• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Brown Algae Saccharina japonica and Sargassum horneri Exhibit Species-Specific Responses to Synergistic Stress of Ocean Acidification and Eutrophication

    2021-08-30 06:17:28LIUYuxinCAOJiazhenCHUYaoyaoLIUYanWANGQiaohanGONGQingliandLIJingyu
    Journal of Ocean University of China 2021年5期

    LIU Yuxin, CAO Jiazhen, CHU Yaoyao, LIU Yan, 2), WANG Qiaohan, 2), GONG Qingli, 2), and LI Jingyu, 2),

    The Brown AlgaeandExhibit Species-Specific Responses to Synergistic Stress of Ocean Acidification and Eutrophication

    LIU Yuxin1), CAO Jiazhen1), CHU Yaoyao1), LIU Yan1), 2), WANG Qiaohan1), 2), GONG Qingli1), 2), and LI Jingyu1), 2),*

    1)Fisheries College,Ocean University of China, Qingdao 266003, China 2) Key Laboratory of Mariculture, Ministry of Education, Ocean University of China,Qingdao 266003, China

    Ocean acidification and eutrophication are two important environmental stressors. They inevitably impact marine macroalgae, and hence the coastal ecosystem of China., as the main culture species in China, is suffering the harmful golden tide caused by. However, it remains unclear whether the detrimental effects ofoncultivation become more severe in future acidified and eutrophic scenario. In this study, we respectively investigated the effects ofCO2(400μatm and 1000μatm) and nutrients (non-enriched and enriched seawater) on the growth, photosynthesis, respiration, chlorophyll contents, and tissue nitrogen ofand. Results indicated that enrichment of nutrients contributedto utilize HCO3?. The carbon acquisition pathway shifted from HCO3?to CO2in, whileremained using HCO3?regulated by nutrient enrichment.exhibited better photosynthetic traits than, with a higher level of net photosynthetic rate and chlorophyll contents at elevatedCO2and enriched nutrients. Tissue nitrogen also accumulated richly in the thalli ofunder higherCO2and nutrients. Significant enhancement in growth was only detected inunder synergistic stress. Together,showed competitive dominance in current study. These findings suggest that increasing risk of golden tide in acidified and eutrophic ocean can most likely result in great damage tocultivation.

    eutrophication; ocean acidification;;; synergistic stress

    1 Introduction

    The concentration of atmospheric carbon dioxide (CO2) increased approximately 130 pars per million (ppm) since the Industrial Revolution (Joos and Spahni, 2008; AOAN, 2019). Rising atmospheric CO2dissolved in seawater, causing pH reductions and alterations in chemical balances of dissolved inorganic carbon (DIC) (Feely., 2004, 2009a; Doney., 2009). These changes in pH and DIC are ineluctable consequences of rising atmospheric CO2, referred to as ocean acidification (OA) (Doney., 2009). Anthropogenic CO2emission is rising at the fastest rate after the Industrial Era (Joos and Spahni, 2008; AOAN, 2019), thus leading to a continuing decrease in seawater pH (Feely., 2004, 2009b; Doney., 2009; Feely., 2009a). OA significantly affects the physiological processes and ecological functi- ons of seaweeds and other marine organisms (Gazeau., 2007; Edmunds, 2011; Koch., 2013; Kroeker.,2013; Enochs., 2015; Gao., 2019). A body of evidence indicates that OA actively stimulates the growth of kelps, such as,andwhich were carbon limited in nearshore environment (Swanson and Fox, 2007; Xu., 2019; Hurd., 2020; Zhang., 2020). On the other hand, OA simultaneously reduces the calcification of,and other calcified algae (Reymond., 2013; Johnson and Carpenter, 2018).

    Furthermore, human pollution, agricultural production and atmospheric deposition have dramatically increased since 1970s, resulting in excessive nutrients input to coastal seawater (Smith., 2003; van der Struijk and Kroeze, 2010; Strokal., 2014; Brockmann., 2018; Murray., 2019). This process leads to another environmental issue known as eutrophication (Smith., 2003). Several studies showed that water quality slightly recovered from previous eutrophic state in the Baltic Sea, Chesapeake Bay and other coastal seas (Okino and Kato, 1987; Andersen., 2017; McCrackin., 2017; Duar-te and Krause-Jensen, 2018). In contrast, severe eutrophic areas are still located at some key bays in China, including Liaodong Bay, Yangtze River Estuary and other jurisdictional seas (MEE, 2019). With exceeded nutrients supply, eutrophication can enhance the growth of phytoplankton, fast-growing filamentous and mat- forming opportunistic macroalgae (Pedersen and Borum, 1997; Wernberg., 2018). Degraded water quality from eutrophication is critical for the development, persistence and expansion of harmful algae blooms (HABs) (Heisler., 2008). Recent reports showed that microalgal blooms,-dominated green tides and-dominated golden tides have substantially increased worldwide (Glibert., 2005; Smetacek and Zingone, 2013; Kudela., 2015; Wang., 2018). HAB resulted from eutrophication affects substance circulation, primary productivity, community structure and marine ecosystem service (Norkko and Bonsdorff, 1996a,b; Glibert., 2005; Heisler., 2008; Rabouille., 2008; Smetacek and Zingone, 2013; Anderson., 2015; Kudela., 2015; Watson., 2015).

    Several studies have found that coral reef systems are negatively affected by OA and nutrient enrichment (Hoegh-Guldberg., 2007; Ge., 2017; Guan., 2020). For phytoplankton, marine diazotrophs such asspp. increase their N2fixation under elevated CO2in nitrogen enriched cultures (Eichner., 2014; Hutchins and Fu, 2017). However, limited investigations aimed to reveal the ecophysiological effects of OA and eutrophication on marine macrophytes. Previous studies indicated that the growth and quality ofwere inhibited and threatened by the interactive effects of OA and eutrophication (Chu., 2019, 2020). In contrast, there was an enhanced production of amino acid and fatty acid inspecies at elevated CO2concentration and nutrient level (Gao., 2018). Thus, the responses to the synergistic stress of OA and eutrophication are species-specific in macroalgae. The rise of acidity in coastal ocean was found to be greater under eutrophication (Cai., 2011). This severe scenario potentially aggravate the disappearance of habitat-forming seaweeds worldwide (Filbee-Dexter and Wernberg, 2018; Wern- berg., 2018). It is thus important to understand how macroalgae will response to the future synergistic stress of OA and eutrophication.

    The kelpis the foremost commercial harvesting alga among northwestern Pacific countries (Chung., 2017; Kim., 2017). In previous studies, the growth, photosynthesis, and nutrient uptake ofwere significantly enhanced under elevated CO2concentrations (Swanson and Fox, 2007; Zhang., 2020). Also, excess nutrient availability significantly promoted the growth and physiological performance of(Gao., 2017). On the other hand, the sheet- like macroalgaeblooms frequently occur in recent years (Liu., 2013; Xiao, 2020), whose floating thalli have caused detrimental impacts onaquaculture (Xiao, 2020). Many investigations have focused on how environmental factors affect population dynamics and distributions ofin East China Sea and Yellow Sea (Xiao, 2019; Xiao., 2020; Choi., 2020). However, it remains unclear whetheris more resilient to the synergistic stress of OA and eutrophication than.

    In the present study, we investigated the synergistic stress of OA and eutrophication on growth, photosynthesis, respiration, chlorophyll contents, and tissue nitrogen of sporophytes ofandappearing in the same period. The results are expected to reveal the species-specific ecophysiological responses ofand, and determine which alga has greater resilience and interspecific competitive dominance under synergistic stress of OA and eutrophication.

