• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Brown Algae Saccharina japonica and Sargassum horneri Exhibit Species-Specific Responses to Synergistic Stress of Ocean Acidification and Eutrophication

    2021-08-30 06:17:28LIUYuxinCAOJiazhenCHUYaoyaoLIUYanWANGQiaohanGONGQingliandLIJingyu
    Journal of Ocean University of China 2021年5期

    LIU Yuxin, CAO Jiazhen, CHU Yaoyao, LIU Yan, 2), WANG Qiaohan, 2), GONG Qingli, 2), and LI Jingyu, 2),

    The Brown AlgaeandExhibit Species-Specific Responses to Synergistic Stress of Ocean Acidification and Eutrophication

    LIU Yuxin1), CAO Jiazhen1), CHU Yaoyao1), LIU Yan1), 2), WANG Qiaohan1), 2), GONG Qingli1), 2), and LI Jingyu1), 2),*

    1)Fisheries College,Ocean University of China, Qingdao 266003, China 2) Key Laboratory of Mariculture, Ministry of Education, Ocean University of China,Qingdao 266003, China

    Ocean acidification and eutrophication are two important environmental stressors. They inevitably impact marine macroalgae, and hence the coastal ecosystem of China., as the main culture species in China, is suffering the harmful golden tide caused by. However, it remains unclear whether the detrimental effects ofoncultivation become more severe in future acidified and eutrophic scenario. In this study, we respectively investigated the effects ofCO2(400μatm and 1000μatm) and nutrients (non-enriched and enriched seawater) on the growth, photosynthesis, respiration, chlorophyll contents, and tissue nitrogen ofand. Results indicated that enrichment of nutrients contributedto utilize HCO3?. The carbon acquisition pathway shifted from HCO3?to CO2in, whileremained using HCO3?regulated by nutrient enrichment.exhibited better photosynthetic traits than, with a higher level of net photosynthetic rate and chlorophyll contents at elevatedCO2and enriched nutrients. Tissue nitrogen also accumulated richly in the thalli ofunder higherCO2and nutrients. Significant enhancement in growth was only detected inunder synergistic stress. Together,showed competitive dominance in current study. These findings suggest that increasing risk of golden tide in acidified and eutrophic ocean can most likely result in great damage tocultivation.

    eutrophication; ocean acidification;;; synergistic stress

    1 Introduction

    The concentration of atmospheric carbon dioxide (CO2) increased approximately 130 pars per million (ppm) since the Industrial Revolution (Joos and Spahni, 2008; AOAN, 2019). Rising atmospheric CO2dissolved in seawater, causing pH reductions and alterations in chemical balances of dissolved inorganic carbon (DIC) (Feely., 2004, 2009a; Doney., 2009). These changes in pH and DIC are ineluctable consequences of rising atmospheric CO2, referred to as ocean acidification (OA) (Doney., 2009). Anthropogenic CO2emission is rising at the fastest rate after the Industrial Era (Joos and Spahni, 2008; AOAN, 2019), thus leading to a continuing decrease in seawater pH (Feely., 2004, 2009b; Doney., 2009; Feely., 2009a). OA significantly affects the physiological processes and ecological functi- ons of seaweeds and other marine organisms (Gazeau., 2007; Edmunds, 2011; Koch., 2013; Kroeker.,2013; Enochs., 2015; Gao., 2019). A body of evidence indicates that OA actively stimulates the growth of kelps, such as,andwhich were carbon limited in nearshore environment (Swanson and Fox, 2007; Xu., 2019; Hurd., 2020; Zhang., 2020). On the other hand, OA simultaneously reduces the calcification of,and other calcified algae (Reymond., 2013; Johnson and Carpenter, 2018).

    Furthermore, human pollution, agricultural production and atmospheric deposition have dramatically increased since 1970s, resulting in excessive nutrients input to coastal seawater (Smith., 2003; van der Struijk and Kroeze, 2010; Strokal., 2014; Brockmann., 2018; Murray., 2019). This process leads to another environmental issue known as eutrophication (Smith., 2003). Several studies showed that water quality slightly recovered from previous eutrophic state in the Baltic Sea, Chesapeake Bay and other coastal seas (Okino and Kato, 1987; Andersen., 2017; McCrackin., 2017; Duar-te and Krause-Jensen, 2018). In contrast, severe eutrophic areas are still located at some key bays in China, including Liaodong Bay, Yangtze River Estuary and other jurisdictional seas (MEE, 2019). With exceeded nutrients supply, eutrophication can enhance the growth of phytoplankton, fast-growing filamentous and mat- forming opportunistic macroalgae (Pedersen and Borum, 1997; Wernberg., 2018). Degraded water quality from eutrophication is critical for the development, persistence and expansion of harmful algae blooms (HABs) (Heisler., 2008). Recent reports showed that microalgal blooms,-dominated green tides and-dominated golden tides have substantially increased worldwide (Glibert., 2005; Smetacek and Zingone, 2013; Kudela., 2015; Wang., 2018). HAB resulted from eutrophication affects substance circulation, primary productivity, community structure and marine ecosystem service (Norkko and Bonsdorff, 1996a,b; Glibert., 2005; Heisler., 2008; Rabouille., 2008; Smetacek and Zingone, 2013; Anderson., 2015; Kudela., 2015; Watson., 2015).

    Several studies have found that coral reef systems are negatively affected by OA and nutrient enrichment (Hoegh-Guldberg., 2007; Ge., 2017; Guan., 2020). For phytoplankton, marine diazotrophs such asspp. increase their N2fixation under elevated CO2in nitrogen enriched cultures (Eichner., 2014; Hutchins and Fu, 2017). However, limited investigations aimed to reveal the ecophysiological effects of OA and eutrophication on marine macrophytes. Previous studies indicated that the growth and quality ofwere inhibited and threatened by the interactive effects of OA and eutrophication (Chu., 2019, 2020). In contrast, there was an enhanced production of amino acid and fatty acid inspecies at elevated CO2concentration and nutrient level (Gao., 2018). Thus, the responses to the synergistic stress of OA and eutrophication are species-specific in macroalgae. The rise of acidity in coastal ocean was found to be greater under eutrophication (Cai., 2011). This severe scenario potentially aggravate the disappearance of habitat-forming seaweeds worldwide (Filbee-Dexter and Wernberg, 2018; Wern- berg., 2018). It is thus important to understand how macroalgae will response to the future synergistic stress of OA and eutrophication.

    The kelpis the foremost commercial harvesting alga among northwestern Pacific countries (Chung., 2017; Kim., 2017). In previous studies, the growth, photosynthesis, and nutrient uptake ofwere significantly enhanced under elevated CO2concentrations (Swanson and Fox, 2007; Zhang., 2020). Also, excess nutrient availability significantly promoted the growth and physiological performance of(Gao., 2017). On the other hand, the sheet- like macroalgaeblooms frequently occur in recent years (Liu., 2013; Xiao, 2020), whose floating thalli have caused detrimental impacts onaquaculture (Xiao, 2020). Many investigations have focused on how environmental factors affect population dynamics and distributions ofin East China Sea and Yellow Sea (Xiao, 2019; Xiao., 2020; Choi., 2020). However, it remains unclear whetheris more resilient to the synergistic stress of OA and eutrophication than.

    In the present study, we investigated the synergistic stress of OA and eutrophication on growth, photosynthesis, respiration, chlorophyll contents, and tissue nitrogen of sporophytes ofandappearing in the same period. The results are expected to reveal the species-specific ecophysiological responses ofand, and determine which alga has greater resilience and interspecific competitive dominance under synergistic stress of OA and eutrophication.

