蔡夢(mèng)如,姚 宇,尹東閣,王開(kāi)心,胡雪凌,劉曼婷,董曉旭,曲昌海,尹興斌,倪 健
·綜 述·
金屬有機(jī)骨架材料在中藥研究的應(yīng)用進(jìn)展
蔡夢(mèng)如,姚 宇,尹東閣,王開(kāi)心,胡雪凌,劉曼婷,董曉旭,曲昌海,尹興斌*,倪 健*
北京中醫(yī)藥大學(xué)中藥學(xué)院,北京 102488
金屬有機(jī)骨架材料(metal organic frameworks,MOFs)是由金屬離子中心與有機(jī)配體連接而成的雜化多孔晶體材料,具有比表面積大、孔徑可調(diào)、活性位點(diǎn)豐富、生物相容性良好的優(yōu)點(diǎn),被廣泛用于氣體儲(chǔ)存、吸附、提取、催化及藥物遞送等領(lǐng)域。近年來(lái),MOFs在中藥研究領(lǐng)域的應(yīng)用也越來(lái)越廣泛,主要用于中藥有效成分的緩控釋放、靶向遞送、改善藥物的溶解性、增加藥物的穩(wěn)定性、降低藥物的毒副作用等。此外,MOFs在中藥成分的提取分離及檢測(cè)方面也有諸多應(yīng)用。綜述近年來(lái)MOFs在中藥研究領(lǐng)域的應(yīng)用進(jìn)展,以期為MOFs在中藥研究中的進(jìn)一步應(yīng)用提供參考,為中藥成分的新型遞藥系統(tǒng)研究提供新思路。
金屬有機(jī)骨架材料;中藥;靶向遞藥;緩釋遞藥;催化;吸附;提取分離;檢測(cè)
金屬有機(jī)骨架材料(metal organic frameworks,MOFs)又稱多孔配位聚合物,是由金屬離子中心與有機(jī)配體連接而成的雜化多孔晶體材料,是一類具有優(yōu)良特性的納米材料[1]。與其他傳統(tǒng)納米材料相比,MOFs具有高的孔隙率和比表面積、可調(diào)的結(jié)構(gòu)與功能、良好的生物相容性[2-4]等特點(diǎn),可滿足多個(gè)領(lǐng)域發(fā)展的需求。近年來(lái),基于MOFs的應(yīng)用引發(fā)了廣泛關(guān)注,在吸附[5]、催化[6]、化學(xué)傳感[7]及藥物遞送[8]等領(lǐng)域均具有較多的研究報(bào)道。為了滿足不同的需求,研究者們已經(jīng)開(kāi)發(fā)出包括溶劑熱法、三乙胺快速沉淀法、電化學(xué)法、機(jī)械化學(xué)法及微波法等各種合成方法。
為改善部分中藥成分溶解度低、穩(wěn)定性差、生物利用度低等現(xiàn)狀,降低中藥潛在毒性,提高中藥成分提取分離和催化的效率及檢測(cè)的靈敏度,MOFs受到研究者的廣泛關(guān)注。MOFs是由有機(jī)單元和無(wú)機(jī)單元組成的網(wǎng)狀多孔材料[2]。金屬離子中心和有機(jī)配體的豐富性,使得MOFs的多樣性成為可能,理論上可以合成千萬(wàn)種MOFs。目前常見(jiàn)的幾大類MOFs包括網(wǎng)狀金屬有機(jī)骨架材料(isoreticular metal organic frameworks,IRMOFs)[9]、拉瓦希爾骨架系列材料(materials of institute lavoisiers,MILs)[10]、層狀結(jié)構(gòu)系列材料(coordination pillared-layers,CPLs)[11]、類沸石咪唑酯骨架系列材料(zeolitic imidazolate frameworks,ZIFs)[12]、孔-通道式骨架系列材料(porous coordination networks,PCNs)[13]、鋯基三維微孔骨架系列材料(university of Oslos,UIOs)[14]、浙江大學(xué)合成系列材料(Zhejiang University MOFs,ZJUs)[15]、“孔籠- 孔道”結(jié)構(gòu)MOFs[16]、混合配體MOFs[17]、混合金屬M(fèi)OFs[18]等,各類型MOFs具有不同的結(jié)構(gòu)及功能特性,可以滿足不同的需求。其優(yōu)良的特性,允許MOFs與其他各種生物材料雜化使用。目前,各種新型多功能MOFs仍在開(kāi)發(fā)中,出現(xiàn)了基于MOFs的復(fù)合材料,復(fù)合材料表現(xiàn)出優(yōu)于單一材料的新特性[1]。目前,已有大量研究將MOFs的優(yōu)異性能引入中藥領(lǐng)域,MOFs獨(dú)特的結(jié)構(gòu)特征及功能特性為中藥成分的遞送、吸附、催化、提取分離及檢測(cè)提供了便利。本文針對(duì)近年來(lái)MOFs在中藥領(lǐng)域方面的研究進(jìn)展進(jìn)行綜述,以期為MOFs在中藥研究中的進(jìn)一步應(yīng)用提供參考,為中藥成分的新型遞藥系統(tǒng)研究提供新思路。
納米技術(shù)的成熟與革新使其在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用逐漸廣泛。MOFs作為新型納米材料,在生物醫(yī)學(xué)領(lǐng)域起步較晚,但發(fā)展卻十分迅速。與傳統(tǒng)多孔材料相比,MOFs具有較大的孔隙率和比表面積、較小的晶體密度、可調(diào)的孔徑、良好的生物相容性等優(yōu)點(diǎn)[6]。將MOFs應(yīng)用在中藥新型遞藥系統(tǒng)、改善溶解度、增加穩(wěn)定性、降低毒副作用等方面已成為近年的研究熱點(diǎn)。
靶向藥物遞送系統(tǒng)(targeted drug delivery system,TDDS)能精準(zhǔn)遞送藥物至靶部位,既能有效提高療效又能減輕藥物對(duì)正常組織與器官的不良反應(yīng),是一種經(jīng)濟(jì)高效且安全的治療策略[19]。TDDS的發(fā)展在很大程度上取決于載體材料的發(fā)展,MOFs以其高載藥量、易于功能化、生物安全性高等特點(diǎn)引起了廣大研究者們的興趣[20]?;贛OFs的靶向策略主要包括被動(dòng)靶向、主動(dòng)靶向、物理化學(xué)靶向(pH值響應(yīng)型、離子響應(yīng)型、氧化還原型、光敏感型、磁響應(yīng)型、溫度敏感型)、基因遞送和仿生修飾等。