    2 Materials and Methods

    2.1 Algal Collection and Maintenance

    The sporophytes of(approximately 80cm in average length,=20) and(approximately 150cm in average length,=20) were collected in Rong- cheng, Shandong, China (36?07′N, 120?19′E), in December 2019. Thesamples were from cultivated populations, withtwining on, or floating between their rafts. The samples were kept in cold foam boxes filled with seawater and quickly transported to the laboratory within 8h. Healthy sporophytes were selected and rinsed several times with sterilized seawater to remove the epiphytes and detritus. More than 100 discs (1.4cm in diameter) were punched from the meristem ofwith a cork borer, and more than 100 segments (4–5cm in length) were cut from the apical part ofbranches for the subsequent experiments. The discs and segments were maintained separately in plastic tanks containing 3L filtered seawater. The seawater was renewed daily during the maintenance. These samples were maintained at an irradiance of 90μmolphotonsm?2s?1with a 12L:12D photoperiod, and 10℃, the seawater temperature of the collection area, for 3d to reduce the negative effects of excision.

    2.2 Culture Experiment

    The culture experiment was conducted over a period of 6d under combinations twoCO2levels (400μatm and 1000 μatm) and two nutrient levels (non-enriched natural seawater and nutrient-enriched seawater). The nutrient- enriched level was enriched 50% PESI medium (Tatewaki, 1966), which was made by sterilized seawater from coas- tal Qingdao. There was a total of 4 experimental treatments and each had 3 replicates. Four individuals were cultured in each of 12 gently aerated side-arm flasks, in which each contained 500mL non-enriched or enriched seawater at 10℃. The culture medium was renewed on the third day of the experiment.

    2.3 Carbonate Chemistry Parameters

    For the treatments under twoCO2levels, the samples were cultured in two CO2incubators (GXZ-380C-C02, Jiangnan Instruments Factory, Ningbo, China). The 400 μatm was achieved by bubbling ambient air. And the 1000μatm was obtained through gas cylinders of the incubator. The pH value of the medium in each flask was measured by a pH meter (Orion STAR A211; Thermo Scientific). The salinity was measured by a seawater salimeter (0–100‰, Aipli). Other indirectly measured carbonate chemistry parameters of all treatments were calculated based on the pH values, salinity,CO2levels, the equilibrium constants1and2for carbonic acid dissociation, andBfor boric acid, using CO2SYS software (Robbins and Kleypas, 2018).

    2.4 Measurement of Growth

    The growth ofandwas determined by weighing fresh weight (FW) of discs or thalli. The discs and thalli were gently scrubbed with tissue paper to remove water from the surface before being wei- ghed. The relative growth rate (RGR) was calculated as the following formula:

    whereis the time period of culture experiment,0is the initial FW,is the FW afterdays of culture.

    2.5 Measurement of Photosynthesis and Respiration

    The net photosynthetic rate (Pn) and the respiration rate (d) of the samples was measured by a manual oxygen meter (FireSting O2II, Pyro Science). After measuring the FW, four discs or segments of each replicate were transferred to the oxygen electrode cuvette with 330mL culture medium from their own flasks. The medium was magnetically stirred during the measurement to ensure the even diffusion of oxygen. The irradiance and temperature conditions were set the same as the growth chambers. The samples were set to acclimate to the conditions in the cuvette for 5min before the measurements. The oxygen concentration in the medium was recorded per minute for 10min. The increase of oxygen content in the medium within 5min was defined as the Pn, and the decrease of oxygen content in darkness in the following 5min was defined as Rd. The Pnand Rdwere presented as μmolO2min?1g?1FW.

    2.6 Measurement of Chlorophyll Contents

    Approximately 0.2g (FW) of the samples from every replicate were used for the extraction of photosynthetic pigments. The discs or segments were dipped in 2mL dimethyl sulfoxide for 5min, and the absorbance of supernatant was determined at 665, 631, 582, and 480nm in the ultraviolet absorbance spectrophotometer (U-2900, HITACHI, Tokyo, Japan). Then the same samples were added 3mL acetone, setting for 2h. Before the measurements, 1mL methanol and 1mL distilled water was added to the supernatant. The absorbance was obtained at 664, 631, 581, and 470nm. The contents of chlorophyll (Chl)andwere calculated according to the following equation:

    2.7 Measurement of Tissue Nitrogen

    One disc or segment was randomly selected from every replicate for the measurement of tissue nitrogen (TN) contents. The samples were completely dried at 80℃, and ground into powder. About 2–3mg powder was used to measure the TN contents in the elemental analyzer (Vario EL III, Elementar, Germany). The TN contents were normalized to %DW.

    2.8 Data Analysis

    Results were expressed as mean ±standard deviation (=3). Prior to the analysis, the data were conformed to a normal distribution (Shapiro-Wilk test,>0.05) and homogeneity of variance (Levene’s test,>0.05). Two- way analysis of variance (ANOVA) was conducted to as- sess the combined effects ofCO2and nutrient levels on carbonate chemistry parameters, RGR,n,d, Chl, Chl, and TN. Tukey honest significance difference (HSD) was conducted to determine the significance levels of factors (<0.05). Pearson correlation coefficient (PCCs) was conducted to analyze the correlations of each experimental indicator withCO2and nutrients levels (<0.05). Data were analyzed in SPSS 22.0 software.

    3 Results

    3.1 Carbonate Chemistry Parameters of Culture Medium

    At the sameCO2level, two-way ANOVA showed thatnutrients had no significant effects on any parameter (Table 1). In the culture medium of, elevatedCO2decreased the pH by 0.3 and CO32?by 57%, but it increased the DIC by 12%, HCO3?by 22%, and CO2by 187% in both the non-enriched and enriched nutrient treatments. In the culture medium of, elevatedCO2decreased the pH by 0.4 in both nutrient levels and CO32?by 75% (non-enriched) and 65% (enriched), but it increased the DIC by 27% (non-enriched) and 4% (enriched), HCO3?by 13% (non-enriched) and 5% (enriched), and CO2by 191% in both nutrient treatments.

    Table 1 Parameters of the seawater carbonate system at different pCO2 and nutrient conditions

    Notes: L-N is the lowCO2and non-enriched condition, L-E is the lowCO2and enriched condition, H-N is the highCO2and non-enriched condition, and H-E is the highCO2and enriched condition. DIC is dissolved inorganic carbon, and TA is total alkalinity. Data are reported as means ±SD (=3). Different superscript letters indicate significant differences in one parameter between treatments (<0.05).

    3.2 Growth

    The differences inCO2and nutrients yielded no significant effects on RGR of, but nutrients significantly promoted the growth of(Fig.1). At both 400μatm and 1000μatm, the RGR ofdecreased due to enriched nutrient. In contrast, the RGR ofsignificantly increased in excessive nutrient availability (=4.550,<0.05). PCCs showed that RGR ofpositively correlated with bothCO2-and nutrients. In contrast, RGR ofpositively correlated withCO2, but negatively correlated with nutrients (Table 2). Together,showed more promotive growth under the synergistic stress.

    Fig.1 Relative growth rate (RGR) of S. japonica (A) and S. horneri (B) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 2 Analysis of variance (two-way ANOVA) examining the statistical differences of experimental parameters of S. japonica among pCO2 and nutrients

    3.3 Photosynthesis and Respiration

    As shown in Fig.2, nutrient enrichment significantly increased thenofat both CO2concentrations (=5.885,<0.05). While no significant effect was detected in,nwas lower in nutrient-enriched condition. PCCs showed thatninhad positive correlations withCO2and nutrients. Whilepositively correlated withCO2, but negatively correlated with nutrients (Table 4). Photosynthesis ofwas greater than that ofat elevatedCO2and nutrients.

    Thedinshowed a similar trend to(Fig.2). No significant effects ondof both algae were found in all treatments. At 400 μatm, Rdof both species was lower in excess nutrients. The correlation between Rdand nutrients ofwas positive, but that ofwas negative (Table 3). Respiration ofwas also greater than that ofunder synergistic stress.

