• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DcNet: Dilated Convolutional Neural Networks for Side-Scan Sonar Image Semantic Segmentation

    2021-08-30 06:18:22ZHAOXiaohongQINRixiaZHANGQileiYUFeiWANGQiandHEBo
    Journal of Ocean University of China 2021年5期

    ZHAO Xiaohong, QIN Rixia, ZHANG Qilei, YU Fei, WANG Qi, and HE Bo

    DcNet: Dilated Convolutional Neural Networks for Side-Scan Sonar Image Semantic Segmentation

    ZHAO Xiaohong, QIN Rixia, ZHANG Qilei, YU Fei, WANG Qi, and HE Bo*

    ,,266100,

    In ocean explorations, side-scan sonar (SSS) plays a very important role and can quickly depict seabed topography. Assembling the SSS to an autonomous underwater vehicle (AUV) and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition, which is conducive to submarine detection. However, because of the complexity of the marine environment, various noises in the ocean pollute the sonar image, which also encounters the intensity inhomogeneity problem. In this paper, we propose a novel neural network architecture named dilated convolutional neural network (DcNet) that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation. The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target, respectively. The core of our network is a novel block connection named DCblock, which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy. Furthermore, our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality images. We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets. Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures, the accuracy of our method is still comparable, which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration.

    side-scan sonar (SSS); semantic segmentation; dilated convolutions; super-resolution

    1 Introduction

    Autonomous underwater vehicles (AUVs) are used in a number of marine missions. As a significant sensor equip- ped on AUVs, the role of side-scan sonar (SSS) is becoming increasingly important for many applications, including three-dimensional (3D) reconstruction (Coiras, 2007), seabed identification and classification (Lucieer, 2007), submarine survey (Li, 2006), and object localization (Johnson and Helferty, 2007). Therefore, the SSS image analysis can realize and improve the intelligence level of AUV environment perception and autonomous na- vigation behavior decision-making to promote theperfor- mance of AUVs in underwater operation tasks (Johnson and Deaett, 1994). Effective methods should be introduced for sonar image recognition and classification.

    However, due to the particularity of the operating environment of underwater equipment and the imaging principle of the SSS itself, sonar images have the following problems: a) the resolution of the images is low; b) sonar images include various noises, such as ambient noise,reflection, and speckle noise; c) intensity inhomogeneity. Because of the above problems, feature extraction, sonar image recognition, and classification are difficult. Thus far, many methods have been proposed for SSS image seg- mentation, including active contour models, Markov random field (MRF) methods, and clustering segmentation method. Active contour models, including snake models and level-set models, have been used for sonar image seg- mentation (Linanatonakis and Petillot, 2005, 2007). However, the topology of the models is poor as they easily fall into local extremes and are sensitive to the initial contour. The methods based on the MRF (Mignotte., 2000) have some ideal research results about sonar image segmentation, but they have complicated calculations and low efficiency. Among the clustering segmentation algorithms, the fuzzy C-means (FCM) (Chuang,2006) algori- thm has been widely studied and applied. Due to the large amount of calculation in the FCM algorithm, the requi- rements of real-time image segmentation, such as SSS image analysis tasks, can hardly be met.

    With the development of artificial neural network tech- nology, image segmentation algorithms based on convo- lutional neural networks, especially pixel-wise semanticsegmentation, have attracted considerable attention (Wang, 2018). Long(2015) proposed the fully convolutional network (FCN), replacing the fully connected layer with a convolutional layer, which was the earliest method to apply deep learning technology to image semantic segmentation. Since then, more semantic segmentation methods (Noh, 2015; Lin, 2016a; Paszke, 2016; Badrinarayanan, 2017; Lin, 2017) based on FCNs have been proposed. However, most segmentation network architectures are complicated and con- tain several parameters (Zhang, 2015; Lin, 2016b;Chaurasia and Culurciello, 2017; Pohlen, 2017; Chen, 2018), which are disadvantageous for real-time operations. For real-time semantic segmentation, ENet is a lightweight network that greatly improves efficiency withnotable sacrificed accuracy. Based on this lightweight net- work, ShuffleSeg (Gamal, 2018), LEDNet (Wang, 2019), and Light-Weight RefineNet (Nekrasov,2019) were proposed. However, the real-time perfor- mance of these methods cannot meet our hardware requi- rements. In this paper, we propose a novel segmentation method without several parameters for real SSS image seg- mentation.

    In this paper, we propose an architecture that can segment sonar images in real time with high accuracy. Our network is based on an encoder-decoder structure, which is proposed by SegNet (Badrinarayanan, 2017). On the one hand, the encoder increases the receptive fields and reduces the resolution of the feature map through the pooling layer to extract the features of sonar images. On the other hand, the decoder uses deconvolution to reproduce the features after image classification and uses the upsampling layer to restore the original size of the image. One of the novelties of our network is the usage of dilated convolutional connections between the encoder and decoder. Moreover, compared with other network layers, our structure has fewer layers and parameters owing to the use of the dilated convolutional connections to get more context. Thus, the network can achieve real-time process- ing without affecting the accuracy. In particular, we use su- per-resolution reconstruction to enlarge datasets with high- quality images.

    2 Network Architecture

    In this section, we will introduce our novel neural network architecture named dilated convolutional neural net- work (DcNet) with the block connection named DCblock in detail. The architecture of DcNet is divided into three parts (Fig.1): the encoding module is for feature extraction, the decoding module is for upsampling features, and the DCblock makes a connection with the encoder and decoder to increase the spatial information of the decoder.

