉(zhuǎn)化有望成為改善肉品質(zhì)的新方法。據(jù)報(bào)道每日給大鼠飼喂短雙歧桿菌B-3可以增加比目魚肌的肌肉質(zhì)量并激活A(yù)MPK,促使PGC-l和COX高表達(dá),誘導(dǎo)骨骼肌線粒體生物發(fā)生,同時(shí)增加線粒體能量代謝率和氧化型肌纖維比例[34]。該結(jié)論與本試驗(yàn)結(jié)果相似,即乳酸菌通過提高AMPK、SIRT1和COXⅣ的基因表達(dá)量,促進(jìn)線粒體生物發(fā)生,提高肌肉的氧化代謝能力,進(jìn)而促進(jìn)氧化型肌纖維的形成。乳酸菌作為一種腸道益生菌,對(duì)維持腸道微生態(tài)平衡至關(guān)重要,近年來也逐漸有研究表明腸肌軸可能存在,最佳的腸道微生物群組成可能會(huì)影響肌肉蛋白質(zhì)的合成,線粒體的生物發(fā)生和功能以及肌肉糖原的儲(chǔ)存,甚至改變肌纖維組成,因此未來可以對(duì)該方向展開深入研究[35-36]。

    3 結(jié) 論

    日糧添加乳酸菌提高了蘇尼特羊背最長(zhǎng)肌的氧化代謝水平,使肌纖維由酵解型向氧化型轉(zhuǎn)化,降低肉的蒸煮損失(<0.01),影響色澤(<0.05),延緩宰后pH值的下降(<0.01),對(duì)肉品質(zhì)有明顯改善作用。進(jìn)一步測(cè)定骨骼肌線粒體生物發(fā)生水平發(fā)現(xiàn),日糧添加乳酸菌使1、1、mRNA表達(dá)量升高(<0.05),這可能是導(dǎo)致肌纖維類型的轉(zhuǎn)化原因。通過激活線粒體生物發(fā)生促進(jìn)肌纖維類型轉(zhuǎn)化是未來改善肉品質(zhì)的重要研究方向,亦具有廣闊的應(yīng)用前景。

    [1] 永勇,劉興能,鄧衛(wèi)東. 淺析山區(qū)山羊“放牧+圈養(yǎng)”的飼養(yǎng)模式[J]. 中國(guó)畜禽種業(yè),2019,15(4):136-137.

    [2] Duan Y, Li F, Tan B, et al. Metabolic control of myofibers: Promising therapeutic target for obesity and type 2 diabetes[J]. Obesity Reviews, 2017, 18(6): 647-659.

    [3] Rabelo C, Basso F, Mcallister T, et al. Influence of Lactobacillus buchneri as silage additive and forage: Concentrate ratio on the growth performance, fatty acid profile in longissimus muscle, and meat quality of beef cattle[J]. Canadian Journal of Animal Science, 2016, 96(4): 550-562.

    [4] Vieco-Saiz N, Belguesmia Y, Raspoet R, et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production[J/OL]. Frontiers in Microbiology, 2019, 10. [2019-06-01]. https://schlr.cnki.net/zn/Detail/index/ SJPD_03/SJPDFB6F2FBCCF942F154206515E9E113D70

    [5] Chen Y, Wei L, Chiu Y, et al. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice[J/OL]. Nutrients, 2016, 8(4). [2016-04-07]. https://schlr.cnki.net/zn/Detail/index/SJPD_03/ SJPDB522176C3F9DBCE31A4DAA2384F76606

    [6] Zhang Y, Yu B, Yu J, et al. Butyrate promotes slow-twitch myofiber formation and mitochondrial biogenesis in finishing pigs via inducing specific microRNAs and PGC-1 alpha expression[J]. Journal of Animal Science, 2019, 97(8): 3180-3192.

