• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DcNet: Dilated Convolutional Neural Networks for Side-Scan Sonar Image Semantic Segmentation

    2021-08-30 06:18:22ZHAOXiaohongQINRixiaZHANGQileiYUFeiWANGQiandHEBo
    Journal of Ocean University of China 2021年5期

    ZHAO Xiaohong, QIN Rixia, ZHANG Qilei, YU Fei, WANG Qi, and HE Bo

    DcNet: Dilated Convolutional Neural Networks for Side-Scan Sonar Image Semantic Segmentation

    ZHAO Xiaohong, QIN Rixia, ZHANG Qilei, YU Fei, WANG Qi, and HE Bo*

    ,,266100,

    In ocean explorations, side-scan sonar (SSS) plays a very important role and can quickly depict seabed topography. Assembling the SSS to an autonomous underwater vehicle (AUV) and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition, which is conducive to submarine detection. However, because of the complexity of the marine environment, various noises in the ocean pollute the sonar image, which also encounters the intensity inhomogeneity problem. In this paper, we propose a novel neural network architecture named dilated convolutional neural network (DcNet) that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation. The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target, respectively. The core of our network is a novel block connection named DCblock, which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy. Furthermore, our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality images. We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets. Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures, the accuracy of our method is still comparable, which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration.

    side-scan sonar (SSS); semantic segmentation; dilated convolutions; super-resolution

    1 Introduction

    Autonomous underwater vehicles (AUVs) are used in a number of marine missions. As a significant sensor equip- ped on AUVs, the role of side-scan sonar (SSS) is becoming increasingly important for many applications, including three-dimensional (3D) reconstruction (Coiras, 2007), seabed identification and classification (Lucieer, 2007), submarine survey (Li, 2006), and object localization (Johnson and Helferty, 2007). Therefore, the SSS image analysis can realize and improve the intelligence level of AUV environment perception and autonomous na- vigation behavior decision-making to promote theperfor- mance of AUVs in underwater operation tasks (Johnson and Deaett, 1994). Effective methods should be introduced for sonar image recognition and classification.

    However, due to the particularity of the operating environment of underwater equipment and the imaging principle of the SSS itself, sonar images have the following problems: a) the resolution of the images is low; b) sonar images include various noises, such as ambient noise,reflection, and speckle noise; c) intensity inhomogeneity. Because of the above problems, feature extraction, sonar image recognition, and classification are difficult. Thus far, many methods have been proposed for SSS image seg- mentation, including active contour models, Markov random field (MRF) methods, and clustering segmentation method. Active contour models, including snake models and level-set models, have been used for sonar image seg- mentation (Linanatonakis and Petillot, 2005, 2007). However, the topology of the models is poor as they easily fall into local extremes and are sensitive to the initial contour. The methods based on the MRF (Mignotte., 2000) have some ideal research results about sonar image segmentation, but they have complicated calculations and low efficiency. Among the clustering segmentation algorithms, the fuzzy C-means (FCM) (Chuang,2006) algori- thm has been widely studied and applied. Due to the large amount of calculation in the FCM algorithm, the requi- rements of real-time image segmentation, such as SSS image analysis tasks, can hardly be met.

    With the development of artificial neural network tech- nology, image segmentation algorithms based on convo- lutional neural networks, especially pixel-wise semanticsegmentation, have attracted considerable attention (Wang, 2018). Long(2015) proposed the fully convolutional network (FCN), replacing the fully connected layer with a convolutional layer, which was the earliest method to apply deep learning technology to image semantic segmentation. Since then, more semantic segmentation methods (Noh, 2015; Lin, 2016a; Paszke, 2016; Badrinarayanan, 2017; Lin, 2017) based on FCNs have been proposed. However, most segmentation network architectures are complicated and con- tain several parameters (Zhang, 2015; Lin, 2016b;Chaurasia and Culurciello, 2017; Pohlen, 2017; Chen, 2018), which are disadvantageous for real-time operations. For real-time semantic segmentation, ENet is a lightweight network that greatly improves efficiency withnotable sacrificed accuracy. Based on this lightweight net- work, ShuffleSeg (Gamal, 2018), LEDNet (Wang, 2019), and Light-Weight RefineNet (Nekrasov,2019) were proposed. However, the real-time perfor- mance of these methods cannot meet our hardware requi- rements. In this paper, we propose a novel segmentation method without several parameters for real SSS image seg- mentation.

    In this paper, we propose an architecture that can segment sonar images in real time with high accuracy. Our network is based on an encoder-decoder structure, which is proposed by SegNet (Badrinarayanan, 2017). On the one hand, the encoder increases the receptive fields and reduces the resolution of the feature map through the pooling layer to extract the features of sonar images. On the other hand, the decoder uses deconvolution to reproduce the features after image classification and uses the upsampling layer to restore the original size of the image. One of the novelties of our network is the usage of dilated convolutional connections between the encoder and decoder. Moreover, compared with other network layers, our structure has fewer layers and parameters owing to the use of the dilated convolutional connections to get more context. Thus, the network can achieve real-time process- ing without affecting the accuracy. In particular, we use su- per-resolution reconstruction to enlarge datasets with high- quality images.

    2 Network Architecture

    In this section, we will introduce our novel neural network architecture named dilated convolutional neural net- work (DcNet) with the block connection named DCblock in detail. The architecture of DcNet is divided into three parts (Fig.1): the encoding module is for feature extraction, the decoding module is for upsampling features, and the DCblock makes a connection with the encoder and decoder to increase the spatial information of the decoder.