    2 Materials and Methods

    2.1 Algal Collection and Maintenance

    The sporophytes of(approximately 80cm in average length,=20) and(approximately 150cm in average length,=20) were collected in Rong- cheng, Shandong, China (36?07′N, 120?19′E), in December 2019. Thesamples were from cultivated populations, withtwining on, or floating between their rafts. The samples were kept in cold foam boxes filled with seawater and quickly transported to the laboratory within 8h. Healthy sporophytes were selected and rinsed several times with sterilized seawater to remove the epiphytes and detritus. More than 100 discs (1.4cm in diameter) were punched from the meristem ofwith a cork borer, and more than 100 segments (4–5cm in length) were cut from the apical part ofbranches for the subsequent experiments. The discs and segments were maintained separately in plastic tanks containing 3L filtered seawater. The seawater was renewed daily during the maintenance. These samples were maintained at an irradiance of 90μmolphotonsm?2s?1with a 12L:12D photoperiod, and 10℃, the seawater temperature of the collection area, for 3d to reduce the negative effects of excision.

    2.2 Culture Experiment

    The culture experiment was conducted over a period of 6d under combinations twoCO2levels (400μatm and 1000 μatm) and two nutrient levels (non-enriched natural seawater and nutrient-enriched seawater). The nutrient- enriched level was enriched 50% PESI medium (Tatewaki, 1966), which was made by sterilized seawater from coas- tal Qingdao. There was a total of 4 experimental treatments and each had 3 replicates. Four individuals were cultured in each of 12 gently aerated side-arm flasks, in which each contained 500mL non-enriched or enriched seawater at 10℃. The culture medium was renewed on the third day of the experiment.

    2.3 Carbonate Chemistry Parameters

    For the treatments under twoCO2levels, the samples were cultured in two CO2incubators (GXZ-380C-C02, Jiangnan Instruments Factory, Ningbo, China). The 400 μatm was achieved by bubbling ambient air. And the 1000μatm was obtained through gas cylinders of the incubator. The pH value of the medium in each flask was measured by a pH meter (Orion STAR A211; Thermo Scientific). The salinity was measured by a seawater salimeter (0–100‰, Aipli). Other indirectly measured carbonate chemistry parameters of all treatments were calculated based on the pH values, salinity,CO2levels, the equilibrium constants1and2for carbonic acid dissociation, andBfor boric acid, using CO2SYS software (Robbins and Kleypas, 2018).

    2.4 Measurement of Growth

    The growth ofandwas determined by weighing fresh weight (FW) of discs or thalli. The discs and thalli were gently scrubbed with tissue paper to remove water from the surface before being wei- ghed. The relative growth rate (RGR) was calculated as the following formula:

    whereis the time period of culture experiment,0is the initial FW,is the FW afterdays of culture.

    2.5 Measurement of Photosynthesis and Respiration

    The net photosynthetic rate (Pn) and the respiration rate (d) of the samples was measured by a manual oxygen meter (FireSting O2II, Pyro Science). After measuring the FW, four discs or segments of each replicate were transferred to the oxygen electrode cuvette with 330mL culture medium from their own flasks. The medium was magnetically stirred during the measurement to ensure the even diffusion of oxygen. The irradiance and temperature conditions were set the same as the growth chambers. The samples were set to acclimate to the conditions in the cuvette for 5min before the measurements. The oxygen concentration in the medium was recorded per minute for 10min. The increase of oxygen content in the medium within 5min was defined as the Pn, and the decrease of oxygen content in darkness in the following 5min was defined as Rd. The Pnand Rdwere presented as μmolO2min?1g?1FW.

    2.6 Measurement of Chlorophyll Contents

    Approximately 0.2g (FW) of the samples from every replicate were used for the extraction of photosynthetic pigments. The discs or segments were dipped in 2mL dimethyl sulfoxide for 5min, and the absorbance of supernatant was determined at 665, 631, 582, and 480nm in the ultraviolet absorbance spectrophotometer (U-2900, HITACHI, Tokyo, Japan). Then the same samples were added 3mL acetone, setting for 2h. Before the measurements, 1mL methanol and 1mL distilled water was added to the supernatant. The absorbance was obtained at 664, 631, 581, and 470nm. The contents of chlorophyll (Chl)andwere calculated according to the following equation:

    2.7 Measurement of Tissue Nitrogen

    One disc or segment was randomly selected from every replicate for the measurement of tissue nitrogen (TN) contents. The samples were completely dried at 80℃, and ground into powder. About 2–3mg powder was used to measure the TN contents in the elemental analyzer (Vario EL III, Elementar, Germany). The TN contents were normalized to %DW.

    2.8 Data Analysis

    Results were expressed as mean ±standard deviation (=3). Prior to the analysis, the data were conformed to a normal distribution (Shapiro-Wilk test,>0.05) and homogeneity of variance (Levene’s test,>0.05). Two- way analysis of variance (ANOVA) was conducted to as- sess the combined effects ofCO2and nutrient levels on carbonate chemistry parameters, RGR,n,d, Chl, Chl, and TN. Tukey honest significance difference (HSD) was conducted to determine the significance levels of factors (<0.05). Pearson correlation coefficient (PCCs) was conducted to analyze the correlations of each experimental indicator withCO2and nutrients levels (<0.05). Data were analyzed in SPSS 22.0 software.

    3 Results

    3.1 Carbonate Chemistry Parameters of Culture Medium

    At the sameCO2level, two-way ANOVA showed thatnutrients had no significant effects on any parameter (Table 1). In the culture medium of, elevatedCO2decreased the pH by 0.3 and CO32?by 57%, but it increased the DIC by 12%, HCO3?by 22%, and CO2by 187% in both the non-enriched and enriched nutrient treatments. In the culture medium of, elevatedCO2decreased the pH by 0.4 in both nutrient levels and CO32?by 75% (non-enriched) and 65% (enriched), but it increased the DIC by 27% (non-enriched) and 4% (enriched), HCO3?by 13% (non-enriched) and 5% (enriched), and CO2by 191% in both nutrient treatments.

    Table 1 Parameters of the seawater carbonate system at different pCO2 and nutrient conditions

    Notes: L-N is the lowCO2and non-enriched condition, L-E is the lowCO2and enriched condition, H-N is the highCO2and non-enriched condition, and H-E is the highCO2and enriched condition. DIC is dissolved inorganic carbon, and TA is total alkalinity. Data are reported as means ±SD (=3). Different superscript letters indicate significant differences in one parameter between treatments (<0.05).

    3.2 Growth

    The differences inCO2and nutrients yielded no significant effects on RGR of, but nutrients significantly promoted the growth of(Fig.1). At both 400μatm and 1000μatm, the RGR ofdecreased due to enriched nutrient. In contrast, the RGR ofsignificantly increased in excessive nutrient availability (=4.550,<0.05). PCCs showed that RGR ofpositively correlated with bothCO2-and nutrients. In contrast, RGR ofpositively correlated withCO2, but negatively correlated with nutrients (Table 2). Together,showed more promotive growth under the synergistic stress.

    Fig.1 Relative growth rate (RGR) of S. japonica (A) and S. horneri (B) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 2 Analysis of variance (two-way ANOVA) examining the statistical differences of experimental parameters of S. japonica among pCO2 and nutrients

    3.3 Photosynthesis and Respiration

    As shown in Fig.2, nutrient enrichment significantly increased thenofat both CO2concentrations (=5.885,<0.05). While no significant effect was detected in,nwas lower in nutrient-enriched condition. PCCs showed thatninhad positive correlations withCO2and nutrients. Whilepositively correlated withCO2, but negatively correlated with nutrients (Table 4). Photosynthesis ofwas greater than that ofat elevatedCO2and nutrients.

    Thedinshowed a similar trend to(Fig.2). No significant effects ondof both algae were found in all treatments. At 400 μatm, Rdof both species was lower in excess nutrients. The correlation between Rdand nutrients ofwas positive, but that ofwas negative (Table 3). Respiration ofwas also greater than that ofunder synergistic stress.