    2.1 DCblock

    We focus on making connections between the corresponding encoder and decoder. The structure of the DC- block is illustrated in Fig.1. To capture a sufficient receptive field, a few methods have been proposed (Chen, 2017a, b; Zhao, 2017), such as dilated convolution and pyramid pooling modules. These methods significantly im- prove the spatial information and receptive field. During the downsampling process of the encoder, some spatial information of the image will be lost. However, if the output of the encoder is directly used as the input of the de- coder, then the amount of calculation will be significantly increased. Therefore, we use a dilated convolution with a dilation rate of two. Through this method, we aim at recovering the information lost by the encoder. Compared with the standard convolution operation, dilated convolution can expand receptive fields and capture multi-scale context information without loss of resolution or coverage. Letbe the initial kernel size andbe the dilated convolution rate, and consider the actual dilated convolution kernel size:

    Thus, the standard convolution is a special form of dilated convolution when1. In our DCblock, we expand- ed the receptive fields to obtain more context through this method. Then, we added an average pooling after the dilated convolution, which can provide a more receptive field.

    2.2 Encoder Module

    The details of the encoder module are presented in Fig.2.Here Conv/DWConv means convolution or depthwise (DW)separable convolution. DW convolution and pointwise con- volution are collectively called DW separable convolution (Chollet, 2017). This structure is similar to conventional convolution operations and can be used to extract features, but compared to conventional convolution operations, its parameter quantity and operation cost are lower, so our network adopts this method. We used a 3×3 receptive field, which is the smallest batch, to obtain the notion of right/ left, down/up, and center (Simonyan and Zisserman, 2014). Batch normalization (Ioffe and Szegedy, 2015) that is followed by a rectified linear unit (Nair and Hinton, 2010) is used between convolutional layers. Max pooling denotes that the max-pooling operation with a 2×2 window and stride 2 is used to implement translation invariance in the input image for downsampling, and the indices are passed to the corresponding decoder. By using the max-pooling operation, there is no need for a deconvolution operation, whichreduces the number of parameters and speeds up the training. Inspired by SegNet, the first two encoders have two layers of convolution, and the last two encoders have convolution layers, as shown in the dotted box in Fig.2.

    Fig.2 Encoder module.

    2.3 Decoder Module

    Similar to Fig.2, Conv/DWConv means convolution or DW separable convolution. The decoder in the segmentation network is to upsample the input image resolution. Most recent semantic segmentation networks have identical encoder networks,, VGG16, but have different de- coder networks that play a key role in the performance of the model. For instance, the SegNet decoding network stores the indices of the max locations computed during max pooling and passes them to the corresponding decoder. Compared with SegNet, U-Net (Ronneberger, 2015) transmits the entire feature map (cost of more me- mory) to the corresponding decoder and connects them for upsampling. In LinkNet, the outputs of the encoder are directly added to the decoder. In this way, the accuracy significantly improves in the processing time, and information lost in the encoding network decreases.

    In our network, the decoding network uses max-pooling indices inspired by SegNet while directly using the DC- block instead of the connection between the encoder and decoder. The details of the encoder and decoder are summarized in Table 1.

    Fig.3 Decoder module.

    Table 1 Convolutional methods in each stage

    Note: 3 × 3 is the kernel size of the convolution layer.

    3 Experiment

    We experimentally compared popular semantic segmentation networks to verify the effectiveness of our method. The segmentation experiment operation of the SSS image is shown in Fig.4. Section 3.1 describes the operations to obtain the SSS image, which can be directly used to make the dataset. Section 3.2 provides details on the super- resolution reconstruction and the training and testing of the dataset. The details of the implementation and expe- rimental parameters are presented in Section 3.3.

    3.1 Preprocessing of SSS Images

    We evaluated the network on two different datasets, name- ly, the seabed reef dataset obtained from Nanjiang Pier and the sand wave dataset from Tudandao Pier in Qingdao. SSS data were acquired by an AUV equipped with SSS. The experimentalAUV and experimental scene are shown in Figs.5 and 6, respectively.

    The SSS we used is a dual-frequency SSS. The sonar images used in our dataset were parsed from the XTF file of the SSS. Each time the SSS transmits and receives a sound wave. It is a ping data in the XTF file, and the magnitude of the value is the echo intensity. Each ping was parsed and stitched to obtain the pixel values of the grayscale image. The initial parsed picture is shown in Fig.7. To obtain the needed data, we interpolated the original so- nar data and removed the water column without data information. The processed image is provided in Fig.8.

    Fig.4 Experimental operation of the SSS image semantic segmentation.

    Fig.5 Sailfish AUV equipped with SSS.

    Fig.6 Sailfish AUV in the sea trial.

    Fig.7 Raw sonar image.

    Fig.8 Processed sonar image.

    3.2 Super-Resolution Reconstruction and Datasets

    The tool we use for labeling the ground truth and target of the SSS image is LabelMe, which is an open access annotation tool developed by the Massachusetts Institute of Technology. The number of pixels of the image input to the network must be appropriate to ensure the computing efficiency of the network, so we cropped the sonar image (shown in Fig.9) and the corresponding label (shown in Fig.10) into an image of 500×500 size with a stride of 100 pixels. To verify that our network is effective for sonar images obtained in different environments, the data were obtained from two locations. The two datasets consist of 12486 images, out of which 11424 were used for train- ing and the remaining 1062 were used for testing.