    2.1 DCblock

    We focus on making connections between the corresponding encoder and decoder. The structure of the DC- block is illustrated in Fig.1. To capture a sufficient receptive field, a few methods have been proposed (Chen, 2017a, b; Zhao, 2017), such as dilated convolution and pyramid pooling modules. These methods significantly im- prove the spatial information and receptive field. During the downsampling process of the encoder, some spatial information of the image will be lost. However, if the output of the encoder is directly used as the input of the de- coder, then the amount of calculation will be significantly increased. Therefore, we use a dilated convolution with a dilation rate of two. Through this method, we aim at recovering the information lost by the encoder. Compared with the standard convolution operation, dilated convolution can expand receptive fields and capture multi-scale context information without loss of resolution or coverage. Letbe the initial kernel size andbe the dilated convolution rate, and consider the actual dilated convolution kernel size:

    Thus, the standard convolution is a special form of dilated convolution when1. In our DCblock, we expand- ed the receptive fields to obtain more context through this method. Then, we added an average pooling after the dilated convolution, which can provide a more receptive field.

    2.2 Encoder Module

    The details of the encoder module are presented in Fig.2.Here Conv/DWConv means convolution or depthwise (DW)separable convolution. DW convolution and pointwise con- volution are collectively called DW separable convolution (Chollet, 2017). This structure is similar to conventional convolution operations and can be used to extract features, but compared to conventional convolution operations, its parameter quantity and operation cost are lower, so our network adopts this method. We used a 3×3 receptive field, which is the smallest batch, to obtain the notion of right/ left, down/up, and center (Simonyan and Zisserman, 2014). Batch normalization (Ioffe and Szegedy, 2015) that is followed by a rectified linear unit (Nair and Hinton, 2010) is used between convolutional layers. Max pooling denotes that the max-pooling operation with a 2×2 window and stride 2 is used to implement translation invariance in the input image for downsampling, and the indices are passed to the corresponding decoder. By using the max-pooling operation, there is no need for a deconvolution operation, whichreduces the number of parameters and speeds up the training. Inspired by SegNet, the first two encoders have two layers of convolution, and the last two encoders have convolution layers, as shown in the dotted box in Fig.2.

    Fig.2 Encoder module.

    2.3 Decoder Module

    Similar to Fig.2, Conv/DWConv means convolution or DW separable convolution. The decoder in the segmentation network is to upsample the input image resolution. Most recent semantic segmentation networks have identical encoder networks,, VGG16, but have different de- coder networks that play a key role in the performance of the model. For instance, the SegNet decoding network stores the indices of the max locations computed during max pooling and passes them to the corresponding decoder. Compared with SegNet, U-Net (Ronneberger, 2015) transmits the entire feature map (cost of more me- mory) to the corresponding decoder and connects them for upsampling. In LinkNet, the outputs of the encoder are directly added to the decoder. In this way, the accuracy significantly improves in the processing time, and information lost in the encoding network decreases.

    In our network, the decoding network uses max-pooling indices inspired by SegNet while directly using the DC- block instead of the connection between the encoder and decoder. The details of the encoder and decoder are summarized in Table 1.

    Fig.3 Decoder module.

    Table 1 Convolutional methods in each stage

    Note: 3 × 3 is the kernel size of the convolution layer.

    3 Experiment

    We experimentally compared popular semantic segmentation networks to verify the effectiveness of our method. The segmentation experiment operation of the SSS image is shown in Fig.4. Section 3.1 describes the operations to obtain the SSS image, which can be directly used to make the dataset. Section 3.2 provides details on the super- resolution reconstruction and the training and testing of the dataset. The details of the implementation and expe- rimental parameters are presented in Section 3.3.

    3.1 Preprocessing of SSS Images

    We evaluated the network on two different datasets, name- ly, the seabed reef dataset obtained from Nanjiang Pier and the sand wave dataset from Tudandao Pier in Qingdao. SSS data were acquired by an AUV equipped with SSS. The experimentalAUV and experimental scene are shown in Figs.5 and 6, respectively.

    The SSS we used is a dual-frequency SSS. The sonar images used in our dataset were parsed from the XTF file of the SSS. Each time the SSS transmits and receives a sound wave. It is a ping data in the XTF file, and the magnitude of the value is the echo intensity. Each ping was parsed and stitched to obtain the pixel values of the grayscale image. The initial parsed picture is shown in Fig.7. To obtain the needed data, we interpolated the original so- nar data and removed the water column without data information. The processed image is provided in Fig.8.

    Fig.4 Experimental operation of the SSS image semantic segmentation.

    Fig.5 Sailfish AUV equipped with SSS.

    Fig.6 Sailfish AUV in the sea trial.

    Fig.7 Raw sonar image.

    Fig.8 Processed sonar image.

    3.2 Super-Resolution Reconstruction and Datasets

    The tool we use for labeling the ground truth and target of the SSS image is LabelMe, which is an open access annotation tool developed by the Massachusetts Institute of Technology. The number of pixels of the image input to the network must be appropriate to ensure the computing efficiency of the network, so we cropped the sonar image (shown in Fig.9) and the corresponding label (shown in Fig.10) into an image of 500×500 size with a stride of 100 pixels. To verify that our network is effective for sonar images obtained in different environments, the data were obtained from two locations. The two datasets consist of 12486 images, out of which 11424 were used for train- ing and the remaining 1062 were used for testing.