    Fig.2 Net photosynthetic rate (Pn) of S. japonica (A) and S. horneri (B); Respiration rate (Rd) of S. japonica (C) and S. horneri (D) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means ±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 3 Analysis of variance (two-way ANOVA) examining the statistical differences of experimental parameters of S. horneri among pCO2 and nutrients

    3.4 Chlorophyll Contents

    The Chlandcontents ofsignificantly increased under either elevatedCO2or enriched nutrient. Both chlorophyll contents reached the maximum under the synergistic stress (Fig.3). The Chlcontent ofwas significantly increased at enriched nutrients, and reached the peak in synergistic stress condition. How- ever, the Chlcontent ofincreased only withCO2elevated. NeitherCO2nor nutrients significantly affected the Chlin. PCCs showed positive correlations between ChlwithCO2and nutrients in both species. However, the correlation between Chland nutrients was significantly negative in(Table 4).

    3.5 Tissue Nitrogen

    The TN contents ofandsignificantly increased in nutrient-enriched condition (as seen in Fig.4). ElevatedCO2had no significant effect on the TN of, but significantly promoted the accumulation of TN in. The correlations between nutrients and TN were significantly positive in the two species. As for the correlations betweenCO2and TN, it was negative inbut positive in(Table 4).

    Fig.3 Chl a of S. japonica (A) and S. horneri (B); Chl c of S. japonica (C) and S. horneri (D) cultured at different pCO2 and nutrient conditions for 6d. Data are reported as means±SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    Table 4 The Pearson correlation coefficient (PCCs) of various experimental indicators of S. japonica and S. horneri with pCO2 and nutrients levels

    Notes:*indicates significant correlation (<0.05),**indicates highly significant correlation (<0.01).

    4 Discussion

    There was a same increase pattern of DIC in the culture medium ofunder two nutrient concentrations, but different case was found in the culture medium of(Table 1). The effects of the synergistic stress of OA and eutrophication on algae may depend on their precise carbon acquisition pathways. The HCO3?inthe culture medium ofwas lower in enriched nutrient than in non-enriched treatments, indicating more HCO3?utilization paralleled with enriched nutrients. Many macroalgae use HCO3?rather than dissolved CO2under current seawaterCO2concentration (Israel and Hophy, 2002; Badger, 2003; Koch., 2013), due to their ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) is not substrate-saturated at current atmospheric CO2level (Reiskind., 1988). Marine macroalgae have species-specific responses to elevated CO2because of their various capacities and strategies in CO2-concentrating mechanisms (CCMs) to utilize HCO3?in seawater (Wu., 2008; Raven and Hurd, 2012). Furthermore, DIC acquisition interacts with phosphorus and nitrogen availability (Giordano., 2005), but it remains unclear howregulates CCMs under excessive nutrient supply. The results indicate that enrichment of nutrients contributedto the utilization of HCO3?. When exposed to elevatedCO2, macroalgae may reduce the use of HCO3?by down-regulating their CCMs, and begin to rely on CO2as the primary carbon source (Bjork., 1993; Axelsson., 2000; Cornwall., 2012). This phy- siological process may have occurred in, thus leading to the DIC of culture medium remained at the same level after increasingCO2under the two nutrient conditions. In contrast, this study provides an evidence that eutrophication restrains the shift of carbon acquisition pathway into cope with higher CO2concentration.

    Fig.4 Tissue nitrogen (TN) of S. japonica (A) and S. horneri (B) cultured at different pCO2 and nutrient conditions for 6 days. Data are reported as means ± SD (n=3). Different letters above the error bars indicate significant differences between treatments (P<0.05).

    In this study, promotions in RGR were detected in bothandat elevatedCO2although the increases were statistically non-significant. This indicates that bothandare capable of OA resistance with atmospheric CO2increased to 1000μatm. To show which algae is competitively dominant under OA condition, we analyzed the Pn, Rd, Chl, Chland TN in both species. The results showed that enhancements to Pn, Rd, and chlorophyll contents ofwere parallel withCO2elevation. These results are in line with previous investigations on(Swanson and Fox, 2007; Zhang., 2020). The enhancement of Pnand chlorophyll contents were also found in other marine macrophytes, including,and(Kang., 2017; Li., 2018; Bao., 2019). However, the Pnand chlorophyll contents ofare twice as high as those of.increased the utilization of HCO3-to maintain its photosynthesis at a higher level. Since Pnand Chlofalso increased at 1000 μatm (Figs.2B, 3D), photosynthesis ofwas further improved on the basis of the original high level. These results indicate that higher photosynthetic level insuredpotentially greater resilience to OA in comparison to.

    The significant enhancement in growth was observed inin nutrient-enriched condition, while no promotion of growth was found in(Fig.1). In this study, the concentrations of dissolved inorganic nitrate and ammonium were simultaneously increased in nutrient-enriched treatments (Tatewaki, 1966).Increase in nitrogen availability can enhance macroalgae in N uptake rates, tissue N contents, and photosynthetic rates (Valiela., 1997). These enhancements accelerate the growth of macroalgae. The significant increase in Chland TN contents were detected in both species in nutrient-en- riched treatments (Figs.3, 4). Previous studies have also determined the same positive physiological responses in,,and other macroalgae (Valiela., 1997; Kawamitsu and Boyer, 1999; Wu., 2008; Raven and Hurd, 2012; Ohlsson., 2020). The kinetics of nutrients uptake in macroalgae is affected by the physiological status and the form of nutrients (Raven and Hurd, 2012; Gao., 2017). It has been reported thatutilize ammonium first when ammonium and nitrate both exist (Wang., 2013), whilefirstly takes advantage of nitrate (Yu., 2019). We estimated according to the measured ecophysiological traits, because the exact concentrations and formations of nitrogen in culture medium were unclear.performed higher Pn, more chlorophyll and TN accumulations under nutrient-enriched condition. Thus, the eutrophic treatment in this study more significantly benefited, indicating the increased risk of-dominated golden tide in eutrophic condition.

    The current study argued the responses of bothandunder synergistic stress of OA and eutrophication. Significant enhancement in chlorophyll and TN contents was observed in both species (Fig.3, Fig.4). These results indicated that bothandimproved carbon and nitrogen assimilation. The exceeding nutrient availability in eutrophic scenario regulates these physiological responses in macroalgae to hence the negative effects resulting from declining pH in OA (Young and Gobler, 2016; Chu., 2020). However, significant increase in growth was only observed on(Fig.1). Increased carbon and nitrogen assimilation inenhanced its growth more than. These advantages in ecophyisiological traits may allowremain dominant and cause damage tocultivation in future acidified and eutrophic ocean. Furthermore, the damage resulting from golden tide tocultivation is likely to be more severe.has vesicles in structure, which can keep the thalli floating and increase carbon acquisition (Smetacek and Zingone, 2013; Choi., 2020). Floatingwrap the rafts, shading the cultivatedbelow (Wu., 2019; Xiao, 2020). Thus, we suppose that increasingbiomass shaded cultivatedin a more severe environment with lower light intensity and less carbon availability (Xiao, 2020). Thedominated golden tide may cause greater damage tocultivation in acidified and eutrophic ocean. In addition, we need meso-scale experiments to estimate the increasing risk of the golden tide incultivation.

    5 Conclusions

    It is important to estimate the damage tocultivation by golden tide resulting fromunder the synergistic stress of OA and eutrophication. In this study, we determined that nutrient enrichment contributedto utilize HCO3?.exhibited better photosynthetic traits than, and tissue nitrogen also accumulated more in thalli ofin elevatedCO2and nutrient-enriched treatments. Furthermore, increased carbon and nitrogen assimilation enhanced the growth ofin acidified and eutrophic scenario. Together,may cause greater damage tocultivation in acidified and eutrophic ocean.