    [7] Chen X, Xiang L, Jia G, et al. Leucine regulates slow-twitch muscle fibers expression and mitochondrial function by Sirt1/AMPK signaling in porcine skeletal muscle satellite cells[J]. Animal Science Journal, 2019, 90(2): 255-263.

    [8] Hor Y, Ooi C, Khoo B, et al. Lactobacillus strain alleviated aging symptoms and aging-induced metabolic disorders in aged rats[J]. Journal of Medicinal Food, 2019, 22(1): 1-13.

    [9] 張?zhí)礻枺旌yi,曾勇慶,等. 飼喂不同劑量乳酸菌液對(duì)肥育豬肉質(zhì)特性及抗氧化性的影響[J]. 養(yǎng)豬,2014(1):41-43.

    [10] Brooke M H, Kaiser K K. Three “myosin adenosine triphosphatase” systems: The nature of their pH lability and sulfhydryl dependence[J]. Journal of Histochemistry & Cytochemistry, 1970, 18(9): 670-672.

    [11] 梁雅妍. 植物源乳酸菌對(duì)生長(zhǎng)肥育豬肌纖維組織特性及肉品質(zhì)的影響[D]. 廣州:華南農(nóng)業(yè)大學(xué),2008.

    Liang Yayan. Research on Meat Quality and Myofibers Characteristics of Growing Pigs with the Treatment of Lactobacilli[D]. Guangzhou: South China Agricultural University, 2008. (in Chinese with English abstract)

    [12] 張應(yīng)漢,馮旭紅,劉文花,等. 豬肌抑素前肽聯(lián)合乳酸菌對(duì)小鼠肌肉發(fā)育和免疫性能影響[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2021,41(2):50-58.

    Zhang Yinghan, Feng Xuhong, Liu Wenhua, et al. Effects of porcine MSTN propeptide combined with lactobacillus on muscle development and immune function in mice[J]. Journal of Shanxi Agricultural University Natural Science Edition, 2021, 41(2): 50-58. (in Chinese with English abstract)

    [13] Tian Z, Cui Y, Lu H, et al. Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs[J/OL]. Meat Science, 2021, 171. [2020-10-19]. https://schlr.cnki.net/ zn/Detail/index/SJESLAST/SJES7126E8C5CEA92088E78E8C5F4A271D39.

    [14] Meng Q, Yan L, Ao X, et al. Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs[J]. Journal of Animal Science, 2010, 88(10): 3320-3326.

    [15] Nakazato K, Tsutaki A. Regulatory mechanisms of muscle fiber types and their possible interactions with external nutritional stimuli[J/OL]. Journal of Physical Fitness & Sports Medicine, 2012, 1(4). [2012-06-15]. https://schlr.cnki.net/zn/Detail/index/SJJSLAST/SJJSFFB3B8464C99A58F749BD863326700A4

    [16] 李敏華. 微生態(tài)制劑對(duì)育肥豬生長(zhǎng)性能及肉品質(zhì)的影響[D]. 太谷:山西農(nóng)業(yè)大學(xué),2016.

    Li Minhua. Effect of Probiotics on Growth Performance and Meat Quality of Finishing Pigs[D]. Taigu: Shanxi Agricultural University, 2016. (in Chinese with English abstract)

    [17] Tokinoya K, Ishikura K, Yoshida Y, et al. LDH isoenzyme 5 is an index of early onset muscle soreness during prolonged running[J]. The Journal of sports medicine and physical fitness, 2020, 60(7): 1020-1026.

    [18] Naseri N, Bonica J, Xu H, et al. Novel metabolic abnormalities in the tricarboxylic acid cycle in peripheral cells from Huntington's disease patients[J/OL]. Plos One, 2016, 11(9). [2016-09-04]. https://schlr.cnki.net/zn/Detail/ index/SJPD_03/SJPDFCF9F0B098F63C8301104EC020E0AB39

    [19] Wang Z, Ren X, Gao B, et al. Comparison of carbohydrate metabolism key enzymes in different generations of growth-selected Portunus trituberculatus families[J]. Aquaculture, 2017, 477: 6-14.