    In Fig.9, the sonar image has strong noise, and the ob- ject feature is not clear. Because low-pixel pictures have a great impact on image segmentation, we use the super- resolution reconstruction method based on the super-re- construction convolutional neural network (SRCNN) (Dong, 2015) to enhance image quality. Compared with other state-of-the-art methods, SRCNN has an uncomplicated structure, but it provides superior accuracy. The no- velty of the SRCNN is the usage of the FCN and learning an end-to-end mapping between low- and high-resolution images. Moreover, it needs little preprocessing beyond the optimization. The sonar image after super-resolution reconstruction is shown in Fig.11. In this way, our network can precisely extract features of images, thus improving the accuracy of the segmentation.

    Fig.9 Sonar image.

    Fig.10 Corresponding label.

    3.3 Experimental Setup

    We used PyTorch, which is an open-source Python ma- chine learning framework, for training. Our models were trained on NVIDIA Quadra M5000. Moreover, to verify that our model can be used for real-time processing of AUV underwater tasks, we tested the trained model on an NVIDIA Jetson TX2, which is an embedded platform. To get optimum performance, we used a mini-batch Adam optimization algorithm with a batch size of 15, learning rate of 1e-3, and weight decay of 1e-4 in the training. Then, we retained the model with the highest accuracy in the test set during the training process.

    Fig.11 Comparison of the original picture and sonar image after the super-resolution reconstruction. (a) and (c) are the initial images; (b) and (d) are the corresponding results after the super-resolution reconstruction.

    4 Results and Analysis

    4.1 Accuracy Analysis

    The metrics we used to evaluate the network performance are the pixel accuracy (PA), mean pixel accuracy (MPA), mean intersection over union (mIoU), and frequency-weighted intersection over union (FWIoU). We also compared our network with other models, such as SegNet and ENet. Tables 2 and 3 display the results of our architecture and the other model on the sonar image datasets, where the segmentation accuracy was improved from 67.98% to 69.03% and from 66.93% to 67.50%, which proves the effectiveness of the DCblock module. We note that, for the sand wave sonar images, our network yielded an mIoU of 69.03%, which can closely ma- tch the performance of the state-of-the-art methods. For the seabed reef sonar images, our DcNet achieved higher accuracy against the other methods.

    Table 2 Comparison on the sand wave test set

    Note: The best results are in bold.

    Table 3 Comparison on the seabed reef test set

    Note: The best results are in bold.

    Meanwhile, by adding the DCblock, the accuracy of our network was significantly improved. The prediction accuracy of the sand wave dataset is generally high because the sand wave features are more evident than the seabed reef features, so the manual labeling was more accurate. Fig.12 shows the semantic segmentation results of the DcNet. Generally, even if the noise of the SSS image is strong, the segmentation results of the sand waves and seabed reefs are ideal.

    Fig.12 Examples of segmentation produced by our network. The first row is the initial input image (the first two images are from the sand wave test set, and the latter two are from the seabed reef test set); the second row corresponds to the ground truth of the first column; the third row contains the segmentations predicted by our network without the DCblock; and the last is the segmentation tasks with the DCblock.

    4.2 Speed Analysis

    Speed is an essential factor when we apply the network in an embedded platform. Table 4 reports a comparison of the number of parameters and giga floating-point operations per second (GFLOPs) used by different networks. Table 5 presents the inference time of the high-resolution sonar images on NVIDIA Jetson TX2. The symbol ‘?’ indicates that the network is not able to test on the embed on 500×500-resolution sonar images using NVIDIA Jetson TX2. Compared with other methods, our architecture has fewer parameters without a clear decrease in the model performance and thus can be applied in embedded platform operations.

    Table 4 Accuracy and parameter analysis of our method and other state-of-the-art methods. FLOPs are estimated for input of 3×500×500

    Table 5 Speed comparison of our model and other methods on NVIDIA Jetson TX2

    4.3 Speed and Accuracy Comparisons

    In the field of deep learning image segmentation, the mIoU value is an important indicator to measure the accuracy of image segmentation. mIoU can be interpreted as the average cross-union ratio, and the IoU value is calculated on each category (true sample number/(real sample number+false negative sample number+false positive sam-ple number)), so we used mIoU as the main segmentation accuracy standard.The speed and accuracy comparison is presented in Fig.13. While SegNet obtains high accuracy in the sand wave test set, the inference time speed in SegNet is too low, and thus it cannot be performed in an embedded platform. Compared with ENet, the inference speed in our network is good in the sand wave and seabed reef test sets, and the accuracy is comparable to that of ENet.

    Fig.13 Inference speed and accuracy performance on the (a) sand wave and (b) seabed reef test sets.

    In the actual experiment, after the AUV main control unit used the command to open the SSS, the embedded GPU received five pings of data per second, corresponding to the five lines of pixels in the picture, and the GPU processed the data every 3s and sent the results back to the master control unit to perform the path planning. The time to preprocess the image is approximately 0.5s, so the time to split the image is approximately 4s. When the SSS range is set to 120m, each ping has 9600 pixels. After cropping the 500×500 image for processing, almost 20 images needed to be processed, and the time for each image is 0.2s. Hence, after the network processes the images, there will be sufficient time for other operations, thus im- proving the efficiency.