    Acknowledgements

    We sincerely thank Dr. Zhu Dasheng, from Shandong Lidao Oceanic Technology Company Limited, for his help in providing algal materials for the experiment. This work is funded by the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program (No. 2019JZZY020708).

    Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fle- ming-Lehtinen, V., Gustafsson, B. G.,., 2017. Long- term temporal and spatial trends in eutrophication status of the Baltic Sea., 92: 135-149, DOI: 10. 1111/brv.12221.

    Anderson, C. R., Moore, S. K., Tomlinson, M. C., Silke, J., and Cusack, C. K., 2015. Living with harmful algal blooms in a changing world: Strategies for modeling and mitigating their effects in coastal marine ecosystems. In:. Elsevier Inc., 495-561, DOI: 10.1016/B978-0-12-396483-0.00017-0.

    AOAN, 2019.–. US Department of Commerce, NOAA, Global Monitoring Laboratory.

    Axelsson, L., Mercado, J., and Figueroa, F., 2000. Utilization of HCO3?at high pH by the brown macroalga., 35: 53-59, DOI: 10. 1080/09670260010001735621.

    Badger, M., 2003. The roles of carbonic anhydrases in photo- synthetic CO2concentrating mechanisms., 77: 83-94, DOI: 10.1023/A:1025821717773.

    Bao, M., Wang, J., Xu, T., Wu, H., Li, X., and Xu, J., 2019. Rising CO2levels alter the responses of the red macroalgaunder light stress., 501: 325- 330, DOI: 10.1016/j.aquaculture.2018.11.011.

    Bjork, M., Haglund, K., Ramazanov, Z., and Pedersen, M., 1993. Inducible mechanisms for HCO3?utilization and repression of photorespiration in protoplasts and thalli of three species of(Chlorophyta)., 29: 166-173, DOI: 10.1111/j.0022-3646.1993.00166.x.

    Brockmann, U., Topcu, D., Schütt, M., and Leujak, W., 2018. Eutrophication assessment in the transit area German Bight (North Sea) 2006–2014–Stagnation and limitations., 136: 68-78, DOI: 10.1016/j.marpolbul. 2018.08.060.

    Cai, W. J., Hu, X., Huang, W. J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E.,., 2011. Acidification of subsurface coastal waters enhanced by eutrophication., 4: 766-770, DOI: 10.1038/ngeo1297.

    Choi, S. K., Oh, H. J., Yun, S. H., Lee, H. J., Lee, K., Han, Y. S.,., 2020. Population dynamics of the ‘golden tides’ sea- weed,, on the southwestern coast of Korea: The extent and formation of golden tides., 12, DOI: 10.3390/su12072903.

    Chu, Y., Liu, Y., Li, J., and Gong, Q., 2019. Effects of elevatedCO2and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga(Laminariaceae, Phaeophyta)., 2019: e8040, DOI: 10.7717/peerj.8040.

    Chu, Y., Liu, Y., Li, J., Wang, Q., and Gong, Q., 2020. Nutrient enrichment regulates the growth and physiological responses ofto ocean acidification., 19: 895-901, DOI: 10.1007/s11 802-020-4359-7.

    Chung, I. K., Sondak, C. F. A., and Beardall, J., 2017. The future of seaweed aquaculture in a rapidly changing world., 52: 495-505, DOI: 10.1080/ 09670262.2017.1359678.

    Cornwall, C. E., Hepburn, C. D., Pritchard, D., Currie, K. I., Mcgraw, C. M., Hunter, K. A., and Hurd, C. L., 2012. Car- bon-use strategies in macroalgae: Differential responses to lowered pH and implications for ocean acidification., 48: 137-144, DOI: 10.1111/j.1529-8817.2011. 01085.x.

    Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A., 2009. Ocean acidification: The other CO2problem., 1: 169-192, DOI: 10.1146/annurev. marine.010908.163834.

    Duarte, C. M., and Krause-Jensen, D., 2018. Intervention op- tions to accelerate ecosystem recovery from coastal eutrophi- cation., 5: 470, DOI: 10. 3389/ fmars.2018.00470.

    Edmunds, P. J., 2011. Zooplanktivory ameliorates the effects of ocean acidification on the reef coralspp., 56: 2402-2410, DOI: 10.4319/lo.2011.56. 6.2402.

    Eichner, M., Rost, B., and Kranz, S. A., 2014. Diversity of ocean acidification effects on marine N2fixers., 457: 199-207, DOI: 10.1016/j.jembe.2014.04.015.

    Enochs, I. C., Manzello, D. P., Donham, E. M., Kolodziej, G., Okano, R., Johnston, L.,., 2015. Shift from coral to macroalgae dominance on a volcanically acidified reef., 5: 1083-1088, DOI: 10.1038/nclimate 2758.

    Feely, R., Doney, S., and Cooley, S., 2009a. Ocean acidification: Present conditions and future changes in a high-CO2world., 22: 36-47, DOI: 10.5670/oceanog.2009.95.

    Feely, R. A., Orr, J., Fabry, V. J., Kleypas, J. A., Sabine, C. L., Langdon, C., 2009b. Present and future changes in seawater chemistry due to ocean acidification. In:. American Geophysical Union, 173-188, DOI: 10.1029/2005GM000337.

    Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J., 2004. Impact of anthropo- genic CO2on the CaCO3system in the oceans., 305: 362-366, DOI: 10.1126/science.1097329.

    Filbee-Dexter, K., and Wernberg, T., 2018. Rise of turfs: A new battlefront for globally declining kelp forests., 68: 64-76, DOI: 10.1093/biosci/bix147.

    Gao, K., Beardall, J., H?der, D. P., Hall-Spencer, J. M., Gao, G., and Hutchins, D. A., 2019. Effects of ocean acidification on marine photosynthetic organisms under the concurrent in- fluences of warming, UV radiation, and deoxygenation., 6: 322, DOI: 10.3389/fmars.2019. 00322.

    Gao, G., Clare, A. S., Chatzidimitriou, E., Rose, C., and Cald- well, G., 2018. Effects of ocean warming and acidification, combined with nutrient enrichment, on chemical composition and functional properties of., 258: 71-78, DOI: 10.1016/j.foodchem.2018.03.040.

    Gao, X., Endo, H., Nagaki, M., and Agatsuma, Y., 2017. Interactive effects of nutrient availability and temperature on growth and survival of different size classes of(Laminariales, Phaeophyceae)., 56: 253- 260, DOI: 10.2216/16-91.1.

    Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J. P., Middel- burg, J. J., and Heip, C. H. R., 2007. Impact of elevated CO2on shellfish calcification., 34: L07603, DOI: 10.1029/2006GL028554.

    Ge, C., Chai, Y., Wang, H., and Kan, M., 2017. Ocean acidifi- cation: One potential driver of phosphorus eutrophication., 115: 149-153, DOI: 10.1016/j.mar polbul.2016.12.016.

    Giordano, M., Beardall, J., and Raven, J. A., 2005. CO2con- centrating mechanisms in algae: Mechanisms, environmen- tal modulation, and evolution., 56: 99-131, DOI: 10.1146/annurev.arplant.56.032 604.144052.

    Glibert, P., Anderson, D., Gentien, P., Granéli, E., and Sellner, K., 2005. The global, complex phenomena of harmful algal blooms., 18: 136-147, DOI: 10.5670/oceanog. 2005.49.

    Guan, Y., Hohn, S., Wild, C., and Merico, A., 2020. Vulnerabi- lity of global coral reef habitat suitability to ocean warming, acidification and eutrophication., 26: 5646-5660, DOI: 10.1111/gcb.15293.

    Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C.,., 2008. Eutrophication and harmful algal blooms: A scientific consensus., 8: 3-13, DOI: 10.1016/j.hal.2008.08.006.

    Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E.,., 2007. Coral reefs under rapid climate change and ocean acidification., 318: 1737-1742, DOI: 10.1126/science.1152509.

