• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      溝頭高度和土壤質(zhì)地對(duì)細(xì)溝溯源侵蝕特征和形態(tài)發(fā)育的影響

      2021-09-02 13:04:12韓建純朱玉斌蘇遠(yuǎn)逸
      關(guān)鍵詞:細(xì)溝產(chǎn)沙量粉砂

      王 睿,李 鵬,韓建純,朱玉斌,蘇遠(yuǎn)逸

      溝頭高度和土壤質(zhì)地對(duì)細(xì)溝溯源侵蝕特征和形態(tài)發(fā)育的影響

      王 睿,李 鵬※,韓建純,朱玉斌,蘇遠(yuǎn)逸

      (1. 西安理工大學(xué)省部共建西北旱區(qū)生態(tài)水利國家重點(diǎn)實(shí)驗(yàn)室,西安 710048;2. 旱區(qū)生態(tài)水文與災(zāi)害防治國家林業(yè)和草原局重點(diǎn)實(shí)驗(yàn)室,西安 710048)

      溝頭溯源侵蝕是黃土高原主要的侵蝕方式之一。為研究細(xì)溝溝頭高度和土壤質(zhì)地對(duì)侵蝕產(chǎn)沙、溝頭溯源侵蝕過程及溝道形態(tài)發(fā)育的影響,該研究采用不同溝頭高度的溝頭,在室內(nèi)進(jìn)行了一系列沖刷試驗(yàn)(流量為2、4和6 L/min)。結(jié)果表明:1)隨著溝頭高度的增加,產(chǎn)沙率增加,土壤流失過程的波動(dòng)程度也增加,且越易被侵蝕;2)對(duì)比不同土壤質(zhì)地,總體上,壤質(zhì)砂土的產(chǎn)沙率和溯源侵蝕速率大于粉砂質(zhì)壤土。當(dāng)溝頭高度為15 cm、流量為6 L/min時(shí),壤質(zhì)砂土的溝頭溯源侵蝕速率最大,為19.45 cm/min;3)粉砂質(zhì)壤土土壤下切深度較深,更易發(fā)生下切侵蝕,壤質(zhì)砂土土壤溝道橫截面寬深比最大值是粉砂質(zhì)壤土土壤的3倍多,且溝頭溯源侵蝕累積距離為75 cm時(shí)溝道橫截面寬深比值較小,更易發(fā)生側(cè)向侵蝕;4)4個(gè)細(xì)溝形態(tài)地形子參數(shù)(起伏度、粗糙度、切割深度和坡度)與產(chǎn)沙量有較好的線性線相關(guān)關(guān)系(2≥0.48),溝頭侵蝕下的微地形可以在一定程度上反映產(chǎn)沙量的大小,進(jìn)而估算產(chǎn)沙量。研究結(jié)果可為黃土高原細(xì)溝侵蝕下的水土保持措施提供參考依據(jù)。

      土壤;侵蝕;產(chǎn)沙;溝頭;溯源侵蝕;地形參數(shù)

      0 引 言

      坡面上的細(xì)溝是山區(qū)地表常見的微地貌,相對(duì)坡面流而言,細(xì)溝流水深大、流速快,剝蝕輸運(yùn)能力強(qiáng),是坡面侵蝕的主要組成部分[1]。已有研究表明,細(xì)溝侵蝕量可占到坡面總侵蝕量的90%以上[2]。其中,溝頭溯源侵蝕是細(xì)溝泥沙產(chǎn)量增加的主要原因[3],其產(chǎn)沙量可占到細(xì)溝總侵蝕量的50%以上[4]。

      黃土區(qū)溝谷系統(tǒng)侵蝕的類型有水力沖刷、重力侵蝕、潛蝕和混合侵蝕四類[5-6],其中細(xì)溝侵蝕下的溯源侵蝕過程以水力侵蝕為主。大量學(xué)者通過一系列野外模擬降雨和徑流沖刷試驗(yàn),來評(píng)價(jià)黃土高原區(qū)集中水流的水力特性和溝頭侵蝕過程。覃超等[7]指出裸地的溝頭溯源侵蝕過程主要受上游水流切割、溝頭侵蝕和跌水侵蝕的驅(qū)動(dòng)。前人通過在室內(nèi)建造小尺度的溝頭模型[8-9],對(duì)影響溝頭侵蝕過程的眾多因素(上方匯流量和含沙濃度、跌坎高度、坡度、土壤粒級(jí)組成等)進(jìn)行了研究。Wells等[9]根據(jù)坡度和流量建立了經(jīng)驗(yàn)公式,來量化侵蝕過程。Guo等[10]指出細(xì)溝長(zhǎng)度隨時(shí)間變化呈線性正相關(guān),產(chǎn)沙率受溝頭溯源侵蝕速率、溝頭跌坎高度和溝頭下方溝槽內(nèi)發(fā)育的二級(jí)溝頭數(shù)影響,其值可由多元非線性回歸方程表示。Hossein等[11]選取了8種不同土壤粒級(jí),結(jié)果表明黏土含量的減少使總的切向遷移和沉積量增加了2.5倍。而少有研究對(duì)不同溝頭高度下的溝頭溯源侵蝕過程進(jìn)行評(píng)價(jià)。此外,廖凱濤等[12]應(yīng)用無人機(jī)攝影測(cè)量技術(shù)對(duì)野外裸露小區(qū)坡面細(xì)溝形態(tài)參數(shù)進(jìn)行分析,結(jié)果顯示,細(xì)溝寬深比大致隨坡長(zhǎng)的增加而減小,并在接近坡底處達(dá)到最小值。韓劍橋等[13]采用室內(nèi)模擬試驗(yàn)研究了細(xì)溝斷面形態(tài),認(rèn)為寬深比沿坡長(zhǎng)方向呈先減小后增大的非線性規(guī)律。車曉翠等[14]對(duì)比分析不同坡度條件下黑土坡面細(xì)溝剖面形態(tài)特征,發(fā)現(xiàn)細(xì)溝剖面變化特征自坡面上部到下部依次表現(xiàn)為“寬淺型”、“窄深型”、“寬淺型”。此外,微地形已被確定為影響土壤侵蝕演變的關(guān)鍵因素[15]。它改變了徑流的侵蝕力,影響了侵蝕演變和泥沙量[16]。有研究指出土壤表面粗糙度是影響水文和侵蝕過程的最重要因素之一[17]。唐輝等[8]通過建立黃土坡面與微地形因子的關(guān)系,表明地形因子與產(chǎn)流率、累積產(chǎn)沙量呈極顯著正相關(guān)關(guān)系。Luo等[18]對(duì)不同耕作方式下的坡面進(jìn)行降雨模擬,指出表面粗糙度與產(chǎn)沙率呈較好的二次多項(xiàng)式的關(guān)系。李思進(jìn)等[19]建立了不同分辨率的DEM數(shù)據(jù)集,通過不同地形因子對(duì)侵蝕溝特征進(jìn)行表達(dá)。目前,對(duì)細(xì)溝溝頭溯源侵蝕產(chǎn)沙量與微地貌地形參數(shù)的關(guān)系尚未明確。

