• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sliding Mode Control of Fractional-Order Delayed Memristive Chaotic System with Uncertainty and Disturbance?

    2017-05-09 11:46:24DaWeiDing丁大為FangFangLiu劉芳芳HuiChen陳輝NianWang王年andDongLiang梁棟
    Communications in Theoretical Physics 2017年12期
    關(guān)鍵詞:陳輝

    Da-Wei Ding(丁大為)Fang-Fang Liu(劉芳芳)Hui Chen(陳輝)Nian Wang(王年)? and Dong Liang(梁棟)

    1Key Laboratory of Intelligent Computing and Signal Processing,Ministry of Education,Anhui University,Hefei 230601,China

    2School of Electronics and Information Engineering,Anhui University,Hefei 230601,China

    1 Introduction

    Leon Chua predicted that there should be a fourth type of electronic components,the memristor,based on the physics symmetry.[1]The memristor was not developed or researched within circuit theory until 2008,when HP’s Stan Williamset al.created a solid-state implementation of the memristor.[2]Many studies on the memristor for application development have been published now,such as the memristor-based circuits[3?4]and memristor oscillators.[5?6]

    In recent years,more and more scholars are interested in the fractional-order system.In Ref.[7],for the purpose of investigating the nonlinear dynamics of the system,a fractional-order Chua’s circuit based on the memristor,which derives from the integer-order counterparts was provided.The fractional-order system is widely applied in many aspects,such as the oscillator theory,[8]the control field,[9?11]and the energy field.[12]Some of the classic systems have been extended to their fractionalorder counterparts,for example,the Liu system,[13?14]the Chen system,[15]the Duffing system,[16]and the viscoelastic system.[17]

    Time delay exists in many engineering systems,causing system instability and bad performance.And it is unavoidable in many dynamical systems,such as biological systems,[18]neural networks,[19]system control,[20]and so on.Therefore,it is signi ficant to investigate the timedelayed effect on dynamical behaviors of complex systems theoretically and practically.

    Furthermore,the fractional-order delayed system involves non-integer order derivatives as well as time delay.These have been proved useful in financial system,[21]signal processing,[22]biology,[23]and so on.Many researchers have studied the fractional-order delayed system.[24?29]In Ref.[28],the bifurcation in Duffing-van der Pol oscillators with time delay was analyzed.In Ref.[29],the bifurcation and stability in three neurons fractional-order neural network were investigated by applying the sum of time delay as the bifurcation parameter.Additionally,chaos behaviors in the fractional-order delayed system have become the key focus.[30?31]In Ref.[30],the chaos in a delayed Bloch model was discussed and found that time delay can affect the system stability in this system.In Ref.[31],the discrete chaotic dynamics in fractional delayed logistic maps was studied,and the discrete chaotic attractor was discovered.In Ref.[32],we have analyzed the stability and Hopf bifurcation of fractional-order delayed memristor-based chaotic system by choosing the time delay and fractional-order as the bifurcation parameter.

    Chaotic control is to make the trajectories of initial chaotic system approach a steady state.Many control schemes for fractional-order chaotic systems have been proposed,including active control,[33]impulsive control,[34]adaptive control,[35]passive control[36]and generalized projective control.[37]Sliding mode control has received much attention due to its major advantages such as robustness against parameter variations,guaranteed stability,simplicity in implementation and fast dynamic response.Therefore,in recent years,sliding mode control has been investigated for linear and nonlinear systems.[38?41]Many vital results have been reported for the synchronization and control of fractional-order chaotic systems by using the sliding mode control strategy.In Ref.[42],to realize complete synchronization of a class of three-dimensional fractional-order chaotic systems,the author modi fied sliding mode control scheme,and designed a single-state sliding mode controller.In Ref.[43],Tanmoy Dasguptaet al.proposed a novel fractional-order sliding mode controller for synchronization of fractional order chaotic systems,and achieved its application in secure communication.The scholars studied the adaptive sliding mode synchronization control for a class of fractional-order chaotic systems with unknown bounded disturbances in Ref.[44].In order to achieve finite time convergence of the system states,a terminal sliding mode control method was firstly proposed by Zak in Ref.[45].In Ref.[46],the terminal sliding mode control technique that offers some superior properties such as fast response and finite time convergence was proposed,which is particularly suitable for high-precision control as it speeds up the rate of convergence near the origin.In Ref.[47],they investigated the chaotic control of a class of fractional-order chaotic systems via sliding mode control.In Ref.[48],the authors derived new results based on the sliding mode control for the anti-synchronization of four-wing chaotic systems.