    In Fig.9, the sonar image has strong noise, and the ob- ject feature is not clear. Because low-pixel pictures have a great impact on image segmentation, we use the super- resolution reconstruction method based on the super-re- construction convolutional neural network (SRCNN) (Dong, 2015) to enhance image quality. Compared with other state-of-the-art methods, SRCNN has an uncomplicated structure, but it provides superior accuracy. The no- velty of the SRCNN is the usage of the FCN and learning an end-to-end mapping between low- and high-resolution images. Moreover, it needs little preprocessing beyond the optimization. The sonar image after super-resolution reconstruction is shown in Fig.11. In this way, our network can precisely extract features of images, thus improving the accuracy of the segmentation.

    Fig.9 Sonar image.

    Fig.10 Corresponding label.

    3.3 Experimental Setup

    We used PyTorch, which is an open-source Python ma- chine learning framework, for training. Our models were trained on NVIDIA Quadra M5000. Moreover, to verify that our model can be used for real-time processing of AUV underwater tasks, we tested the trained model on an NVIDIA Jetson TX2, which is an embedded platform. To get optimum performance, we used a mini-batch Adam optimization algorithm with a batch size of 15, learning rate of 1e-3, and weight decay of 1e-4 in the training. Then, we retained the model with the highest accuracy in the test set during the training process.

    Fig.11 Comparison of the original picture and sonar image after the super-resolution reconstruction. (a) and (c) are the initial images; (b) and (d) are the corresponding results after the super-resolution reconstruction.

    4 Results and Analysis

    4.1 Accuracy Analysis

    The metrics we used to evaluate the network performance are the pixel accuracy (PA), mean pixel accuracy (MPA), mean intersection over union (mIoU), and frequency-weighted intersection over union (FWIoU). We also compared our network with other models, such as SegNet and ENet. Tables 2 and 3 display the results of our architecture and the other model on the sonar image datasets, where the segmentation accuracy was improved from 67.98% to 69.03% and from 66.93% to 67.50%, which proves the effectiveness of the DCblock module. We note that, for the sand wave sonar images, our network yielded an mIoU of 69.03%, which can closely ma- tch the performance of the state-of-the-art methods. For the seabed reef sonar images, our DcNet achieved higher accuracy against the other methods.

    Table 2 Comparison on the sand wave test set

    Note: The best results are in bold.

    Table 3 Comparison on the seabed reef test set

    Note: The best results are in bold.

    Meanwhile, by adding the DCblock, the accuracy of our network was significantly improved. The prediction accuracy of the sand wave dataset is generally high because the sand wave features are more evident than the seabed reef features, so the manual labeling was more accurate. Fig.12 shows the semantic segmentation results of the DcNet. Generally, even if the noise of the SSS image is strong, the segmentation results of the sand waves and seabed reefs are ideal.

    Fig.12 Examples of segmentation produced by our network. The first row is the initial input image (the first two images are from the sand wave test set, and the latter two are from the seabed reef test set); the second row corresponds to the ground truth of the first column; the third row contains the segmentations predicted by our network without the DCblock; and the last is the segmentation tasks with the DCblock.

    4.2 Speed Analysis

    Speed is an essential factor when we apply the network in an embedded platform. Table 4 reports a comparison of the number of parameters and giga floating-point operations per second (GFLOPs) used by different networks. Table 5 presents the inference time of the high-resolution sonar images on NVIDIA Jetson TX2. The symbol ‘?’ indicates that the network is not able to test on the embed on 500×500-resolution sonar images using NVIDIA Jetson TX2. Compared with other methods, our architecture has fewer parameters without a clear decrease in the model performance and thus can be applied in embedded platform operations.

    Table 4 Accuracy and parameter analysis of our method and other state-of-the-art methods. FLOPs are estimated for input of 3×500×500

    Table 5 Speed comparison of our model and other methods on NVIDIA Jetson TX2

    4.3 Speed and Accuracy Comparisons

    In the field of deep learning image segmentation, the mIoU value is an important indicator to measure the accuracy of image segmentation. mIoU can be interpreted as the average cross-union ratio, and the IoU value is calculated on each category (true sample number/(real sample number+false negative sample number+false positive sam-ple number)), so we used mIoU as the main segmentation accuracy standard.The speed and accuracy comparison is presented in Fig.13. While SegNet obtains high accuracy in the sand wave test set, the inference time speed in SegNet is too low, and thus it cannot be performed in an embedded platform. Compared with ENet, the inference speed in our network is good in the sand wave and seabed reef test sets, and the accuracy is comparable to that of ENet.

    Fig.13 Inference speed and accuracy performance on the (a) sand wave and (b) seabed reef test sets.

    In the actual experiment, after the AUV main control unit used the command to open the SSS, the embedded GPU received five pings of data per second, corresponding to the five lines of pixels in the picture, and the GPU processed the data every 3s and sent the results back to the master control unit to perform the path planning. The time to preprocess the image is approximately 0.5s, so the time to split the image is approximately 4s. When the SSS range is set to 120m, each ping has 9600 pixels. After cropping the 500×500 image for processing, almost 20 images needed to be processed, and the time for each image is 0.2s. Hence, after the network processes the images, there will be sufficient time for other operations, thus im- proving the efficiency.