控制MOFs的粒徑在100 nm左右,由于其增強(qiáng)的滲透和滯留作用而具有被動(dòng)靶向至腫瘤組織的能力。而通過(guò)對(duì)MOFs修飾靶向配體能夠?qū)崿F(xiàn)主動(dòng)靶向。如在腫瘤部位葉酸受體豐富,利用MOFs的氨基與葉酸的羧基進(jìn)行酰胺化反應(yīng),將葉酸偶聯(lián)至MOFs上,從而靶向至腫瘤部位已成為當(dāng)前普遍的靶向策略。Laha等[21]利用葉酸修飾IRMOF-3,將姜黃素靶向遞送至腫瘤部位,提高了姜黃素治療三陰性乳腺癌的效率。由于局部缺氧、代謝較快,因而腫瘤部位較正常組織具有較低的pH值。利用病灶和正常生理環(huán)境pH值的差別,可以合成具有pH值敏感的MOFs,這些MOFs在酸性環(huán)境中更易降解,在生理?xiàng)l件下較穩(wěn)定,因此,它們可以在腫瘤部位特異性釋放藥物。Cabrera-García等[22]合成了氨基功能化的MIL-100(Fe)負(fù)載喜樹(shù)堿,該納米平臺(tái)在酸性條件下釋放量為正常條件下的4倍,并有效改善了細(xì)胞內(nèi)化。pH值響應(yīng)型的MOFs能夠加速納米粒在病灶的藥物釋放,但無(wú)法避免藥物在正常組織的釋放。離子響應(yīng)型和氧化還原型策略也是通過(guò)環(huán)境差異來(lái)響應(yīng)性釋放藥物,只有在特定環(huán)境,如某些離子和酶的過(guò)量分泌可誘導(dǎo)MOFs的降解從而釋放藥物。Lei等[23]用4,4′-二硫代雙苯甲酸作為有機(jī)配體合成MOFs,該MOFs能被過(guò)表達(dá)的谷胱甘肽裂解,從而釋放姜黃素。此外,光療和磁療也是目前研究的熱點(diǎn),研究者既能以光敏劑為有機(jī)配體合成具有光敏的MOFs,也可通過(guò)MOFs對(duì)光敏劑進(jìn)行包載遞送至靶部位來(lái)實(shí)現(xiàn)光療。Zeng等[24]以金納米粒為種子介導(dǎo)合成了卟啉基金屬有機(jī)骨架,該納米平臺(tái)能在近紅外光下發(fā)出光動(dòng)力治療所需的活性氧,提高治療效率。而磁療則是通過(guò)使用磁性金屬來(lái)合成MOFs,但這種策略靶向效率有限,因此,研究者更傾向于以MOFs為外殼包載磁性納米粒(如Fe2O3)及藥物,在外磁場(chǎng)的作用下至靶部位發(fā)揮藥效。Zhuang等[25]將Fe2O3裝入ZIF-8的孔隙中,賦予了納米粒子磁性。溫度敏感型MOFs在不同溫度下具有不同的釋放行為,對(duì)病灶部位局部升溫可以促進(jìn)藥物的快速釋放。基因遞送則是指利用MOFs將外源DNA導(dǎo)入病灶并進(jìn)行基因修改以達(dá)到治療目的的方式。仿生修飾是指利用生物膜(紅細(xì)胞膜、血小板膜、癌細(xì)胞膜等)包裹MOFs偽裝成內(nèi)源性物質(zhì),在體內(nèi)進(jìn)行長(zhǎng)循環(huán),減少免疫逃逸的一種策略。Xiao等[26]利用腫瘤細(xì)胞膜仿生修飾金屬有機(jī)骨架靶向遞送二氫青蒿素,該納米粒具有優(yōu)異的同源靶向能力,可在腫瘤組織中積累。
由于各種策略具有不同的特點(diǎn),已有研究者開(kāi)發(fā)出基于MOFs不同策略相結(jié)合的TDDS,這有利于各策略之間取長(zhǎng)補(bǔ)短,提高靶向效率,獲得更高的療效。MOFs在中藥靶向遞藥系統(tǒng)中的應(yīng)用見(jiàn)表1。
表1 MOFs在中藥靶向遞藥系統(tǒng)中的應(yīng)用
許多有潛力的中藥單體成分由于溶解性差、半衰期過(guò)短、體內(nèi)代謝不理想等特點(diǎn)限制了其臨床應(yīng)用。常規(guī)給藥往往導(dǎo)致毒性的增加,且在給藥后的較短時(shí)間內(nèi)需重復(fù)給藥[44]。因此,緩釋制劑受到廣泛關(guān)注。MOFs載藥量高、體內(nèi)可降解且易于修飾,是一類理想的藥物緩釋載體材料。藥物從材料內(nèi)部釋放往往有幾個(gè)階段,首先材料表面的一部分藥物溶解釋放,然后材料內(nèi)部的藥物隨著濃度的梯度逐漸向外擴(kuò)散溶解,隨著骨架的坍塌,被包裹在材料空腔內(nèi)的藥物被釋放。此外,一部分藥物與材料之間可能存在某種親和力(氫鍵、π-π共軛、靜電吸附),這部分藥物最后被釋放。由于幾個(gè)階段不斷地進(jìn)行,最終實(shí)現(xiàn)藥物的持續(xù)緩慢釋放。Latifi等[45]合成了MIL-53包封百里香酚,展現(xiàn)出了較高的裝載能力及可控釋放能力,該納米平臺(tái)能在24 h內(nèi)持續(xù)釋放百里香酚。同時(shí)該研究還展現(xiàn)了3種MOFs對(duì)百里香酚不同的遞藥性能,發(fā)現(xiàn)藥物的遞送與MOFs的孔徑有著較大的關(guān)系。近年來(lái),MOFs在中藥緩釋遞藥系統(tǒng)中的應(yīng)用見(jiàn)表2。
表2 MOFs在中藥緩釋遞藥系統(tǒng)中的應(yīng)用