    5 Conclusions

    In this study, we introduce a semantic segmentation net-work of SSS images through DcNet, based on the encoder- decoder module. By using the DCblock between the encoder and decoder, the network increases the receptive field and gains more context. Thus, it achieves better per- formance in SSS image segmentation, and its inference can be performed in real time. In addition, super-resolu- tion reconstruction can improve the accuracy of the segmentation tasks. The experimental results show that, in contrast to the state-of-the-art approaches, our network per- forms better in the trade-off between effectiveness and efficiency. The findings also show that AUVs can use this network in real-time online sonar image recognition to achieve intelligent path planning. Moreover, the accuracy can be further improved if a better super-resolution recon- struction method is adopted.

    Acknowledgement

    This work is partially supported by the Natural Key Re- search and Development Program of China (No. 2016YF C0301400).

    Badrinarayanan, V., Kendall, A., and Cipolla, R., 2017. Segnet: A deep convolutional encoder-decoder architecture for image segmentation., 39 (12): 2481-2495, DOI: 10.1109/tpami. 2016.2644615.

    Chaurasia, A., and Culurciello, E., 2017. Linknet: Exploiting en- coder representations for efficient semantic segmentation..St. Petersburg, 1-4, DOI: 10.1109/vcip.2017.8305148.

    Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L., 2017a. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs., 40 (4): 834-848, DOI: 10.1109/tpami. 2017.2699184.

    Chen, L. C., Papandreou, G., Schroff, F., and Adam, H., 2017b. Rethinking atrous convolution for semantic image segmentation., arXiv: 1706. 05587.

    Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions.Honolulu, 1251- 1258.

    Chuang, K. S., Tzeng, H. L., Chen, S., Wu, J., and Chen, T. J, 2006. Fuzzy c-means clustering with spatial information for image segmentation., 30 (1): 9-15.

    Coiras, E., Petillot, Y., and Lane, D. M., 2007. Multiresolution 3-D reconstruction from side-scan sonar images., 16 (2): 382-390, DOI: 10.1109/ tip.2006.888337.

    Dong, C., Loy, C. C., He, K., and Tang, X., 2015. Image super- resolution using deep convolutional networks., 38 (2): 295-307.

    Gamal, M., Siam, M., and Abdel-Razek, M., 2018. Shuffleseg: Real-time semantic segmentation network.,arXiv: 1803.03816

    Ioffe, S., and Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift.,arXiv: 1502.03167.

    Johnson, H. P., and Helferty, M., 1990. The geological interpretation of side-scan sonar., 28 (4): 357- 380, DOI: 10.1029/rg028i004p00357.16.

    Johnson, S. G., and Deaett, M. A., 1994. The application of au- tomated recognition techniques to side-scan sonar imagery., 19 (1): 138-144, DOI: 10.11 09/48.289460.

    Li, A. L., Cao, L. H., Li, G. X., and Yang, R. M., 2006. Application of side-scan sonar to submarine survey and vessel dynamic positioning technique.,36 (2): 331-335 (in Chinese with English abstract).

    Lianantonakis, M., and Petillot, Y. R., 2005. Sidescan sonar seg- mentation using active contours and level set methods. In:. Brest, 719-724, DOI: 10.1109/oceanse. 2005.1511803.

    Lianantonakis, M., and Petillot, Y. R., 2007. Sidescan sonar seg- mentation using texture descriptors and active contours., 32 (3): 744-752, DOI: 10. 1109/joe.2007.893683.

    Lin, D., Dai, J., Jia, J., He, K., and Sun, J., 2016a. Scribblesup: Scribble-supervised convolutional networks for semantic seg- mentation.. Las Vegas, 3159-3167, DOI: 10.1109/cvpr.2016.344.

    Lin, G., Milan, A., Shen, C., and Reid, I., 2017. Refinenet: Mul- ti-path refinement networks for high-resolution semantic seg- mentation.. Honolulu, 1925-1934, DOI: 10.1109/cvpr.2017.549.

    Lin, G., Shen, C., Van Den Hengel, A., and Reid, I., 2016b. Efficient piecewise training of deep structured models for semantic segmentation..Las Vegas, 3194-3203, DOI: 10.1109/cvpr.2016.348.

    Long, J., Shelhamer, E., and Darrell, T., 2015. Fully convolutional networks for semantic segmentation.. Boston, 3431-3440.

    Lucieer, V. L., 2007. Object-oriented classification of sidescan sonar data for mapping benthic marine habitats., 29 (3): 905-921, DOI: 10.1080/01 431160701311309.

    Mignotte, M., Collet, C., Perez, P., and Bouthemy, P., 2000. Sonar image segmentation using an unsupervised hierarchical MRF model., 9 (7): 1216- 1231, DOI: 10.1109/83.847834.

    Nair, V., and Hinton, G. E., 2010. Rectified linear units improve restricted boltzmann machines.Haifa, 1-8.

    Nekrasov, V., Shen, C., and Reid, I., 2018. Light-weight refinenet for real-time semantic segmentation.,arXiv: 1810.03272

    Noh, H., Hong, S., and Han, B., 2015. Learning deconvolution network for semantic segmentation.. Santiago, 1520- 1528, DOI: 10.1109/iccv.2015.178.

    Paszke, A., Chaurasia, A., Kim, S., and Culurciello, E., 2016. Enet:A deep neural network architecture for real-time semantic seg- mentation.,arXiv: 1 606.02147.

    Pohlen, T., Hermans, A., Mathias, M., and Leibe, B., 2017. Full- resolution residual networks for semantic segmentation in street scenes.Honolulu, 4151-4160.