      基于此,本研究采用不同沖刷流量,研究溝頭高度和土壤質(zhì)地對(duì)侵蝕產(chǎn)沙、溝頭溯源侵蝕過程及溝道形態(tài)特征變化的影響,通過三維激光掃描技術(shù)獲取高精度的微地形,描述溝頭溯源侵蝕下的地形特征,并建立了溝頭溯源侵蝕下的產(chǎn)沙量與地形因子的響應(yīng)關(guān)系。以期為黃土高原細(xì)溝侵蝕下的水土保持措施提供參考依據(jù)。

      1 材料與方法

      1.1 試驗(yàn)材料與裝置

      供試土壤分別來自于黃土塬區(qū)的陜西省綏德縣王茂溝流域及內(nèi)蒙古自治區(qū)達(dá)拉特旗西柳溝流域,土質(zhì)經(jīng)激光粒度分析儀(Mastersizer 2000,英國馬爾文公司)測(cè)定(表1)。王茂溝流域土壤土質(zhì)中粉粒含量占比最多,土壤質(zhì)地為粉砂質(zhì)壤土;西柳溝流域土壤土質(zhì)中砂粒含量占比最多,土壤質(zhì)地為壤質(zhì)砂土。供試土槽共2個(gè),長(zhǎng)×寬×高200 cm×20 cm×50 cm。溝頭侵蝕沖刷的物理模型示意圖如圖 1所示,該模型分為溝頭上游坡面、溝頭立壁和溝頭下游坡面,其中溝頭上游坡面長(zhǎng)1.5 m,溝頭下游坡面長(zhǎng)0.5 m。此外,在土槽上方設(shè)置緩流槽(長(zhǎng)×寬×高2.0 m×0.2 m×0.1 m)和穩(wěn)流槽以確保流入坡面的水流均一、穩(wěn)定。同時(shí),在穩(wěn)流槽上方還架有恒定水頭的供水裝置,通過調(diào)節(jié)水閥開度控制流量大小。為了更好地精確溝頭溯源侵蝕的距離,在土槽正上方1.5 m處架有1臺(tái)能手動(dòng)對(duì)焦的數(shù)碼照相機(jī)(EOS700D,日本Canon)。并在木槽邊緣每隔5 cm進(jìn)行標(biāo)記。溝頭溯源侵蝕距離每后退1個(gè)刻度(5 cm)記錄下時(shí)刻,最終可獲取溝頭溯源侵蝕速率?;谑殖秩S激光掃描儀(Go!SCAN 3D,德國Creaform)獲取試驗(yàn)土壤表面的高精度DEM。

      1.2 試驗(yàn)設(shè)計(jì)與方法

      姜蕓等[20]指出細(xì)溝和淺溝主要分布在2°~6°和>6°~15°的坡面上。野外調(diào)查表明,黃土塬區(qū)塬面坡度基本為1°~5°,且多集中在3°左右[5]。為更好地模擬細(xì)溝溝頭溯源侵蝕過程,將本次小區(qū)試驗(yàn)坡度設(shè)計(jì)為3°,溝頭上游坡面和溝頭下游坡面的坡度保持一致。根據(jù)野外實(shí)測(cè)資料顯示,坡面耕層深度約為15~20 cm,故設(shè)計(jì)裝填土厚度為20 cm。其次,黃土高原常見的短歷時(shí)、高強(qiáng)度侵蝕性降雨標(biāo)準(zhǔn)為10.5~234.8 mm/h,將設(shè)計(jì)匯水流量設(shè)計(jì)為2、4及6 L/min,相當(dāng)于在15 m匯水坡長(zhǎng)、0.2 m坡寬、徑流系數(shù)為0.8的條件下分別發(fā)生50、100及150 L/h降雨強(qiáng)度的侵蝕性暴雨[7,21]。已有研究通過建造高5 cm的雛形溝頭,模擬了黃土坡面連續(xù)細(xì)溝形成前溝頭的溯源侵蝕過程[22-23]。因此,該試驗(yàn)在已有研究基礎(chǔ)上,距坡頂部150 cm處分別建造了高5、10及15 cm的雛形溝頭。溝頭侵蝕物理模型示意圖見圖1,試驗(yàn)現(xiàn)場(chǎng)圖見圖2。

      為了確保填充土壤的一致性和均勻性,填土前先將土壤過10 mm篩以剔除雜物。然后采用每隔 5 cm 分層填裝的方法進(jìn)行填土,共填充4層。填土前,在土槽底部鋪1層厚5 cm的細(xì)砂以便土壤水分均勻下滲,使其達(dá)到天然坡面的水分入滲情況。填充上層土?xí)r,先將下層土表面抓毛,以確保土層間的充分結(jié)合。土壤容重和含水率根據(jù)采樣區(qū)環(huán)刀采樣得出,其中粉砂質(zhì)壤土的土壤裝土容重通過換刀采樣確定,控制在1.3 g/cm3左右,土壤前期含水率通過烘干法確定,控制在14%左右。同理,壤質(zhì)砂土的土壤裝土容重控制在1.5 g/cm3左右,土壤前期含水率12%左右。其中,裝填溝頭上方時(shí),需在距坡頂150 cm處放置1個(gè)與溝頭高度一致的模型并固定其位置。

      表1 供試土壤粒度特征

      注:50為土壤顆粒的中值粒徑。

      Note:50is the median size of soil particles.