    Fig.2 Net photosynthetic rate (Pn) of S. japonica (A) and S. horneri (B); Respiration rate (Rd) of S. japonica (C) and S. horneri (D) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means ±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 3 Analysis of variance (two-way ANOVA) examining the statistical differences of experimental parameters of S. horneri among pCO2 and nutrients

    3.4 Chlorophyll Contents

    The Chlandcontents ofsignificantly increased under either elevatedCO2or enriched nutrient. Both chlorophyll contents reached the maximum under the synergistic stress (Fig.3). The Chlcontent ofwas significantly increased at enriched nutrients, and reached the peak in synergistic stress condition. How- ever, the Chlcontent ofincreased only withCO2elevated. NeitherCO2nor nutrients significantly affected the Chlin. PCCs showed positive correlations between ChlwithCO2and nutrients in both species. However, the correlation between Chland nutrients was significantly negative in(Table 4).

    3.5 Tissue Nitrogen

    The TN contents ofandsignificantly increased in nutrient-enriched condition (as seen in Fig.4). ElevatedCO2had no significant effect on the TN of, but significantly promoted the accumulation of TN in. The correlations between nutrients and TN were significantly positive in the two species. As for the correlations betweenCO2and TN, it was negative inbut positive in(Table 4).

    Fig.3 Chl a of S. japonica (A) and S. horneri (B); Chl c of S. japonica (C) and S. horneri (D) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 4 The Pearson correlation coefficient (PCCs) of various experimental indicators of S. japonica and S. horneri with pCO2 and nutrients levels

    Notes:*indicates significant correlation (<0.05),**indicates highly significant correlation (<0.01).

    4 Discussion

    There was a same increase pattern of DIC in the culture medium ofunder two nutrient concentrations, but different case was found in the culture medium of(Table 1). The effects of the synergistic stress of OA and eutrophication on algae may depend on their precise carbon acquisition pathways. The HCO3?inthe culture medium ofwas lower in enriched nutrient than in non-enriched treatments, indicating more HCO3?utilization paralleled with enriched nutrients. Many macroalgae use HCO3?rather than dissolved CO2under current seawaterCO2concentration (Israel and Hophy, 2002; Badger, 2003; Koch., 2013), due to their ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) is not substrate-saturated at current atmospheric CO2level (Reiskind., 1988). Marine macroalgae have species-specific responses to elevated CO2because of their various capacities and strategies in CO2-concentrating mechanisms (CCMs) to utilize HCO3?in seawater (Wu., 2008; Raven and Hurd, 2012). Furthermore, DIC acquisition interacts with phosphorus and nitrogen availability (Giordano., 2005), but it remains unclear howregulates CCMs under excessive nutrient supply. The results indicate that enrichment of nutrients contributedto the utilization of HCO3?. When exposed to elevatedCO2, macroalgae may reduce the use of HCO3?by down-regulating their CCMs, and begin to rely on CO2as the primary carbon source (Bjork., 1993; Axelsson., 2000; Cornwall., 2012). This phy- siological process may have occurred in, thus leading to the DIC of culture medium remained at the same level after increasingCO2under the two nutrient conditions. In contrast, this study provides an evidence that eutrophication restrains the shift of carbon acquisition pathway into cope with higher CO2concentration.

    Fig.4 Tissue nitrogen (TN) of S. japonica (A) and S. horneri (B) cultured at different pCO2 and nutrient conditions for 6 days. Data are reported as means ± SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    In this study, promotions in RGR were detected in bothandat elevatedCO2although the increases were statistically non-significant. This indicates that bothandare capable of OA resistance with atmospheric CO2increased to 1000μatm. To show which algae is competitively dominant under OA condition, we analyzed the Pn, Rd, Chl, Chland TN in both species. The results showed that enhancements to Pn, Rd, and chlorophyll contents ofwere parallel withCO2elevation. These results are in line with previous investigations on(Swanson and Fox, 2007; Zhang., 2020). The enhancement of Pnand chlorophyll contents were also found in other marine macrophytes, including,and(Kang., 2017; Li., 2018; Bao., 2019). However, the Pnand chlorophyll contents ofare twice as high as those of.increased the utilization of HCO3-to maintain its photosynthesis at a higher level. Since Pnand Chlofalso increased at 1000 μatm (Figs.2B, 3D), photosynthesis ofwas further improved on the basis of the original high level. These results indicate that higher photosynthetic level insuredpotentially greater resilience to OA in comparison to.

    The significant enhancement in growth was observed inin nutrient-enriched condition, while no promotion of growth was found in(Fig.1). In this study, the concentrations of dissolved inorganic nitrate and ammonium were simultaneously increased in nutrient-enriched treatments (Tatewaki, 1966).Increase in nitrogen availability can enhance macroalgae in N uptake rates, tissue N contents, and photosynthetic rates (Valiela., 1997). These enhancements accelerate the growth of macroalgae. The significant increase in Chland TN contents were detected in both species in nutrient-en- riched treatments (Figs.3, 4). Previous studies have also determined the same positive physiological responses in,,and other macroalgae (Valiela., 1997; Kawamitsu and Boyer, 1999; Wu., 2008; Raven and Hurd, 2012; Ohlsson., 2020). The kinetics of nutrients uptake in macroalgae is affected by the physiological status and the form of nutrients (Raven and Hurd, 2012; Gao., 2017). It has been reported thatutilize ammonium first when ammonium and nitrate both exist (Wang., 2013), whilefirstly takes advantage of nitrate (Yu., 2019). We estimated according to the measured ecophysiological traits, because the exact concentrations and formations of nitrogen in culture medium were unclear.performed higher Pn, more chlorophyll and TN accumulations under nutrient-enriched condition. Thus, the eutrophic treatment in this study more significantly benefited, indicating the increased risk of-dominated golden tide in eutrophic condition.

    The current study argued the responses of bothandunder synergistic stress of OA and eutrophication. Significant enhancement in chlorophyll and TN contents was observed in both species (Fig.3, Fig.4). These results indicated that bothandimproved carbon and nitrogen assimilation. The exceeding nutrient availability in eutrophic scenario regulates these physiological responses in macroalgae to hence the negative effects resulting from declining pH in OA (Young and Gobler, 2016; Chu., 2020). However, significant increase in growth was only observed on(Fig.1). Increased carbon and nitrogen assimilation inenhanced its growth more than. These advantages in ecophyisiological traits may allowremain dominant and cause damage tocultivation in future acidified and eutrophic ocean. Furthermore, the damage resulting from golden tide tocultivation is likely to be more severe.has vesicles in structure, which can keep the thalli floating and increase carbon acquisition (Smetacek and Zingone, 2013; Choi., 2020). Floatingwrap the rafts, shading the cultivatedbelow (Wu., 2019; Xiao, 2020). Thus, we suppose that increasingbiomass shaded cultivatedin a more severe environment with lower light intensity and less carbon availability (Xiao, 2020). Thedominated golden tide may cause greater damage tocultivation in acidified and eutrophic ocean. In addition, we need meso-scale experiments to estimate the increasing risk of the golden tide incultivation.

    5 Conclusions

    It is important to estimate the damage tocultivation by golden tide resulting fromunder the synergistic stress of OA and eutrophication. In this study, we determined that nutrient enrichment contributedto utilize HCO3?.exhibited better photosynthetic traits than, and tissue nitrogen also accumulated more in thalli ofin elevatedCO2and nutrient-enriched treatments. Furthermore, increased carbon and nitrogen assimilation enhanced the growth ofin acidified and eutrophic scenario. Together,may cause greater damage tocultivation in acidified and eutrophic ocean.