    [20] 侯旭,張一敏,毛衍偉,等. 宰后盆骨吊掛方式及成熟時(shí)間對(duì)黃牛牛肉品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):251-256.

    Hou Xu, Zhang Yimin, Mao Yanwei, et al. Effect of pelvic suspension and aging time on meat quality of Chinese yellow cattle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 251-256. (in Chinese with English abstract)

    [21] Rabelo C, Lara E, Basso F, et al. Growth performance of finishing feedlot lambs fed maize silage inoculated with bacillus subtilis and lactic acid bacteria[J]. Journal of Agricultural Science, 2018, 156(6): 839-847.

    [22] Dowarah R, Verma A K, Agarwal N, et al. Efficacy of species-specific probiotic pediococcus acidilactici FT28 on blood biochemical profile, carcass traits and physicochemical properties of meat in fattening pigs[J]. Research in Veterinary Science, 2018, 117: 60-64.

    [23] Choi Y M, Hwang S, Lee K. Comparison of muscle fiber and meat quality characteristics in different Japanese quail lines[J]. Asian Australasian Journal of Animal Sciences, 2016, 29(9): 1331-1337.

    [24] Wicks J, Beline M, Gomez J, et al. Muscle energy metabolism, growth, and meat quality in beef cattle[J/OL]. Agriculture-Basel, 2019, 9(9). [2019-09-07]. https://schlr. cnki.net/zn/Detail/index/WWMERGEJ03/SJMDCAE4900CCB6B0EA935594DEBF6313657

    [25] 梁榮蓉,許寶琛,張一敏,等. 蛋白質(zhì)組學(xué)在生鮮肉肉色變化機(jī)制研究中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(16):283-292.

    Liang Rongrong, Xu Baochen, Zhang Yimin, et al. Application of proteomics in mechanism research of fresh meat color changes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 283-292. (in Chinese with English abstract)

    [26] 王樂,郭月英,靳燁,等. 叉頭轉(zhuǎn)錄因子1(FoxO1)與肌球蛋白重鏈基因(MyHC)的相關(guān)性及其對(duì)肉品質(zhì)的影響[J]. 食品與發(fā)酵工業(yè),2016,42(4):233-237.

    Wang Le, Guo Yueying, Jin Ye, et al. Correlation study of FoxO1 and MyHC and their affection to meat quality[J]. Food and Fermentation Industry, 2016, 42(4): 233-237. (in Chinese with English abstract)

    [27] Ryu Y, Kim B. Comparison of histochemical characteristics in various pork groups categorized by postmortem metabolic rate and pork quality[J]. Journal of Animal Science, 2006, 84(4): 894-901.

    [28] Canto C, Gerhart-Hines Z, Feige J, et al. AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity[J]. Nature, 2009, 458(7241): 1056-1060.

    [29] Herzig S, Shaw R. AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nature Reviews Molecular Cell Biology, 2018, 19(2): 121-135.

    [30] Rahmel T, Marko B, Nowak H, et al. Mitochondrial dysfunction in sepsis is associated with diminished intramitochondrial TFAM despite its increased cellular expression[J/OL]. Scientific Reports, 2020, 10(1). [2020-12-03]. https://schlr.cnki.net/ zn/Detail/index/SJPDLAST/SJPD806056C2639559E2052736C394E10471

    [31] Chalkiadaki A, Igarashi M, Nasamu A, et al. Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy[J/OL]. PLoS Genetics, 2014, 10(7): e1004490. [2014-07-29]. https://schlr.cnki.net/zn/Detail/index/ SJPD_02/SJPD65E783328997D6DE621835979253F31D

    [32] Harada G, Pattarawat P, Ito K, et al. Lactobacillus brevis T2102 suppresses the growth of colorectal cancer cells by activating SIRT1[J]. Journal of Functional Foods, 2016, 23: 444-452.

