• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assessing the Fishery Resource Status of China’s Coastal Waters Using Surplus Production Models

    2021-08-28 08:32:40ZHANGQingqingLIUQunandHANYanan
    Journal of Ocean University of China 2021年5期

    ZHANG Qingqing, LIU Qun, and HAN Ya’nan

    Assessing the Fishery Resource Status of China’s Coastal Waters Using Surplus Production Models

    ZHANG Qingqing, LIU Qun*, and HAN Ya’nan

    ,,266003,

    Surplus production models (SPMs) are among the simplest and most widely used fishery stock assessment models. The catch-effort data analysis (CEDA) and a surplus production model incorporating covariates (ASPIC) are softwares for analyzing fishery catch and fishing effort data using nonequilibrium SPMs. In China Fishery Statistical Yearbook, annual fishery production and fishing effort data of the Yellow Sea, Bohai Sea, East China Sea, and South China Sea have been publishedfrom 1979 till present. Using its catch and fishing effort data from 1980 to 2018, we apply the CEDA and ASPIC to evaluate fishery resources in Chinese coastal waters. The results show that the total maximum sustainable yield (MSY) estimate of the four China seas is 10.05–10.83 million tons, approximately equal to the marine fishery catch (10.44 million tons) reported in 2018. It can be concluded that China’s coastal fishery resources are currently fully exploited and must be protected with a precautionary approach. Both softwares produced similar results; however, the CEDA had a much higher2value (above 0.9) than ASPIC (about 0.2), indicating that CEDA can better fit the data and therefore is more suitable for analyzing the fishery resources in the coastal waters of China.

    Chinese coastal waters; fishery resources; surplus production models (SPMs); catch-effort data analysis (CEDA); a surplus production model incorporating covariates (ASPIC); China Fishery Statistical Yearbook

    1 Introduction

    Surplus production models (SPMs), also known as bio- mass dynamic models (Hilborn and Walters, 1992), arewidely used in fish-stock assessment when analyzing catch and effort data, especially when age composition data is not available. SPMs treat the whole resource population as a single unit, without separately considering recruitment, growth, and mortality. Thus, they require less data than age- structured models (., cohort analysis) and produce results that can be easily understood (Haddon, 2011).

    SPMs require time series fishery statistics data such as catch, fishing effort, or catch per unit effort (CPUE) data butdo not need biological life history parameters of the fish spe-cies concerned. SPMs output the maximum sustainable yield (MSY) estimate, which is commonly used as a manage- ment benchmark (Jacobson., 2002). Although they arevery simple, ‘SPMs may produce results just as useful andsometimes better for management than those produced us- ing an age-structured model’ (Haddon, 2011).

    Since the late 1970s, owing to the reform and opening up policy, Chinese marine fisheries have entered a rapid development stage and provided high-quality proteins to Chinese people. However, the cost of rapid development is the over-exploitation of fishery resources; therefore, the assessments and management of the resources are becom- ing increasingly imperative. At present, most assessments focus on single species, because there are many difficulties for multispecies assessments. The SPMs can be used for both single species and multispecies assessments based on their own premises, and they are the simplest multispecies evaluation models (Zhan, 1995). In the absence of sufficient age-structure and environmental information, the results of SPMs may provide a valuable reference.

    The China Fishery Statistical Yearbooks (1979–2019) are compiled by The Ministry of Agriculture and Rural Af- fairs (known as the Ministry of Agriculture before March 2018) (Su., 2019) and contain the annual fishery sta- tistical data in China (mainland unless otherwise specified) since 1979, which are comprehensive statistics on Chinese fisheries. Since the data in the China Fishery Statistical Yearbook were not derived from scientific surveys, their accuracy has been widely discussed (Zhao and Shen, 2016; Kang., 2018; Su., 2019). To assess the status of fishery resources in Chinese seas, this study used SPMs to analyze the marine capture fisheries catch and fishing ef- fort data recorded in the China Fishery Statistical Yearbooks.

    Both catch-effort data analysis (CEDA) (Hoggarth., 2006) and a surplus production model incorporating covariates (ASPIC) (Prager, 2005) software can use nonequilibrium surplus production models to analyze fishery catchand fishing effort data and estimate biological referencepoints, such as, stock biomass producing(B) and fishing mortality rate at(F). The abovementioned two softwares have been widely used in the existing literature (Wang and Liu, 2013; Kalhoro., 2015; Xu., 2015; Ji., 2019; Karim, 2019). In this study, both CEDA and ASPIC were used to assess thefishery resources in the Yellow and Bohai Seas (YBS), East China Sea (ECS), and South China Sea (SCS).

    2 Materials and Methods

    2.1 Data

    The catch and fishing effort data used in this study wereacquired from the China Fishery Statistical Yearbooks. Catch data were directly derived from the yearbooks (Fishery Bu- reau of Agriculture Ministry of China, 1980–2019), while fishing effort data were obtained by adding the statistics of the fishing vessel powers of different provinces. Accord- ing to the division of China’s coastal waters (Fig.1) (Kang, 2018) and statistical fishing effort data in the Year- book,we combined the YBS data as one group. Eventu- ally, we evaluated the fishery resources in the three coas- tal areas,., the YBS, ECS, and SCS.

    Fig.1 Map of China’s coastal waters with administration areas (a–n) and the four surrounding seas–Liaoning (a), Hebei (b), Tianjin (c), Shandong (d), Jiangsu (e), Shanghai (f), Zhejiang (g), Fujian (h), Guangdong (i), Hong Kong (j), Macau (k), Guangxi (l), Hainan (m), and Taiwan (n). BS, Bohai Sea; YS, Yellow Sea; ECS, East China Sea; SCS, South China Sea. Dashed black lines indicate the boundaries between the seas (Kang et al., 2018).

    Fig.2 describes the total catch and CPUE of the fisheries in the three coastal waters in China from 1980 to 2018.

    2.2 Surplus Production Models (SPMs)

    The SPMs have three versions,., Schaefer, Fox, and Pella-Tomlinson. Schaefer model is built on a logistical po- pulation growth model:

    Fig.2 Statistics of catch (t) and CPUE (t(kw)?1) for the fisheries in the Yellow and Bohai Seas (YBS), the East China Sea (ECS), and the South China Sea (SCS) from 1980 to 2018.