    Acknowledgements

    We sincerely thank Dr. Zhu Dasheng, from Shandong Lidao Oceanic Technology Company Limited, for his help in providing algal materials for the experiment. This work is funded by the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program (No. 2019JZZY020708).

    Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fle- ming-Lehtinen, V., Gustafsson, B. G.,., 2017. Long- term temporal and spatial trends in eutrophication status of the Baltic Sea., 92: 135-149, DOI: 10. 1111/brv.12221.

    Anderson, C. R., Moore, S. K., Tomlinson, M. C., Silke, J., and Cusack, C. K., 2015. Living with harmful algal blooms in a changing world: Strategies for modeling and mitigating their effects in coastal marine ecosystems. In:. Elsevier Inc., 495-561, DOI: 10.1016/B978-0-12-396483-0.00017-0.

    AOAN, 2019.–. US Department of Commerce, NOAA, Global Monitoring Laboratory.

    Axelsson, L., Mercado, J., and Figueroa, F., 2000. Utilization of HCO3?at high pH by the brown macroalga., 35: 53-59, DOI: 10. 1080/09670260010001735621.

    Badger, M., 2003. The roles of carbonic anhydrases in photo- synthetic CO2concentrating mechanisms., 77: 83-94, DOI: 10.1023/A:1025821717773.

    Bao, M., Wang, J., Xu, T., Wu, H., Li, X., and Xu, J., 2019. Rising CO2levels alter the responses of the red macroalgaunder light stress., 501: 325- 330, DOI: 10.1016/j.aquaculture.2018.11.011.

    Bjork, M., Haglund, K., Ramazanov, Z., and Pedersen, M., 1993. Inducible mechanisms for HCO3?utilization and repression of photorespiration in protoplasts and thalli of three species of(Chlorophyta)., 29: 166-173, DOI: 10.1111/j.0022-3646.1993.00166.x.

    Brockmann, U., Topcu, D., Schütt, M., and Leujak, W., 2018. Eutrophication assessment in the transit area German Bight (North Sea) 2006–2014–Stagnation and limitations., 136: 68-78, DOI: 10.1016/j.marpolbul. 2018.08.060.

    Cai, W. J., Hu, X., Huang, W. J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E.,., 2011. Acidification of subsurface coastal waters enhanced by eutrophication., 4: 766-770, DOI: 10.1038/ngeo1297.

    Choi, S. K., Oh, H. J., Yun, S. H., Lee, H. J., Lee, K., Han, Y. S.,., 2020. Population dynamics of the ‘golden tides’ sea- weed,, on the southwestern coast of Korea: The extent and formation of golden tides., 12, DOI: 10.3390/su12072903.

    Chu, Y., Liu, Y., Li, J., and Gong, Q., 2019. Effects of elevatedCO2and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga(Laminariaceae, Phaeophyta)., 2019: e8040, DOI: 10.7717/peerj.8040.

    Chu, Y., Liu, Y., Li, J., Wang, Q., and Gong, Q., 2020. Nutrient enrichment regulates the growth and physiological responses ofto ocean acidification., 19: 895-901, DOI: 10.1007/s11 802-020-4359-7.

    Chung, I. K., Sondak, C. F. A., and Beardall, J., 2017. The future of seaweed aquaculture in a rapidly changing world., 52: 495-505, DOI: 10.1080/ 09670262.2017.1359678.

    Cornwall, C. E., Hepburn, C. D., Pritchard, D., Currie, K. I., Mcgraw, C. M., Hunter, K. A., and Hurd, C. L., 2012. Car- bon-use strategies in macroalgae: Differential responses to lowered pH and implications for ocean acidification., 48: 137-144, DOI: 10.1111/j.1529-8817.2011. 01085.x.

    Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A., 2009. Ocean acidification: The other CO2problem., 1: 169-192, DOI: 10.1146/annurev. marine.010908.163834.

    Duarte, C. M., and Krause-Jensen, D., 2018. Intervention op- tions to accelerate ecosystem recovery from coastal eutrophi- cation., 5: 470, DOI: 10. 3389/ fmars.2018.00470.

    Edmunds, P. J., 2011. Zooplanktivory ameliorates the effects of ocean acidification on the reef coralspp., 56: 2402-2410, DOI: 10.4319/lo.2011.56. 6.2402.

    Eichner, M., Rost, B., and Kranz, S. A., 2014. Diversity of ocean acidification effects on marine N2fixers., 457: 199-207, DOI: 10.1016/j.jembe.2014.04.015.

    Enochs, I. C., Manzello, D. P., Donham, E. M., Kolodziej, G., Okano, R., Johnston, L.,., 2015. Shift from coral to macroalgae dominance on a volcanically acidified reef., 5: 1083-1088, DOI: 10.1038/nclimate 2758.

    Feely, R., Doney, S., and Cooley, S., 2009a. Ocean acidification: Present conditions and future changes in a high-CO2world., 22: 36-47, DOI: 10.5670/oceanog.2009.95.

    Feely, R. A., Orr, J., Fabry, V. J., Kleypas, J. A., Sabine, C. L., Langdon, C., 2009b. Present and future changes in seawater chemistry due to ocean acidification. In:. American Geophysical Union, 173-188, DOI: 10.1029/2005GM000337.

    Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J., 2004. Impact of anthropo- genic CO2on the CaCO3system in the oceans., 305: 362-366, DOI: 10.1126/science.1097329.

    Filbee-Dexter, K., and Wernberg, T., 2018. Rise of turfs: A new battlefront for globally declining kelp forests., 68: 64-76, DOI: 10.1093/biosci/bix147.

    Gao, K., Beardall, J., H?der, D. P., Hall-Spencer, J. M., Gao, G., and Hutchins, D. A., 2019. Effects of ocean acidification on marine photosynthetic organisms under the concurrent in- fluences of warming, UV radiation, and deoxygenation., 6: 322, DOI: 10.3389/fmars.2019. 00322.

    Gao, G., Clare, A. S., Chatzidimitriou, E., Rose, C., and Cald- well, G., 2018. Effects of ocean warming and acidification, combined with nutrient enrichment, on chemical composition and functional properties of., 258: 71-78, DOI: 10.1016/j.foodchem.2018.03.040.

    Gao, X., Endo, H., Nagaki, M., and Agatsuma, Y., 2017. Interactive effects of nutrient availability and temperature on growth and survival of different size classes of(Laminariales, Phaeophyceae)., 56: 253- 260, DOI: 10.2216/16-91.1.

    Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J. P., Middel- burg, J. J., and Heip, C. H. R., 2007. Impact of elevated CO2on shellfish calcification., 34: L07603, DOI: 10.1029/2006GL028554.

    Ge, C., Chai, Y., Wang, H., and Kan, M., 2017. Ocean acidifi- cation: One potential driver of phosphorus eutrophication., 115: 149-153, DOI: 10.1016/j.mar polbul.2016.12.016.

    Giordano, M., Beardall, J., and Raven, J. A., 2005. CO2con- centrating mechanisms in algae: Mechanisms, environmen- tal modulation, and evolution., 56: 99-131, DOI: 10.1146/annurev.arplant.56.032 604.144052.

    Glibert, P., Anderson, D., Gentien, P., Granéli, E., and Sellner, K., 2005. The global, complex phenomena of harmful algal blooms., 18: 136-147, DOI: 10.5670/oceanog. 2005.49.

    Guan, Y., Hohn, S., Wild, C., and Merico, A., 2020. Vulnerabi- lity of global coral reef habitat suitability to ocean warming, acidification and eutrophication., 26: 5646-5660, DOI: 10.1111/gcb.15293.

    Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C.,., 2008. Eutrophication and harmful algal blooms: A scientific consensus., 8: 3-13, DOI: 10.1016/j.hal.2008.08.006.

    Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E.,., 2007. Coral reefs under rapid climate change and ocean acidification., 318: 1737-1742, DOI: 10.1126/science.1152509.

    Hurd, C. L., Beardall, J., Comeau, S., Cornwall, C. E., Havenhand, J. N., Munday, P. L.,., 2020. Ocean acidifi- cation as a multiple driver: How interactions between changing seawater carbonate parameters affect marine life., 71: 263-274, DOI: 10. 1071/MF19267.

    Hutchins, D. A., and Fu, F., 2017. Microorganisms and ocean global change., 2: 17058, DOI: 10. 1038/nmicrobiol.2017.58.

    Israel, A., and Hophy, M., 2002. Growth, photosynthetic proper- ties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2concentra- tions., 8: 831-840, DOI: 10.1046/j. 1365-2486.2002.00518.x.

    Johnson, M. D., and Carpenter, R. C., 2018. Nitrogen enrich- ment offsets direct negative effects of ocean acidification on a reef-building crustose coralline alga., 14 (7): 20180371, DOI: 10.1098/rsbl.2018.0371.

    Joos, F., and Spahni, R., 2008. Rates of change in natural and anthropogenic radiative forcing over the past 20000 years., 105: 1425-1430, DOI: 10.1073/ pnas.0707386105.

    Kang, J. W., Kambey, C., Shen, Z., Yang, Y., and Chung, I. K., 2017. The short-term effects of elevated CO2and ammonium concentrations on physiological responses in(Rhodophyta)., 20: 18, DOI: 10.1186/s41240-017-0063-y.

    Kawamitsu, Y., and Boyer, J. S., 1999. Photosynthesis and carbon storage between tides in a brown alga,., 133: 361-369, DOI: 10.1007/s002270 050475.

    Kim, J. K., Yarish, C., Hwang, E. K., Park, M., and Kim, Y., 2017. Seaweed aquaculture: Cultivation technologies, cha- llenges and its ecosystem services., 32: 1-13, DOI: 10. 4490/algae.2017.32.3.3.

    Koch, M., Bowes, G., Ross, C., and Zhang, X. H., 2013. Clima- te change and ocean acidification effects on seagrasses and marine macroalgae., 19: 103-132, DOI: 10.1111/j.1365-2486.2012.02791.x.

    Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S.,., 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interac- tion with warming., 19: 1884-1896, DOI: 10.1111/gcb.12179.

    Kudela, R. M., Bickel, A., Carter, M. L., Howard, M. D. A., and Rosenfeld, L., 2015. The monitoring of harmful algal blooms through ocean observing: The development of the California harmful algal bloom monitoring and alert program. In:. Elsevier Inc., 58-75, DOI: 10.1016/B978-0-12-802022-7.00005-5.

    Li, Y., Zhong, J., Zheng, M., Zhuo, P., Xu, N., 2018. Photope- riod mediates the effects of elevated CO2on the growth and physiological performance in the green tide alga., 141: 24-29, DOI: 10.1016/j.marenvres.2018.07.015.

    Liu, D., Keesing, J. K., He, P., Wang, Z., Shi, Y., and Wang, Y., 2013. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications., 129: 2-10, DOI: 10.1016/j.ecss.2013.05. 021.

    McCrackin, M. L., Jones, H. P., Jones, P. C., and Moreno-Ma- teos, D., 2017. Recovery of lakes and coastal marine eco- systems from eutrophication: A global meta-analysis.,62: 507-518, DOI: 10.1002/lno.10441.

    MEE, 2019.. Beijing, 1-22.

    Murray, C. J., Müller-Karulis, B., Carstensen, J., Conley, D. J., Gustafsson, B. G., and Andersen, J. H., 2019. Past, present and future eutrophication status of the Baltic Sea., 6: 2, DOI: 10.3389/fmars.2019.00002.

    Norkko, A., and Bonsdorff, E., 1996a. Rapid zoobenthic com- munity responses to accumulations of drifting algae., 131: 143-157, DOI: 10.3354/meps 131143.

    Norkko, A., and Bonsdorff, E., 1996b. Population responses of coastal zoobenthos to stress induced by drifting algal mats., 140: 141-151, DOI: 10. 3354/meps140141.

    Ohlsson, L. O., Karlsson, S., Rupar-Gadd, K., Albers, E., and Welander, U., 2020. Evaluation ofandfor biogas production and nutrient recycling., 140: 105670, DOI: 10. 1016/j.biombioe.2020.105670.

    Okino, T., and Kato, K., 1987. Lake Suwa–Eutrophication and its partial recent recovery., 14: 373-375, DOI: 10. 1007/BF00208212.

    Pedersen, M., and Borum, J., 1997. Nutrient control of estuarine macroalgae: Growth strategy and the balance between nitro- gen requirements and uptake., 161: 155-163, DOI: 10.3354/meps161155.

    Rabouille, C., Conley, D. J., Dai, M. H., Cai, W. J., Chen, C. T. A.,., 2008. Comparison of hypoxia among four river- dominated ocean margins: The Changjiang (Yangtze), Miss- issippi, Pearl, and Rh?ne Rivers.,28: 527-1537, DOI: 10.1016/j.csr.2008.01.020.

    Raven, J. A., and Hurd, C. L., 2012. Ecophysiology of photo- synthesis in macroalgae. In:. Spring- er, 105-125, DOI: 10.1007/s11120-012-9768-z.

    Reiskind, J. B., Seamon, P. T., and Bowes, G., 1988. Alternative methods of photosynthetic carbon assimilation in marine macroalgae., 87: 686-692, DOI: 10.1104/ pp.87.3.686.

    Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G., and Pan- dolfi, J. M., 2013. Decline in growth of foraminiferunder eutrophication and ocean acidification scenarios., 19: 291-302, DOI: 10. 1111/gcb.12035.

    Smetacek, V., and Zingone, A., 2013. Green and golden seaw- eed tides on the rise., 504: 84-88, DOI: 10.1038/na ture12860.

    Smith, S. V., Swaney, D. P., Talaue-McManus, L., Bartley, J. D., Sandhei, P. T., McLaughlin, C. J.,., 2003. Humans, hy- drology, and the distribution of inorganic nutrient loading to the ocean., 53: 235-245, DOI: 10.1641/0006- 3568(2003)053[0235:HHATDO]2.0.CO;2.

    Strokal, M., Yang, H., Zhang, Y., Kroeze, C., Li, L., Luan, S.,., 2014. Increasing eutrophication in the coastal seas of China from 1970 to 2050., 85: 123- 140, DOI: 10.1016/j.marpolbul.2014.06.011.

    Swanson, A. K., and Fox, C. H., 2007. Altered kelp (Lamina- riales) phlorotannins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs., 13: 1696-1709. DOI: 10.1111/j.1365-2486.2007.01384.x.

    Tatewaki, M., 1966. Formation of a crustaceous sporophyte with unilocular sporangia in., 6: 62-66, DOI: 10.2216/i0031-8884-6-1-62.1.

    Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D., and Foreman, K., 1997. Macroalgal blooms in shallow estua- ries: Controls and ecophysiological and ecosystem conse- quences., 42: 1105-1118, DOI: 10.4319/lo.1997.42.5_part_2.1105.

    van der Struijk, L. F., and Kroeze, C., 2010. Future trends in nutrient export to the coastal waters of South America: Impli- cations for occurrence of eutrophication., 24: 1-14, DOI: 10.1029/2009GB003572.

    Wang, B., Xin, M., Wei, Q., and Xie, L., 2018. A historical overview of coastal eutrophication in the China Seas., 136: 394-400, DOI: 10.1016/j.marpolbul. 2018.09.044.

    Wang, Y., Xu, D., Fan, X., Zhang, X., Ye, N., Wang, W.,., 2013. Variation of photosynthetic performance, nutrient up- take, and elemental composition of different generations and different thallus parts of., 25: 631-637, DOI: 10.1007/s10811-012- 9897-y.