    5 Conclusions

    In this study, we introduce a semantic segmentation net-work of SSS images through DcNet, based on the encoder- decoder module. By using the DCblock between the encoder and decoder, the network increases the receptive field and gains more context. Thus, it achieves better per- formance in SSS image segmentation, and its inference can be performed in real time. In addition, super-resolu- tion reconstruction can improve the accuracy of the segmentation tasks. The experimental results show that, in contrast to the state-of-the-art approaches, our network per- forms better in the trade-off between effectiveness and efficiency. The findings also show that AUVs can use this network in real-time online sonar image recognition to achieve intelligent path planning. Moreover, the accuracy can be further improved if a better super-resolution recon- struction method is adopted.

    Acknowledgement

    This work is partially supported by the Natural Key Re- search and Development Program of China (No. 2016YF C0301400).

    Badrinarayanan, V., Kendall, A., and Cipolla, R., 2017. Segnet: A deep convolutional encoder-decoder architecture for image segmentation., 39 (12): 2481-2495, DOI: 10.1109/tpami. 2016.2644615.

    Chaurasia, A., and Culurciello, E., 2017. Linknet: Exploiting en- coder representations for efficient semantic segmentation..St. Petersburg, 1-4, DOI: 10.1109/vcip.2017.8305148.

    Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L., 2017a. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs., 40 (4): 834-848, DOI: 10.1109/tpami. 2017.2699184.

    Chen, L. C., Papandreou, G., Schroff, F., and Adam, H., 2017b. Rethinking atrous convolution for semantic image segmentation., arXiv: 1706. 05587.

    Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions.Honolulu, 1251- 1258.

    Chuang, K. S., Tzeng, H. L., Chen, S., Wu, J., and Chen, T. J, 2006. Fuzzy c-means clustering with spatial information for image segmentation., 30 (1): 9-15.

    Coiras, E., Petillot, Y., and Lane, D. M., 2007. Multiresolution 3-D reconstruction from side-scan sonar images., 16 (2): 382-390, DOI: 10.1109/ tip.2006.888337.

    Dong, C., Loy, C. C., He, K., and Tang, X., 2015. Image super- resolution using deep convolutional networks., 38 (2): 295-307.

    Gamal, M., Siam, M., and Abdel-Razek, M., 2018. Shuffleseg: Real-time semantic segmentation network.,arXiv: 1803.03816

    Ioffe, S., and Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift.,arXiv: 1502.03167.

    Johnson, H. P., and Helferty, M., 1990. The geological interpretation of side-scan sonar., 28 (4): 357- 380, DOI: 10.1029/rg028i004p00357.16.

    Johnson, S. G., and Deaett, M. A., 1994. The application of au- tomated recognition techniques to side-scan sonar imagery., 19 (1): 138-144, DOI: 10.11 09/48.289460.

    Li, A. L., Cao, L. H., Li, G. X., and Yang, R. M., 2006. Application of side-scan sonar to submarine survey and vessel dynamic positioning technique.,36 (2): 331-335 (in Chinese with English abstract).

    Lianantonakis, M., and Petillot, Y. R., 2005. Sidescan sonar seg- mentation using active contours and level set methods. In:. Brest, 719-724, DOI: 10.1109/oceanse. 2005.1511803.

    Lianantonakis, M., and Petillot, Y. R., 2007. Sidescan sonar seg- mentation using texture descriptors and active contours., 32 (3): 744-752, DOI: 10. 1109/joe.2007.893683.

    Lin, D., Dai, J., Jia, J., He, K., and Sun, J., 2016a. Scribblesup: Scribble-supervised convolutional networks for semantic seg- mentation.. Las Vegas, 3159-3167, DOI: 10.1109/cvpr.2016.344.

    Lin, G., Milan, A., Shen, C., and Reid, I., 2017. Refinenet: Mul- ti-path refinement networks for high-resolution semantic seg- mentation.. Honolulu, 1925-1934, DOI: 10.1109/cvpr.2017.549.

    Lin, G., Shen, C., Van Den Hengel, A., and Reid, I., 2016b. Efficient piecewise training of deep structured models for semantic segmentation..Las Vegas, 3194-3203, DOI: 10.1109/cvpr.2016.348.

    Long, J., Shelhamer, E., and Darrell, T., 2015. Fully convolutional networks for semantic segmentation.. Boston, 3431-3440.

    Lucieer, V. L., 2007. Object-oriented classification of sidescan sonar data for mapping benthic marine habitats., 29 (3): 905-921, DOI: 10.1080/01 431160701311309.

    Mignotte, M., Collet, C., Perez, P., and Bouthemy, P., 2000. Sonar image segmentation using an unsupervised hierarchical MRF model., 9 (7): 1216- 1231, DOI: 10.1109/83.847834.

    Nair, V., and Hinton, G. E., 2010. Rectified linear units improve restricted boltzmann machines.Haifa, 1-8.

    Nekrasov, V., Shen, C., and Reid, I., 2018. Light-weight refinenet for real-time semantic segmentation.,arXiv: 1810.03272

    Noh, H., Hong, S., and Han, B., 2015. Learning deconvolution network for semantic segmentation.. Santiago, 1520- 1528, DOI: 10.1109/iccv.2015.178.

    Paszke, A., Chaurasia, A., Kim, S., and Culurciello, E., 2016. Enet:A deep neural network architecture for real-time semantic seg- mentation.,arXiv: 1 606.02147.