    Next, Fox proposes an analysis based on the Gompertz population growth equation:

    Pella and Tomlinson develop a generalized production equation:

    whereis fish-stock biomass;is time (year);∞is carrying capacity;is the intrinsic rate of population increase, andis a shape parameter. The Schaefer and Fox models are special cases of the Pella-Tomlinson model.

    2.3 Catch-Effort Data Analysis (CEDA)

    The CEDA (version 3.0.0.1) software contains three non- equilibrium production models (Schaefer, Fox, and Pella- Tomlinson models) and three error assumptions (normal, lognormal, and gamma distributions). These models are able to calculate the population parameters and biological reference points, including intrinsic rate of increase (), carry- ing capacity (), catchability coefficient (),, replace- ment yield (yield) and coefficient of determination (2) (Hoggarth., 2006). It needs to set an initial starting bio-mass over carrying capacity (1/) value and allow the boot- strap process (Efron and Tibshirani, 1993; Haddon, 2011) to calculate the confidence intervals for the parameters.

    2.4 A Surplus Production Model Incorporating Covariates (ASPIC)

    ASPIC (version 5.0) is another software developed to estimate parameters of nonequilibrium SPMs. It includes two types of SPMs: Fox and Logistic. The output parame- ters include,,,2,B,F, andf(optimum fishing effort at). It also allows the bootstrap estima- tion of variability and is extremely ?exible in handling dif- ferent patterns of ?shing (Prager, 2005).

    Both CEDA and ASPIC need an initial proportion (IP) of1/. This value is prior information on stock status at the start of a dataset. When IP is set near 1, it indicates that the data started from a virgin population, and when set near zero, it hints that the data started from a seriously exploited population.

    3 Results

    3.1 CEDA

    Results in Table 1 show that CEDA is sensitive to different IP values. Since the results of the Pella-Tomlinson model are similar (or identical) to those from the Schaefer model (Table 1), and the former model has a production curve shape parameter that is difficult to estimate, the re- sults from the Pella-Tomlinson model are not shown in this study. Because of the minimization failures under the assumption of a gamma-error structure, the SPMs of Fox and Schaefer (namely, Logistic in the ASPIC) with two error assumptions of normal and lognormal distributions were used in CEDA.

    Table 1 Maximum sustainable yield (MSY) estimates for the fishery in three coastal waters of China via catch-effort data analysis (CEDA) with the initial proportions (IP) ranging from 0.1 to 0.9

    ()

    ()

    AreaIPFoxSchaeferPella-Tomlinson NormalLognormalGammaNormalLognormalGammaNormalLognormalGamma 0.532565852.42E+07312405729494603012710 –29494603012710 – (0.2517)(2.7827)(0.1954)(0.1480)(0.0901) –(0.1678)(0.0886) – 0.634625433732515 –302091531097663020112302091531097663020112 (0.2856)(0.1022) –(0.1817)(0.0850)(0.2249)(0.2312)(0.0933)(0.2131) SCS0.736101064439103 –30616093756127 –30616093756127 – (0.2942)(0.2405) –(0.2774)(0.3100) –(0.2646)(0.3108) – 0.834654715540587 –29208674544310 –29208674544310 – (0.4364)(1.2623) –(0.3540)(1.1442) –(0.3702)(0.7808) – 0.9949280.87630878265135612865366802346 –12865366802346 – (3.0769)(4.8029)(1.2343)(1.5915)(4.0606) –(1.6615)(4.0278) –

    Notes: CV, coefficient of variation are shown beneath the eachvalue in brackets. Cells with ‘–’ indicate minimization failure.

    Table 2 shows the CEDA outputs in the three coastal waters with the IP values 0.2, 0.3, and 0.2 in YBS, ECS, and SCS, respectively. These IP values were chosen because the starting catch was roughly 20%, 30%, and 20% of the maximum catch in each area and the results were relatively stable in the sensitivity analyses. In YBS, theestimates with coefficient of variation () from the Fox model with normal and lognormal distribution assumptionsare 3751369t (=0.0296,2=0.948) and 3750400t (=0.0355,2=0.957), respectively, while from the Schaefer’s model with these two error assumptions the corresponding estimates are 4288870t (=0.0462,2=0.953) and 4697484t (=0.0219,2=0.958), respectively. In ECS, theestimates withfrom the Fox model with two error assumptions are 5002601t (=8244.4,2=0.916) and 3292739t (=0.6055,2=0.901), respectively, while from the Schaefer model are 5502317t (=5352.9,2=0.916) and 4310149t (=0.4846,2=0.901), respective- ly. In SCS, the estimateds withfrom the Fox mo- del and two error assumptions are 3006917t (=0.0177,2=0.972) and 2942940t(=0.0285,2=0.987), respectively, while from the Schaefer model are 3812418t (=0.0163,2=0.971) and 3506701t (=0.0174,2=0.971), respectively. The2values are greater than 0.9, indicating a good fit of the models to the data.

    Table 2 Surplus production model outputs from CEDA

    Notes:, intrinsic population growth rate;, carrying capacity;, catchability coefficient;, maximum sustainable yield;, coef- ficient of variation for;yield, replacement yield;2, coefficient of determination.

    The observed and estimated catches in the three coastal waters from 1980 (ECS from 1982) to 2018 are shown in Fig.3, using the four models in CEDA. The models fitted the data well, and the estimated catches from the four modelsare similar. The catch estimates show a trend consistent with the observed catches in YBS and SCS, but there are some discrepancies in ECS, indicating that the results for ECS may not be as reliable as those for YBS and SCS. We be- lieved that the results obtained from SCS are optimum.

    3.2 ASPIC

    Table 3 shows the results for fisheries in the two coas- tal waters with IP values ranging from 0.1 to 0.9 in ASPIC, which illustrates that ASPIC is sensitive to the IP values. In ECS, no viable results were obtained because the2values were negative (Section 4.4).