    Ronneberger, O., Fischer, P., and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In:. Navab, N.,., eds., Springer, Munich, 234- 241, DOI: 10.1007/978-3-319-24574-4_28.

    Simonyan, K., and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition., arXiv: 1409.1556.

    Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X.,., 2018. Understanding convolution for semantic segmentation.. Lake Tahoe, 1451-1460, DOI: 10.1109/wacv.20 18.00163.

    Wang, Y., Zhou, Q., Liu, J., Xiong, J., Gao, G., Wu, X.,., 2019. Lednet: A lightweight encoder-decoder network for real- time semantic segmentation.). Taipei, 1860-1864.

    Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S.,., 2015.Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.,108: 214- 224, DOI: 10.1016/j.neuroimage.2014.12.061.

    Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J., 2017. Pyramid scene parsing network..Honolulu, 2881- 2890, DOI: 10.1109/cvpr.2017.660.

    . Tel: 0086-532-66782339 E-mail: bhe@ouc.edu.cn

    July 14, 2020;

    September 16, 2020;

    September 23, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    (Edited by Chen Wenwen)

    99九九在线精品视频| 亚洲av中文av极速乱| 2021少妇久久久久久久久久久| 永久免费av网站大全| 国产不卡av网站在线观看| 亚洲,欧美,日韩| 国产伦人伦偷精品视频| 可以免费在线观看a视频的电影网站 | 老司机在亚洲福利影院| 亚洲精品av麻豆狂野| 最新在线观看一区二区三区 | 妹子高潮喷水视频| 久久午夜综合久久蜜桃| 午夜激情久久久久久久| 色综合欧美亚洲国产小说| 男女高潮啪啪啪动态图| 国产男女内射视频| 国产熟女午夜一区二区三区| 狠狠婷婷综合久久久久久88av| 熟女av电影| 亚洲av成人不卡在线观看播放网 | 欧美老熟妇乱子伦牲交| 亚洲成人国产一区在线观看 | 性少妇av在线| 又大又黄又爽视频免费| 亚洲第一区二区三区不卡| 在线观看一区二区三区激情| 国产精品99久久99久久久不卡 | 一本一本久久a久久精品综合妖精| 成年动漫av网址| 国产av一区二区精品久久| 丝袜美腿诱惑在线| 可以免费在线观看a视频的电影网站 | 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 久久久久国产一级毛片高清牌| 国产精品免费大片| 中文字幕色久视频| 大话2 男鬼变身卡| 日韩视频在线欧美| 波多野结衣av一区二区av| 晚上一个人看的免费电影| 男女午夜视频在线观看| 你懂的网址亚洲精品在线观看| 亚洲天堂av无毛| 午夜激情久久久久久久| 久久久久精品国产欧美久久久 | xxx大片免费视频| 日本av免费视频播放| 欧美日韩视频精品一区| 人成视频在线观看免费观看| 欧美日韩一区二区视频在线观看视频在线| 极品人妻少妇av视频| 国产精品一区二区在线不卡| 妹子高潮喷水视频| 女性生殖器流出的白浆| 久久久久久久久久久久大奶| 男人操女人黄网站| 99精品久久久久人妻精品| 一级毛片黄色毛片免费观看视频| 五月开心婷婷网| 国产在线视频一区二区| 亚洲一码二码三码区别大吗| 丝袜美腿诱惑在线| 成人毛片60女人毛片免费| 精品国产一区二区久久| 啦啦啦视频在线资源免费观看| 色婷婷久久久亚洲欧美| 又黄又粗又硬又大视频| 久久韩国三级中文字幕| 日韩成人av中文字幕在线观看| 多毛熟女@视频| 成人漫画全彩无遮挡| 黄片播放在线免费| 国产1区2区3区精品| 777久久人妻少妇嫩草av网站| 日韩 欧美 亚洲 中文字幕| 久久99一区二区三区| 大片电影免费在线观看免费| 毛片一级片免费看久久久久| 免费在线观看视频国产中文字幕亚洲 | 精品国产国语对白av| 国产亚洲最大av| 国产精品一区二区在线不卡| 午夜久久久在线观看| 日韩av免费高清视频| 