    Pohlen, T., Hermans, A., Mathias, M., and Leibe, B., 2017. Full- resolution residual networks for semantic segmentation in street scenes.Honolulu, 4151-4160.

    Ronneberger, O., Fischer, P., and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In:. Navab, N.,., eds., Springer, Munich, 234- 241, DOI: 10.1007/978-3-319-24574-4_28.

    Simonyan, K., and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition., arXiv: 1409.1556.

    Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X.,., 2018. Understanding convolution for semantic segmentation.. Lake Tahoe, 1451-1460, DOI: 10.1109/wacv.20 18.00163.

    Wang, Y., Zhou, Q., Liu, J., Xiong, J., Gao, G., Wu, X.,., 2019. Lednet: A lightweight encoder-decoder network for real- time semantic segmentation.). Taipei, 1860-1864.

    Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S.,., 2015.Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.,108: 214- 224, DOI: 10.1016/j.neuroimage.2014.12.061.

    Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J., 2017. Pyramid scene parsing network..Honolulu, 2881- 2890, DOI: 10.1109/cvpr.2017.660.

    . Tel: 0086-532-66782339 E-mail: bhe@ouc.edu.cn

    July 14, 2020;

    September 16, 2020;

    September 23, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    (Edited by Chen Wenwen)

    一级毛片电影观看| 制服诱惑二区| 伦理电影大哥的女人| 91午夜精品亚洲一区二区三区| 九九久久精品国产亚洲av麻豆| 伦理电影免费视频| 99久国产av精品国产电影| 丝瓜视频免费看黄片| 日本黄色日本黄色录像| 婷婷色综合大香蕉| 久久 成人 亚洲| a级毛色黄片| 亚洲av成人精品一区久久| 国产免费现黄频在线看| 日本午夜av视频| 黑人欧美特级aaaaaa片| 国产精品一二三区在线看| 日韩欧美一区视频在线观看| 天天操日日干夜夜撸| 国产成人免费观看mmmm| 一本大道久久a久久精品| 99久久人妻综合| 人人妻人人爽人人添夜夜欢视频| 日本av免费视频播放| 国产高清国产精品国产三级| 国产日韩欧美视频二区| 麻豆成人av视频| 交换朋友夫妻互换小说| 国产精品欧美亚洲77777| videossex国产| 香蕉精品网在线| 中国美白少妇内射xxxbb| 日韩av不卡免费在线播放| 777米奇影视久久| 毛片一级片免费看久久久久| 纯流量卡能插随身wifi吗| 国产午夜精品一二区理论片| 这个男人来自地球电影免费观看 | 欧美xxⅹ黑人| 精品人妻偷拍中文字幕| 蜜臀久久99精品久久宅男| 69精品国产乱码久久久| 久久久久久久久大av| 国产亚洲欧美精品永久| 在线观看国产h片| 国产免费一区二区三区四区乱码| 男人爽女人下面视频在线观看| 国产精品99久久99久久久不卡 | 久热这里只有精品99| 午夜福利,免费看| 亚洲精品美女久久av网站| 成年美女黄网站色视频大全免费 | 国产精品国产三级国产专区5o| 中文字幕免费在线视频6| 精品视频人人做人人爽| 一边摸一边做爽爽视频免费| 人妻系列 视频| 午夜精品国产一区二区电影| 少妇精品久久久久久久| 欧美老熟妇乱子伦牲交| 波野结衣二区三区在线| 国产免费一级a男人的天堂| 久久99精品国语久久久| 色婷婷av一区二区三区视频| 亚州av有码| 亚洲国产精品一区三区| 精品国产国语对白av| 国产精品一区www在线观看| 熟妇人妻不卡中文字幕| 午夜免费观看性视频| 久久鲁丝午夜福利片| 满18在线观看网站| 欧美日韩视频精品一区| 