    Results from the nonequilibrium models of Fox and Logistic applying ASPIC are shown in Table 4, and the IP values were the same as in the CEDA. The2values of the two models in three coastal waters are low or even negative, which indicates poor fitting. In YBS, theestimate withfrom the Fox model is 3517000t (=0.0403,2=0.196) and from Logistic model is 4823000t (=0.0410,2=0.227). In ECS, theestimate from the Fox model is 4050000t (2=?0.149) and from the Logistic model is 4072000t (2=?0.129). In SCS, theestimate withfrom the Fox model is 2870000t (=0.0434,2=0.208) and from the Logistic model is 3498000t (=0.0343,2=0.246).

    Fig.3 Observed (dot) and expected (line) catch (tons) from four CEDA models in three coastal waters. Fox-normal, Fox model with normal error distribution; Fox-lognorm, Fox model with lognormal error distribution; Schaefer-norm, Schaefer model with normal error distribution; Schaefer-lognorm, and Schaefer model with lognormal error distribution. YBS, Yellow and Bohai Seas (1980–2018, IP=0.2); ECS, East China Sea (1982–2018, IP=0.3); SCS, South China Sea (1980– 2018, IP=0.2).

    Table 3 A Surplus production model incorporating covariates (ASPIC) results for fishery in YBS and SCS with IP ranging from 0.1 to 0.9

    ()

    ()

    AreaModelIPMSY (t)CVKqBMSYFMSYfMSYR2 Fox0.52.695E+060.0716 3.154E+085.925E?091.160E+082.323E?023.921E+060.197 0.63.306E+060.0960 2.261E+086.755E?098.319E+073.975E?025.884E+060.167 0.85.189E+060.1141 2.366E+085.024E?098.703E+075.963E?021.187E+070.109 0.96.565E+060.2833 4.241E+082.549E?091.560E+084.208E?021.651E+070.011 0.16.187E+060.0330 1.707E+095.663E?098.533E+087.250E?031.280E+060.248 0.23.498E+060.0343 8.574E+085.640E?094.287E+088.159E?031.447E+060.246 SCS0.32.680E+060.0379 5.761E+085.602E?092.880E+089.305E?031.661E+060.243 0.42.360E+060.0430 4.380E+085.535E?092.190E+081.078E?021.947E+060.240 Logistic0.52.279E+060.0470 3.592E+085.413E?091.796E+081.269E?022.344E+060.235 0.62.373E+060.0641 3.149E+085.172E?091.575E+081.507E?022.914E+060.228 0.72.643E+060.0801 3.011E+084.684E?091.505E+081.756E?023.749E+060.216 0.83.061E+060.0307 3.358E+083.740E?091.679E+081.823E?024.875E+060.198 0.92.732E+060.1487 5.514E+082.078E?092.757E+089.910E?034.770E+060.177

    Notes:, maximum sustainable yield;, coefficient of variation for;, carrying capacity;, catchability coefficient;B, stock biomass giving;F, fishing mortality rate at MSY;f, optimum fishing effort at; and2, coefficient of determination.

    Table 4 Surplus production model outputs from ASPIC

    Notes: Same as those in Table 3.

    Fig.4 Observed (dot) and estimated (line) CPUE (t(kw)?1) from two ASPIC models (Fox model and Logistic model) in three coastal waters. YBS, Yellow and Bohai Seas (1980–2018, IP=0.2); ECS, East China Sea (1982–2018, IP=0.3); and SCS, South China Sea (1980–2018, IP=0.2).

    Fig.4 shows the observations and estimates of CPUEs in the three coastal waters using the Fox and Logistic mo- dels in ASPIC. It can be observed that CPUE estimates from these two models are close but inconsistent with the trend of the CPUE observations, indicating poor fittings of the models. We believe that the results obtained from the SCS are optimum.

    4 Discussion

    4.1 CEDA

    Table 1 shows that the three SPMs in the CEDA are sen- sitive to the choice of initial population relative to carry- ing capacity. Thevalues were estimated using the boot- strapping confidence-limit method. In YBS and SCS, theofestimates are small when the IP is set small, and are large when the IP is set large. When IP is between 0.1 and 0.9, theestimates fluctuate greatly; in contrast, they are more stable with normal error distributions than with lognormal distributions. Thevalues esti- mated by the Fox model are lower than those by the Scha- efer model, which is consistent with the traditional theory that the Fox model is more conservative (Panhwar, 2012). In ECS, theestimates are different and irre- gular when IP changes from 0.1 to 0.9; thus, it may be dif-ficult to compare the results of the abovementioned mo- dels. From Table 2, the2values from the CEDA are higher than 0.9, showing a good fit to the data, especially in SCS. Because of the inherent properties of SPMs, which are the same as for any other fish-stock assessment model, the mo- del output should be treated with caution. Therefore, we believe that theestimates from the Fox model with normal error distribution were more stable and reasonable. Therefore, we suggest thefor the fisheries in YBSand SCS are 3751369 and 3006917t, respectively. Because of the uncertainty about the results of ECS, thevalue may not be well determined, but we may still use theestimates from 3292739 to 5502317t in ECS as reference points.

    4.2 ASPIC

    The SPMs of the Fox and Logistic models were used in ASPIC. Table 3 shows that the two SPMs in ASPIC are sensitive to the choice of initial proportion, which is contrary to the common belief that ASPIC is not sensitive to the IP values (Wang and Liu, 2013; Memon., 2015; Xu., 2015). Kalhoro(2015) also indicated that ASPIC was sensitive to the IP values, though he calculated an appropriateestimate (with a2value above 0.8) for the Greater LizardfishFishery in Pakistan. The reason is unknown and further work is required to investigate this. Theestimates may vary when IP changes from 0.1 to 0.9, and the2estimates from these two models for the three coastal waters are less than 0.25, even negative, as observed in ECS. These resultsin- dicate that ASPIC did not perform well with the Chinese data. Finally, we recommend the results obtained from the same IP values in CEDA as references,., thebe- tween 3517000–4823000t in YBS, 4050000–4072000t in ECS, and 2870000–3498000t in SCS.