    Watson, S. B., Whitton, B. A., Higgins, S. N., Paerl, H. W., Brooks, B. W., and Wehr, J. D., 2015. Harmful algal blooms. In:. Elsevier Inc., 873-920, DOI: 10.1016/B978-0- 12-385876-4.00020-7.

    Wernberg, T., Krumhansl, K., Filbee-Dexter, K., and Pedersen, M. F., 2018. Status and trends for the world’s kelp forests. In:. Elsevier, 57-78, DOI: 10.1016/B978-0-12-805052-1.00003-6.

    Wu, H., Feng, J., Li, X., Zhao, C., Liu, Y., Yu, J., amd Xu, J., 2019. Effects of increased CO2and temperature on the physiological characteristics of the golden tide blooming ma- croalgaein the Yellow Sea, China., 146: 639-644, DOI: 10.1016/j.mar polbul.2019.07.025.

    Wu, H. Y., Zou, D. H., and Gao, K. S., 2008. Impacts of in- creased atmospheric CO2concentration on photosynthesis and growth of micro- and macro-algae., 51: 1144-1150, DOI: 10.1007/s11 427-008-0142-5.

    Xiao, J., Wang, Z., Song, H., Fan, S., Yuan, C., Fu, M.,., 2020. An anomalous bi-macroalgal bloom caused byandseaweeds during spring to summer of 2017 in the western Yellow Sea, China., 93: 101760, DOI: 10.1016/j.hal.2020.101760.

    Xu, D., Brennan, G., Xu, L., Zhang, X. W., Fan, X., Han, W. T.,., 2019. Ocean acidification increases iodine accumula- tion in kelp-based coastal food webs., 25: 629-639, DOI: 10.1111/gcb.14467.

    Young, C. S., and Gobler, C. J., 2016. Ocean acidification acce- lerates the growth of two bloom-forming macroalgae., 5: e0155152, DOI: 10.1371/journal.pone.0155 152.

    Yu, J., Li, J., Wang, Q., Liu, Y., and Gong, Q., 2019. Growth and resource accumulation of drifting(Fucales, Phaeophyta) in response to temperature and nitro- gen supply., 18: 1216- 1226, DOI: 10.1007/s11802-019-3835-4.

    Zhang, X., Xu, D., Guan, Z., Wang, S., Zhang, Y., Wang, W.,., 2020. Elevated CO2concentrations promote growth and photosynthesis of the brown alga., 32: 1949-1959, DOI: 10.1007/s 10811-020-02108-1.

    . Tel: 0086-532-82032377 E-mail: qdlijingyu@ouc.edu.cn

    November 25, 2020;

    March 2, 2021;

    March 30, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    (Edited by Ji Dechun)