      試驗(yàn)開始前在土槽上方1.5 m架設(shè)1臺(tái)數(shù)碼相機(jī),調(diào)節(jié)相機(jī)的方向并使其拍攝角度與坡面保持平行。然后率定上方匯流量,當(dāng)率定流量與設(shè)計(jì)目標(biāo)流量的相對(duì)誤差小于2%時(shí),即可開始正式試驗(yàn)。

      試驗(yàn)開始后即連續(xù)接取徑流泥沙樣,每個(gè)徑流泥沙樣的接樣時(shí)間為1 min,采用烘干法將泥沙樣烘干,得到侵蝕過程中每分鐘的產(chǎn)沙量為產(chǎn)沙率。每隔1 min使用高錳酸鉀溶液作為示蹤劑,以0.5 m間距測(cè)量各段面的流速。同樣每隔1 min用鋼尺測(cè)量溝頭的寬度、深度及間隔0.5 m測(cè)量各段面的徑流寬度。

      當(dāng)溝頭溯源侵蝕距離到達(dá)坡頂后停止試驗(yàn)(圖2b),試驗(yàn)停止后將水和沙子混合液體到入裝有濾紙的漏斗中。靜至濾紙內(nèi)大部分水流濾出,將濾紙放入烘箱內(nèi),在干燥箱內(nèi)(60 ℃)干燥至恒質(zhì)量。利用三維激光掃描儀測(cè)取沖刷前、后地形形態(tài)。

      1.3 數(shù)據(jù)處理與分析

      三維激光掃描儀用于監(jiān)測(cè)不同處理下的地塊地形。每次試驗(yàn)后,地形點(diǎn)數(shù)據(jù)都被傳輸?shù)紸rcGIS 10.4中,得到分辨率為0.8 cm的DEM影像。圖3為放水沖刷前、后溝頭高度為5 cm時(shí)的DEM影像,為了便于對(duì)比不同處理下的地形,以坡面頂部為0標(biāo)高基準(zhǔn)面。

      首先,使用Arctoolbox的“Focal Statistic”工具生成溝頭地形統(tǒng)計(jì)參數(shù)(平均值mean,最小值min及范圍 range)。使用Arctoolbox的“Slope”工具生成坡度圖層,得到地形參數(shù)坡度(SLOPE/(?))。最后使用ArcToolbox的柵格數(shù)學(xué)工具,計(jì)算得到溝頭地形參數(shù),包括起伏度(RAN /cm)、粗糙度(ROUG)、切割深度(SI /cm),具體計(jì)算公式如下:

      RAN =DEMmax-DEMmin(2)

      SI=DEMmean-DEMmin(4)

      式中f為水平方向高程分辨率,cm;f為豎直方向高程分辨率,cm;DEMmean、DEMmax和DEMmin分別為DEM的平均值、最大值和最小值,cm。

      2 結(jié)果與分析

      2.1 溝頭侵蝕特征

      2.1.1 溝頭溯源侵蝕產(chǎn)沙特征

      圖4為兩種供試土壤溯源侵蝕下產(chǎn)沙率的時(shí)間變化,表2為其溝頭產(chǎn)沙特征。可以看到,在不同溝頭高度和流量下的產(chǎn)流初始階段和沖刷試驗(yàn)完成階段,產(chǎn)沙率變幅較大。原因在于初始產(chǎn)流階段溝頭發(fā)育尚未開始,一部分水流滲透到土壤空隙中,另一部分水流沿表層流動(dòng)并推動(dòng)表層土壤遷移,此階段產(chǎn)沙率較低。當(dāng)溯源侵蝕距離達(dá)到坡頂后,溝頭發(fā)育完成,此時(shí)大部分水流沿細(xì)溝流動(dòng)并開始擴(kuò)張細(xì)溝深度和寬度,此階段產(chǎn)沙率出現(xiàn)下降。因此,在試驗(yàn)開始的前5 min,產(chǎn)沙率處于整個(gè)階段的較低水平。而試驗(yàn)停止前1~3 min內(nèi),產(chǎn)沙率急劇降低。在整個(gè)試驗(yàn)中產(chǎn)沙率出現(xiàn)了多個(gè)峰和谷(圖4),隨著流量的增加產(chǎn)沙率增大。且隨著溝頭高度的增加產(chǎn)沙率也在增大(圖 4),同時(shí)變異系數(shù)也逐漸增大(表2)。表明溝頭高度越高,土壤流失過程波動(dòng)越大且越易被侵蝕。此外,壤質(zhì)砂土的產(chǎn)沙率總體上要大于粉砂質(zhì)壤土,且壤質(zhì)砂土的變異系數(shù)也較大,表明其土壤流失過程波動(dòng)較大且更易侵蝕。

      注:H5、H10及H15分別代表溝頭高度為5、10及15cm,下同。

      Note: H5, H10, and H15represent the heights of gully head are 5, 10, and 15 cm,respectively, the same as below.

      圖4不同處理下的溝頭產(chǎn)沙率變化

      Fig.4 Variation of sediment yield rate of gully head under different treatments

      表2 不同處理下的溝頭產(chǎn)沙率特征

      注:Q2、Q4及Q6分別代表初始徑流流量為2、4及6 L·min-1,下同。

      Note: Q2, Q4, and Q6represent the flow rates ofinitial runoff are 2, 4, and 6 L·min-1,respectively, the same as below.

      2.1.2 溝頭溯源侵蝕累積距離變化

      圖5顯示了溝頭溯源侵蝕累積距離隨時(shí)間的變化。溝頭溯源侵蝕累積距離隨時(shí)間逐漸增加,且隨著溝頭流量的增加,溯源侵蝕速率均逐漸增大(表3)。根據(jù)回歸分析(表 3)表明,溝頭溯源侵蝕累積距離隨時(shí)間呈線性變化(<0.01)。其中當(dāng)土壤質(zhì)地為粉砂質(zhì)壤土?xí)r,流量不同,對(duì)溯源侵蝕速率的影響也有所差異。當(dāng)流量為2 L/min時(shí),隨著溝頭高度的增加,溯源侵蝕速率逐漸減小,溝頭高度為5、10及15 cm時(shí),溯源侵蝕速率分別為4.97、4.63及4.55 cm/min;當(dāng)流量為4 L/min時(shí),隨著溝頭高度的增加溯源侵蝕速率分別為8.71、7.45及5.96 cm/min;當(dāng)流量為6 L/min時(shí),隨著溝頭高度的增加溯源侵蝕速率分別為9.95、8.42及6.77 cm/min??傮w上,流量越大,對(duì)不同溝頭高度下溯源侵蝕速率的影響越大。此外,當(dāng)土壤質(zhì)地為壤質(zhì)砂土、溝頭高度為15 cm時(shí),不同流量下的溝頭溯源侵蝕速率均較大。其中H15Q6處理下溝頭溯源侵蝕速率達(dá)到19.45 cm/min,遠(yuǎn)大于其他溝頭高度下的溝頭溯源侵蝕速率,表明此時(shí)表層土壤大幅度流失,說明此時(shí)可能超過了土壤侵蝕的安全閾值。嚴(yán)重時(shí)會(huì)引發(fā)滑坡、泥石流,造成土壤生產(chǎn)力降低。再對(duì)比不同土壤質(zhì)地下的溯源侵蝕速率,發(fā)現(xiàn)除H10Q4處理外,壤質(zhì)砂土的溯源侵蝕速率均大于粉砂質(zhì)壤土,且溝頭高度越高、流量越大,兩種供試土壤的溯源侵蝕速率差值也就越大。