    [33] Jang H, Han S, Kim J, et al. Lactobacillus sakei alleviates high-fat-diet-induced obesity and anxiety in mice by inducing AMPK activation and SIRT1 expression and inhibiting gut microbiota-mediated NF-kappa B activation[J/OL]. Molecular Nutrition & Food Research, 2019, 63(6). [2019-03-30]. https://schlr.cnki.net/zn/Detail/index/ SJPDLAST/SJPD4BD01119F6E9032F0AE0049E834CD129

    [34] Toda K, Yamauchi Y, Tanaka A, et al. Heat-killed bifidobacterium breve B-3 enhances muscle functions: possible involvement of increases in muscle mass and mitochondrial biogenesis[J]. Nutrients, 2020, 12(1): 219.

    [35] Przew?ócka K, Folwarski M, Ka?mierczak-Siedlecka K, et al. Gut-muscle axis exists and may affect skeletal muscle adaptation to training[J/OL]. Nutrients, 2020, 12(5). [2020-05-18]. https://schlr.cnki.net/zn/Detail/index/ WWMERGEJ03/SJMD1752425898A572DB0CBF936C408BE65B

    [36] Yan H, Diao H, Xiao Y, et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice[J/OL]. Scientific Reports, 2016, 6(1). [2016-08-22]. https://schlr.cnki.net/zn/Detail/ index/SSJD_01/SSJD15CB0373CD1ACB2F324DD510A98284E3

    Effects of lactobacillus induced mitochondrial biogenesis on muscle fiber properties and meat quality of sheep

    Bai Yanping1, Hou Yanru1, Su Lin1, Sun Bing1, Dou Lu1, Zhao Lihua1, Liu Ruijun2, Aoteheng Gerile3, Jin Ye1※

    (1.,,010018,; 2..,.,015000,; 3.,,015000,)

    The present study aimed to investigate the influence of dietary supplementation with lactobacilluson muscle fiber properties and meat quality in Sunit sheep. Totally 12 Sunit sheep aged 3 months with good body condition were selected, and then two groups were randomly divided. The control group was fed a basal diet (a typical corn-soybean diet) without any antibiotics, drugs, or growth promoters. Lactobacillus group was supplemented with lactobacillus plantarum at 3×1010cfu/g based on the diet of the control group, where the feeding period lasted for 90 days. After slaughter, the longissimus dorsi muscle was taken for subsequent test. An ATPase histochemical staining and a real-time fluorescence quantitative technique were utilized to determine the muscle fiber properties, the mRNA expression of myosin heavy chains () and genes related to mitochondrial biogenesis. In addition, the activity of metabolic enzymes, growth performance, and meat quality were measured to explore the relationship between muscle fiber properties and meat quality. The results showed that the dietary supplementation with lactobacillus significantly increased the value of pH24(<0.01), while reduced the value of* (<0.05) and cooking loss (<0.01) of meat. There was no significant effect on the growth performance and other meat quality indicators (>0.05). The analysis of muscle fiber showed that the dietary supplementation with the lactobacillus increased the number ratio of type IIA muscle fibers (<0.01), but decreased the number ratio of type IIB muscle fibers (<0.01), where there was no significant effect on the diameter and cross-sectional area of muscle fibers. At the same time,(<0.05),(<0.01), and(<0.01) mRNA expression were significantly higher than those of the control group. The enzyme activity of Succinate Dehydrogenase (SDH) in the lactobacillus group was significantly higher than that in the control group(<0.05), whereas, the enzyme activity of Lactic Dehydrogenase (LDH) became significantly lower(<0.05). In addition, the dietary supplementation with the lactobacillus increased the mRNA expression of AMP-activated protein kinase α1(1) (<0.01), Sirtuin1 (1) (<0.01), and Cytochrome c oxidaseⅣ () (<0.05) in the longissimus dorsi muscle of Sunit sheep. There was no significant difference (>0.05) in the mRNA expression levels of AMP-activated protein kinase2 (2), Peroxisome proliferator-activated receptor gamma co-activator 1-alpha (1), and Mitochondrial transcription factor A () in the control group, particularly similar to that of lactobacillus group. Consequently, the lactobacillusincreased the oxidative metabolism of muscle, thereby promoting the transformation of muscle fiber types to more oxidation type of longissimus dorsi muscle in Sunit sheep, indicating much better meat quality than before. In any way, the dietary supplementation with lactobacillus significantly promoted the generation of more oxidative muscle types, which can be associated with the AMPK1- SIRT1- PGC-1axis and mitochondrial biogenesis.