又粗又硬又长又爽又黄的视频| 免费av中文字幕在线| 久久久久久久精品精品| 欧美日韩精品网址| 国产一级毛片在线| 国产成人欧美| 999精品在线视频| 中文字幕亚洲精品专区| 韩国精品一区二区三区| 免费黄频网站在线观看国产| 赤兔流量卡办理| 高清视频免费观看一区二区| 美女脱内裤让男人舔精品视频| 国产一区二区在线观看av| 午夜福利视频精品| 男女无遮挡免费网站观看| 母亲3免费完整高清在线观看| 男女高潮啪啪啪动态图| 黄网站色视频无遮挡免费观看| 午夜福利,免费看| 黄片无遮挡物在线观看| xxx大片免费视频| 国产av精品麻豆| 女人高潮潮喷娇喘18禁视频| 欧美日韩亚洲高清精品| 丁香六月天网| 午夜福利一区二区在线看| 久久久久久久久久久免费av| 亚洲色图 男人天堂 中文字幕| 精品少妇久久久久久888优播| 18禁观看日本| 亚洲欧美一区二区三区黑人| 国产成人91sexporn| 久久人人爽av亚洲精品天堂| 亚洲婷婷狠狠爱综合网| 久久韩国三级中文字幕| 女人爽到高潮嗷嗷叫在线视频| 美国免费a级毛片| a级毛片黄视频| 伊人久久国产一区二区| 欧美97在线视频| 亚洲中文av在线| 在线观看免费日韩欧美大片| 美女福利国产在线| 丁香六月天网| 久久99精品国语久久久| av国产久精品久网站免费入址| tube8黄色片| 国产女主播在线喷水免费视频网站| 日韩av免费高清视频| 在现免费观看毛片| 天堂俺去俺来也www色官网| 亚洲精品一区蜜桃| 日本欧美视频一区| 精品一品国产午夜福利视频| 午夜免费男女啪啪视频观看| 九草在线视频观看| 伊人亚洲综合成人网| 七月丁香在线播放| 亚洲精品成人av观看孕妇| 久久久久精品人妻al黑| 久久久国产一区二区| 最近手机中文字幕大全| 侵犯人妻中文字幕一二三四区| 成年人午夜在线观看视频| 精品少妇内射三级| 啦啦啦中文免费视频观看日本| 超碰成人久久| 熟妇人妻不卡中文字幕| 午夜福利一区二区在线看| 久久久国产精品麻豆| 免费观看a级毛片全部| 午夜91福利影院| 秋霞伦理黄片| 亚洲美女视频黄频| 韩国av在线不卡| 国产成人精品福利久久| 欧美另类一区| 人人妻,人人澡人人爽秒播 | 久久精品国产亚洲av涩爱| 欧美精品一区二区大全| 精品福利永久在线观看| 日韩大码丰满熟妇| 亚洲美女视频黄频| 成人国产av品久久久| 一本色道久久久久久精品综合| 成年人午夜在线观看视频| 欧美黑人欧美精品刺激| 一级片'在线观看视频| 国产乱来视频区| 美女高潮到喷水免费观看| 一本—道久久a久久精品蜜桃钙片| 久久国产亚洲av麻豆专区| 97精品久久久久久久久久精品| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久久久免| 国产日韩欧美亚洲二区| 欧美在线黄色| 99国产精品免费福利视频| 久久久亚洲精品成人影院| 亚洲精品国产一区二区精华液| 国产精品国产三级国产专区5o| 亚洲成色77777| 大片电影免费在线观看免费| 久久精品亚洲熟妇少妇任你| 美女视频免费永久观看网站| 国产乱人偷精品视频| tube8黄色片| 1024香蕉在线观看| 午夜福利网站1000一区二区三区| 少妇人妻久久综合中文| 久久ye,这里只有精品| 亚洲国产最新在线播放| 国产亚洲av高清不卡| 丁香六月天网| 国产探花极品一区二区| 在线观看免费日韩欧美大片| 热99国产精品久久久久久7| 久久天堂一区二区三区四区| 一级片免费观看大全| 七月丁香在线播放| 校园人妻丝袜中文字幕| 人妻人人澡人人爽人人| 欧美日韩精品网址| 精品亚洲乱码少妇综合久久| 宅男免费午夜| 免费人妻精品一区二区三区视频| 啦啦啦在线观看免费高清www| 精品国产国语对白av| 日韩制服丝袜自拍偷拍| 汤姆久久久久久久影院中文字幕| 在线 av 中文字幕| 免费高清在线观看日韩| xxxhd国产人妻xxx| 精品一区二区三卡| 国产精品成人在线| 色视频在线一区二区三区| 国产黄色视频一区二区在线观看| 妹子高潮喷水视频| 国产日韩欧美亚洲二区| 熟女av电影| 人成视频在线观看免费观看| 日韩一卡2卡3卡4卡2021年| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 亚洲成人手机| 在线观看免费视频网站a站| 1024视频免费在线观看| 激情五月婷婷亚洲| 2021少妇久久久久久久久久久| 狠狠精品人妻久久久久久综合| 日本欧美视频一区| 成年动漫av网址| 精品国产一区二区三区久久久樱花| 在线观看免费日韩欧美大片| 欧美精品av麻豆av| 久久久精品区二区三区| 久久99一区二区三区| 一二三四中文在线观看免费高清| 国产av一区二区精品久久| 超色免费av| 人人澡人人妻人| 超碰成人久久| 女的被弄到高潮叫床怎么办| 巨乳人妻的诱惑在线观看| 国产探花极品一区二区| 成人手机av| 丁香六月欧美| 韩国高清视频一区二区三区| 捣出白浆h1v1| 欧美日韩福利视频一区二区| 妹子高潮喷水视频| 亚洲精品久久久久久婷婷小说| 老司机深夜福利视频在线观看 | 婷婷色av中文字幕| 超色免费av| 国产精品嫩草影院av在线观看| 久久久国产精品麻豆| 久久久久精品国产欧美久久久 | 看免费成人av毛片| 亚洲一码二码三码区别大吗| 最新在线观看一区二区三区 | 亚洲精品aⅴ在线观看| 色婷婷av一区二区三区视频| 丰满少妇做爰视频| 性高湖久久久久久久久免费观看| 青青草视频在线视频观看| 亚洲国产看品久久| 大码成人一级视频| 精品亚洲成国产av| 一区在线观看完整版| 一本久久精品| 精品一区二区三卡| 美女大奶头黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 色婷婷av一区二区三区视频| 黄色毛片三级朝国网站| 免费黄网站久久成人精品| 一级,二级,三级黄色视频| 亚洲精品av麻豆狂野| 一个人免费看片子| 亚洲精品aⅴ在线观看| 一级片'在线观看视频| a级毛片黄视频| 波多野结衣av一区二区av| 伦理电影大哥的女人| 18在线观看网站| av又黄又爽大尺度在线免费看| 下体分泌物呈黄色| 久久久久久人妻| 久久婷婷青草| 国产精品偷伦视频观看了| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的| 国产成人精品福利久久| 日韩制服骚丝袜av| 日韩欧美精品免费久久| av线在线观看网站| 亚洲人成77777在线视频| 91aial.com中文字幕在线观看| 2018国产大陆天天弄谢| 亚洲精品成人av观看孕妇| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 国产成人a∨麻豆精品| 国产探花极品一区二区| 久久久久久久精品精品| 老汉色av国产亚洲站长工具| xxxhd国产人妻xxx| 国产一区二区三区综合在线观看| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 国产毛片在线视频| 国产熟女午夜一区二区三区| 丁香六月欧美| 少妇精品久久久久久久| 看十八女毛片水多多多| 99热国产这里只有精品6| 我的亚洲天堂| 一二三四在线观看免费中文在| 宅男免费午夜| 一区二区三区精品91| 久久ye,这里只有精品| 久久久久久人妻| 超色免费av| 免费黄色在线免费观看| 成人亚洲欧美一区二区av| 欧美国产精品一级二级三级| 999精品在线视频| 亚洲人成77777在线视频| bbb黄色大片| 91精品国产国语对白视频| 欧美 日韩 精品 国产| 午夜福利免费观看在线| 777米奇影视久久| 美女视频免费永久观看网站| 国产精品.久久久| 国产成人欧美在线观看 | 欧美精品亚洲一区二区| 十八禁网站网址无遮挡| 看非洲黑人一级黄片| 亚洲国产最新在线播放| 高清在线视频一区二区三区| 国产av码专区亚洲av| 又粗又硬又长又爽又黄的视频| 青春草国产在线视频| videosex国产| 久久久久国产一级毛片高清牌| 亚洲精品日本国产第一区| 看非洲黑人一级黄片| 免费看av在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 飞空精品影院首页| 亚洲欧美成人综合另类久久久| 欧美成人精品欧美一级黄| 国产成人精品无人区| 日韩成人av中文字幕在线观看| 人人妻,人人澡人人爽秒播 | 欧美亚洲日本最大视频资源| 亚洲,欧美,日韩| 一区在线观看完整版| 亚洲婷婷狠狠爱综合网| 在线观看人妻少妇| 亚洲av日韩在线播放| 啦啦啦视频在线资源免费观看| 在线天堂中文资源库| av国产精品久久久久影院| 80岁老熟妇乱子伦牲交| 免费不卡黄色视频| 97精品久久久久久久久久精品| 1024香蕉在线观看| 欧美日韩视频精品一区| 久久99热这里只频精品6学生| 亚洲图色成人| 男女之事视频高清在线观看 | 你懂的网址亚洲精品在线观看| 日本av手机在线免费观看| 国产精品国产av在线观看| 99久久精品国产亚洲精品| 日韩 亚洲 欧美在线| 看免费成人av毛片| 日本vs欧美在线观看视频| 婷婷色综合www| 国产一卡二卡三卡精品 | 男女国产视频网站| 久久久久久免费高清国产稀缺| 人人妻人人澡人人爽人人夜夜| 免费av中文字幕在线| 成年动漫av网址| 男女边吃奶边做爰视频| 国产伦理片在线播放av一区| 亚洲精品久久午夜乱码| 国产成人精品在线电影| 欧美日韩国产mv在线观看视频| videosex国产| 天堂8中文在线网| 久久婷婷青草| 人人妻人人澡人人看| 美国免费a级毛片| 另类亚洲欧美激情| 如日韩欧美国产精品一区二区三区| 黄片播放在线免费| 国产日韩欧美亚洲二区| 亚洲激情五月婷婷啪啪| av国产久精品久网站免费入址| 日韩 欧美 亚洲 中文字幕| 69精品国产乱码久久久| 五月天丁香电影| 人成视频在线观看免费观看| 亚洲三区欧美一区| 国产欧美日韩综合在线一区二区| 国产亚洲精品第一综合不卡| 国产男女内射视频| 亚洲,欧美精品.| 校园人妻丝袜中文字幕| 免费看不卡的av| 成人三级做爰电影| 亚洲国产成人一精品久久久| 欧美日韩亚洲综合一区二区三区_| 男女边吃奶边做爰视频| 在线观看www视频免费| 国产一区二区激情短视频 | 免费看av在线观看网站| 免费观看av网站的网址| av电影中文网址| 国产免费福利视频在线观看| 国产亚洲av高清不卡| 国产免费福利视频在线观看| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av涩爱| 亚洲综合色网址| 观看av在线不卡| 777米奇影视久久| 伊人久久大香线蕉亚洲五| 哪个播放器可以免费观看大片| 69精品国产乱码久久久| 午夜免费鲁丝| 97在线人人人人妻| 亚洲第一区二区三区不卡| 欧美少妇被猛烈插入视频| 亚洲一级一片aⅴ在线观看| 成年av动漫网址| 久久精品久久久久久噜噜老黄| 成年av动漫网址| 日韩大片免费观看网站| 日韩一区二区视频免费看| 成人影院久久| 午夜免费男女啪啪视频观看| 日本爱情动作片www.