      2.2 溯源侵蝕溝道形態(tài)發(fā)育特征

      2.2.1 溝道底部高程變化

      細(xì)溝溯源侵蝕造成溝頭上游集水區(qū)形成不同深度、寬度的溝道,土壤被水流沖刷到溝頭下游床面,溝頭下游床面土壤的沉積或剝蝕,所有處理下溝頭均得到了明顯的發(fā)育(圖6)??梢钥吹剑?dāng)溝頭高度為5、10 cm時(shí),下游坡面高程低于初始坡面高程。表明上游土壤流失時(shí)對(duì)下游坡面進(jìn)行了剝蝕,水流挾帶下游泥沙量增加了土壤總的侵蝕量;當(dāng)溝頭高度為15 cm時(shí),下游坡面高程高于初始坡面高程,表明上游土壤流失會(huì)造成下游坡面產(chǎn)生沉積,攔截溝頭上游部分泥沙,從而降低了土壤總侵蝕量。說明上游溝頭高度對(duì)溝頭床面的剝蝕或沉積有一定影響,溝頭高度越高,下游坡面更易產(chǎn)生沉淀。對(duì)比壤質(zhì)砂土,當(dāng)粉砂質(zhì)壤土在距離坡頂長(zhǎng)度相同位置時(shí),溝底深度較深。表明粉砂質(zhì)壤土在水流沖刷下更易發(fā)生下切侵蝕。

      圖5 不同處理下的溝頭溯源侵蝕距離變化

      表3 不同處理下溝頭累積溯源距離與時(shí)間的關(guān)系

      注:表示溝頭溯源侵蝕距離,cm;表示產(chǎn)流時(shí)間,min;表示樣本數(shù)量;**代表在0.01水平上極顯著相關(guān),下同。

      Note:represents the headcut retreat distance, cm;represents the time of runoff duration, min;represents the number of samples ;**represents extremely significant correlation at the level of 0.01, the same as below.

      2.2.2 溝道橫斷面寬深比變化

      溝頭溯源侵蝕造成溝頭上游坡面形成不同寬度和深度的細(xì)溝,圖7為不同溝頭溯源侵蝕距離下的溝道橫斷面寬深比值變化??梢钥吹诫S著溯源侵蝕距離的增加,粉砂質(zhì)壤土的溝道橫斷面寬深比值均呈現(xiàn)先減小后增大的趨勢(shì),且溝道橫斷面寬深比最小值出現(xiàn)出現(xiàn)在溯源侵蝕距離為75 cm時(shí),其中H15Q2處理下的寬深比值最小,為0.35。壤質(zhì)砂土土壤的溝道橫斷面寬深比值整體上呈逐漸增大的趨勢(shì),但溝道橫斷面寬深比在75 cm時(shí)也出現(xiàn)了小幅下降,其中H15Q2處理下的寬深比值最小,為0.40。溝道橫斷面寬深比下降,表明匯流水面寬度變窄、侵蝕能量增家致使溝頭下切深度加深。同時(shí),不同溝頭高度為下的溝道橫斷面寬深比值有所差異,溝頭高度為15 cm時(shí)的溝道橫斷面寬深比值均最小,比值小于1.0;溝頭高度為5 cm時(shí)的溝道橫斷面寬深比值最大。表明溝頭高度越大,越易發(fā)生側(cè)向侵蝕。此外,不同土壤類型下的溝道橫斷面寬深比值也有所差異,壤質(zhì)砂土土壤的寬深比最大值達(dá)到5.0,而粉砂質(zhì)壤土土壤的寬深比最大值僅接近1.6。二者寬深比最大值相差3倍多,而溝道深度相差較小。表明當(dāng)土壤類型為壤質(zhì)砂土?xí)r更易發(fā)生側(cè)向侵蝕。

      2.3 坡面微地形與溝頭溯源侵蝕產(chǎn)沙的關(guān)系

      表4為不同土壤類型下的細(xì)溝侵蝕產(chǎn)沙量與細(xì)溝地形參數(shù)之間的關(guān)系。相關(guān)分析表明4個(gè)地形參數(shù)與產(chǎn)沙量之間存在顯著的相關(guān)性(<0.01)。同時(shí)發(fā)現(xiàn)當(dāng)產(chǎn)沙率低于1 500 g/min、總產(chǎn)沙量低于20 kg時(shí),細(xì)溝地形參數(shù)與細(xì)溝侵蝕產(chǎn)沙量之間均存在較好的線性關(guān)系。其中土壤類型為粉砂質(zhì)壤土?xí)r,粗糙度與細(xì)溝侵蝕產(chǎn)沙量的相關(guān)性最高為0.73,侵蝕產(chǎn)沙量與坡度的相關(guān)性最低為0.63。對(duì)比粉砂質(zhì)壤土,壤質(zhì)砂土的坡度與細(xì)溝侵蝕產(chǎn)沙量的相關(guān)性最高為0.63,切割深度與細(xì)溝侵蝕產(chǎn)沙量的相關(guān)性最低為0.48。表明粉砂質(zhì)壤土比壤質(zhì)砂土的細(xì)溝地形參數(shù)與細(xì)溝侵蝕產(chǎn)沙量之間的關(guān)系較好,細(xì)溝地形參數(shù)在一定程度上可以較準(zhǔn)確地反映地形形態(tài)特征。

      表4 產(chǎn)沙量與細(xì)溝地形參數(shù)的回歸分析

      注:表示產(chǎn)沙量;表示細(xì)溝地形參數(shù)。

      Note:represents the sediment yield;represents the rill topographic factor.