此外,MOFs結(jié)構(gòu)可調(diào)、易于修飾的特點(diǎn)使得可編程的個(gè)性化藥物釋放模式成為可能。對(duì)MOFs進(jìn)行結(jié)構(gòu)修飾以改變藥物與載體之間的親和力,能有效控制藥物釋放速度;對(duì)MOFs進(jìn)行孔徑的調(diào)節(jié),是改變藥物釋放速率的另一種策略。Orellana-Tavra等[55]對(duì)Zr-MOFs進(jìn)行功能化,-Br、-NO2和-NH2被引入MOFs,可以觀察到各MOFs具有完全不同的釋放行為,-NH2修飾的MOFs能在15 d內(nèi)緩慢持續(xù)的釋放肉桂酸,而另2種基團(tuán)修飾的MOFs并不能完全釋放所有的肉桂酸。基團(tuán)修飾是有效調(diào)整藥物釋放速率的策略之一,研究者需要考慮基團(tuán)與藥物之間的親和力以獲得理想的釋放行為,如果基團(tuán)與藥物之間不可逆的結(jié)合會(huì)導(dǎo)致死吸附,使得包裹的藥物無(wú)法完全釋放而造成浪費(fèi)。因此,應(yīng)該根據(jù)藥物的特點(diǎn)與疾病的需求合理選擇修飾基團(tuán)。
低的溶解性和生物利用度嚴(yán)重影響了中藥的開(kāi)發(fā)與利用,必須達(dá)到一定的劑量才能激發(fā)藥物在人體內(nèi)的藥理活性。Suresh等[56]將姜黃素包封在MOF-5中,該納米系統(tǒng)能顯著提高姜黃素的溶解性,在前60 min,該納米系統(tǒng)中姜黃素的釋放速率大于純姜黃素的釋放速率,這表明MOF-5在一定程度上能促進(jìn)姜黃素的釋放。這一研究提示可以利用水反應(yīng)性MOFs對(duì)難溶性藥物進(jìn)行裝載以提高溶解度并加速治療進(jìn)程。Santos等[57]將厚樸酚包封在Uio-66(Zr)中,其生物利用度提高了幾乎2倍。He等[58]通過(guò)體內(nèi)藥動(dòng)學(xué)證明了環(huán)糊精-MOFs能提高厚樸酚的生物利用度。以上研究證明MOFs能在一定程度上改善藥物的溶解性并提高藥物的生物利用度,這為難溶性藥物的研究與開(kāi)發(fā)提供了新的思路。
良好的穩(wěn)定性是藥物發(fā)揮藥效的關(guān)鍵,過(guò)早的降解失活往往難以發(fā)揮藥物的治療作用。Chen等[40]將表沒(méi)食子兒茶素棕櫚酸酯(epigallocatechin-3-gallatea palmitate,PEGCG)包裹在ZIF-8中,該納米粒中的PEGCG比游離PEGCG的穩(wěn)定性提高了6倍。Moussa等[59]利用CD-MOF提高了姜黃素在堿性溶液中的穩(wěn)定性。姜黃素的穩(wěn)定性受溫度影響較大,Liu等[60]將其包封在ZIF-L中,其溫度穩(wěn)定性比游離姜黃素增強(qiáng)了5倍。分析其原因,一方面,MOFs外殼本身對(duì)于中藥具有保護(hù)作用,在MOFs的包裹與保護(hù)下,藥物對(duì)外部環(huán)境的敏感性降低;另一方面,MOFs由金屬離子與有機(jī)配體組成,中藥成分往往能與其中的金屬離子或配體之間存在配位鍵或作用力,這一作用力使得藥物向其穩(wěn)定的異構(gòu)體或絡(luò)合物轉(zhuǎn)變,從而增強(qiáng)穩(wěn)定性。
此外,為了減少部分藥物的嚴(yán)重不良反應(yīng),提高其治療效果,需要開(kāi)發(fā)新型無(wú)毒、生物相容性好的藥物遞送系統(tǒng)。Bi等[61]合成了MIL-100(Fe)并對(duì)氯化兩面針堿進(jìn)行裝載,發(fā)現(xiàn)該納米制劑對(duì)正常肝L02細(xì)胞表現(xiàn)出低毒性,而對(duì)肝癌細(xì)胞表現(xiàn)出了高毒性,證明該納米制劑具有一定選擇性,能降低藥物對(duì)正常組織的毒性。
盡管部分中藥單體成分能發(fā)揮良好的藥效,但其從中藥中提取的效率及產(chǎn)率較低,常需要從其他成分轉(zhuǎn)化獲得。而有效成分的獲得通常需要依靠催化劑來(lái)提高反應(yīng)的效率,催化劑對(duì)于藥物的合成與轉(zhuǎn)化發(fā)揮著重要的作用。MOFs由于其具有金屬活性位點(diǎn),組成復(fù)雜,且具有高的孔隙率和比表面積,為反應(yīng)的發(fā)生提供了充足的接觸面。此外,MOFs同時(shí)具有金屬元素和有機(jī)連接基團(tuán),具有多重性質(zhì),因而是一類良好的催化劑。Wang等[62]合成了一種高效生產(chǎn)青蒿素的光催化劑2D納米片,該催化劑具有較高的活性,能實(shí)現(xiàn)快速反應(yīng)動(dòng)力學(xué)。Feng等[63]也合成了基于卟啉MOFs的光催化劑,用于雙氫青蒿素合成青蒿素,且該材料具有較高的催化性能。Luan等[64]合成了一種非均相Au(III)催化劑HAuCl4@UiO-66-NH2,能夠以中等至良好的產(chǎn)率促進(jìn)2-色烯形成各種二氫查耳酮。Ghaffarian等[65]在回流條件下,以CoFe2O4@OCMC@Cu(BDC)納米復(fù)合材料為催化劑,對(duì)芳基醛、姜黃素、巴比妥酸進(jìn)行處理,得到了功能化吡喃[2,3-d]嘧啶-2,4(3)二酮。MOFs作為一種生物安全性材料,在生物醫(yī)學(xué)方面具有廣闊的應(yīng)用前景。將MOFs的催化性能及體內(nèi)遞送藥物功能進(jìn)行結(jié)合,可以實(shí)現(xiàn)在體內(nèi)的精準(zhǔn)遞送前體藥物并在靶部位進(jìn)行藥物的催化,從而減少由于藥物不穩(wěn)定而造成的失活。Wang等[66]合成了一種能靶向細(xì)胞器的催化劑MOF-Cu,該納米材料能在線粒體中原位合成活性白藜蘆醇類似物,該方法能有效減少不良反應(yīng)的發(fā)生。MOFs作為一種催化劑在中藥領(lǐng)域有一定的應(yīng)用前景。