    4.3 Status of Fishery Resources in China’s Coastal Waters

    The results show that CEDA and ASPIC can get similar results (Tables 2, 4), but both are sensitive to the setting of IP. The2values in the CEDA fitting are greater than 0.9, much higher than those in the ASPIC assessments. There- fore, CEDA might be more suitable for the assessment of China’s coastal capture fishery. According to the results of CEDA and ASPIC, theestimates of the fisheries in the YBS, ECS, and SCS might be 3751369, 3292739–4072000, and 3006917t, respectively, and the totalin all the China seas lies between 10.05 and 10.83 million tons. In 2018, the total catch of marine ?shery in the YBS was 3.18 million tons, lower than the estimated. In contrast, the total catch from the ECS was 4.17 million tons, higher than the estimated. In SCS there was a total catch of 3.10 million tons, also higher than the estimated. Domestic marine ?sheries in Chinese coastal waters in 2018 produced 10.45 million tons, approximately equal to the estimated. Therefore, the fisheries in the coastal waters along China has been fully exploited, and the fisheries must be managed in a precautionary manner. Zhai and Pauly (2019) evaluated 21 economically important, trawl-caught species in China’s coastal seas and found that all species suffered from overfishing. Liang and Pauly (2020) confirmed that both catches and biomass in the Bohai Sea exhibited reductions in the mean tropic levels, implying that substantial changes have occurred in the underlying structure of the Bohai Sea ecosystem.

    4.4 Limitations and Concerns

    There have been many studies using CEDA and ASPIC to estimate. Wang and Liu (2013) evaluated the hair- tail () fishery in the ECS with these two methds and both obtained good results. Xu. (2015)assessed the Albacore fishery in the southern Atlantic Ocean and believed that ASPIC is more suitable for the fishery. The studies of Memon. (2015) and Kalhoro. (2015) for different fisheries in Pakistani waters show- ed that both softwares could achieve reliable results, al- though ASPIC had better2values. Karim. (2019) studied the hilsa shad () ?shery in Bangladesh and got betterestimates form CEDA. Among these studies, only Xu(2015) standardizes the CPUE data. In this study, thevalues calculated using different models are very different and the CPUE data are not standardized, which may lead to some degree of uncertain- ty; therefore, the use of these two softwares may help mi- nimize uncertainty in the obtained results.

    For the ECS, results from both softwares do not seem desirable, and we guess that this may be caused by the data itself. The fishing effort data we used were estimated by summing up fishing boat powers in each province aroundeach marine area. Fishing activities do not follow the boun- dary division between marine areas, and bias in effort data is unavoidable. We combined the data from the YBS to reduce data deviation, and this had a positive effect. How- ever, we can not reduce data uncertainty in the ECS, whichcan actually lead to the failure of sensitivity analysis. There- fore, the results of ECS were not presented in Table 3. The negative2value is owing to the formula used to calculate adjusted2, which becomes negative when the model fit is very poor (Table 4). Both softwares had the best eva- luation results for the SCS, wherein fishery activities are relatively separate from the other Chinese marine areas.

    4.5 SPMs

    Ecosystem-based resource assessment is a current research hotspot. However, as Zhan (1995) has mentioned, in the process of multispecies assessment, there are three difficulties that need to be resolved: the interactions among fishing activities, the interactions among fish species, and the difficulty in obtaining data. Study of multispecies fish- ery resources requires the introduction of ecology theories and methods, which leads to the complexity of modeling and difficulty in obtaining data. SPMs can be used for bothsingle species and multispecies resource assessment, and they are the simplest multispecies evaluation models (Zhan, 1995). When the catch is the total catch of mixed fish spe- cies and the effort is the total fishing effort exerted on mix- ed populations, theof the mixed population can then be calculated.

    SPMs can only give a rough idea about the fish stock because the biological and environmental data are not con- siderd in this program (Quinn and Deriso, 1999). How- ever, even if other more complex and realistic models are implemented when more information is available,SPMs still can be employed as a comparison (Haddon, 2011). In the absence of enough information, SPMs may be a good choice with reliable results.

    Acknowledgements

    This study is supported by the project from the Food and Agriculture Organization of the United Nations (FAO) (No. GF.FIRFD.RA20403020400). We thank Dr. Yimin Ye of FAO for comments.

    Efron, B., and Tibshirani, R. J., 1993.. Chapman & Hall, London, UK, 436pp.

    Fishery Bureau of Agriculture Ministry of China, 1980–2019.. China Agriculture Press, Beijing, 17-85 (in Chinese).

    Fox, W. W., 1970. An exponential surplus-yield model for optimizing exploited fish populations., 99 (1): 80-88, DOI: 10.1577/1548-8659 (1970)99<80:AESMFO>2.0.CO;2.

    Haddon, M., 2011.2nd edition. Chapman & Hall/CRC Press, New York, 285- 333.

    Hilborn, R., and Walters, C. J., 1992.. Chapman and Hall, New York, 570pp.

    Hoggarth, D. D., Abeyasekera, S., Arthur, R. I., Beddington, J. R., Burn, R. W., Halls, A. S.,., 2006.(). Food and Agriculture Organization of the United Nations, Rome, 261pp.

    Jacobson, L. D., Cadrin, S. X., and Weinberg, J. R., 2002. Tools for estimating surplus production and FMSYin any stock assessment model., 22: 326-338, https://doi.org/10.1577/1548-8675(2002) 022<0326:TFESPA>2.0.CO;2.

    Ji, Y. P., Liu, Q., Liao, B. C., Zhang, Q. Q., and Han, Y. N., 2019. Estimating biological reference points for largehead hairtail () fishery in the Yellow Sea and Bohai Sea., 38 (10): 20-26, DOI: 10.1007/s13 131-019-1343-4.

    Kalhoro, M. A., Liu, Q., Memon, K. H., Waryani, B., and Soo- mro, S. H., 2015. Maximum sustainable yield of Greater li- zardfishfishery in Pakistan using the CEDA and ASPIC packages., 34 (2): 68- 73, DOI: 10.1007/s13131-014-0463-0.

    Kang, B., Liu, M., Huang, X., Li, J., Yan, Y. R., Han, C. C., and Chen, S. B., 2018. Fisheries in Chinese seas: What can we learn from controversial official fisheries statistics?, 28 (3): 503-519, DOI: 10.1007/s11160- 018-9518-1.