    Hurd, C. L., Beardall, J., Comeau, S., Cornwall, C. E., Havenhand, J. N., Munday, P. L.,., 2020. Ocean acidifi- cation as a multiple driver: How interactions between changing seawater carbonate parameters affect marine life., 71: 263-274, DOI: 10. 1071/MF19267.

    Hutchins, D. A., and Fu, F., 2017. Microorganisms and ocean global change., 2: 17058, DOI: 10. 1038/nmicrobiol.2017.58.

    Israel, A., and Hophy, M., 2002. Growth, photosynthetic proper- ties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2concentra- tions., 8: 831-840, DOI: 10.1046/j. 1365-2486.2002.00518.x.

    Johnson, M. D., and Carpenter, R. C., 2018. Nitrogen enrich- ment offsets direct negative effects of ocean acidification on a reef-building crustose coralline alga., 14 (7): 20180371, DOI: 10.1098/rsbl.2018.0371.

    Joos, F., and Spahni, R., 2008. Rates of change in natural and anthropogenic radiative forcing over the past 20000 years., 105: 1425-1430, DOI: 10.1073/ pnas.0707386105.

    Kang, J. W., Kambey, C., Shen, Z., Yang, Y., and Chung, I. K., 2017. The short-term effects of elevated CO2and ammonium concentrations on physiological responses in(Rhodophyta)., 20: 18, DOI: 10.1186/s41240-017-0063-y.

    Kawamitsu, Y., and Boyer, J. S., 1999. Photosynthesis and carbon storage between tides in a brown alga,., 133: 361-369, DOI: 10.1007/s002270 050475.

    Kim, J. K., Yarish, C., Hwang, E. K., Park, M., and Kim, Y., 2017. Seaweed aquaculture: Cultivation technologies, cha- llenges and its ecosystem services., 32: 1-13, DOI: 10. 4490/algae.2017.32.3.3.

    Koch, M., Bowes, G., Ross, C., and Zhang, X. H., 2013. Clima- te change and ocean acidification effects on seagrasses and marine macroalgae., 19: 103-132, DOI: 10.1111/j.1365-2486.2012.02791.x.

    Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S.,., 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interac- tion with warming., 19: 1884-1896, DOI: 10.1111/gcb.12179.

    Kudela, R. M., Bickel, A., Carter, M. L., Howard, M. D. A., and Rosenfeld, L., 2015. The monitoring of harmful algal blooms through ocean observing: The development of the California harmful algal bloom monitoring and alert program. In:. Elsevier Inc., 58-75, DOI: 10.1016/B978-0-12-802022-7.00005-5.

    Li, Y., Zhong, J., Zheng, M., Zhuo, P., Xu, N., 2018. Photope- riod mediates the effects of elevated CO2on the growth and physiological performance in the green tide alga., 141: 24-29, DOI: 10.1016/j.marenvres.2018.07.015.

    Liu, D., Keesing, J. K., He, P., Wang, Z., Shi, Y., and Wang, Y., 2013. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications., 129: 2-10, DOI: 10.1016/j.ecss.2013.05. 021.

    McCrackin, M. L., Jones, H. P., Jones, P. C., and Moreno-Ma- teos, D., 2017. Recovery of lakes and coastal marine eco- systems from eutrophication: A global meta-analysis.,62: 507-518, DOI: 10.1002/lno.10441.

    MEE, 2019.. Beijing, 1-22.

    Murray, C. J., Müller-Karulis, B., Carstensen, J., Conley, D. J., Gustafsson, B. G., and Andersen, J. H., 2019. Past, present and future eutrophication status of the Baltic Sea., 6: 2, DOI: 10.3389/fmars.2019.00002.

    Norkko, A., and Bonsdorff, E., 1996a. Rapid zoobenthic com- munity responses to accumulations of drifting algae., 131: 143-157, DOI: 10.3354/meps 131143.

    Norkko, A., and Bonsdorff, E., 1996b. Population responses of coastal zoobenthos to stress induced by drifting algal mats., 140: 141-151, DOI: 10. 3354/meps140141.

    Ohlsson, L. O., Karlsson, S., Rupar-Gadd, K., Albers, E., and Welander, U., 2020. Evaluation ofandfor biogas production and nutrient recycling., 140: 105670, DOI: 10. 1016/j.biombioe.2020.105670.

    Okino, T., and Kato, K., 1987. Lake Suwa–Eutrophication and its partial recent recovery., 14: 373-375, DOI: 10. 1007/BF00208212.

    Pedersen, M., and Borum, J., 1997. Nutrient control of estuarine macroalgae: Growth strategy and the balance between nitro- gen requirements and uptake., 161: 155-163, DOI: 10.3354/meps161155.

    Rabouille, C., Conley, D. J., Dai, M. H., Cai, W. J., Chen, C. T. A.,., 2008. Comparison of hypoxia among four river- dominated ocean margins: The Changjiang (Yangtze), Miss- issippi, Pearl, and Rh?ne Rivers.,28: 527-1537, DOI: 10.1016/j.csr.2008.01.020.

    Raven, J. A., and Hurd, C. L., 2012. Ecophysiology of photo- synthesis in macroalgae. In:. Spring- er, 105-125, DOI: 10.1007/s11120-012-9768-z.

    Reiskind, J. B., Seamon, P. T., and Bowes, G., 1988. Alternative methods of photosynthetic carbon assimilation in marine macroalgae., 87: 686-692, DOI: 10.1104/ pp.87.3.686.

    Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G., and Pan- dolfi, J. M., 2013. Decline in growth of foraminiferunder eutrophication and ocean acidification scenarios., 19: 291-302, DOI: 10. 1111/gcb.12035.

    Smetacek, V., and Zingone, A., 2013. Green and golden seaw- eed tides on the rise., 504: 84-88, DOI: 10.1038/na ture12860.

    Smith, S. V., Swaney, D. P., Talaue-McManus, L., Bartley, J. D., Sandhei, P. T., McLaughlin, C. J.,., 2003. Humans, hy- drology, and the distribution of inorganic nutrient loading to the ocean., 53: 235-245, DOI: 10.1641/0006- 3568(2003)053[0235:HHATDO]2.0.CO;2.

    Strokal, M., Yang, H., Zhang, Y., Kroeze, C., Li, L., Luan, S.,., 2014. Increasing eutrophication in the coastal seas of China from 1970 to 2050., 85: 123- 140, DOI: 10.1016/j.marpolbul.2014.06.011.

    Swanson, A. K., and Fox, C. H., 2007. Altered kelp (Lamina- riales) phlorotannins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs., 13: 1696-1709. DOI: 10.1111/j.1365-2486.2007.01384.x.

    Tatewaki, M., 1966. Formation of a crustaceous sporophyte with unilocular sporangia in., 6: 62-66, DOI: 10.2216/i0031-8884-6-1-62.1.

    Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D., and Foreman, K., 1997. Macroalgal blooms in shallow estua- ries: Controls and ecophysiological and ecosystem conse- quences., 42: 1105-1118, DOI: 10.4319/lo.1997.42.5_part_2.1105.

    van der Struijk, L. F., and Kroeze, C., 2010. Future trends in nutrient export to the coastal waters of South America: Impli- cations for occurrence of eutrophication., 24: 1-14, DOI: 10.1029/2009GB003572.

    Wang, B., Xin, M., Wei, Q., and Xie, L., 2018. A historical overview of coastal eutrophication in the China Seas., 136: 394-400, DOI: 10.1016/j.marpolbul. 2018.09.044.

    Wang, Y., Xu, D., Fan, X., Zhang, X., Ye, N., Wang, W.,., 2013. Variation of photosynthetic performance, nutrient up- take, and elemental composition of different generations and different thallus parts of., 25: 631-637, DOI: 10.1007/s10811-012- 9897-y.