MOFs以其大的孔隙率、比表面積以及可逆的合成過(guò)程,被認(rèn)為是一種優(yōu)良的吸附劑。MOFs在氣體吸附儲(chǔ)存領(lǐng)域備受關(guān)注,近年來(lái),已有學(xué)者把MOFs用于中藥成分的吸附。藥物在一定劑量下能對(duì)疾病發(fā)揮治療作用,當(dāng)超過(guò)最小有毒劑量時(shí),會(huì)對(duì)機(jī)體產(chǎn)生不良反應(yīng),MOFs可用于吸附體內(nèi)過(guò)量的藥物成分。Molavi等[67]合成了UiO-66和NH2-UiO-66 2種材料,均能對(duì)姜黃素進(jìn)行有效吸附。Mao等[68]利用UiO-66吸附不同芳香劑以控制其釋放,發(fā)現(xiàn)UiO-66對(duì)不同芳香劑有不同的吸附力,對(duì)丁香酚的吸附作用最強(qiáng)。Thi Dang等[69]揭示了Ui0-66對(duì)姜黃素的吸附機(jī)制,發(fā)現(xiàn)其吸附過(guò)程受MOFs結(jié)構(gòu)中缺陷位點(diǎn)的影響。George等[70]通過(guò)Ca-BDC對(duì)姜黃素進(jìn)行吸附-解吸附實(shí)驗(yàn),發(fā)現(xiàn)Ca-BDC對(duì)姜黃素有較強(qiáng)的吸附力,這可能是由于姜黃素與鈣氧簇之間存在配位關(guān)系。Molavi等[71]合成了3種MOFs:UiO-66-NH2、UiO-66-GMA和UiO-66-EDA,并研究了3種材料對(duì)姜黃素的吸附力,發(fā)現(xiàn)由于不同極性基團(tuán)的存在能形成氫鍵等強(qiáng)相互作用力,因而UiO-66-EDA對(duì)姜黃素的吸附力最高。此外,這3種材料經(jīng)過(guò)脫吸附后能再次活化并重復(fù)利用?;谝陨习l(fā)現(xiàn),吸附作用的產(chǎn)生除了與MOFs的孔徑有關(guān)以外,還與底物跟MOFs之間的作用力有關(guān),對(duì)MOFs引入一定基團(tuán)能夠增大其對(duì)底物的吸附力。因此,在利用MOFs進(jìn)行吸附實(shí)驗(yàn)時(shí),可根據(jù)底物的特征、極性以及基團(tuán)對(duì)MOFs進(jìn)行修飾,以盡可能提高M(jìn)OFs的吸附力。
此外,中藥在種植過(guò)程中,需要一定的殺蟲除草等措施,可能導(dǎo)致農(nóng)殘殘留甚至超標(biāo),利用MOFs的吸附功能可有效除去中藥中的農(nóng)殘及其他污染物。Wang等[72]使用Zr-MOF有效吸附了鐵皮石斛、丹參和山楂中的5種苯脲類除草劑,證明了MOFs除去樣品中農(nóng)殘和有機(jī)污染物的可能性。
MOFs豐富的活性位點(diǎn)及可調(diào)的結(jié)構(gòu)功能使其選擇性的提取中藥成分成為可能。根據(jù)中藥成分的性質(zhì),對(duì)MOFs進(jìn)行合成與修飾,使其對(duì)藥物具有選擇性,可高效環(huán)保地對(duì)中藥成分進(jìn)行提取。Ghiasvand等[73]合成了MIL-101(Cr)/PANI/SiO2納米復(fù)合材料,并成功地應(yīng)用于水介質(zhì)固相萃取酚類抗氧化劑。Xiang等[74]合成了能有效提取槲皮素(quercetin,QT)的CuII-MOF,該MOF還能在解吸過(guò)程中將QT轉(zhuǎn)換為Cu-QT。Cui等[75]利用ZIF-8從鬼箭錦雞兒中提取黃酮類化合物。Zhang等[76]采用MOF輔助基質(zhì)固相分散微萃取技術(shù)提取人參葉中的5種皂苷,該方法具有更高的提取效率,操作簡(jiǎn)單,提取物更清潔,有機(jī)試劑消耗少,可用于植物活性化合物的快速評(píng)價(jià)和質(zhì)量控制。Chen等[77]制備了新型共價(jià)有機(jī)骨架-1修飾磁性納米顆??捎糜谔崛〈笫笱獫{紫杉醇,該材料富集效率高,清理能力強(qiáng)。此外,MOFs也可用于藥物的分離。Ma等[78]利用MOFs修飾毛細(xì)管柱用于分離藥物的立體異構(gòu)體,成功地分離了麻黃堿和偽麻黃堿。
關(guān)于MOFs的研究表明,發(fā)光MOFs具有優(yōu)異的發(fā)光性能,可以用于對(duì)客體分子進(jìn)行檢測(cè)。而中藥由于成分復(fù)雜,有效成分含量差異較大,因此,迫切需要開(kāi)發(fā)一種能靈敏檢測(cè)其成分的傳感器。近年來(lái),涌現(xiàn)了大量基于MOFs的高靈敏度、快速響應(yīng)、特異性識(shí)別中藥成分并能重復(fù)利用的傳感器研究。Song等[79]合成了能夠定量檢測(cè)QT的新型3D金屬有機(jī)骨架,它能夠在不改變熒光強(qiáng)度的情況下重復(fù)使用至少6次。Hassanzadeh等[80]報(bào)道了一種紙基化學(xué)發(fā)光裝置,在該裝置上摻入Co-MOF能顯著促進(jìn)化學(xué)熒光的發(fā)射,且能提高該裝置的穩(wěn)定性。Liu等[81]選擇了5個(gè)不同熒光團(tuán)的發(fā)光MOFs構(gòu)建了一個(gè)熒光傳感器陣列用于黃酮類化合物的定性和定量分析,這是第一次使用MOFs成功地區(qū)分多種同源性藥物。Han等[82]使用MIL-101(Cr)納米材料作為基質(zhì)輔助激光解吸/電離飛行時(shí)間質(zhì)譜基質(zhì)檢測(cè)小分子,其靈敏度高、耐鹽性好、重現(xiàn)性好。Senocak等[83]報(bào)道了ZIF-67對(duì)蘆丁的超靈敏檢測(cè),ZIF-67傳感器的線性范圍、定量限和檢測(cè)限分別為0.1~30 μmol/L和73、22 nmol/L?;赯IF-8-乙炔黑殼聚糖納米復(fù)合材料的蘆丁檢測(cè)電化學(xué)傳感器,傳感器在0.1~10 mmol/L線性關(guān)系良好,檢測(cè)限低至0.004 mmol/L(/=3),且重現(xiàn)性和穩(wěn)定性良好[84]。Jiang等[85]合成了發(fā)光銦-有機(jī)骨架可以在水中選擇性地檢測(cè)秋水仙堿,且靈敏度高,其檢測(cè)限可以達(dá)到0.1μmol/L。Wang等[86]通過(guò)將3個(gè)發(fā)光配體納入U(xiǎn)i0-66主鏈合成了1個(gè)發(fā)光的MOF用于鑒別小檗堿同源物(異喹諾啉類生物堿的亞類)。Xiong等[87]合成了高熒光的Eu-MOF,并對(duì)鹽酸小檗堿和四環(huán)素進(jìn)行了靈敏檢測(cè)。