    Karim, E., Liu, Q., Sun, M., Barman, P. P., Hasan, S. J., and Hoq, M. E., 2019. Assessing recent gradual upsurge of marine cap- tured Hilsa stock () in Bangladesh., 4 (4): 156-165, DOI: 10.1016/j.aaf.2019.02. 005.

    Liang, C., and Pauly, D., 2020. Masking and unmasking fishing down effects: The Bohai Sea (China) as a case study., 184: 105033, DOI: 10.1016/j.ocecoa man.2019.105033.

    Memon, A. M., Liu, Q., Memon, K. H., Baloch, W. L., Memon, A., and Baset, A., 2015. Evaluation of the fishery status for King Soldier Breamin Pakistan using the software CEDA and ASPIC., 33 (4): 966-973, http://dx.doi.org/10.1007/ s00343-015-4330-4.

    Panhwar, S. K., Liu, Q., Khan, F., and Pirzada, J. A., 2012. Ma- ximum sustainable yield estimates of Ladypees,(Forssk), fishery in Pakistan, using the ASPIC and CEDA packages., 11 (1): 93- 98, https://doi.org/10.1007/s11802-012-1880-3.

    Pella, J. J., and Tomlinson, P. K., 1969. A generalized stock pro- duction model., 13(3): 416-497.

    Prager, M. H., 2005. A stock-production model incorporating co- variates (version. 5) and auxiliary programs. CCFHR (NOAA) Miami laboratory document MIA-92/93-55, Beaufort Laboratory Document bl-2004-01.

    Quinn, T. J., and Deriso, R. B., 1999.. Oxford University Press, New York, 542pp.

    Schaefer, M. B., 1954. Some aspects of the dynamics of populations important to the management of the commercial marine fisheries., 1 (2): 23- 56.

    Su, S., Tang, Y., Chang, B. W., Zhu, W. B., and Chen, Y., 2019. Evolution of marine fisheries management in China from 1949 to 2019: How did China get here and where does China go next?, 21 (2): 435-452, DOI: 10.1111/faf. 12439.

    Wang, Y., and Liu, Q., 2013. Application of CEDA and ASPIC computer packages to the hairtail () fishery in the East China Sea., 31 (1): 92-96, DOI: 10.1007/s00343-013-2073-7.

    Xu, Y. W., Zhang, K., and Chen, Z. Z., 2015. Stock assessment for the albacore fishery in the southern Atlantic Ocean base on CEDA and ASPIC programs., 3: 45-54, DOI: 10.13984/j.cnki.cn37-1141.2015. 03.006 (in Chinese with English abstract).

    Zhai, L., and Pauly, D., 2019. Yield-per-recruit, utility-per-re- cruit, and relative biomass of 21 exploited fish species in Chi- na’s coastal seas., 6: 724, DOI: 10. 3389/fmars.2019.00724.

    Zhan, B. Y., 1995.. China Agriculture Press, Beijing, 224-228 (in Chinese).

    Zhao, W. W., and Shen, H. H., 2016. A statistical analysis of Chi- na’s fisheries in the 12th five-year period., 1: 41-49, DOI: 10.1016/j.aaf.2016.11.001.

    . E-mail: qunliu@ouc.edu.cn

    August 24, 2020;

    October 9, 2020;

    January 13, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    (Edited by Qiu Yantao)