    女人高潮潮喷娇喘18禁视频| 久久中文看片网| 国产视频一区二区在线看| 757午夜福利合集在线观看| 免费在线观看日本一区| 看免费av毛片| 丁香六月欧美| 一级毛片女人18水好多| 欧美最黄视频在线播放免费| 精品久久久久久久久久久久久| 亚洲第一欧美日韩一区二区三区| 国产三级在线视频| 给我免费播放毛片高清在线观看| 精品电影一区二区在线| 日韩高清综合在线| 黄色女人牲交| 熟妇人妻久久中文字幕3abv| 老司机午夜福利在线观看视频| 国产三级黄色录像| 美女大奶头视频| 无限看片的www在线观看| 亚洲国产精品久久男人天堂| 一本一本综合久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产毛片a区久久久久| 欧美+亚洲+日韩+国产| 法律面前人人平等表现在哪些方面| 在线免费观看的www视频| 麻豆成人午夜福利视频| 精品国产亚洲在线| 操出白浆在线播放| 欧美一区二区国产精品久久精品| 久久国产精品人妻蜜桃| 女生性感内裤真人,穿戴方法视频| 日韩人妻高清精品专区| 国产伦在线观看视频一区| 在线免费观看不下载黄p国产 | 午夜激情福利司机影院| 久久久久九九精品影院| 久久久久久大精品| 亚洲av免费在线观看| 亚洲精品一区av在线观看| 欧美日韩瑟瑟在线播放| 三级毛片av免费| 男女午夜视频在线观看| 欧美3d第一页| 国产一区二区在线av高清观看| 男女那种视频在线观看| 99riav亚洲国产免费| www.999成人在线观看| 日韩精品中文字幕看吧| 久久中文看片网| 国内精品久久久久精免费| 久久久国产成人免费| 国产国拍精品亚洲av在线观看 | 国产三级中文精品| 麻豆成人av在线观看| 欧美绝顶高潮抽搐喷水| 久久久久久久亚洲中文字幕 | 亚洲av成人不卡在线观看播放网| 日本三级黄在线观看| 久久久国产精品麻豆| 国产欧美日韩一区二区三| 欧美日韩国产亚洲二区| 国产午夜精品论理片| 久久精品国产99精品国产亚洲性色| 丰满乱子伦码专区| 国产私拍福利视频在线观看| 欧美在线黄色| 国产一区二区三区视频了| 亚洲av五月六月丁香网| 亚洲天堂国产精品一区在线| bbb黄色大片| 午夜免费激情av| а√天堂www在线а√下载| 国产高清有码在线观看视频| 国产aⅴ精品一区二区三区波| 有码 亚洲区| 国产伦一二天堂av在线观看| 免费看美女性在线毛片视频| 午夜福利在线在线| 亚洲精品乱码久久久v下载方式 | 亚洲人成网站高清观看| 亚洲av日韩精品久久久久久密| 99久久精品一区二区三区| 亚洲av免费在线观看| 悠悠久久av| 久久香蕉精品热| 欧美+亚洲+日韩+国产| 美女大奶头视频| 国产精品一区二区三区四区久久| 欧美日韩乱码在线| 一边摸一边抽搐一进一小说| 色精品久久人妻99蜜桃| 亚洲精华国产精华精| 女人十人毛片免费观看3o分钟| 十八禁网站免费在线| or卡值多少钱| 午夜亚洲福利在线播放| 精品免费久久久久久久清纯| 男女之事视频高清在线观看| 91久久精品国产一区二区成人 | 久久性视频一级片| 精品免费久久久久久久清纯| 中亚洲国语对白在线视频| 国产精品久久视频播放| 丝袜美腿在线中文| 日韩欧美免费精品| 深爱激情五月婷婷| 少妇裸体淫交视频免费看高清| av视频在线观看入口| 最后的刺客免费高清国语| 精品一区二区三区视频在线 | 好男人电影高清在线观看| 美女免费视频网站| 亚洲,欧美精品.| 久久久久久大精品| 久久精品91无色码中文字幕| 欧美日韩福利视频一区二区| 亚洲人成网站在线播| 看片在线看免费视频| 网址你懂的国产日韩在线| 国产爱豆传媒在线观看| 国产免费av片在线观看野外av| 久久久久久久午夜电影| 国产精品久久久久久久久免 | 男人舔奶头视频| 国产一区二区激情短视频| 久久性视频一级片| 蜜桃久久精品国产亚洲av| 欧美日韩瑟瑟在线播放| 日韩成人在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 日韩欧美三级三区| 啦啦啦免费观看视频1| 天天躁日日操中文字幕| 国产精品女同一区二区软件 | 亚洲人成伊人成综合网2020| 天堂av国产一区二区熟女人妻| 99久久久亚洲精品蜜臀av| 国产精品免费一区二区三区在线| 欧美激情在线99| 国产成人aa在线观看| 成人欧美大片| 久久精品国产亚洲av涩爱 | 在线十欧美十亚洲十日本专区| 国产精品综合久久久久久久免费| 国产欧美日韩一区二区三| 国产成人福利小说| 亚洲七黄色美女视频| 欧美日韩中文字幕国产精品一区二区三区| 久久人人精品亚洲av| 国产精品久久久久久精品电影| 综合色av麻豆| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 国产精品1区2区在线观看.| 精品人妻1区二区| www.色视频.com| 露出奶头的视频| 成人特级av手机在线观看| 久久欧美精品欧美久久欧美| 日本 av在线| 九色成人免费人妻av| 亚洲内射少妇av| 国产精品嫩草影院av在线观看 | 观看美女的网站| 超碰av人人做人人爽久久 | 欧美乱色亚洲激情| 天天一区二区日本电影三级| 又紧又爽又黄一区二区| 最好的美女福利视频网| 美女黄网站色视频| 美女黄网站色视频| 久久6这里有精品| 久久九九热精品免费| 亚洲精品久久国产高清桃花| 欧美日韩福利视频一区二区| 免费在线观看成人毛片| 国产精品一区二区免费欧美| 欧美日本视频| 欧美不卡视频在线免费观看| 日韩欧美国产一区二区入口| 琪琪午夜伦伦电影理论片6080| 99在线视频只有这里精品首页| 国产精品一区二区免费欧美| 熟女电影av网| 欧美黄色片欧美黄色片| 丝袜美腿在线中文| 18+在线观看网站| 久久这里只有精品中国| 非洲黑人性xxxx精品又粗又长| 婷婷亚洲欧美| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 三级国产精品欧美在线观看| 免费人成视频x8x8入口观看| 亚洲国产欧美网| 国内揄拍国产精品人妻在线| 热99re8久久精品国产| 国产乱人伦免费视频| 亚洲精品国产精品久久久不卡| 人妻久久中文字幕网| 麻豆久久精品国产亚洲av| 18禁在线播放成人免费| 国产在线精品亚洲第一网站| 国产不卡一卡二| 精品欧美国产一区二区三| 一个人看视频在线观看www免费 | 91在线观看av| 亚洲国产欧洲综合997久久,| 亚洲国产中文字幕在线视频| 色在线成人网| 久久午夜亚洲精品久久| 国语自产精品视频在线第100页| 国产av不卡久久| 精品午夜福利视频在线观看一区| 神马国产精品三级电影在线观看| 久久午夜亚洲精品久久| 国产精品99久久99久久久不卡| 女生性感内裤真人,穿戴方法视频| 精品99又大又爽又粗少妇毛片 | 一级黄色大片毛片| 制服丝袜大香蕉在线| 国产成人a区在线观看| 午夜福利18| 午夜免费观看网址| 成人精品一区二区免费| 真实男女啪啪啪动态图| 国产精品98久久久久久宅男小说| 三级国产精品欧美在线观看| 色吧在线观看| 午夜老司机福利剧场| 欧美一级毛片孕妇| 精品国内亚洲2022精品成人| 香蕉久久夜色| 91久久精品电影网| 国产av不卡久久| 黄片大片在线免费观看| 美女 人体艺术 gogo| 久久精品综合一区二区三区| 色精品久久人妻99蜜桃| 中文字幕人妻熟人妻熟丝袜美 | 男女床上黄色一级片免费看| 亚洲成人久久爱视频| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看 | 村上凉子中文字幕在线| 亚洲精品影视一区二区三区av| 国产高清videossex| www日本在线高清视频| 国产真实伦视频高清在线观看 | 国产精品久久久久久精品电影| 毛片女人毛片| 亚洲成av人片在线播放无| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 国产欧美日韩精品一区二区| 伊人久久大香线蕉亚洲五| av在线天堂中文字幕| 成年免费大片在线观看| 国产毛片a区久久久久| 18禁国产床啪视频网站| 男插女下体视频免费在线播放| 国产成人av激情在线播放| 欧美区成人在线视频| 国产主播在线观看一区二区| 一区二区三区免费毛片| 日本一本二区三区精品| 国内精品美女久久久久久| 精品国产三级普通话版| 天天躁日日操中文字幕| 久久久久久久亚洲中文字幕 | 亚洲精品亚洲一区二区| 中文字幕熟女人妻在线| bbb黄色大片| 国产伦在线观看视频一区| 宅男免费午夜| xxxwww97欧美| 国产精品国产高清国产av| 亚洲自拍偷在线| 精品乱码久久久久久99久播| 国产精品嫩草影院av在线观看 | 此物有八面人人有两片| 琪琪午夜伦伦电影理论片6080| 一区二区三区免费毛片| 精品日产1卡2卡| 99久久99久久久精品蜜桃| 身体一侧抽搐| 哪里可以看免费的av片| 亚洲精品久久国产高清桃花| 色尼玛亚洲综合影院| av天堂中文字幕网| 亚洲激情在线av| 美女cb高潮喷水在线观看| 精品久久久久久久人妻蜜臀av| 婷婷精品国产亚洲av在线| 51午夜福利影视在线观看| 99久久成人亚洲精品观看| 日韩人妻高清精品专区| 在线观看午夜福利视频| 特级一级黄色大片| 制服丝袜大香蕉在线| 一区二区三区国产精品乱码| 久久精品综合一区二区三区| 