疾病的早期診斷在臨床治療中發(fā)揮著關(guān)鍵作用。因此,開(kāi)發(fā)集臨床診斷與藥物運(yùn)輸?shù)扔谝惑w的診療納米遞藥系統(tǒng)具有重要意義,也是當(dāng)前研究的熱點(diǎn)。利用MOFs同時(shí)遞送藥物與造影劑既能對(duì)納米系統(tǒng)進(jìn)行時(shí)實(shí)時(shí)追蹤與定位,還能對(duì)病灶部位進(jìn)行成像觀察[88]。對(duì)MOFs的金屬離子部分進(jìn)行選擇與調(diào)整,如鐵離子的存在可在一定程度上實(shí)現(xiàn)磁共振成像,而其較大的孔徑可實(shí)現(xiàn)藥物與造影劑的共同包載,這一策略使得疾病的診療一體化有望成為現(xiàn)實(shí)。表3列舉了近年來(lái)基于MOFs的遞藥與成像一體化策略。
MOFs已經(jīng)在中藥領(lǐng)域進(jìn)行了廣泛而深入的研究,在中藥成分的靶向遞送、緩釋遞送、溶解度改善、穩(wěn)定性提高、毒副作用降低等方面取得了較好的發(fā)展。MOFs獨(dú)特的結(jié)構(gòu)可以控制藥物釋放的速率,使藥物平穩(wěn)的發(fā)揮藥效,既能減少藥物的服用次數(shù),也能在一定程度上起到減毒的作用??梢愿鶕?jù)藥物的特點(diǎn)及病情需求設(shè)計(jì)出個(gè)性化的MOFs,從而實(shí)現(xiàn)MOFs的個(gè)體化給藥模式。而靶向配體的修飾能特異性地將藥物遞送至靶部位,以實(shí)現(xiàn)中藥的精準(zhǔn)治療。同時(shí),MOFs大的比表面積及孔隙率,眾多的活性位點(diǎn)為中藥的高效催化反應(yīng)、分離富集以及檢測(cè)提供了便利。因此,MOFs因其獨(dú)特的優(yōu)點(diǎn),在中藥成分的提取分離富集、催化合成、吸附清除及高靈敏檢測(cè)等方面也有著較大的進(jìn)展。MOFs在中藥領(lǐng)域的應(yīng)用將為中藥的發(fā)展提供參考,將進(jìn)一步推動(dòng)中藥的現(xiàn)代化進(jìn)程。
表3 基于MOFs的成像策略
當(dāng)然,在關(guān)注MOFs為中藥發(fā)展帶來(lái)成就的同時(shí),也應(yīng)對(duì)其不足進(jìn)行考慮。基于MOFs的中藥成分遞送研究尚在基礎(chǔ)研究階段,其體內(nèi)的代謝過(guò)程、金屬殘留問(wèn)題、安全性也應(yīng)被關(guān)注??蒲泄ぷ髡邞?yīng)更加深入地研究MOFs在體內(nèi)的代謝學(xué)及安全性問(wèn)題。由于缺乏臨床實(shí)踐,基于MOFs的遞藥系統(tǒng)仍缺少嚴(yán)格標(biāo)準(zhǔn),應(yīng)對(duì)MOFs應(yīng)用于生物醫(yī)藥領(lǐng)域提出初步的質(zhì)量標(biāo)準(zhǔn),保證基礎(chǔ)研究的質(zhì)量。此外,MOFs的大規(guī)模合成也應(yīng)引起重視,只有降低成本,提高產(chǎn)量才能推動(dòng)其在中藥領(lǐng)域的廣泛使用。應(yīng)加大對(duì)MOFs從生產(chǎn)到臨床應(yīng)用、體內(nèi)代謝及安全性等各方面的研究投入,促進(jìn)生物、化學(xué)、材料、醫(yī)藥等多學(xué)科的交流,實(shí)現(xiàn)基于MOFs遞藥系統(tǒng)的臨床成果轉(zhuǎn)化。中藥成分復(fù)雜且多種多樣,目前基于MOFs的中藥研究大多停留于中藥單體化合物。而MOFs孔徑可調(diào)、表面可修飾的特點(diǎn)在中藥研究領(lǐng)域尚未完全發(fā)揮出作用。根據(jù)中醫(yī)藥理論,單體成分常常不能滿足需求,而利用不同特點(diǎn)的MOFs遞送中藥有效部位加強(qiáng)配伍作用將會(huì)是更有意義的工作。
目前,MOFs在中藥領(lǐng)域的應(yīng)用尚處于研究階段,但其獨(dú)特的優(yōu)勢(shì)、多樣性的應(yīng)用使MOFs在中藥領(lǐng)域的應(yīng)用前景越來(lái)越明確。認(rèn)識(shí)MOFs在中藥應(yīng)用中的規(guī)律,在中醫(yī)藥理論的指導(dǎo)下成分發(fā)揮MOFs的作用,并將其由實(shí)驗(yàn)室規(guī)模擴(kuò)大到生產(chǎn)應(yīng)用規(guī)模將會(huì)是進(jìn)一步的工作。相信隨著科技的發(fā)展,MOFs將為中藥的現(xiàn)代化發(fā)展提供新的方向與選擇。
利益沖突 所有作者均聲明不存在利益沖突
[1] Zhu Q L, Xu Q. Metal-organic framework composites [J]., 2014, 43(16): 5468-5512.
[2] Furukawa H, Cordova K E, O'Keeffe M,. The chemistry and applications of metal-organic frameworks [J]., 2013, 341(6149): 1230444.
[3] Meek S T, Greathouse J A, Allendorf M D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials [J]., 2011, 23(2): 249-267.