    亚洲综合精品二区| 九色亚洲精品在线播放| 毛片一级片免费看久久久久| 人人澡人人妻人| 欧美另类一区| 亚洲精品国产色婷婷电影| 成人影院久久| 青青草视频在线视频观看| 日日爽夜夜爽网站| 最近手机中文字幕大全| 水蜜桃什么品种好| 99热全是精品| 亚洲成人国产一区在线观看 | 久久精品人人爽人人爽视色| 亚洲一卡2卡3卡4卡5卡精品中文| av国产精品久久久久影院| 秋霞在线观看毛片| 欧美黑人欧美精品刺激| av福利片在线| 亚洲色图综合在线观看| 亚洲图色成人| 成人亚洲欧美一区二区av| 观看av在线不卡| 青青草视频在线视频观看| 一边摸一边做爽爽视频免费| 亚洲久久久国产精品| 丝袜人妻中文字幕| 青青草视频在线视频观看| 日韩一区二区三区影片| 精品人妻熟女毛片av久久网站| 欧美日韩成人在线一区二区| svipshipincom国产片| 国产精品熟女久久久久浪| 久久久久久人妻| 亚洲第一青青草原| 色网站视频免费| 最近最新中文字幕大全免费视频 | 蜜桃在线观看..| 午夜福利,免费看| 亚洲人成77777在线视频| 久久天躁狠狠躁夜夜2o2o | 电影成人av| 狠狠婷婷综合久久久久久88av| 99国产综合亚洲精品| 久久精品国产亚洲av高清一级| 1024视频免费在线观看| 男人操女人黄网站| 久久久久精品久久久久真实原创| 极品人妻少妇av视频| 色吧在线观看| 黑人猛操日本美女一级片| 精品第一国产精品| 丝袜美足系列| www日本在线高清视频| 妹子高潮喷水视频| 国产伦理片在线播放av一区| 99精品久久久久人妻精品| 日韩成人av中文字幕在线观看| 精品国产超薄肉色丝袜足j| 亚洲国产精品999| 超色免费av| 亚洲欧洲精品一区二区精品久久久 | 国产精品免费视频内射| 91精品三级在线观看| 亚洲色图 男人天堂 中文字幕| 青春草亚洲视频在线观看| 一级黄片播放器| 亚洲精华国产精华液的使用体验| 亚洲精品,欧美精品| 久久综合国产亚洲精品| 亚洲伊人色综图| 最近中文字幕2019免费版| 精品少妇内射三级| 亚洲伊人色综图| 九草在线视频观看| 免费不卡黄色视频| 日韩 亚洲 欧美在线| 久久久精品免费免费高清| 日韩av不卡免费在线播放| 国产精品 欧美亚洲| 少妇 在线观看| 日韩欧美一区视频在线观看| 18在线观看网站| 伦理电影免费视频| 亚洲国产成人一精品久久久| 免费观看av网站的网址| 男女国产视频网站| 日韩中文字幕欧美一区二区 | 免费人妻精品一区二区三区视频| 久久97久久精品| 午夜精品国产一区二区电影| 狠狠婷婷综合久久久久久88av| 自拍欧美九色日韩亚洲蝌蚪91| 中文乱码字字幕精品一区二区三区| 美女午夜性视频免费| 人成视频在线观看免费观看| 在线观看国产h片| 日韩中文字幕欧美一区二区 | 69精品国产乱码久久久| 欧美乱码精品一区二区三区| 久久国产精品男人的天堂亚洲| 母亲3免费完整高清在线观看| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 久久亚洲国产成人精品v| 久久性视频一级片| 人妻人人澡人人爽人人| 久久久欧美国产精品| 天天躁夜夜躁狠狠久久av| 国产精品欧美亚洲77777| 亚洲精品第二区| 欧美黄色片欧美黄色片| 成人国产av品久久久| 精品国产露脸久久av麻豆| 少妇的丰满在线观看| 男人爽女人下面视频在线观看| 精品一区二区三卡| 两性夫妻黄色片| 日日爽夜夜爽网站| 亚洲国产看品久久| 成人手机av| 日日爽夜夜爽网站| 精品国产一区二区三区四区第35| 黄片无遮挡物在线观看| 午夜福利影视在线免费观看| 成人午夜精彩视频在线观看| 国产精品国产三级专区第一集| 日本av手机在线免费观看| 中文字幕制服av| 99精国产麻豆久久婷婷| 搡老乐熟女国产| 老司机靠b影院| 夫妻性生交免费视频一级片| 一级毛片电影观看| 伊人久久大香线蕉亚洲五| 免费女性裸体啪啪无遮挡网站| 国产精品欧美亚洲77777| 亚洲精品在线美女| 天堂中文最新版在线下载| 亚洲欧洲日产国产| 亚洲精品国产av蜜桃| 欧美激情高清一区二区三区 | 亚洲精品美女久久av网站| 菩萨蛮人人尽说江南好唐韦庄| 久久精品亚洲熟妇少妇任你| 国产精品二区激情视频| 国产一区二区在线观看av| 久久久久网色| 日韩,欧美,国产一区二区三区| 男人操女人黄网站| 国产97色在线日韩免费| 国产一区二区三区综合在线观看| 午夜福利在线免费观看网站| 亚洲欧美成人综合另类久久久| 一二三四中文在线观看免费高清| 午夜91福利影院| 韩国高清视频一区二区三区| 久久亚洲国产成人精品v| 女性生殖器流出的白浆| 天天操日日干夜夜撸| 777米奇影视久久| 激情五月婷婷亚洲| 老司机在亚洲福利影院| 亚洲av成人不卡在线观看播放网 | 丰满乱子伦码专区| 卡戴珊不雅视频在线播放| 国产无遮挡羞羞视频在线观看| 秋霞伦理黄片| 一本一本久久a久久精品综合妖精| 亚洲精品aⅴ在线观看| 中文精品一卡2卡3卡4更新| 高清欧美精品videossex| 极品少妇高潮喷水抽搐| 免费看不卡的av| 成人亚洲欧美一区二区av| 在线看a的网站| 日韩不卡一区二区三区视频在线| 免费av中文字幕在线| 国产成人a∨麻豆精品| 国产乱来视频区| 欧美精品高潮呻吟av久久| 人妻一区二区av| 制服丝袜香蕉在线| 国产成人免费观看mmmm| 亚洲,一卡二卡三卡| 黄网站色视频无遮挡免费观看| 国产精品香港三级国产av潘金莲 | 国产高清不卡午夜福利| 色婷婷av一区二区三区视频| av卡一久久| 成年动漫av网址| 亚洲天堂av无毛| 久久精品亚洲熟妇少妇任你| 性高湖久久久久久久久免费观看| 成人漫画全彩无遮挡| 极品少妇高潮喷水抽搐| 欧美人与性动交α欧美精品济南到| av电影中文网址| 久久亚洲国产成人精品v| 99热网站在线观看| 国产无遮挡羞羞视频在线观看| 99热网站在线观看| 另类精品久久| 欧美精品人与动牲交sv欧美| 欧美日韩国产mv在线观看视频| 