    Watson, S. B., Whitton, B. A., Higgins, S. N., Paerl, H. W., Brooks, B. W., and Wehr, J. D., 2015. Harmful algal blooms. In:. Elsevier Inc., 873-920, DOI: 10.1016/B978-0- 12-385876-4.00020-7.

    Wernberg, T., Krumhansl, K., Filbee-Dexter, K., and Pedersen, M. F., 2018. Status and trends for the world’s kelp forests. In:. Elsevier, 57-78, DOI: 10.1016/B978-0-12-805052-1.00003-6.

    Wu, H., Feng, J., Li, X., Zhao, C., Liu, Y., Yu, J., amd Xu, J., 2019. Effects of increased CO2and temperature on the physiological characteristics of the golden tide blooming ma- croalgaein the Yellow Sea, China., 146: 639-644, DOI: 10.1016/j.mar polbul.2019.07.025.

    Wu, H. Y., Zou, D. H., and Gao, K. S., 2008. Impacts of in- creased atmospheric CO2concentration on photosynthesis and growth of micro- and macro-algae., 51: 1144-1150, DOI: 10.1007/s11 427-008-0142-5.

    Xiao, J., Wang, Z., Song, H., Fan, S., Yuan, C., Fu, M.,., 2020. An anomalous bi-macroalgal bloom caused byandseaweeds during spring to summer of 2017 in the western Yellow Sea, China., 93: 101760, DOI: 10.1016/j.hal.2020.101760.

    Xu, D., Brennan, G., Xu, L., Zhang, X. W., Fan, X., Han, W. T.,., 2019. Ocean acidification increases iodine accumula- tion in kelp-based coastal food webs., 25: 629-639, DOI: 10.1111/gcb.14467.

    Young, C. S., and Gobler, C. J., 2016. Ocean acidification acce- lerates the growth of two bloom-forming macroalgae., 5: e0155152, DOI: 10.1371/journal.pone.0155 152.

    Yu, J., Li, J., Wang, Q., Liu, Y., and Gong, Q., 2019. Growth and resource accumulation of drifting(Fucales, Phaeophyta) in response to temperature and nitro- gen supply., 18: 1216- 1226, DOI: 10.1007/s11802-019-3835-4.

    Zhang, X., Xu, D., Guan, Z., Wang, S., Zhang, Y., Wang, W.,., 2020. Elevated CO2concentrations promote growth and photosynthesis of the brown alga., 32: 1949-1959, DOI: 10.1007/s 10811-020-02108-1.

    . Tel: 0086-532-82032377 E-mail: qdlijingyu@ouc.edu.cn

    November 25, 2020;

    March 2, 2021;

    March 30, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    (Edited by Ji Dechun)