[4] Zou K Y, Li Z X. Controllable syntheses of MOF-derived materials [J]., 2018, 24(25): 6506-6518.
[5] Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks [J]., 2009, 38(5): 1477-1504.
[6] Lee J, Farha O K, Roberts J,. Metal-organic framework materials as catalysts [J].,2009,(5): 1450-1459.
[7] Lustig W P, Mukherjee S, Rudd N D,. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications [J]., 2017, 46(11): 3242-3285.
[8] Huxford R C, Della Rocca J, Lin W B. Metal-organic frameworks as potential drug carriers [J]., 2010, 14(2): 262-268.
[9] Rowsell J L, Yaghi O M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks [J]., 2006, 128(4): 1304-1315.
[10] Taylor-Pashow K M, Della Rocca J, Xie Z,. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery [J]., 2009, 131(40): 14261-14263.
[11] Zacher D, Shekhah O, W?ll C,. Thin films of metal-organic frameworks [J]., 2009, 38(5): 1418-1429.
[12] Park K S, Ni Z, C?té A P,. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]., 2006, 103(27): 10186-10191.
[13] Park J, Jiang Q, Feng D W,. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy [J]., 2016, 138(10): 3518-3525.
[14] Guillerm V, Gross S, Serre C,. A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium (IV) dicarboxylates [J]., 2010, 46(5): 767-769.
[15] Jiang K, Zhang L, Hu Q,. Thermal stimuli-triggered drug release from a biocompatible porous metal-organic framework [J]., 2017, 23(42): 10215-10221.
[16] Chui S S, Lo S M, Charmant J P,. A chemically functionalizable nanoporous material [J]., 1999, 283(5405): 1148-1150.
[17] Berens S, Hillman F, Jeong H K,. Self-diffusion of pure and mixed gases in mixed-linker zeolitic imidazolate framework-7-8 by high field diffusion NMR [J]., 2019, 288: 109603.
[18] Su Z, Fan J, Okamura T A,. Ligand-directed and pH-controlled assembly of chiral 3d-3d heterometallic metal-organic frameworks [J]., 2010, 10(8): 3515-3521.
[19] Gao Y, Xie J J, Chen H J,. Nanotechnology-based intelligent drug design for cancer metastasis treatment [J]., 2014, 32(4): 761-777.
[20] Cai M R, Chen G S, Qin L Y,. Metal organic frameworks as drug targeting delivery vehicles in the treatment of cancer [J]., 2020, 12(3): E232.
[21] Laha D, Pal K, Chowdhuri A R,. Fabrication of curcumin-loaded folic acid-tagged metal organic framework for triple negative breast cancer therapyandsystems [J]., 2019, 43(1): 217-229.
[22] Cabrera-García A, Checa-Chavarria E, Rivero-Buceta E,. Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin [J]., 2019, 541: 163-174.
[23] Lei B Q, Wang M F, Jiang Z L,. Constructing redox-responsive metal-organic framework nanocarriers for anticancer drug delivery [J]., 2018, 10(19): 16698-16706.
[24] Zeng J Y, Zhang M K, Peng M Y,. Porphyrinic metal-organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/ chemotherapy of tumor [J]., 2018, 28(8): 1705451.
[25] Zhuang J, Kuo C H, Chou L Y,. Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation [J]., 2014, 8(3): 2812-2819.
[26] Xiao Y S, Huang W, Zhu D M,. Cancer cell membrane-camouflaged MOF nanoparticles for a potent dihydroartemisinin-based hepatocellular carcinoma therapy [J]., 2020, 10(12): 7194-7205.
[27] Soomro N A, Wu Q, Amur S A,. Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent [J]., 2019, 182: 110364.
[28] Li Y Q, Zheng Y T, Lai X Y,. Biocompatible surface modification of nano-scale zeolitic imidazolate frameworks for enhanced drug delivery [J]., 2018, 8(42): 23623-23628.
[29] Nasihat Sheno N, Farhadi S, Maleki A,. A novel approach for the synthesis of phospholipid bilayer-coated zeolitic imidazolate frameworks: Preparation and characterization as a pH-responsive drug delivery system [J]., 2019, 43(4): 1956-1963.
[30] Ettlinger R, S?nksen M, Graf M,. Metal-organic framework nanoparticles for arsenic trioxide drug delivery [J]., 2018, 6(40): 6481-6489.
[31] Ettlinger R, Moreno N, Volkmer D,. Zeolitic imidazolate framework-8 as pH-sensitive nanocarrier for “arsenic trioxide” drug delivery [J]., 2019, 25(57): 13189-13196.
[32] Zhao G Z, Wu H H, Feng R L,. Novel metal polyphenol framework for MR imaging-guided photothermal therapy [J]., 2018, 10(4): 3295-3304.
[33] Hu G F, Yang L L, Li Y N,. Continuous and scalable fabrication of stable and biocompatible MOF@SiO2nanoparticles for drug loading [J]., 2018, 6(47): 7936-7942.
[34] Chen W H, Luo G F, Sohn Y S,. Enzyme-driven release of loads from nucleic acid-capped metal-organic framework nanoparticles [J]., 2019, 29(5): 1805341.
[35] Liu Z J, Li T, Han F,. A cascade-reaction enabled synergistic cancer starvation/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF [J]., 2019, 7(9): 3683-3692.
[36] Yang Y, Zhu W J, Dong Z L,. 1D coordination polymer nanofibers for low-temperature photothermal therapy [J]., 2017, doi: 10.1002/adma. 201703588.
[37] Ray Chowdhuri A, Bhattacharya D, Sahu S K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent [J]., 2016, 45(7): 2963-2973.
[38] Wan X Y, Zhong H, Pan W,. Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3mineralized metal-organic framework [J]., 2019, 58(40): 14134-14139.
[39] Zhang Y, Wang L, Liu L,. Engineering metal-organic frameworks for photoacoustic imaging-guided chemo-/ photothermal combinational tumor therapy [J]., 2018, 10(48): 41035-41045.
[40] Chen X R, Shi Z Q, Tong R L,. Derivative of epigallocatechin-3-gallatea encapsulated in ZIF-8 with polyethylene glycol-folic acid modification for target and pH-responsive drug release in anticancer research [J]., 2018, 4(12): 4183-4192.
[41] Jiang W, Zhang H Y, Wu J L,. CuS@MOF-based well-designed quercetin delivery system for chemo-photothermal therapy [J]., 2018, 10(40): 34513-34523.