      3 討 論

      3.1 溝頭侵蝕產(chǎn)沙過程

      裸地下溝頭侵蝕過程分為4個(gè)過程:溝口侵蝕、溝壁侵蝕、跌水侵蝕和溝口崩塌[24],該過程與試驗(yàn)中的侵蝕過程相一致(圖8)。開始產(chǎn)流以后,水流對(duì)溝頭頂部坡面、和溝頭立壁進(jìn)行沖刷,逐漸形成溝口。此時(shí)為溝口侵蝕階段(圖8a),由于尚未形成細(xì)溝,產(chǎn)沙量在初始階段相對(duì)較低(圖4)。而后,水流繼續(xù)沿著溝頭立壁流動(dòng)。溝頭立壁被水流沖刷向內(nèi)挖空(圖 8b)。隨著時(shí)間的推移,水流不僅沿著立壁流動(dòng),當(dāng)水流能量較大時(shí)還會(huì)產(chǎn)生射流,造成溝頭下游產(chǎn)生水墊塘[25],即跌水侵蝕(圖8c)。此外,沖刷水流和水墊塘漩渦不斷沖刷溝岸底部[26],導(dǎo)致溝口崩塌(圖8d)。長(zhǎng)時(shí)間水流沖刷造成槽內(nèi)土壤含水率增大,入滲量隨即減少,徑流強(qiáng)度增大[27]。溝頭上游坡面在水流作用下還會(huì)發(fā)生局部片蝕,當(dāng)溝頭溯源侵蝕到達(dá)發(fā)生片蝕位置時(shí)(圖 8c),會(huì)加快下切侵蝕過程,導(dǎo)致溯源侵蝕距速率突然增加(圖5)。不同土壤類型的侵蝕產(chǎn)沙特征及溝頭溯源侵蝕速率有所差異,認(rèn)為造成二者差異的原因可能與土壤類型和容重有關(guān)。Mike[15]認(rèn)為土壤中大粒徑含量的增加使土壤更易侵蝕,導(dǎo)致溝頭溯源侵蝕速率及沉積物的增加。馮夢(mèng)蝶等[28]指出土壤容重會(huì)顯著影響土壤分離能力,而土壤分離能力對(duì)土壤侵蝕有一定影響。因此,有待于進(jìn)一步研究土壤類型和容重對(duì)土壤侵蝕的影響。

      3.2 溝道形態(tài)特征

      馬小玲等[29]通過對(duì)細(xì)溝流侵蝕斷面形態(tài)的研究,指出橫斷面方向上,寬深比隨坡度的增大而減小,表明下切和溯源侵蝕是細(xì)溝發(fā)育過程中主要的侵蝕方式。徐國賓[30]指出當(dāng)渠道下墊面相對(duì)穩(wěn)定(邊坡系數(shù)為1)時(shí),最優(yōu)水力斷面對(duì)應(yīng)的寬深比為0.828;當(dāng)穩(wěn)定性無法平衡時(shí),沖刷將繼續(xù)進(jìn)行。根據(jù)溝道橫斷面寬深比值,將本試驗(yàn)5個(gè)斷面寬深比的平均值與最優(yōu)水力斷面對(duì)應(yīng)的寬深比值對(duì)比。結(jié)果顯示,粉砂質(zhì)壤土的H10Q4處理、壤質(zhì)砂土的H15Q4處理的溝道橫斷面寬深比與最優(yōu)水力斷面對(duì)應(yīng)的寬深比相差在10%之內(nèi),表明其細(xì)溝水流系統(tǒng)接近穩(wěn)定狀態(tài)。同時(shí)結(jié)果還顯示,對(duì)比粉砂質(zhì)壤土,壤質(zhì)砂土與最優(yōu)水力斷面寬深比值相差較大,表明壤質(zhì)砂土的細(xì)溝水流體統(tǒng)不易達(dá)到穩(wěn)定狀態(tài)。這也就解釋了細(xì)溝侵蝕過程中壤質(zhì)砂土比粉砂質(zhì)壤土的產(chǎn)沙率波動(dòng)大且總土壤流失量大的原因。趙春紅等[31]認(rèn)為同一侵蝕溝條件下,土壤類型對(duì)道橫斷面寬深比值也有影響,土壤類型越細(xì),橫斷面寬深比值越小。這與試驗(yàn)結(jié)果一致,對(duì)比壤質(zhì)砂土,粉砂質(zhì)壤土質(zhì)地較細(xì)、容重較小,更易發(fā)生下切侵蝕。此外,同一溝頭高度下,隨著流量的增加,溝道橫斷面寬深比平均值也在逐漸增大。胡曉松[32]也表明隨著雨洪強(qiáng)度的增加,細(xì)溝試驗(yàn)斷面下的寬深比呈現(xiàn)先遞減后遞增再逐步趨于穩(wěn)定的規(guī)律。

      3.3 溝道地形參數(shù)

      張建文等[33]等指出黃土坡面和覆沙坡面的侵蝕響應(yīng)最強(qiáng)烈的微地形因子分別為地表切割深度和地表粗糙度。李清溪等[34]等認(rèn)為微地形因子變化量與侵蝕產(chǎn)沙量呈明顯正相關(guān)。本研究中指出溝頭侵蝕下產(chǎn)沙量與地形因子(起伏度、切割深度、粗糙度及坡度)之間存在較好的線性關(guān)系,且這些地形因子之間相關(guān)性較強(qiáng),這與唐輝等[35]的觀點(diǎn)一致,也表明地形因子之間有很強(qiáng)的相關(guān)性,能從不同側(cè)面反映地形的信息。坡度是與徑流形成最相關(guān)的因素之一,而徑流大小是影響土壤流失的主要因素之一[36]。同時(shí),我們認(rèn)為起伏度和切割度與溝頭溯源侵蝕過程中的下切侵蝕有關(guān)。持續(xù)侵蝕在溝頭底部產(chǎn)生了底切[37],即沖刷水流能量越大則下切深度越深。基于在一定閾值內(nèi)反映細(xì)溝形態(tài)的地形參數(shù)與細(xì)溝侵蝕產(chǎn)沙量之間存在較好的線性關(guān)系,我們認(rèn)為溝頭侵蝕下的地形參數(shù)可以在一定程度上反映侵蝕強(qiáng)度的大小。