爱豆传媒免费全集在线观看| 制服人妻中文乱码| 人妻人人澡人人爽人人| 少妇人妻精品综合一区二区| 99热这里只有精品一区| 久久婷婷青草| 大香蕉久久网| 久久久久久久久久久久大奶| 成人黄色视频免费在线看| 最新中文字幕久久久久| 国产精品秋霞免费鲁丝片| 色婷婷av一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 免费大片18禁| 欧美日韩视频高清一区二区三区二| 最后的刺客免费高清国语| 最近的中文字幕免费完整| 久久久久久久国产电影| 亚洲人成网站在线观看播放| 国产精品偷伦视频观看了| 欧美性感艳星| 超碰97精品在线观看| 国产精品99久久久久久久久| 国产成人91sexporn| 中文字幕精品免费在线观看视频 | 国产av精品麻豆| 爱豆传媒免费全集在线观看| 青春草国产在线视频| 久久av网站| 亚洲色图 男人天堂 中文字幕 | 男人爽女人下面视频在线观看| 精品人妻在线不人妻| 2022亚洲国产成人精品| 高清不卡的av网站| 国产精品久久久久久久久免| av视频免费观看在线观看| 日本黄色日本黄色录像| 亚洲成人av在线免费| 亚洲精品视频女| 国产欧美日韩综合在线一区二区| 黑人猛操日本美女一级片| 三级国产精品片| 国产成人freesex在线| 成人黄色视频免费在线看| 日日摸夜夜添夜夜爱| 亚洲不卡免费看| 插逼视频在线观看| 一级a做视频免费观看| 青春草国产在线视频| 人妻制服诱惑在线中文字幕| 日韩三级伦理在线观看| 韩国av在线不卡| 午夜免费观看性视频| 国产av精品麻豆| 交换朋友夫妻互换小说| 少妇人妻 视频| 国产精品一区二区在线不卡| 在现免费观看毛片| 建设人人有责人人尽责人人享有的| av在线app专区| 国产av一区二区精品久久| 国产av精品麻豆| av福利片在线| 国产高清国产精品国产三级| 在现免费观看毛片| 伊人久久国产一区二区| 久久久久久久久久成人| 亚洲精品aⅴ在线观看| 七月丁香在线播放| 91在线精品国自产拍蜜月| 亚洲人与动物交配视频| av线在线观看网站| 欧美人与善性xxx| 天天操日日干夜夜撸| 桃花免费在线播放| 中文字幕av电影在线播放| a 毛片基地| 日日啪夜夜爽| 大香蕉久久网| 国产精品一国产av| 男女高潮啪啪啪动态图| 老司机亚洲免费影院| tube8黄色片| 九草在线视频观看| 蜜臀久久99精品久久宅男| 国产男人的电影天堂91| 能在线免费看毛片的网站| 亚洲精品456在线播放app| 考比视频在线观看| 老司机影院毛片| 成人黄色视频免费在线看| 亚洲精品国产色婷婷电影| 国产精品久久久久成人av| 久久久久久人妻| 久久久欧美国产精品| 99视频精品全部免费 在线| 最黄视频免费看| 国产片内射在线| av电影中文网址| 久久人人爽人人片av| 国产日韩欧美在线精品| 亚洲精品中文字幕在线视频| 亚洲丝袜综合中文字幕| 99热国产这里只有精品6| 在现免费观看毛片| 亚洲性久久影院| 一区二区av电影网| 久久久精品区二区三区| 人妻制服诱惑在线中文字幕| 亚洲熟女精品中文字幕| 我的女老师完整版在线观看| 国产日韩一区二区三区精品不卡 | 亚洲精品一区蜜桃| 成人免费观看视频高清| 一区在线观看完整版| 精品卡一卡二卡四卡免费| 99久久精品一区二区三区| 如日韩欧美国产精品一区二区三区 | 最后的刺客免费高清国语| 考比视频在线观看| 久久久久视频综合| 国产精品久久久久久精品古装| 国产有黄有色有爽视频| 国产精品女同一区二区软件| 午夜影院在线不卡| 少妇人妻 视频| 黄色视频在线播放观看不卡| 亚洲人成77777在线视频| 日韩av免费高清视频| 如何舔出高潮| 2022亚洲国产成人精品| 在现免费观看毛片| 欧美最新免费一区二区三区| 日本av手机在线免费观看| 久久久国产欧美日韩av| 少妇被粗大猛烈的视频| 三级国产精品片| 插逼视频在线观看| 啦啦啦视频在线资源免费观看| 精品视频人人做人人爽| av免费在线看不卡| 欧美亚洲日本最大视频资源| 男的添女的下面高潮视频| 啦啦啦中文免费视频观看日本| 中文字幕久久专区| 国产成人免费观看mmmm| 18禁动态无遮挡网站| 天天操日日干夜夜撸| 91久久精品国产一区二区成人| 久久婷婷青草| 18禁裸乳无遮挡动漫免费视频| 在线观看www视频免费| 在线天堂最新版资源| 天堂8中文在线网| tube8黄色片| 亚洲天堂av无毛| 国产片特级美女逼逼视频| 伊人久久精品亚洲午夜| 亚洲精品国产色婷婷电影| 国产日韩欧美亚洲二区| 国产极品粉嫩免费观看在线 | 九九在线视频观看精品| 日日爽夜夜爽网站| 丁香六月天网| 国产精品久久久久久久电影| 成人国产麻豆网| 9色porny在线观看| 丝袜脚勾引网站| 午夜免费观看性视频| 汤姆久久久久久久影院中文字幕| 综合色丁香网| 麻豆精品久久久久久蜜桃| 日本黄色日本黄色录像| 欧美bdsm另类| 欧美性感艳星| 亚洲成人一二三区av| 不卡视频在线观看欧美| av免费观看日本| 国产免费视频播放在线视频| 内地一区二区视频在线| 国产熟女欧美一区二区| 最近最新中文字幕免费大全7| 一区二区三区乱码不卡18| av线在线观看网站| 美女脱内裤让男人舔精品视频| 