[42] Cheng Q, Yu W Y, Ye J J,. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy [J]., 2019, 224: 119500.
[43] Dehghani S, Hosseini M, Haghgoo S,. Multifunctional MIL-Cur@FC as a theranostic agent for magnetic resonance imaging and targeting drug delivery:andstudy [J]., 2020, 28(6): 668-680.
[44] Freiberg S, Zhu X X. Polymer microspheres for controlled drug release [J]., 2004, 282(1/2): 1-18.
[45] Latifi L, Sohrabnezhad S. Drug delivery by micro and meso metal-organic frameworks [J]., 2020, 180: 114321.
[46] Chen G S, Luo J Y, Cai M R,. Investigation of metal-organic framework-5 (MOF-5) as an antitumor drug oridonin sustained release carrier [J]., 2019, 24(18): E3369.
[47] Leng X, Dong X, Wang W P,. Biocompatible Fe-based micropore metal-organic frameworks as sustained-release anticancer drug carriers [J]., 2018, 23(10): E2490.
[48] Wang L C, Guan H D, Wang Z Q,. Hybrid mesoporous-microporous nanocarriers for overcoming multidrug resistance by sequential drug delivery [J]., 2018, 15(7): 2503-2512.
[49] Karimi Alavijeh R, Akhbari K. Biocompatible MIL-101(Fe) as a smart carrier with high loading potential and sustained release of curcumin [J]., 2020, 59(6): 3570-3578.
[50] Orellana-Tavra C, Koeppen M, Li A,. Biocompatible, crystalline, and amorphous bismuth-based metal-organic frameworks for drug delivery [J].,2020, 12(5): 5633-5641.
[51] Teplensky M H, Fantham M, Li P,. Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release [J]., 2017, 139(22): 7522-7532.
[52] Wei L Q, Chen Q, Tang L L,. A porous metal-organic framework with a unique hendecahedron-shaped cage: Structure and controlled drug release [J]., 2016, 45(9): 3694-3697.
[53] Chen Q, Chen Q W, Zhuang C,. Controlled release of drug molecules in metal-organic framework material HKUST-1 [J]., 2017, 79: 78-81.
[54] Zhang L, Chen Y, Shi R,. Synthesis of hollow nanocages MOF-5 as drug delivery vehicle to solve the load-bearing problem of insoluble antitumor drug oleanolic acid (OA) [J]., 2018, 96: 20-23.
[55] Orellana-Tavra C, Marshall R J, Baxter E F,. Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization [J]., 2016, 4(47): 7697-7707.
[56] Suresh, K, Matzger, A J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework (MOF) [J]., 2019, 58(47): 16790-16794.
[57] Santos J H, Quimque M T J, Macabeo A P G,. Enhanced oral bioavailability of the pharmacologically active lignin magnolol via Zr-based metal organic framework impregnation [J]., 2020, 12(5): E437.
[58] He Y Z, Hou X F, Guo J W,. Activation of a gamma-cyclodextrin-based metal-organic framework using supercritical carbon dioxide for high-efficient delivery of honokiol [J]., 2020, 235: 115935.
[59] Moussa Z, Hmadeh M, Abiad M G,. Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin [J]., 2016, 212: 485-494.
[60] Liu Z X, Wu Q, He J,. Crystal-seeded growth of pH-responsive metal-organic frameworks for enhancing encapsulation, stability, and bioactivity of hydrophobicity compounds [J]., 2019, 5(12): 6581-6589.
[61] Bi J R, Zheng Y, Fang L Q,. Nano-sized MIL-100(Fe) as a carrier material for nitidine chloride reduces toxicity and enhances anticancer effects[J]., 2020, 30(9): 3388-3395.
[62] Wang Y, Feng L, Pang J D,. Photosensitizer-anchored 2D MOF nanosheets as highly stable and accessible catalysts toward artemisinin production [J]., 2019, 6(11): 1802059.
[63] Feng L, Wang Y, Yuan S,. Porphyrinic metal-organic frameworks installed with br?nsted acid sites for efficient tandem semisynthesis of artemisinin [J]., 2019, 9(6): 5111-5118.
[64] Luan Y, Qi Y, Yu J,. The development of a novel HAuCl4@MOF catalyst and its catalytic application in the formation of dihydrochalcones [J]., 2014, 4(64): 34199-34203.
[65] Ghaffarian F, Ghasemzadeh M A, Aghaei S S. An efficient synthesis of some new curcumin based pyrano[2,3-d] pyrimidine-2, 4(3)-diderivatives using CoFe2O4@ OCMC@Cu(BDC) as a novel and recoverable catalyst [J]., 2019, 1186: 204-211.
[66] Wang F M, Zhang Y, Liu Z W,. A biocompatible heterogeneous MOF-Cu catalyst fordrug synthesis in targeted subcellular organelles [J]., 2019, 58(21): 6987-6992.
[67] Molavi H, Zamani M, Aghajanzadeh M,. Evaluation of UiO-66 metal organic framework as an effective sorbent for curcumin’s overdose [J]., 2018, 32(4): e4221.
[68] Mao D S, Xie C J, Li Z Y,. Adsorption and controlled release of three kinds of flavors on UiO-66 [J]., 2020, 8(4): 1914-1922.
[69] Thi Dang Y, Hoang H T, Dong H C,. Microwave-assisted synthesis of nano Hf- and Zr-based metal-organic frameworks for enhancement of curcumin adsorption [J]., 2020, 298: 110064.
[70] George P, Das R K, Chowdhury P. Facile microwave synthesis of Ca-BDC metal organic framework for adsorption and controlled release of Curcumin [J]., 2019, 281: 161-171.
[71] Molavi H, Moghimi H, Taheri R A. Zr-based MOFs with high drug loading for adsorption removal of anti-cancer drugs: A potential drug storage [J]., 2020, 34(4): e5549.
[72] Wang Q Y, Yang J, Dong X,. Zirconium metal-organic framework assisted miniaturized solid phase extraction of phenylurea herbicides in natural products by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry [J]., 2020, 180: 113071.
[73] Ghiasvand A R, Ghaedrahmati L, Heidari N,. Synthesis and characterization of MIL-101(Cr) intercalated by polyaniline composite, doped with silica nanoparticles and its evaluation as an efficient solid-phase extraction sorbent [J]., 2018, 41(20): 3910-3917.
[74] Xiang R Q, Niu Y F, Han J,. A neutral Cu-based MOF for effective quercetin extraction and conversion from natural onion juice [J]., 2019, 9(58): 33716-33721.