人妻丰满熟妇av一区二区三区| 国产主播在线观看一区二区| 法律面前人人平等表现在哪些方面| 日韩欧美精品v在线| 国产精华一区二区三区| 亚洲国产日韩欧美精品在线观看 | 免费看日本二区| 午夜福利在线观看免费完整高清在 | 我要搜黄色片| 老司机福利观看| 99视频精品全部免费 在线| 麻豆国产97在线/欧美| 国产精品久久电影中文字幕| 日韩国内少妇激情av| 高清日韩中文字幕在线| 可以在线观看的亚洲视频| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久精品电影| 热99re8久久精品国产| 精品福利观看| 亚洲国产欧洲综合997久久,| 亚洲人与动物交配视频| 人人妻人人看人人澡| 男女做爰动态图高潮gif福利片| 国产精华一区二区三区| 免费人成在线观看视频色| 不卡一级毛片| 五月玫瑰六月丁香| 熟女人妻精品中文字幕| 国产成人av教育| tocl精华| 亚洲一区二区三区不卡视频| 91麻豆精品激情在线观看国产| 国产淫片久久久久久久久 | 欧美日韩一级在线毛片| 欧美一级a爱片免费观看看| avwww免费| 可以在线观看的亚洲视频| 老司机在亚洲福利影院| 丰满乱子伦码专区| 中文在线观看免费www的网站| 亚洲精品成人久久久久久| 在线观看免费午夜福利视频| av福利片在线观看| 叶爱在线成人免费视频播放| 欧美最黄视频在线播放免费| 热99在线观看视频| 国产精品自产拍在线观看55亚洲| 国产av一区在线观看免费| 亚洲 国产 在线| 欧美zozozo另类| 最新美女视频免费是黄的| 嫩草影视91久久| 国产精品日韩av在线免费观看| av片东京热男人的天堂| 国产老妇女一区| 噜噜噜噜噜久久久久久91| 亚洲第一电影网av| 我的老师免费观看完整版| 国产黄色小视频在线观看| 亚洲欧美日韩高清在线视频| av国产免费在线观看| 青草久久国产| 国产探花极品一区二区| 国产一区二区激情短视频| 亚洲avbb在线观看| 大型黄色视频在线免费观看| 亚洲av成人av| 亚洲欧美日韩无卡精品| 99国产精品一区二区蜜桃av| 午夜福利成人在线免费观看| 亚洲专区国产一区二区| 免费高清视频大片| 成年女人毛片免费观看观看9| av在线蜜桃| а√天堂www在线а√下载| 国产aⅴ精品一区二区三区波| 嫩草影视91久久| a在线观看视频网站| 亚洲人成网站高清观看| 精华霜和精华液先用哪个| bbb黄色大片| h日本视频在线播放| 偷拍熟女少妇极品色| 中文字幕久久专区| 精品久久久久久,| 女人十人毛片免费观看3o分钟| 中文字幕高清在线视频| 久久久久久久久久黄片| 欧美另类亚洲清纯唯美| 身体一侧抽搐| 国产av不卡久久| 又爽又黄无遮挡网站| 在线观看舔阴道视频| 亚洲熟妇中文字幕五十中出| 亚洲国产色片| 国产精品99久久99久久久不卡| 亚洲av电影在线进入| 国产成人a区在线观看| 亚洲片人在线观看| 欧美成人a在线观看| 91在线观看av| 国产高清视频在线观看网站| 日本在线视频免费播放| 一级a爱片免费观看的视频| 99国产精品一区二区蜜桃av| 日韩亚洲欧美综合| 亚洲一区二区三区不卡视频| 国产精品,欧美在线| 听说在线观看完整版免费高清| 国产高清videossex| av欧美777| 亚洲精品456在线播放app | 亚洲性夜色夜夜综合| 午夜激情欧美在线| 在线十欧美十亚洲十日本专区| 日韩欧美一区二区三区在线观看| 欧美+亚洲+日韩+国产| 久久精品夜夜夜夜夜久久蜜豆| 九色成人免费人妻av| 国产精品一及| 最后的刺客免费高清国语| 给我免费播放毛片高清在线观看| 十八禁网站免费在线| 给我免费播放毛片高清在线观看| 在线播放国产精品三级| 欧美一区二区精品小视频在线| 国产91精品成人一区二区三区| 九九热线精品视视频播放| 99riav亚洲国产免费| 一个人免费在线观看电影| 精品久久久久久久久久久久久| 午夜福利在线在线| 成人特级av手机在线观看| 成熟少妇高潮喷水视频| 精品久久久久久久人妻蜜臀av| 免费av观看视频| 亚洲成人精品中文字幕电影| 日本一二三区视频观看| 天堂av国产一区二区熟女人妻| 色噜噜av男人的天堂激情| 18禁裸乳无遮挡免费网站照片| 免费在线观看日本一区| 1000部很黄的大片| 丝袜美腿在线中文| a级一级毛片免费在线观看| 国产免费av片在线观看野外av| 可以在线观看的亚洲视频| 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 天天一区二区日本电影三级| 在线观看一区二区三区| 日日干狠狠操夜夜爽| 色尼玛亚洲综合影院| 欧美激情久久久久久爽电影| 19禁男女啪啪无遮挡网站| 精品日产1卡2卡| 久久精品人妻少妇| 国产黄色小视频在线观看| 观看免费一级毛片| 亚洲精品日韩av片在线观看 | 五月玫瑰六月丁香| 在线观看免费午夜福利视频| 亚洲专区国产一区二区| or卡值多少钱| 国产69精品久久久久777片| 精品久久久久久久人妻蜜臀av| 不卡一级毛片| 99视频精品全部免费 在线| 色综合亚洲欧美另类图片| 1024手机看黄色片| 精品福利观看| 18禁国产床啪视频网站| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人精品中文字幕电影| 51国产日韩欧美| 国产亚洲精品久久久久久毛片| 极品教师在线免费播放| a级一级毛片免费在线观看| 亚洲精品色激情综合| 丰满人妻熟妇乱又伦精品不卡| 久久精品人妻少妇| 一本久久中文字幕| 婷婷精品国产亚洲av| 丰满乱子伦码专区| 老司机午夜福利在线观看视频| 日韩人妻高清精品专区| 欧美成狂野欧美在线观看| 成人精品一区二区免费| 国产精品,欧美在线| 午夜激情欧美在线| 夜夜看夜夜爽夜夜摸| 一边摸一边抽搐一进一小说| 成人国产综合亚洲| 男女床上黄色一级片免费看| 成人18禁在线播放| 日本与韩国留学比较| 男人和女人高潮做爰伦理| 亚洲电影在线观看av| 国产成人影院久久av| 国产黄片美女视频| 国产蜜桃级精品一区二区三区| 精品午夜福利视频在线观看一区| 日本免费一区二区三区高清不卡| 桃红色精品国产亚洲av| 久久国产精品影院| 一个人免费在线观看电影| 在线观看舔阴道视频| 国产黄a三级三级三级人| 精品日产1卡2卡| 又粗又爽又猛毛片免费看| 久久性视频一级片| 欧美精品啪啪一区二区三区| 欧美一区二区亚洲| 亚洲人成网站在线播| 99国产极品粉嫩在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品电影一区二区三区| 无遮挡黄片免费观看| 国产亚洲av嫩草精品影院| 亚洲成av人片在线播放无| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 精品久久久久久久久久久久久| 成年女人看的毛片在线观看| 亚洲aⅴ乱码一区二区在线播放| 麻豆一二三区av精品| 国产精品久久久久久精品电影| 久久草成人影院| 亚洲电影在线观看av| 国产黄色小视频在线观看| 天堂影院成人在线观看| 久久欧美精品欧美久久欧美| 啪啪无遮挡十八禁网站| 最近最新中文字幕大全电影3| avwww免费| 最新在线观看一区二区三区| 精品人妻偷拍中文字幕| 欧美成人a在线观看| 国产免费男女视频| 最近视频中文字幕2019在线8| 看片在线看免费视频| 国产黄a三级三级三级人| a级一级毛片免费在线观看| 宅男免费午夜| 成人18禁在线播放| 久久精品夜夜夜夜夜久久蜜豆| 国产单亲对白刺激| 中文亚洲av片在线观看爽| 一区二区三区免费毛片| 麻豆一二三区av精品| 少妇的逼好多水| 99热精品在线国产| 欧美黑人欧美精品刺激| 久久伊人香网站| 日本黄色视频三级网站网址| 国产精品日韩av在线免费观看| 久久久久精品国产欧美久久久| 18禁黄网站禁片免费观看直播| 男人和女人高潮做爰伦理| 色哟哟哟哟哟哟| tocl精华| 在线观看av片永久免费下载| 狂野欧美白嫩少妇大欣赏| 日本与韩国留学比较| 亚洲avbb在线观看| 国产精品av视频在线免费观看| 中出人妻视频一区二区| 美女大奶头视频| 国产v大片淫在线免费观看| ponron亚洲| 国产美女午夜福利| 日本与韩国留学比较| 国产成人av教育| 国产成人欧美在线观看| 欧美+亚洲+日韩+国产| 国产一区二区在线av高清观看| 久久久精品欧美日韩精品| 午夜免费男女啪啪视频观看 | 日本 欧美在线| 小说图片视频综合网站| 色精品久久人妻99蜜桃| 欧美日韩精品网址| 欧美成人性av电影在线观看| 麻豆成人av在线观看| 久9热在线精品视频| 男女午夜视频在线观看| 99热这里只有精品一区| 精品国产美女av久久久久小说| 级片在线观看| 99在线人妻在线中文字幕| av专区在线播放| 日韩欧美免费精品| 婷婷亚洲欧美| 18禁裸乳无遮挡免费网站照片| 麻豆久久精品国产亚洲av| a在线观看视频网站| 成人av一区二区三区在线看| 亚洲成人久久爱视频| 午夜久久久久精精品| 女人高潮潮喷娇喘18禁视频| 午夜激情欧美在线| 亚洲国产精品999在线| 欧美中文日本在线观看视频| 波野结衣二区三区在线 | 国产伦人伦偷精品视频| 特级一级黄色大片| 女人十人毛片免费观看3o分钟| 亚洲av二区三区四区| 午夜福利视频1000在线观看|