    Motivated by aforementioned analysis,the main purpose of this paper is to design a fractional-order sliding mode controller,which is the combination of fractional calculus theory and the sliding mode control technique in order to control the fractional-order delayed memristive chaotic system.For this purpose,sliding mode control scheme is utilized along with Lyapunov stability theory to design the suitable control structure.Recall that slide mode controllers,which applied to the fractionalorder chaotic system may be numerous,while applied to fractional-order delayed memristor system are few.The proposed controller makes the system states asymptotically stable and robust against the system’s uncertainty in the presence of an external disturbance.Simulation results illustrate that the proposed method can eliminate chaos and stabilize the system in a finite time.

    The rest of this paper is organized as follows.In Sec.2,we discuss a fractional-order delayed memristive chaotic system.According to the sliding mode control theory,a controller is proposed to control the commensurate and non-commensurate fractional-order delayed chaotic system in Sec.3,the design procedure of fractional-order sliding mode approach is described in this section.Numerical simulations results are shown in Sec.4.Finally,some conclusions are drawn in Sec.5.

    2 System Description

    A memristor is a passive two-terminal circuital element,and it is described by a nonlinear characteristic:iM=W(φ)vM,vM=M(z)iM,whereiM,vM,φ,andzare the current,the voltage,the flux,and the charge in memristor.W(φ)=dz(φ)/dφandM(z)=dφ(z)/dzexpress as inductance and memristance respectively.

    Furthermore,the relationship ofφ(z)andz(φ)can be de fined with the charge-controlled memristor and fluxcontrolled memristor.We choose the flux-controlled memristive system:

    whereiMandvMdescribe the current and the voltage through the memristor,andf(t,x,vM)is the internal state function.

    De finition 1(Ref.[49]):In this paper,a continuous functionf:R+→Rrepresents the Caputo fractional derivative,which has a fractional-orderq:

    where Γ(q)is the gamma function,m?1<q≤m,m∈N.

    The simplest delayed memristive chaotic system includes a resistorR,a voltage followerU2,a capacitorC,a flux-controlled memristorM,a time delay unit,and an integratorU1(Fig.1 in Ref.[50]).The following equations describe the delayed memristive chaotic system in Fig.1.

    whereτis the time delay,yis the state variable of the memristor,andA,B,a,bandlare the constants.

    From the integer-order system,we derive the equations of the fractional-order memristive system,and it can be calculated as:

    whereq1andq2are the fractional-order of the capacitorCand memristorM.

    Fig.1 Model of the delayed memristive chaotic system.

    Then,we get the following equations:

    3 Designing the Sliding Mode Control

    We add the control inputu(t)to the state equations in system(6)to control the chaos behavior:

    where,f(x,y)=nxy,g(x,y)=ax+lxyis assumed.

    Our aim is to design a fractional-order sliding mode controller.The first step is constructing a fractional-order sliding surface that represents a desired system dynamics.Then,a switching control law should be developed,and any states outside the surface are driven to reach the surface in a finite time.[51]Therefore,we choose a sliding surface:

    According to the sliding mode method,the sliding surface and its derivative must satisfy the following conditions:

    The equivalent control law is calculated as:

    The switching control can keep the system within the sliding manifold.To satisfy the sliding condition,the discontinuous reaching law is chosen as follows:

    Therefore,the total control law can be de fined as:

    Theorem 1Considering the fractional-order delayed memristive chaotic system(8),and the control law(16),if the controller gainKr<0,the system is asymptotically stable.