[75] Cui Y Y, Yang C X, Yang X D,. Zeolitic imidazolate framework-8 for selective extraction of a highly active anti-oxidant flavonoid fromJubata [J]., 2018, 1544: 8-15.
[76] Zhang R, Xu N, Wang Y,. Metal-organic framework assisted matrix solid-phase dispersion microextraction of saponins using response surface methodology [J]., 2020, 41(15): 1354-1363.
[77] Chen Y L, Chen Z L. COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel [J]., 2017, 165: 188-193.
[78] Ma J C, Ye N S, Li J. Covalent bonding of homochiral metal-organic framework in capillaries for stereoisomer separation by capillary electrochromatography [J]., 2016, 37(4): 601-608.
[79] Song T Q, Yuan K, Qiao W Z,. Water stable [Tb4] cluster-based metal-organic framework as sensitive and recyclable luminescence sensor of quercetin [J]., 2019, 91(4): 2595-2599.
[80] Hassanzadeh J, Al Lawati H A J, Al Lawati I. Metal-organic framework loaded by rhodamine B as a novel chemiluminescence system for the paper-based analytical devices and its application for total phenolic content determination in food samples [J]., 2019, 91(16): 10631-10639.
[81] Liu Q, Gao J, Zheng Z,. Metal-organic frameworks based fluorescent sensor array for discrimination of flavonoids [J]., 2019, 203: 248-254.
[82] Han G B, Zeng Q L, Jiang Z W,. MIL-101(Cr) as matrix for sensitive detection of quercetin by matrix-assisted laser desorption/ionization mass spectrometry [J]., 2017, 164: 355-361.
[83] ?enocak A, Khataee A, Demirbas E,. Ultrasensitive detection of rutin antioxidant through a magnetic micro-mesoporous graphitized carbon wrapped Co nanoarchitecture [J]., 2020, 312: 127939.
[84] Jin Y F, Ge C Y, Li X B,. A sensitive electrochemical sensor based on ZIF-8-acetylene black-chitosan nanocomposites for rutin detection [J]., 2018, 8(57): 32740-32746.
[85] Jiang X L, Hou S L, Jiao Z H,. Luminescent detection of colchicine by a unique indium-organic framework in water with high sensitivity [J]., 2019, 91(15): 9754-9759.
[86] Wang Q, Liu Q, Du X M,. A white-light-emitting single MOF sensor-based array for berberine homologue discrimination [J]., 2020, 8(4): 1433-1439.
[87] Xiong J, Yang L, Gao L X,. A highly fluorescent lanthanide metal-organic framework as dual-mode visual sensor for berberine hydrochloride and tetracycline [J]., 2019, 411(23): 5963-5973.
[88] 陳思親. 基于吲哚菁綠的腫瘤成像熒光探針的制備及功能評(píng)價(jià) [D]. 天津: 天津醫(yī)科大學(xué), 2016.
[89] Wang D D, Zhou J J, Chen R H,. Core-shell metal-organic frameworks as Fe2+suppliers for Fe2+-mediated cancer therapy under multimodality imaging [J]., 2017, 29(8): 3477-3489.
[90] Yang J C, Chen Y, Li Y H,. Magnetic resonance imaging-guided multi-drug chemotherapy and photothermal synergistic therapy with pH and NIR-stimulation release [J]., 2017, 9(27): 22278-22288.
[91] Tabatabaeian K, Simayee M, Fallah-Shojaie A,.-doped carbon nanodots@UiO-66-NH2as novel nanoparticles for releasing of the bioactive drug, rosmarinic acid and fluorescence imaging [J]., 2019, 27(1): 307-315.
[92] Yin X, Yang B, Chen B B,. Multifunctional gold nanocluster decorated metal-organic framework for real-time monitoring of targeted drug delivery and quantitative evaluation of cellular therapeutic response [J]., 2019, 91(16): 10596-10603.
[93] Liu J T, Zhang L, Lei J P,. Multifunctional metal-organic framework nanoprobe for cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy [J]., 2017, 9(3): 2150-2158.
[94] Wang D D, Zhou J J, Chen R H,. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy [J]., 2016, 100: 27-40.
Progress in application of metal organic frameworks in traditional Chinese medicine
CAI Meng-ru, YAO Yu, YIN Dong-ge, WANG Kai-xin, HU Xue-ling, LIU Man-ting, DONG Xiao-xu, QU Chang-hai, YIN Xing-bin, NI Jian
School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
Metal organic frameworks (MOFs) are hybrid porous crystalline materials formed by connecting metal ion centers and organic ligands. They have the advantages of large specific surface area, adjustable pore size, abundant active sites, and good biocompatibility. They are widely used in the fields of gas storage, adsorption, extraction, catalysis, and drug delivery. In recent years, MOFs have become more and more extensive in the field of traditional Chinese medicine research, mainly used for slow and controlled release of active ingredients of traditional Chinese medicine, targeted drug delivery system, improvement of drug solubility, increase of drug stability, and reduction of drug side effects, etc. At the same time, MOFs also have many applications in the extraction, separation and detection of Chinese medicine components. The application progress of MOFs in the field of traditional Chinese medicine research in recent years is reviewed in this paper, hoping to provide a reference for the further application of MOFs in the research of traditional Chinese medicine, and provide new ideas for the research of new drug delivery systems based on traditional Chinese medicine components.
metal organic framework; traditional Chinese medicine; targeted drug delivery;slow and controlled release of drug delivery; catalysis; adsorption; extraction and separation; detection
R283
A
0253 - 2670(2021)16 - 5028 - 11
10.7501/j.issn.0253-2670.2021.16.028
2020-11-19
北京市自然科學(xué)基金資助項(xiàng)目(7202121);北京市優(yōu)秀人才培養(yǎng)計(jì)劃基金資助項(xiàng)目(2017000020124G295);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2020-JYB-ZDGG-046,2020-JYB-XSCXCY-127)
蔡夢(mèng)如,女,碩士研究生,主要從事中藥新劑型與新技術(shù)的研究。E-mail: cmrtcm@163.com
倪 健,男,博士,教授,博士生導(dǎo)師,主要從事中藥新劑型與新技術(shù)的研究。E-mail: njtcm@263.net
尹興斌,男,博士,副教授,碩士生導(dǎo)師,主要從事中藥新劑型與新技術(shù)的研究。E-mail: yxbtcm@163.com
[責(zé)任編輯 崔艷麗]