国产av一区二区精品久久| 中文字幕人妻熟女乱码| av女优亚洲男人天堂| 九草在线视频观看| 亚洲国产精品一区三区| 亚洲成人免费av在线播放| 日韩大码丰满熟妇| 99久国产av精品国产电影| 欧美黑人欧美精品刺激| 免费久久久久久久精品成人欧美视频| 男女午夜视频在线观看| 国产欧美日韩综合在线一区二区| 五月天丁香电影| 黄色视频不卡| 欧美精品av麻豆av| 日本欧美视频一区| 国产精品秋霞免费鲁丝片| 国产黄色视频一区二区在线观看| 免费观看人在逋| 丰满迷人的少妇在线观看| 午夜精品国产一区二区电影| 青草久久国产| 777久久人妻少妇嫩草av网站| 五月开心婷婷网| 一级片'在线观看视频| 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久久久久婷婷小说| netflix在线观看网站| 18禁国产床啪视频网站| 国产亚洲午夜精品一区二区久久| 午夜福利视频在线观看免费| 国产国语露脸激情在线看| 一二三四在线观看免费中文在| 欧美最新免费一区二区三区| 亚洲,一卡二卡三卡| 成人午夜精彩视频在线观看| 99久久精品国产亚洲精品| 一边摸一边做爽爽视频免费| 久久久久久久久久久久大奶| 日韩欧美精品免费久久| 黄色一级大片看看| 精品第一国产精品| 国产精品久久久人人做人人爽| 99热网站在线观看| 高清欧美精品videossex| 亚洲成人免费av在线播放| 国产在线视频一区二区| 精品国产露脸久久av麻豆| 国产成人91sexporn| 啦啦啦中文免费视频观看日本| 久热爱精品视频在线9| 久热这里只有精品99| 日韩人妻精品一区2区三区| 色综合欧美亚洲国产小说| 热99国产精品久久久久久7| 久久久久久久国产电影| 日韩熟女老妇一区二区性免费视频| 日本一区二区免费在线视频| 亚洲国产欧美网| 自线自在国产av| 90打野战视频偷拍视频| 99热网站在线观看| 美国免费a级毛片| 国产乱人偷精品视频| 女人久久www免费人成看片| 国产精品偷伦视频观看了| 成人影院久久| 婷婷色av中文字幕| 欧美激情极品国产一区二区三区| 国产激情久久老熟女| 国产乱人偷精品视频| 哪个播放器可以免费观看大片| a 毛片基地| 精品国产露脸久久av麻豆| 亚洲,一卡二卡三卡| 宅男免费午夜| 男女国产视频网站| 成人午夜精彩视频在线观看| 亚洲国产中文字幕在线视频| 国产免费又黄又爽又色| 久久久久视频综合| 新久久久久国产一级毛片| 最黄视频免费看| 日韩中文字幕欧美一区二区 | av网站在线播放免费| 日日啪夜夜爽| 久久久精品国产亚洲av高清涩受| 女人被躁到高潮嗷嗷叫费观| 观看av在线不卡| 麻豆乱淫一区二区| 最新的欧美精品一区二区| 亚洲一区中文字幕在线| 亚洲欧美一区二区三区黑人| av电影中文网址| videosex国产| 久久 成人 亚洲| 在线精品无人区一区二区三| 我的亚洲天堂| 亚洲在久久综合| av一本久久久久| 亚洲欧美色中文字幕在线| 少妇人妻 视频| 蜜桃国产av成人99| 波多野结衣一区麻豆| 少妇 在线观看| 交换朋友夫妻互换小说| 老司机影院成人| 99精国产麻豆久久婷婷| 大片免费播放器 马上看| 久久鲁丝午夜福利片| 精品第一国产精品| 国产不卡av网站在线观看| 色综合欧美亚洲国产小说| 在线观看人妻少妇| 日日撸夜夜添| 亚洲成人免费av在线播放| 亚洲国产av新网站| 亚洲av成人不卡在线观看播放网 | 免费人妻精品一区二区三区视频| 麻豆精品久久久久久蜜桃| 日韩av不卡免费在线播放| 一边摸一边抽搐一进一出视频| 中文字幕另类日韩欧美亚洲嫩草| 人妻人人澡人人爽人人| 你懂的网址亚洲精品在线观看| 亚洲国产欧美网| 伦理电影大哥的女人| 亚洲 欧美一区二区三区| 高清视频免费观看一区二区| 黄片播放在线免费| 精品人妻熟女毛片av久久网站| 欧美久久黑人一区二区| 高清视频免费观看一区二区| 久久久久久久精品精品| 黄色一级大片看看| av卡一久久| 性高湖久久久久久久久免费观看| 中文字幕高清在线视频| 亚洲成人av在线免费| 国产免费视频播放在线视频| 女人久久www免费人成看片| 久久97久久精品| 国产一区二区三区综合在线观看| 丁香六月欧美| 色94色欧美一区二区| 卡戴珊不雅视频在线播放| 黄色一级大片看看| 色播在线永久视频| 叶爱在线成人免费视频播放| 亚洲自偷自拍图片 自拍| 在线天堂最新版资源| 卡戴珊不雅视频在线播放| 美女高潮到喷水免费观看| 中文字幕av电影在线播放| 国产欧美亚洲国产| 啦啦啦在线免费观看视频4| 老汉色av国产亚洲站长工具| 卡戴珊不雅视频在线播放| 性高湖久久久久久久久免费观看| 精品国产国语对白av| 成人亚洲精品一区在线观看| 国语对白做爰xxxⅹ性视频网站| 精品国产一区二区三区久久久樱花| av国产久精品久网站免费入址| 国产精品一区二区在线观看99| 99久久综合免费| 国产男女超爽视频在线观看| 国产在视频线精品| 亚洲少妇的诱惑av| 爱豆传媒免费全集在线观看| 成年动漫av网址| 国产激情久久老熟女| 一区福利在线观看| 久久午夜综合久久蜜桃| 久久精品国产亚洲av涩爱| 久久99热这里只频精品6学生| 中文字幕人妻丝袜一区二区 | 成人亚洲欧美一区二区av| 亚洲国产最新在线播放| 亚洲七黄色美女视频| 日本欧美国产在线视频| 久久久久久久久久久久大奶| 亚洲三区欧美一区| 欧美人与性动交α欧美精品济南到| 国产精品蜜桃在线观看| 国产一区二区在线观看av| 国产日韩欧美亚洲二区| 啦啦啦在线观看免费高清www| 国产又爽黄色视频| 精品一区在线观看国产| 中文字幕人妻丝袜一区二区 | 欧美黄色片欧美黄色片| 亚洲国产中文字幕在线视频| 欧美精品高潮呻吟av久久| 午夜福利免费观看在线| 免费人妻精品一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av涩爱| av天堂久久9| 国产精品久久久人人做人人爽| 亚洲精品国产一区二区精华液| 