      4 結(jié) 論

      在室內(nèi)采用3種流量(2、4和6 L/min)進(jìn)行放水沖刷試驗(yàn),研究了不同土壤類型下溝頭高度(5、10和15 cm)對(duì)侵蝕產(chǎn)沙、溝頭溯源侵蝕過程和溝道形態(tài)發(fā)育的影響,主要結(jié)論如下:

      1)各處理產(chǎn)流初始階段和沖刷試驗(yàn)完成階段,產(chǎn)沙率變幅較大。總體上壤質(zhì)砂土的產(chǎn)沙率和溯源侵蝕速率大于粉砂質(zhì)壤土,并且其土壤流失過程波動(dòng)較大,且更易侵蝕。當(dāng)溝頭高度為15 cm、流量為6 L/min時(shí),壤質(zhì)砂土的溝頭溯源侵蝕速率最大,為19.45 cm/min。

      2)對(duì)比壤質(zhì)砂土,粉砂質(zhì)壤土類型下溝頭下切侵蝕深度較深,且壤質(zhì)砂土的溝道橫斷面寬深比最大值是粉砂質(zhì)壤土的3倍多。表明粉砂質(zhì)壤土更易發(fā)生下切侵蝕,壤質(zhì)砂土更易發(fā)生側(cè)向侵蝕。

      3)地形參數(shù)(起伏度、切割深度、粗糙度及坡度)與細(xì)溝侵蝕產(chǎn)沙量之間存在較好的線性關(guān)系。當(dāng)土壤類型為粉砂質(zhì)壤土?xí)r,粗糙度與細(xì)溝侵蝕產(chǎn)沙量的相關(guān)性最高(0.73)。溝頭侵蝕下的地形參數(shù)可以在一定程度上反映侵蝕強(qiáng)度的大小。

      [1] 李妍敏,安翼,劉青泉. 細(xì)溝侵蝕中陡坎發(fā)育過程的數(shù)值研究[J]. 中國力學(xué)大會(huì),2013.

      Li Yanmin, An Yi, Liu Qingquan. Numerical study on the development process of ridges in rill erosion[J]. The Chinese Society of Theoretical and Applied Mechanics, 2013. (in Chinese with English abstract)

      [2] 王貴平. 細(xì)溝侵蝕研究綜述[J]. 中國水土保持,1998(8):23-25.

      Wang Guiping. Summary of rill erosion study[J]. Soil and Water Conservation in China, 1998(8): 23-25. (in Chinese with English abstract)

      [3] Jia Y F, Kitamura T, Wang S S Y. Numerical simulation of head-cut with a two-layered bed[J]. International Journal of Sediment Research, 2005, 20: 185-193.

      [4] 韓鵬,倪晉仁,李天宏. 細(xì)溝發(fā)育過程中的溯源侵蝕與溝壁崩塌[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2002,10(2):115-125.

      Han Peng, Ni Jinren, Li Tianhong. Headcut and bank landslip in rill evolutionJ]. Journal of Basic Science and Engineering, 2002, 10(2): 115-125. (in Chinese with English abstract)

      [5] Guo M M, Wang W L, Kang H L, et al. Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China[J]. Journal of Arid Land, 2018, 10: 712-725

      [6] 劉秉正,吳發(fā)啟. 黃土塬區(qū)溝谷侵蝕與發(fā)展[J]. 西北林學(xué)院學(xué)報(bào),1993,8(2):7-15.

      Liu Bingzheng, Wu Faqi. Valley erosion and development in Loess Plateau[J]. Journal of Northwest Forestry college, 1993, 8(2): 7-15. (in Chinese with English abstract)

      [7] 覃超,何超,鄭粉莉,等. 黃土坡面細(xì)溝溝頭溯源侵蝕的量化研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(6):160-167.

      Qin Chao, He Chao, Zheng Fenli, et al. Quantitative research of rill head advancing process on loessial hillslope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 160-167. (in Chinese with English abstract)

      [8] 唐輝,李占斌,李鵬,等. 黃土坡面產(chǎn)流產(chǎn)沙過程及微地形變化特征[J]. 中國沙漠,2016,36(6):1708-1712.

      Tang Hui, Li Zhanbin, Li Peng, et al. Runoff, sediment yield and micro-topography of loess slope under artificial rain[J]. Journal of Desert Research, 2016, 36(6): 1708-1712. (in Chinese with English abstract)

      [9] Wells R R, Bennett S J, Alonso C V. Effect of soil texture, tailwater height, and pore-water pressure on the morphodynamics of migrating headcuts in upland concentrated flows[J]. Earth Surface Pro-cesses and Landforms, 2009, 34: 1867-1877.

      [10] Guo M, Wang W, Shi Q, et al. An experimental study on the effects of grass root density on gully headcut erosion in the gully region of China's Loess Plateau[J]. Land Degradation & Development, 2019, 1-19.

      [11] Hossein B, Masoumeh A, Mahmood S B. Experimental study of headcut erosion in cohesive soils under different consolidation types and hydraulic parameters[J]. Environmental Earth Sciences, 2017, 76(12): 438.

      [12] 廖凱濤,宋月君,楊潔,等. 紅壤坡面細(xì)溝侵蝕參數(shù)提取研究[J]. 中國水土保持,2021(2):45-49,69.

      Liao Kaitao, Song Yuejun, Yang Jie, et al. Study on extraction of rill erosion parameters on red soil slope[J]. Soil and Water Conservation in China, 2021(2): 45-49, 69. (in Chinese with English abstract)

      [13] 韓劍橋,高建恩,李興華,等. 降雨和徑流綜合作用下的細(xì)溝斷面形態(tài)分異特征[J]. 水電能源科學(xué),2019,37(2):115-118.

      Han Jianqiao, Gao Jian’en, Li Xinghua, et al. Differentiation of cross section morphology in gully influenced by combined action of rainfall and runoff[J]. Water Resources and Power, 2019, 37(2): 115-118. (in Chinese with English abstract)

      [14] 車曉翠,趙文婷,沈海鷗,等. 黑土坡面細(xì)溝形態(tài)及剖面特征試驗(yàn)研究[J]. 水土保持通報(bào),2020,40(5):55-59.

      Che Xiaocui, Zhao Wenting, Shen Hai’ou, et al. Experimental study of rill morphology and its profile characteristics at chinese mollisol hillslope[J]. Bulletin of Soil and Water Conservation, 2020, 40(5): 55-59. (in Chinese with English abstract)

      [15] Mike K. Modelling the interactions between soil surface properties and water erosion[J]. Catena, 2002, 46(2/3): 89-102.