在线观看| 日韩熟女老妇一区二区性免费视频| 精品卡一卡二卡四卡免费| 久久精品人人爽人人爽视色| 卡戴珊不雅视频在线播放| 99国产精品免费福利视频| 毛片一级片免费看久久久久| 天天添夜夜摸| 一本久久精品| 一级,二级,三级黄色视频| 国产精品久久久久久精品古装| 观看av在线不卡| 涩涩av久久男人的天堂| 亚洲综合色网址| 少妇被粗大的猛进出69影院| 日本av手机在线免费观看| 午夜福利免费观看在线| 国产精品久久久久成人av| 精品福利永久在线观看| 激情视频va一区二区三区| 视频区图区小说| 精品人妻一区二区三区麻豆| 美女扒开内裤让男人捅视频| 欧美黑人欧美精品刺激| 少妇猛男粗大的猛烈进出视频| 久久精品人人爽人人爽视色| 热99国产精品久久久久久7| 亚洲国产欧美一区二区综合| 亚洲精品中文字幕在线视频| 国产成人91sexporn| 美女午夜性视频免费| 男女高潮啪啪啪动态图| 19禁男女啪啪无遮挡网站| 精品久久久精品久久久| 日韩一本色道免费dvd| 超碰97精品在线观看| 日本wwww免费看| 国产精品麻豆人妻色哟哟久久| 国产精品三级大全| 久久久久精品人妻al黑| 最近手机中文字幕大全| 亚洲精品日韩在线中文字幕| 18禁观看日本| 色综合欧美亚洲国产小说| 国产又色又爽无遮挡免| 久久国产亚洲av麻豆专区| 大陆偷拍与自拍| 一边摸一边抽搐一进一出视频| 国产精品国产三级专区第一集| 国产欧美日韩一区二区三区在线| 久久久久视频综合| 久久亚洲国产成人精品v| 美女福利国产在线| 男女下面插进去视频免费观看| 丰满饥渴人妻一区二区三| 亚洲欧美成人综合另类久久久| 国产精品久久久av美女十八| 中国国产av一级| 国产精品.久久久| 欧美国产精品va在线观看不卡| 这个男人来自地球电影免费观看 | 久久午夜综合久久蜜桃| 亚洲av日韩精品久久久久久密 | 国产亚洲av高清不卡| 日韩伦理黄色片| 在线观看一区二区三区激情| 国产人伦9x9x在线观看| 看十八女毛片水多多多| 曰老女人黄片| 免费观看a级毛片全部| 男女午夜视频在线观看| av一本久久久久| 美女高潮到喷水免费观看| 超碰成人久久| 日本av免费视频播放| 91成人精品电影| 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区国产| 国产欧美日韩综合在线一区二区| 亚洲国产毛片av蜜桃av| 青春草亚洲视频在线观看| 成人亚洲欧美一区二区av| 欧美日韩av久久| 操出白浆在线播放| 久久精品熟女亚洲av麻豆精品| 精品少妇久久久久久888优播| 精品国产乱码久久久久久男人| 一级黄片播放器| 亚洲欧美成人综合另类久久久| 欧美黑人精品巨大| 久久国产亚洲av麻豆专区| 亚洲av欧美aⅴ国产| 18禁动态无遮挡网站| 熟女少妇亚洲综合色aaa.| 精品人妻熟女毛片av久久网站| 国语对白做爰xxxⅹ性视频网站| 国产黄色免费在线视频| 精品亚洲乱码少妇综合久久| 中文字幕最新亚洲高清| 国产av精品麻豆| 一级a爱视频在线免费观看| 日韩精品有码人妻一区| 午夜福利乱码中文字幕| 中文字幕高清在线视频| 亚洲国产欧美一区二区综合| 亚洲图色成人| 欧美精品av麻豆av| 99精国产麻豆久久婷婷| 丰满饥渴人妻一区二区三| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av涩爱| 我要看黄色一级片免费的| 中文欧美无线码| 日本欧美视频一区| 亚洲精品久久午夜乱码| 满18在线观看网站| 国产欧美日韩一区二区三区在线| 多毛熟女@视频| 伦理电影大哥的女人| 欧美日韩av久久| 亚洲av成人精品一二三区| 考比视频在线观看| 午夜91福利影院| 欧美亚洲 丝袜 人妻 在线| 丁香六月天网| 观看美女的网站| 国产成人精品久久久久久| 悠悠久久av| 日本猛色少妇xxxxx猛交久久| 大香蕉久久网| 国产精品一区二区精品视频观看| 国产精品秋霞免费鲁丝片| 赤兔流量卡办理| 亚洲国产欧美一区二区综合| 丝瓜视频免费看黄片| 久久久精品94久久精品| 免费高清在线观看日韩| 国产精品一二三区在线看| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美成人精品一区二区| 久久国产亚洲av麻豆专区| 亚洲av国产av综合av卡| 国产亚洲av片在线观看秒播厂| 精品第一国产精品| 亚洲欧美一区二区三区黑人| 久久久久久人人人人人| 亚洲欧洲日产国产| 国产精品一区二区在线观看99| 韩国av在线不卡| 中文字幕色久视频| 在线天堂中文资源库| 欧美精品亚洲一区二区| 少妇人妻久久综合中文| 久久精品熟女亚洲av麻豆精品| 国产免费一区二区三区四区乱码| 成人手机av| 欧美在线黄色| 91精品国产国语对白视频| 亚洲精品视频女| 国产亚洲精品第一综合不卡|