亚洲专区中文字幕在线 | 一二三四中文在线观看免费高清| 久久精品熟女亚洲av麻豆精品| 欧美日韩福利视频一区二区| 国产黄色视频一区二区在线观看| 狠狠婷婷综合久久久久久88av| 丰满少妇做爰视频| 成人亚洲精品一区在线观看| 午夜免费鲁丝| 久热这里只有精品99| 亚洲欧洲日产国产| 一区福利在线观看| 美女扒开内裤让男人捅视频| 亚洲欧美色中文字幕在线| 色婷婷av一区二区三区视频| 悠悠久久av| 一区二区三区精品91| 老司机亚洲免费影院| 人体艺术视频欧美日本| 国产免费视频播放在线视频| 国产在线视频一区二区| 中文字幕最新亚洲高清| 赤兔流量卡办理| 自拍欧美九色日韩亚洲蝌蚪91| 91成人精品电影| 青草久久国产| a级毛片黄视频| av有码第一页| 精品午夜福利在线看| 亚洲自偷自拍图片 自拍| 亚洲av日韩精品久久久久久密 | 制服诱惑二区| 91精品伊人久久大香线蕉| 亚洲第一青青草原| 午夜激情久久久久久久| 国产深夜福利视频在线观看| 欧美激情高清一区二区三区 | 人人妻人人爽人人添夜夜欢视频| 成人国语在线视频| 国产亚洲av高清不卡| 在线天堂最新版资源| 久久99热这里只频精品6学生| 久热这里只有精品99| 搡老乐熟女国产| 国产欧美亚洲国产| av不卡在线播放| 亚洲av国产av综合av卡| 在线免费观看不下载黄p国产| 1024香蕉在线观看| 国产精品嫩草影院av在线观看| videos熟女内射| 91国产中文字幕| 欧美日韩精品网址| 美女脱内裤让男人舔精品视频| 久久99热这里只频精品6学生| 国产又色又爽无遮挡免| 最新在线观看一区二区三区 | 亚洲,一卡二卡三卡| 宅男免费午夜| √禁漫天堂资源中文www| 亚洲国产毛片av蜜桃av| 亚洲av成人精品一二三区| 超碰97精品在线观看| 亚洲国产精品一区二区三区在线| 久久精品国产综合久久久| 19禁男女啪啪无遮挡网站| 久久综合国产亚洲精品| 午夜免费男女啪啪视频观看| 国产亚洲欧美精品永久| 亚洲少妇的诱惑av| 精品一区二区三区四区五区乱码 | 蜜桃国产av成人99| 最新在线观看一区二区三区 | av有码第一页| 在线 av 中文字幕| 男人操女人黄网站| 国产成人系列免费观看| 9色porny在线观看| 国产熟女欧美一区二区| 麻豆乱淫一区二区| 日本vs欧美在线观看视频| 午夜福利乱码中文字幕| 亚洲色图综合在线观看| 久久精品国产亚洲av高清一级| 国产精品一二三区在线看| 国产精品秋霞免费鲁丝片| 久久精品熟女亚洲av麻豆精品| 观看美女的网站| 免费高清在线观看日韩| 少妇 在线观看| 久久久久精品久久久久真实原创| 国产精品香港三级国产av潘金莲 | 纯流量卡能插随身wifi吗| 亚洲精品乱久久久久久| 欧美黄色片欧美黄色片| 午夜福利影视在线免费观看| 欧美日韩成人在线一区二区| 日日啪夜夜爽| 国产精品一区二区在线不卡| 老司机影院毛片| 国产精品一区二区精品视频观看| 日韩伦理黄色片| 午夜影院在线不卡| 日韩成人av中文字幕在线观看| 欧美激情高清一区二区三区 | 性少妇av在线| 热99久久久久精品小说推荐| 好男人视频免费观看在线| 久久免费观看电影| 午夜精品国产一区二区电影| 国产男女内射视频| 国产在线免费精品| 黄色视频在线播放观看不卡| 中文字幕人妻熟女乱码| 国产精品香港三级国产av潘金莲 | 男人舔女人的私密视频| 男女边吃奶边做爰视频| 女性生殖器流出的白浆| 最近2019中文字幕mv第一页| 精品一区二区三区四区五区乱码 | 90打野战视频偷拍视频| 久热爱精品视频在线9| 国产精品秋霞免费鲁丝片| 80岁老熟妇乱子伦牲交| 精品卡一卡二卡四卡免费| 老鸭窝网址在线观看| 熟妇人妻不卡中文字幕| 男女高潮啪啪啪动态图| 成人亚洲欧美一区二区av| 秋霞在线观看毛片| 最新在线观看一区二区三区 | 香蕉丝袜av| 久久久精品区二区三区| 精品久久蜜臀av无| 日本黄色日本黄色录像| 国产片特级美女逼逼视频| 免费观看a级毛片全部| 国产一区有黄有色的免费视频| 观看美女的网站| 久久久久久久久久久免费av| 欧美精品亚洲一区二区| 精品一区二区三区四区五区乱码 | 亚洲久久久国产精品| 不卡av一区二区三区| 国产 一区精品| 精品一区二区三卡| 国产免费视频播放在线视频| 亚洲激情五月婷婷啪啪| 老熟女久久久| 成人漫画全彩无遮挡| 免费女性裸体啪啪无遮挡网站| 999精品在线视频| 大片电影免费在线观看免费| 伦理电影大哥的女人| 少妇 在线观看| 桃花免费在线播放| 国产毛片在线视频| 老司机影院成人| 国产精品一国产av| 美女中出高潮动态图| 久久久久久久久免费视频了| 久久99一区二区三区| 狠狠精品人妻久久久久久综合| 一级毛片电影观看| 人体艺术视频欧美日本| 亚洲精品中文字幕在线视频| 美女扒开内裤让男人捅视频| 亚洲av电影在线进入| 国产精品国产三级国产专区5o| 少妇的丰满在线观看| 19禁男女啪啪无遮挡网站| 一二三四在线观看免费中文在| e午夜精品久久久久久久| 黄片小视频在线播放| 免费日韩欧美在线观看| 操出白浆在线播放| av视频免费观看在线观看| 一区二区三区乱码不卡18| 18在线观看网站| 国产精品麻豆人妻色哟哟久久| 久久精品久久精品一区二区三区| 日韩人妻精品一区2区三区| 涩涩av久久男人的天堂| 黄色怎么调成土黄色| 欧美在线一区亚洲| 日日啪夜夜爽| 精品少妇久久久久久888优播| 电影成人av| 国产亚洲av片在线观看秒播厂| 最近中文字幕高清免费大全6| 天天操日日干夜夜撸| 97在线人人人人妻| 亚洲精品久久午夜乱码| 精品福利永久在线观看| av线在线观看网站| 观看美女的网站| 老鸭窝网址在线观看| 国产亚洲精品第一综合不卡| 亚洲 欧美一区二区三区| 亚洲av中文av极速乱| 国产成人系列免费观看| 午夜福利视频精品| 大香蕉久久成人网| 久久婷婷青草| av电影中文网址| 国产欧美日韩综合在线一区二区| 宅男免费午夜| 国产精品久久久久久精品电影小说| 色婷婷av一区二区三区视频|