      [16] Morbidelli R, Saltalippi C, Flammini A, et al. Infiltration on sloping surfaces: Laboratory experimental evidence and implications for infiltration modeling[J]. Journal of Hydrology, 2015, 523: 79-85.

      [17] Zhang G H, Xie Z F. Soil surface roughness decay under different topographic conditions[J]. Geoderma, 2019, 187: 92-101.

      [18] Luo J, Zheng Z C, Li T X, et al. Quantifying the contributions of soil surface microtopography and sediment concentration to rill erosion[J]. Science of the Total Environment, 2020, 752: 141886.

      [19] 李思進(jìn),代文,熊禮陽. DEM分辨率對(duì)黃土侵蝕溝形態(tài)特征表達(dá)的不確定性分析[J]. 地球信息科學(xué)學(xué)報(bào),2020,22(3):338-350.

      Li Sijin, Dai Wen, Xiong Liyang. Uncertainty of the morphological feature expression of loess erosional gully affected by DEM resolution[J]. Journal of Geo-information Science, 2020, 22(3): 338-350. (in Chinese with English abstract)

      [20] 姜蕓,王軍,張莉. 東北典型黑土區(qū)侵蝕溝形態(tài)及分布特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(7):157-165.

      Jiang Yun, Wang Jun, Zhang Li. Morphology and distribution characteristics of erosion gully in the typical black soil region of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7):157-165. (in Chinese with English abstract)

      [21] Qin C, Zheng F L, Wells R R, et al. A laboratory study of channel sidewall expansion in upland concentrated flows[J]. Soil and Tillage Research, 2018, 178: 22-31.

      [22] Shi Q H, Wang W L, Zhu B C, et al. Experimental study of hydraulic characteristics on headcut erosion and erosional response in the tableland and gully regions of China[J]. Soil Science Society of America Journal, 2020, 84: 700-716.

      [23] He J J, Li X J, Jia L J, et al. Experimental study of rill evolution processes and relationships between runoff and erosion on clay loam and loess[J]. Soil Science Society of American Journal, 2014, 78: 1716 -1725.

      [24] 馮蘭茜,王文龍,郭明明,等. 根系密度對(duì)黃土塬溝頭溯源侵蝕產(chǎn)沙和形態(tài)演化過程的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(6):88-96.

      Feng Lanqian, Wang Wenlong, Guo Mingming, et al. Effects of root density on gully headcut erosion and morphological evolution process in gully regions of Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(6):88-96.(in Chinese with English abstract)

      [25] Zhang Q W, Wang Z L, Wu B, et al. Identifying sediment transport capacity of raindrop-impacted overland flow within transport-limited system of interrill erosion processes on steep loess hillslopes of China[J]. Soil & Tillage Research, 2018, 184: 109-117.

      [26] Zhang B J, Xiong D H, Su Z G, et al. Effects of initial step height on the headcut erosion of bank gullies: A case study using a 3D photo-reconstruction method in the dry-hot valley region of southwest China[J]. Physical Geography, 2016, 37(6): 409-429.

      [27] Chen A Q, Zhang D, Peng H, et al. Experimental study on the development of collapse of overhanging layers of gully in Yuanmou Valley, China[J]. Catena, 2013, 109: 177-185.

      [28] 馮夢(mèng)蝶,陳展鵬,何丙輝,等. 不同土壤容重水平下喀斯特黃壤分離能力水動(dòng)力學(xué)特性[J]. 水土保持學(xué)報(bào),2021,35(2):1-7.

      Feng Mengdie, Chen Zhanpeng, He Binghui, et al. Hydraulic characteristics related to karst yellow soil detachment capacity under different bulk densities[J]. Journal of Soil and Water Conservation, 2021, 35(2): 1-7. (in Chinese with English abstract)

      [29] 馬小玲,張寬地,楊帆,等. 坡面細(xì)溝侵蝕斷面形態(tài)發(fā)育影響因素分析及動(dòng)力特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):209-216.

      Ma Xiaoling, Zhang Kuandi, Yang Fan, et al. Influencing factor analysis of rill erosion section morphology development on slope and its dynamic characteristic experiment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 209-216. (in Chinese with English abstract)

      [30] 徐國賓. 沖淤平衡穩(wěn)定渠道的優(yōu)化設(shè)計(jì)[J]. 水利學(xué)報(bào),1996 (7):61-66.

      Xu Guobin. An optimum design method for stable canals[J]. Journal of Hydraulic Engineering, 1996(7): 61-66. (in Chinese with English abstract)

      [31] 趙春紅,高建恩. 坡面不同侵蝕溝斷面特征及水力幾何形態(tài)[J]. 水科學(xué)進(jìn)展,2016,27(1):22-30.

      Zhao Chunhong, Gao Jian’en. Cross-section characteristics and hydraulic geometry of different erosion gullies on slopes[J]. Advances in Water Science, 2016, 27(1): 22-30. (in Chinese with English abstract)

      [32] 胡曉松. 雨洪綜合作用下細(xì)溝斷面沿程沖刷及溯源侵蝕特征試驗(yàn)分析[J]. 水利規(guī)劃與設(shè)計(jì),2020(4):82-85,125.

      Hu Xiaosong. Experimental analysis of rill cross-section erosion along the way and traceable erosion characteristics under the combined action of rain and flood[J]. Water Resources Planning and Design, 2020(4): 82-85, 125. (in Chinese with English abstract)

      [33] 張建文,李鵬,高海東,等. 覆沙坡面微地形變化與侵蝕產(chǎn)沙的響應(yīng)關(guān)系[J]. 干旱區(qū)研究,2020,37(3):757-764.

      Zhang Jianwen, Li Peng, Gao Haidong, et al. Response relationship between micro-relief variation and slope erosion under sand-covered conditions[J]. Arid Zone Research, 2020, 37(3): 757-764. (in Chinese with English abstract)

      [34] 李清溪,丁文峰,朱秀迪,等. 雨強(qiáng)和地表糙度對(duì)坡面微地形及侵蝕的影響[J]. 長(zhǎng)江科學(xué)院院報(bào),2019,36(1):41-47.