成人国语在线视频| a级毛片黄视频| 少妇的逼水好多| av在线观看视频网站免费| 久久ye,这里只有精品| 一级黄片播放器| 国产精品99久久久久久久久| 少妇被粗大猛烈的视频| 国模一区二区三区四区视频| 久久久国产欧美日韩av| 你懂的网址亚洲精品在线观看| 日韩三级伦理在线观看| 成年人午夜在线观看视频| 考比视频在线观看| 成人黄色视频免费在线看| 91在线精品国自产拍蜜月| 亚洲美女搞黄在线观看| 国产有黄有色有爽视频| 日韩三级伦理在线观看| 水蜜桃什么品种好| 高清视频免费观看一区二区| 美女主播在线视频| 王馨瑶露胸无遮挡在线观看| 丝袜喷水一区| 国产永久视频网站| 综合色丁香网| 熟妇人妻不卡中文字幕| 99国产综合亚洲精品| 久久久久久久久大av| 精品一区二区三区视频在线| 18+在线观看网站| 最黄视频免费看| 美女内射精品一级片tv| 国产日韩欧美亚洲二区| 交换朋友夫妻互换小说| 欧美精品国产亚洲| 亚洲国产精品一区二区三区在线| a级毛片免费高清观看在线播放| 我要看黄色一级片免费的| 秋霞伦理黄片| 看非洲黑人一级黄片| 精品国产国语对白av| videos熟女内射| 天天操日日干夜夜撸| 一级a做视频免费观看| 国产精品久久久久久精品电影小说| 午夜视频国产福利| 久久免费观看电影| 久久人人爽av亚洲精品天堂| 亚洲av综合色区一区| 国产欧美亚洲国产| 一本色道久久久久久精品综合| 久久久久久人妻| 男人操女人黄网站| 国产69精品久久久久777片| 久久热精品热| 日韩亚洲欧美综合| 在线看a的网站| 日韩免费高清中文字幕av| 五月开心婷婷网| 久久久久久久精品精品| av.在线天堂| 卡戴珊不雅视频在线播放| 99re6热这里在线精品视频| 国产视频首页在线观看| 日韩在线高清观看一区二区三区| 成人影院久久| 欧美激情 高清一区二区三区| 多毛熟女@视频| 在线观看一区二区三区激情| 777米奇影视久久| 在线观看人妻少妇| 爱豆传媒免费全集在线观看| 日本欧美视频一区| 欧美精品国产亚洲| 成年女人在线观看亚洲视频| 九色成人免费人妻av| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 在线观看免费视频网站a站| 各种免费的搞黄视频| 涩涩av久久男人的天堂| 各种免费的搞黄视频| 99久久人妻综合| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| 国产精品一区二区三区四区免费观看| 日韩成人av中文字幕在线观看| 精品一品国产午夜福利视频| 少妇的逼水好多| 亚州av有码| 午夜福利视频在线观看免费| 爱豆传媒免费全集在线观看| 国产高清三级在线| 中文精品一卡2卡3卡4更新| tube8黄色片| 日韩大片免费观看网站| 天天影视国产精品| 2018国产大陆天天弄谢| 考比视频在线观看| 亚洲国产精品一区三区| 考比视频在线观看| 欧美性感艳星| 精品一区二区免费观看| 九九爱精品视频在线观看| 精品国产乱码久久久久久小说| 亚洲精品456在线播放app| 中文欧美无线码| 韩国高清视频一区二区三区| av免费观看日本| 国产精品久久久久久久久免| 国产欧美日韩综合在线一区二区| 国产在线一区二区三区精| 少妇丰满av| 亚洲av不卡在线观看| 欧美日韩精品成人综合77777| 亚洲国产欧美日韩在线播放| 少妇被粗大猛烈的视频| 18禁观看日本| 亚洲av.av天堂| 高清在线视频一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产免费又黄又爽又色| 免费av中文字幕在线| 亚洲人成网站在线观看播放| 亚洲情色 制服丝袜| 久久av网站| 人人妻人人添人人爽欧美一区卜| 久久鲁丝午夜福利片| 免费观看无遮挡的男女| 波野结衣二区三区在线| 国产精品久久久久成人av| 精品熟女少妇av免费看| 男人爽女人下面视频在线观看| 边亲边吃奶的免费视频| 狂野欧美白嫩少妇大欣赏| 婷婷色麻豆天堂久久| 韩国高清视频一区二区三区| 最黄视频免费看| 亚洲美女搞黄在线观看| 免费不卡的大黄色大毛片视频在线观看| 丁香六月天网| 国产精品免费大片| 久久毛片免费看一区二区三区| 久久影院123| 久久久久久久久久成人| 毛片一级片免费看久久久久| 欧美三级亚洲精品| 最近2019中文字幕mv第一页| 只有这里有精品99| 亚洲国产欧美日韩在线播放| 亚洲伊人久久精品综合| 中文字幕久久专区| 国产精品一区二区在线不卡| 久久久久国产网址| 国产免费一区二区三区四区乱码| 寂寞人妻少妇视频99o| a 毛片基地| 视频在线观看一区二区三区| 美女视频免费永久观看网站| 人人妻人人澡人人看| 精品人妻一区二区三区麻豆| 国产亚洲欧美精品永久| 日韩成人伦理影院| 一区二区三区四区激情视频| 免费av不卡在线播放| 高清欧美精品videossex| 国产女主播在线喷水免费视频网站| 欧美xxxx性猛交bbbb| 国产精品成人在线| 丝瓜视频免费看黄片| 一级毛片 在线播放| 中文字幕久久专区| 国产日韩一区二区三区精品不卡 | 亚洲av国产av综合av卡| 纯流量卡能插随身wifi吗| 26uuu在线亚洲综合色| 