    老司机影院成人| 国产精品一区二区在线不卡| 久久天躁狠狠躁夜夜2o2o | 国产爽快片一区二区三区| 国产乱来视频区| 老司机在亚洲福利影院| 肉色欧美久久久久久久蜜桃| 青春草视频在线免费观看| 国产精品香港三级国产av潘金莲 | 国产精品久久久久久精品古装| a 毛片基地| 精品卡一卡二卡四卡免费| 天天躁日日躁夜夜躁夜夜| 国产1区2区3区精品| 91精品国产国语对白视频| 综合色丁香网| 最近中文字幕高清免费大全6| 91老司机精品| 亚洲av电影在线观看一区二区三区| 久久午夜综合久久蜜桃| 两个人看的免费小视频| 久久影院123| 日韩成人av中文字幕在线观看| 久久影院123| 欧美久久黑人一区二区| 欧美久久黑人一区二区| 啦啦啦视频在线资源免费观看| 91精品伊人久久大香线蕉| 99久久综合免费| 人妻人人澡人人爽人人| 日本欧美国产在线视频| 老司机在亚洲福利影院| 亚洲欧美日韩另类电影网站| 妹子高潮喷水视频| 中文字幕亚洲精品专区| 纯流量卡能插随身wifi吗| 亚洲伊人色综图| 天天躁狠狠躁夜夜躁狠狠躁| 久久婷婷青草| 男女无遮挡免费网站观看| 久久毛片免费看一区二区三区| 亚洲人成网站在线观看播放| 国产精品国产av在线观看| 久久天堂一区二区三区四区| 人人妻人人爽人人添夜夜欢视频| 一本一本久久a久久精品综合妖精| 不卡视频在线观看欧美| 精品人妻熟女毛片av久久网站| 亚洲人成77777在线视频| 一级黄片播放器| 飞空精品影院首页| 丝瓜视频免费看黄片| 精品人妻一区二区三区麻豆| 老熟女久久久| 一区福利在线观看| 国产午夜精品一二区理论片| 亚洲国产精品999| 久久久久久久久久久免费av| 久久人妻熟女aⅴ| 国产精品久久久久久人妻精品电影 | 涩涩av久久男人的天堂| 欧美av亚洲av综合av国产av | 美女扒开内裤让男人捅视频| 久久久久精品国产欧美久久久 | 国产爽快片一区二区三区| 国产成人系列免费观看| av视频免费观看在线观看| 国产一卡二卡三卡精品 | 国产精品秋霞免费鲁丝片| bbb黄色大片| 女人精品久久久久毛片| 国产亚洲午夜精品一区二区久久| 国产日韩一区二区三区精品不卡| 男男h啪啪无遮挡| 国语对白做爰xxxⅹ性视频网站| 在线 av 中文字幕| 亚洲欧美激情在线| 在线亚洲精品国产二区图片欧美| 亚洲少妇的诱惑av| 久久国产精品男人的天堂亚洲| 少妇被粗大的猛进出69影院| 午夜福利,免费看| 成人免费观看视频高清| 国产一区二区激情短视频 | 中文字幕精品免费在线观看视频| 老司机影院成人| 热re99久久精品国产66热6| av线在线观看网站| 亚洲第一av免费看| 尾随美女入室| 夫妻性生交免费视频一级片| 大陆偷拍与自拍| 亚洲av中文av极速乱| 国产精品成人在线| 亚洲欧美成人综合另类久久久| 777米奇影视久久| 亚洲国产精品一区三区| 黑人欧美特级aaaaaa片| 美女福利国产在线| 最近2019中文字幕mv第一页| 韩国高清视频一区二区三区| 香蕉国产在线看| 美女主播在线视频| 亚洲伊人久久精品综合| av女优亚洲男人天堂| 性色av一级| 国产色婷婷99| 亚洲,欧美,日韩| 成人亚洲欧美一区二区av| 亚洲一区二区三区欧美精品| 在线观看免费午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久精品精品| 最近手机中文字幕大全| 最近2019中文字幕mv第一页| 精品亚洲成国产av| 五月开心婷婷网| 街头女战士在线观看网站| 久久97久久精品| 亚洲图色成人| 老鸭窝网址在线观看| 亚洲欧洲精品一区二区精品久久久 | 一区二区日韩欧美中文字幕| 国产 一区精品| 丁香六月欧美| 日韩电影二区| 99精品久久久久人妻精品| 亚洲成人手机| 在线观看免费视频网站a站| 这个男人来自地球电影免费观看 | 夫妻性生交免费视频一级片| 美女扒开内裤让男人捅视频| 欧美 亚洲 国产 日韩一| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人| 极品人妻少妇av视频| 在线 av 中文字幕| 久久鲁丝午夜福利片| 极品人妻少妇av视频| 在线 av 中文字幕| 看免费成人av毛片| 2018国产大陆天天弄谢| 国产亚洲av高清不卡| 亚洲久久久国产精品| 人人妻人人澡人人看| 婷婷色综合www| 一区福利在线观看| 最黄视频免费看| 国产在视频线精品| a级片在线免费高清观看视频| 国产 一区精品| 久久久精品94久久精品| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 亚洲一级一片aⅴ在线观看| 午夜激情av网站| 中文字幕人妻丝袜一区二区 | 新久久久久国产一级毛片| 亚洲av日韩在线播放| 亚洲欧洲精品一区二区精品久久久 | 国产探花极品一区二区| 99久久精品国产亚洲精品| 老司机影院成人| 一本一本久久a久久精品综合妖精| 国产极品粉嫩免费观看在线| 国产黄色视频一区二区在线观看| 欧美最新免费一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 一本一本久久a久久精品综合妖精| 久久这里只有精品19| 午夜福利影视在线免费观看| 黄片小视频在线播放| 日韩不卡一区二区三区视频在线| 一二三四在线观看免费中文在| 在线天堂中文资源库| 99久久精品国产亚洲精品| 欧美日韩精品网址| 日本黄色日本黄色录像| 成年女人毛片免费观看观看9 | 国产精品蜜桃在线观看| 伊人亚洲综合成人网| 久久99热这里只频精品6学生| 国产亚洲av片在线观看秒播厂| 亚洲欧美一区二区三区黑人| svipshipincom国产片| 美女视频免费永久观看网站| 免费观看av网站的网址| 亚洲情色 制服丝袜| 亚洲专区中文字幕在线 | 一边摸一边做爽爽视频免费| 国产高清不卡午夜福利| 精品一区在线观看国产| 丁香六月天网| 日本色播在线视频| 成年人午夜在线观看视频| 亚洲,欧美精品.| 日本vs欧美在线观看视频| 国产精品免费视频内射| 美女脱内裤让男人舔精品视频| 国产精品 欧美亚洲| 国产精品一二三区在线看| 精品酒店卫生间| 免费久久久久久久精品成人欧美视频| 嫩草影视91久久| 日韩人妻精品一区2区三区| 国产99久久九九免费精品| 欧美av亚洲av综合av国产av | 日本91视频免费播放| 国产精品国产三级专区第一集| 卡戴珊不雅视频在线播放| 久久婷婷青草| 久久精品久久久久久噜噜老黄| 9热在线视频观看99| 国产精品.久久久| 狂野欧美激情性xxxx| 青春草国产在线视频| 黑丝袜美女国产一区| av一本久久久久| 中文字幕制服av| 亚洲一码二码三码区别大吗| 久久韩国三级中文字幕| 欧美老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 女的被弄到高潮叫床怎么办| 这个男人来自地球电影免费观看 | 亚洲精品日韩在线中文字幕| 日韩欧美精品免费久久| 国产精品香港三级国产av潘金莲 | 91精品伊人久久大香线蕉| av视频免费观看在线观看| 极品人妻少妇av视频| 欧美成人午夜精品| 国产成人免费无遮挡视频| 亚洲国产看品久久| 又大又黄又爽视频免费| 亚洲熟女毛片儿| 九草在线视频观看| 精品国产一区二区久久| 老司机在亚洲福利影院| 夫妻性生交免费视频一级片| av在线播放精品| 一区二区日韩欧美中文字幕| 成年女人毛片免费观看观看9 | 国产成人系列免费观看| 99热国产这里只有精品6| 国产黄色视频一区二区在线观看| 亚洲七黄色美女视频| 亚洲色图综合在线观看| 国产不卡av网站在线观看| 国产福利在线免费观看视频| 99九九在线精品视频| 人人妻人人爽人人添夜夜欢视频| www.熟女人妻精品国产| 日韩视频在线欧美| 亚洲一级一片aⅴ在线观看| 老司机靠b影院| 纵有疾风起免费观看全集完整版| 国产免费视频播放在线视频| 精品少妇黑人巨大在线播放| 久久热在线av| 国产免费又黄又爽又色| 国产麻豆69| 久久精品久久久久久久性| 天堂中文最新版在线下载| 国产有黄有色有爽视频| 啦啦啦中文免费视频观看日本| 精品国产一区二区三区四区第35| bbb黄色大片| 97精品久久久久久久久久精品| 精品国产露脸久久av麻豆| 黄片播放在线免费| 久久毛片免费看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品中文字幕在线视频| 亚洲精品久久久久久婷婷小说| 高清欧美精品videossex| 亚洲精品美女久久av网站| 丰满乱子伦码专区| 日韩一区二区视频免费看| 一级毛片 在线播放| 国产精品久久久久久精品古装| 亚洲av欧美aⅴ国产| 天天躁日日躁夜夜躁夜夜| 久久鲁丝午夜福利片| 国产视频首页在线观看| 国产精品久久久人人做人人爽| 久久久久视频综合| 免费黄频网站在线观看国产| 女人精品久久久久毛片| 97在线人人人人妻| 制服诱惑二区| 青春草国产在线视频| 纵有疾风起免费观看全集完整版| 国产精品嫩草影院av在线观看| 黄片小视频在线播放| 免费久久久久久久精品成人欧美视频| av线在线观看网站| 国产精品秋霞免费鲁丝片| 老汉色∧v一级毛片| 老鸭窝网址在线观看| 我要看黄色一级片免费的| av有码第一页| 国产av国产精品国产| 国产不卡av网站在线观看| 大片电影免费在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新中文字幕免费大全7| 中文字幕制服av| 成人手机av| 热99国产精品久久久久久7| 美女高潮到喷水免费观看| 久久久久久久久免费视频了| 午夜福利一区二区在线看| 国产成人欧美在线观看 | 亚洲人成77777在线视频| 看免费av毛片| 亚洲,欧美精品.