      Li Qingxi, Ding Wenfeng, Zhu Xiudi, et al. Effects of rainfall intensity and land surface roughness on microtopography and runoff and sediment yield of slope[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(1): 41-47. (in Chinese with English abstract)

      [35] 唐輝,李占斌,李鵬,等. 模擬降雨下坡面微地形量化及其與產(chǎn)流產(chǎn)沙的關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(24):127-133.

      Tang Hui, Li Zhanbin, Li Peng, et al. Surface micro topography quantification and its relationship with runoff and sediment under simulated rainfall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 127 - 133. (in Chinese with English abstract)

      [36] Liu Q Q, Xiang H, Singh V P. A simulation model for unified interrill erosion and rill erosion on hillslopes[J]. Hydrological Processes, 2010, 20(3): 469-486.

      [37] Ferrill N S L, Ferrill D A. Influence of mechanical layering and natural fractures on undercutting and rapid headward erosion(recession) at Canyon Lake spillway, Texas, U.S.A[J]. Engineering Geology, 2020, 280(2): 105897.

      Effects of gully head height and soil texture on headward erosion characteristics and topography evolution

      Wang Rui, Li Peng※, Han Jianchun, Zhu Yubin, Su Yuanyi

      (1.,,710048,; 2.,710048,)

      Gully head erosion has become one of the most serious types of land degradation in the Loess Plateau region of China. Soil erosion from head-cutting has posed severe damage to the natural environment, while soil degradation is ever deteriorating in recent years. This study aims to investigate the effects of gully head height and soil texture on the erosion process and the microgeomorphology during spatial evolution of channel morphology. A three-dimensional laser scanning was used to capture high-precision micro-geomorphology, thereby representing the morphological changes and development process of erosion gullies. A response relationship was established between the sand yield and topographic factors under the headward erosion of the gully head. An indoor test was carried out to explore the effects of different gully head heights (5, 10, and 15 cm) on the erosion sand yield, gully retreat distance, and gully morphological development under silty loam and loamy sand textures using three flow rates (2, 4, and 6 L/min) for water release scour. The results showed that: 1) There was more fluctuation of soil loss in the study areas, while less resistance to the erosion, as the head height increased. The erosion rate of loamy sand was higher than that of silty loam in the various soil textures. Furthermore, the loamy sand loss fluctuated more than the silty loam, while the erosion rate of loamy sand was also significantly larger than that of silty loam. When the height of gully head is 15 cm and the flow rate is 6 L/min, the headward erosion rate of loamy sand is the highest, which is 19.45 cm / min. 2) There was a sharp increase in the rate of gully head headward erosion, where the scouring water accelerated the denudation of surface erosion, particularly when the gully retreat distance reached the location where the surface erosion occurred on the upstream slope of the gully head. 3) The width-to-depth ratio of the channel increased gradually in the cross section under the same gully height, with the increase of water flow. The depth of headcut erosion was great at the head of the gully under silty loam. The maximum width-to-depth ratio of the cross-sectional channel in the loamy sand was more than three times that of silty loam. It indicated that the silty loam was more prone to undercutting erosion, whereas, the loamy sand was more prone to lateral erosion. Meanwhile, the width-to-depth ratio of the cross-sectional channel was the smallest, when the gully retreat distance of the gully head was 75 cm. 4) In addition, there was also a better linear correlation of four microtopographic or topographic factors with the sediment yield, including the fluctuation, roughness, cutting depth, and slope. Consequently, the microtopography under the gully erosion can be expected to represent the size of sand production, further to estimate the quantity of sand yield. The finding can provide a potential promising reference for the soil and water conservation under the erosive action of flushes and gullies on the Loess Plateau of China.

      soils;erosion; sediments; gully head; headward erosion; topographic parameters

      10.11975/j.issn.1002-6819.2021.10.011

      S126; S157

      A

      1002-6819(2021)-10-0091-09

      王睿,李鵬,韓建純,等. 溝頭高度和土壤質(zhì)地對(duì)細(xì)溝溯源侵蝕特征和形態(tài)發(fā)育的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(10):91-99.doi:10.11975/j.issn.1002-6819.2021.10.011 http://www.tcsae.org

      Wang Rui, Li Peng, Han Jianchun, et al. Effects of gully head height and soil texture on headward erosion characteristics and topography evolution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 91-99. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.011 http://www.tcsae.org

      2021-02-01

      2021-04-15

      國家自然科學(xué)基金(51779204);陜西省創(chuàng)新人才推進(jìn)計(jì)劃項(xiàng)目(水土資源環(huán)境演變與調(diào)控)科技創(chuàng)新團(tuán)隊(duì)(2018TD-037)

      王睿,博士生,研究方向?yàn)橥寥狼治g與水土保持。Email:wr92333@163.com

      李鵬,博士,教授,博士生導(dǎo)師,研究方向?yàn)橥寥狼治g與水土保持。Email:lipeng74@163.com

      猜你喜歡
      細(xì)溝產(chǎn)沙量粉砂
      黃河上游黃土高原入黃沙量變化分析
      人民黃河(2023年12期)2024-01-12 14:28:05
      不同降雨條件下沂蒙山區(qū)典型小流域水土流失變化特征
      黑土坡面細(xì)溝形態(tài)及剖面特征試驗(yàn)研究
      典型粉砂地層盾構(gòu)選型及施工參數(shù)研究
      陜北子洲“7?26”暴雨后坡耕地細(xì)溝侵蝕及其影響因素分析
      細(xì)溝發(fā)育與形態(tài)特征研究進(jìn)展
      不同植物措施對(duì)南方紅壤丘陵坡地地表徑流系數(shù)和產(chǎn)沙量的影響
      安家溝流域坡溝系統(tǒng)坡面徑流泥沙特征的研究
      躍進(jìn)總干渠粉砂地基上節(jié)制閘抗滑穩(wěn)定性分析
      尖山河小流域坡耕地的細(xì)溝侵蝕研究
      汪清县| 绥化市| 静乐县| 芜湖县| 都兰县| 都匀市| 沅陵县| 舞阳县| 康马县| 新河县| 天长市| 都江堰市| 长治市| 兴和县| 咸丰县| 昌都县| 邯郸市| 张家港市| 内江市| 祥云县| 英超| 景谷| 东丽区| 托克托县| 开原市| 长岛县| 进贤县| 文成县| 台州市| 高淳县| 临猗县| 台湾省| SHOW| 昌宁县| 万州区| 竹溪县| 通化市| 江华| 武功县| 广昌县| 赤城县|