十八禁高潮呻吟视频| 亚洲一级一片aⅴ在线观看| 男女无遮挡免费网站观看| 亚洲欧洲精品一区二区精品久久久 | 国产av码专区亚洲av| 99久国产av精品国产电影| 国产永久视频网站| 91精品国产九色| 极品人妻少妇av视频| 天天影视国产精品| 在线观看国产h片| 国产在线视频一区二区| 一本久久精品| 男女边摸边吃奶| 超碰97精品在线观看| 搡女人真爽免费视频火全软件| 精品人妻一区二区三区麻豆| 亚洲欧洲日产国产| 亚洲在久久综合| 精品卡一卡二卡四卡免费| 男女免费视频国产| 国产亚洲一区二区精品| 国产一区二区在线观看av| 久久国产精品男人的天堂亚洲 | 熟女人妻精品中文字幕| 哪个播放器可以免费观看大片| 在线观看免费日韩欧美大片 | 日本与韩国留学比较| 中文字幕免费在线视频6| 18禁裸乳无遮挡动漫免费视频| 两个人免费观看高清视频| 综合色丁香网| 久久女婷五月综合色啪小说| 色婷婷久久久亚洲欧美| 蜜臀久久99精品久久宅男| 18禁观看日本| 久久久国产一区二区| 午夜福利,免费看| 丝袜美足系列| 国产永久视频网站| 中文字幕亚洲精品专区| 亚洲国产欧美在线一区| 在线播放无遮挡| 中文字幕av电影在线播放| 免费观看av网站的网址| 建设人人有责人人尽责人人享有的| 又大又黄又爽视频免费| 一级爰片在线观看| 在线观看国产h片| 国产在线免费精品| 老司机亚洲免费影院| 免费人妻精品一区二区三区视频| 亚洲精品一区蜜桃| 欧美另类一区| 久久久国产精品麻豆| 日本欧美国产在线视频| 亚洲美女黄色视频免费看| 午夜精品国产一区二区电影| 成人国语在线视频| 中国美白少妇内射xxxbb| 亚洲高清免费不卡视频| 高清黄色对白视频在线免费看| 99热这里只有是精品在线观看| 国产精品秋霞免费鲁丝片| 日韩精品免费视频一区二区三区 | 99九九在线精品视频| 国产免费福利视频在线观看| 超碰97精品在线观看| 成人国产av品久久久| 国产极品天堂在线| 成年av动漫网址| 97超视频在线观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲天堂av无毛| 一个人免费看片子| 精品一区在线观看国产| 黄色配什么色好看| 曰老女人黄片| 久久精品久久久久久噜噜老黄| 欧美97在线视频| 日本爱情动作片www.在线观看| 欧美三级亚洲精品| 亚洲成人一二三区av| 亚洲一级一片aⅴ在线观看| 久久亚洲国产成人精品v| 欧美日韩国产mv在线观看视频| 久久久久久久久久久久大奶| 三上悠亚av全集在线观看| 大片电影免费在线观看免费| 国产欧美亚洲国产| 简卡轻食公司| 国产国语露脸激情在线看| 午夜免费观看性视频| 卡戴珊不雅视频在线播放| 男的添女的下面高潮视频| 久久久久久久国产电影| √禁漫天堂资源中文www| 国产精品.久久久| a级毛片黄视频| 观看av在线不卡| 精品久久久噜噜| 久久精品久久精品一区二区三区| 满18在线观看网站| 亚洲国产成人一精品久久久| 一级a做视频免费观看| 久久鲁丝午夜福利片| 亚洲国产色片| 精品国产乱码久久久久久小说| 久久婷婷青草| 精品少妇内射三级| 亚洲精品久久久久久婷婷小说| 涩涩av久久男人的天堂| 国产精品女同一区二区软件| 亚洲欧美精品自产自拍| 成人二区视频| 日韩av免费高清视频| 五月开心婷婷网| 国产黄色视频一区二区在线观看| 精品久久久久久电影网| 国产不卡av网站在线观看| av电影中文网址| 欧美精品一区二区免费开放| 日韩视频在线欧美| 卡戴珊不雅视频在线播放| 亚洲精品乱码久久久久久按摩| 十八禁高潮呻吟视频| 成人漫画全彩无遮挡| 精品熟女少妇av免费看| 女的被弄到高潮叫床怎么办| 多毛熟女@视频| 黑丝袜美女国产一区| 韩国高清视频一区二区三区| 亚洲国产欧美在线一区| 女性生殖器流出的白浆| 一级黄片播放器| 亚洲精品乱久久久久久| 人妻制服诱惑在线中文字幕| 最近2019中文字幕mv第一页| 七月丁香在线播放| 一个人看视频在线观看www免费| av女优亚洲男人天堂| 国产伦精品一区二区三区视频9| 国产精品不卡视频一区二区| 亚洲av免费高清在线观看| 久久精品国产自在天天线| 国产午夜精品一二区理论片| 一区二区三区乱码不卡18| 成人黄色视频免费在线看| h视频一区二区三区| av国产久精品久网站免费入址| 日本与韩国留学比较| 夜夜爽夜夜爽视频| 日日摸夜夜添夜夜爱| freevideosex欧美| 久久久国产欧美日韩av| av在线播放精品| 亚洲av中文av极速乱| 国产亚洲av片在线观看秒播厂| 日本av手机在线免费观看| 22中文网久久字幕| 国产亚洲精品第一综合不卡 | 亚洲国产成人一精品久久久| 国产亚洲最大av| 高清午夜精品一区二区三区| 亚洲av不卡在线观看| 狂野欧美激情性xxxx在线观看| 国产有黄有色有爽视频| 欧美日韩亚洲高清精品| 久久ye,这里只有精品| 亚洲欧美精品自产自拍| 自线自在国产av| 黑人欧美特级aaaaaa片| 成人毛片a级毛片在线播放| 老熟女久久久| 人人妻人人添人人爽欧美一区卜| 天天躁夜夜躁狠狠久久av| 丝袜喷水一区| 在线观看免费高清a一片| 亚洲精品,欧美精品| h视频一区二区三区|