| svipshipincom国产片| 久久国产精品男人的天堂亚洲| 日本vs欧美在线观看视频| 午夜精品国产一区二区电影| 99热国产这里只有精品6| 婷婷色av中文字幕| 国产精品无大码| 麻豆乱淫一区二区| 免费高清在线观看视频在线观看| 久久久久网色| 制服丝袜香蕉在线| 超碰成人久久| 日韩熟女老妇一区二区性免费视频| 天美传媒精品一区二区| 亚洲,欧美,日韩| 久久热在线av| 中文字幕人妻丝袜一区二区 | 亚洲成人av在线免费| 国产成人免费无遮挡视频| 熟女av电影| 久久久久精品国产欧美久久久 | 久久久久国产精品人妻一区二区| 在线看a的网站| 超碰成人久久| 色网站视频免费| 中文字幕av电影在线播放| 一本一本久久a久久精品综合妖精| 国产人伦9x9x在线观看| 一区二区日韩欧美中文字幕| 激情五月婷婷亚洲| 免费看不卡的av| 国产成人啪精品午夜网站| 国产xxxxx性猛交| 精品久久蜜臀av无| 日韩电影二区| 激情五月婷婷亚洲| 亚洲,欧美精品.| 国产精品一区二区在线不卡| 亚洲欧美成人精品一区二区| 91老司机精品| 日韩,欧美,国产一区二区三区| 人人妻人人添人人爽欧美一区卜| 91精品三级在线观看| 亚洲国产精品一区三区| 精品少妇黑人巨大在线播放| 中文字幕av电影在线播放| 啦啦啦 在线观看视频| 看免费av毛片| 久久精品人人爽人人爽视色| 女人爽到高潮嗷嗷叫在线视频| 夫妻性生交免费视频一级片| 亚洲欧美清纯卡通| 大话2 男鬼变身卡| 亚洲欧美一区二区三区国产| 欧美亚洲 丝袜 人妻 在线| 少妇人妻精品综合一区二区| 国产极品天堂在线| 国产无遮挡羞羞视频在线观看| 中文欧美无线码| 啦啦啦啦在线视频资源| 中文字幕人妻熟女乱码| 99久久人妻综合| 日韩制服骚丝袜av| 丁香六月天网| 国产亚洲欧美精品永久| 欧美黑人精品巨大| 欧美精品av麻豆av| 91精品三级在线观看| 久久99热这里只频精品6学生| 欧美日本中文国产一区发布| 国产1区2区3区精品| 看十八女毛片水多多多| 午夜福利影视在线免费观看| 成人毛片60女人毛片免费| 老司机亚洲免费影院| 51午夜福利影视在线观看| 老司机深夜福利视频在线观看 | 成人亚洲欧美一区二区av| 亚洲国产最新在线播放| 成年美女黄网站色视频大全免费| 国产精品久久久久久精品电影小说| 美女大奶头黄色视频| 欧美日韩av久久| 亚洲精品视频女| 麻豆精品久久久久久蜜桃| 黄片无遮挡物在线观看| 熟妇人妻不卡中文字幕| 国产国语露脸激情在线看| 国产在线一区二区三区精| av片东京热男人的天堂| 天天躁狠狠躁夜夜躁狠狠躁| 美女扒开内裤让男人捅视频| 亚洲成人国产一区在线观看 | 亚洲三区欧美一区| 别揉我奶头~嗯~啊~动态视频 | 韩国高清视频一区二区三区| 69精品国产乱码久久久| www.自偷自拍.com| 国产精品亚洲av一区麻豆 | 观看美女的网站| 看免费成人av毛片| 校园人妻丝袜中文字幕| 欧美最新免费一区二区三区| 老司机影院成人| 日韩人妻精品一区2区三区| 一边摸一边做爽爽视频免费| 99精品久久久久人妻精品| 亚洲av成人不卡在线观看播放网 | 久久精品亚洲av国产电影网| 国产爽快片一区二区三区| 性少妇av在线| 久久精品熟女亚洲av麻豆精品| 国产片内射在线| 1024香蕉在线观看| 午夜免费鲁丝| 黑丝袜美女国产一区| 日本欧美国产在线视频| 欧美亚洲 丝袜 人妻 在线| 久久人人爽人人片av| 中文欧美无线码| 三上悠亚av全集在线观看| 亚洲伊人久久精品综合| 国产精品香港三级国产av潘金莲 | 激情视频va一区二区三区| 观看av在线不卡| 精品亚洲乱码少妇综合久久| 高清av免费在线| 亚洲欧美成人精品一区二区| 久久国产亚洲av麻豆专区| 丝袜美腿诱惑在线| 777久久人妻少妇嫩草av网站| 十八禁人妻一区二区| 18禁动态无遮挡网站| 国产成人91sexporn| 国产一区有黄有色的免费视频| 午夜久久久在线观看| 少妇被粗大的猛进出69影院| 国精品久久久久久国模美| 叶爱在线成人免费视频播放| 日韩 亚洲 欧美在线| 国产精品成人在线| 国产乱人偷精品视频| 熟女少妇亚洲综合色aaa.| 国产成人午夜福利电影在线观看| xxxhd国产人妻xxx| 精品国产乱码久久久久久男人| 老司机在亚洲福利影院| 两性夫妻黄色片| 18禁观看日本| 色综合欧美亚洲国产小说| 国产精品一区二区在线观看99| 91精品伊人久久大香线蕉| 男女之事视频高清在线观看 | 天天躁夜夜躁狠狠躁躁| 精品久久蜜臀av无| 亚洲国产精品999| 美女福利国产在线| 国产女主播在线喷水免费视频网站| 亚洲三区欧美一区| 日韩制服骚丝袜av| 精品人妻在线不人妻| 久久久久久久精品精品| 肉色欧美久久久久久久蜜桃| 国产乱来视频区| 日本午夜av视频| 国产av精品麻豆| 一级毛片 在线播放| 超碰成人久久| 欧美黑人欧美精品刺激| 色综合欧美亚洲国产小说| 蜜桃国产av成人99| 亚洲精品久久久久久婷婷小说| 老司机亚洲免费影院| 五月开心婷婷网| 卡戴珊不雅视频在线播放| 日本黄色日本黄色录像| 黑人欧美特级aaaaaa片| 免费少妇av软件| 亚洲av成人精品一二三区| 久久久久久人人人人人| 国产女主播在线喷水免费视频网站| 欧美乱码精品一区二区三区| 女性生殖器流出的白浆| 中文字幕最新亚洲高清| 极品少妇高潮喷水抽搐| 成人国产av品久久久| 男女床上黄色一级片免费看| 99久久99久久久精品蜜桃| 美女大奶头黄色视频| 欧美日韩亚洲高清精品| 在线观看三级黄色| 深夜精品福利| 一级毛片我不卡| 国产黄色免费在线视频| 丝瓜视频免费看黄片| 国产精品三级大全| 性高湖久久久久久久久免费观看| 曰老女人黄片| 免费观看a级毛片全部| 欧美精品高潮呻吟av久久| 国产人伦9x9x在线观看| 成人亚洲欧美一区二区av| 少妇 在线观看| 日本一区二区免费在线视频| 秋霞伦理黄片| 男男h啪啪无遮挡| 美女大奶头黄色视频| 中文字幕制服av| 2018国产大陆天天弄谢| 黄色一级大片看看| a级毛片黄视频| 美女主播在线视频| 精品一品国产午夜福利视频| 少妇猛男粗大的猛烈进出视频| 中文天堂在线官网| 熟妇人妻不卡中文字幕| 欧美另类一区| 老司机影院毛片| 最近的中文字幕免费完整| 日本wwww免费看| 热99久久久久精品小说推荐| 美女福利国产在线| 亚洲精品自拍成人| 精品亚洲乱码少妇综合久久| 久久久久人妻精品一区果冻| 亚洲精华国产精华液的使用体验| 欧美久久黑人一区二区| 在线观看人妻少妇| 成年美女黄网站色视频大全免费| 亚洲精品日本国产第一区| 久久人妻熟女aⅴ| 丝袜脚勾引网站| 婷婷色麻豆天堂久久| 国产老妇伦熟女老妇高清| 中文字幕制服av| 日本vs欧美在线观看视频| 巨乳人妻的诱惑在线观看| 亚洲欧洲日产国产| 欧美老熟妇乱子伦牲交| 最近中文字幕高清免费大全6| 人人妻人人澡人人爽人人夜夜| 国产免费视频播放在线视频| 女人久久www免费人成看片| 天天躁日日躁夜夜躁夜夜| 捣出白浆h1v1| 国产成人a∨麻豆精品| 亚洲人成77777在线视频| 超碰成人久久| 久久久亚洲精品成人影院| 麻豆乱淫一区二区| 别揉我奶头~嗯~啊~动态视频 | 在线观看三级黄色| 国产午夜精品一二区理论片| 我的亚洲天堂| www.av在线官网国产| 9191精品国产免费久久| 久久99一区二区三区| 亚洲三区欧美一区| 男人操女人黄网站| 在线亚洲精品国产二区图片欧美| 日本vs欧美在线观看视频| 免费黄频网站在线观看国产| av网站在线播放免费| 午夜免费男女啪啪视频观看| 欧美精品av麻豆av| 国产一区二区三区综合在线观看| 午夜免费鲁丝| 国产成人精品在线电影| 久久精品亚洲熟妇少妇任你| 永久免费av网站大全| 亚洲精品成人av观看孕妇| 婷婷色综合大香蕉| 亚洲av在线观看美女高潮| 亚洲综合色网址| 亚洲第一青青草原| 亚洲色图综合在线观看| 肉色欧美久久久久久久蜜桃| 国产黄色视频一区二区在线观看| 中文欧美无线码| 97在线人人人人妻| 美女扒开内裤让男人捅视频| 亚洲男人天堂网一区| 嫩草影院入口| 男女下面插进去视频免费观看| 国产乱来视频区| 久久精品久久久久久噜噜老黄| avwww免费| 99久久综合免费| 国产精品无大码| 久热这里只有精品99| 午夜福利影视在线免费观看| 最黄视频免费看| 亚洲精华国产精华液的使用体验| 99久国产av精品国产电影| 美女主播在线视频| kizo精华| www日本在线高清视频| 精品一区二区三区四区五区乱码 |