    meat; quality control; lactobacillus; mitochondrial biogenesis; muscle fiber properties; Sunit sheep

    10.11975/j.issn.1002-6819.2021.10.032

    TS251.1

    A

    1002-6819(2021)-10-0269-08

    白艷蘋,侯艷茹,蘇琳,等. 乳酸菌誘導(dǎo)線粒體生物發(fā)生對(duì)綿羊肌纖維特性和肉品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(10):269-276.doi:10.11975/j.issn.1002-6819.2021.10.032 http://www.tcsae.org

    Bai Yanping, Hou Yanru, Su Lin, et al. Effects of lactobacillus induced mitochondrial biogenesis on muscle fiber properties and meat quality of sheep[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 269-276. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.032 http://www.tcsae.org

    2020-12-10

    2021-04-07

    國(guó)家自然科學(xué)基金資助項(xiàng)目(31660439);內(nèi)蒙古自治區(qū)科技成果轉(zhuǎn)化專項(xiàng)項(xiàng)目(2019CG066);內(nèi)蒙古自治區(qū)自然科學(xué)基金重大專項(xiàng)項(xiàng)目(2020ZD11);內(nèi)蒙古自治區(qū)自然科學(xué)面上項(xiàng)目(2018MS03050);地區(qū)科學(xué)基金項(xiàng)目(32060519)

    白艷蘋,研究方向?yàn)槿馄房茖W(xué)與技術(shù)。Email:BYP1757017234@163.com

    靳燁,博士,教授,研究方向?yàn)樾螽a(chǎn)品加工。Email:jinyeyc@sohu.com

    猜你喜歡
    蘇尼特肌纖維乳酸菌
    巨盜龍珊珊的荒漠探險(xiǎn)
    乳腺炎性肌纖維母細(xì)胞瘤影像學(xué)表現(xiàn)1例
    嬰兒顱骨肌纖維瘤/肌纖維瘤病2例
    禽用乳酸菌SR1的分離鑒定
    頂骨炎性肌纖維母細(xì)胞瘤一例
    microRNA-139對(duì)小鼠失神經(jīng)肌肉萎縮中肌纖維的影響
    蘇尼特午后的那一刻
    鹿鳴(2015年7期)2015-05-30 23:48:50
    乳酸菌成乳品市場(chǎng)新寵 年增速近40%
    乳飲品中耐胃酸乳酸菌的分離鑒定與篩選
    蘇尼特羊肉
    东方市| 平南县| 酉阳| 繁昌县| 沈丘县| 博罗县| 惠州市| 鞍山市| 吴忠市| 雷州市| 桃园县| 禹州市| 芷江| 南宫市| 延吉市| 闻喜县| 乐山市| 扎兰屯市| 昭苏县| 塘沽区| 舟山市| 蕲春县| 剑河县| 油尖旺区| 富裕县| 如东县| 高密市| 丰县| 始兴县| 平安县| 保定市| 永平县| 沂水县| 平谷区| 工布江达县| 扎赉特旗| 汶上县| 海门市| 庐江县| 镇远县| 蒲城县|