    ProofThe Lyapunov candidate is selected as:

    WhenKr<0,˙V<0 fors(t)/=0.In other words,the controlled system satis fies the reaching condition.Therefore,a Lyapunov function has been found that it satis fies the conditions of the Lyapunov stability theorem(V>0,˙V<0).Thus,the closed-loop system in the presence of the controller(16)is globally asymptotically stable.

    Theorem 2Considering the system(8)being perturbed by uncertainties and an external disturbance,it can be modeled as follows:

    where Δg(x,y)andd(t)are assumed to be bounded,i.e.|Δg(x,y)|≤e1and|d(t)|≤e2.The closed-loop system with the sliding mode control(16)is globally asymptotically stable whenKr<?(e1+e2).

    ProofSelecting the Lyapunov candidate(17),we have

    Therefore,in view of the uncertainty and external disturbance,when the controller gainKr<?(e1+e2),the controller(16)can make the system states asymptotically stable in limited time.

    Thus,the theorem is proofed completely.

    4 Numerical Simulation

    The chaotic states and dynamical behaviors of the uncontrolled system(6)have been discussed in Ref.[50].This section of the paper presents four illustrative examples to verify and demonstrate the effectiveness of the proposed control scheme.In this paper,the modi fied Adams–Bashforth–Moulton predictor-corrector algorithm[52]is used to solve the numerical simulations in the fractionalorder differential equations with time delay.It should be noticed that the controller is applied att=15 s.Here,some parameters are given to calculate in the system:a=2.5b=?0.5,l=?5,c=1.5,m=?2,andn=?2.

    Case 1Non-commensurate order

    When assuming the different orders of derivatives in state equations(6),i.e.q1/=q2,we get a general noncommensurate order system.The fractional-order delayed memristive chaotic system is chaotic whenq1=0.88 andq2=0.98,which are shown in Fig.2.

    Fig.2 Time-domain diagram and phase diagram of the fractional-order system(6)when q1=0.88,q2=0.98,τ=1.5 without controller.

    Fig.3 Time response of controlled non-commensurate fractional-order system states(The control u(t)is activated at t=15 s).

    In order to satisfy the condition in Theorem 1,we select the gain of the controllerKr=?1 in system(8).To stabilize this system,the control law(16)is applied and the simulation results are depicted in Fig.3.It shows the obtained theoretic results are feasible and efficient for the controlling fractional-order delayed memristive system.

    Case 2Non-commensurate order with uncertainty and an external disturbance

    In this case,the fractional-order delayed memristive chaotic system is perturbed by an uncertainty term Δg(x,y)=0.45sin(πx)cos(πy)and an external disturbanced(t)=0.5sin(πt),where|Δg(x,y)|≤e1=0.45 and|d(t)|≤e2=0.5.The system state responses of the closed-loop system in the presence of the control law(16)are shown in Fig.4 when the gain of the controllerKr=?1,which conforms to the condition of Theorem 2.

    Fig.4 Time response of controlled non-commensurate fractional-order system states in the presence of uncertainty and an external disturbance(The control u(t)is activated at t=15 s).

    Case 3Commensurate order

    When assuming the same orders of derivatives in the state equations(6),i.e.,q1=q2=q,we get a commensurate order system.The system(6)without the controller exhibits a chaotic behavior as shown in Fig.5 with the commensurate orderq=0.99 of the derivatives.

    Fig.5 Time-domain diagram and phase diagram of the fractional-order system(6)when q1=q2=0.99,τ=1.5 without controller.

    To demonstrate the chaotic behaviors,the Largest Lyapunov Exponent(LLE)should be considered.In this paper,the Wolf algorithm is chosen to calculate LLE in this fractional-order delayed memristive chaotic system.It is known that the Max Lyapunov Exponent(MLE)increases from the negative number to zero when periodic cycles appear,and the chaotic dynamics occurs when MLE is positive.By fixing the parameter of the fractional-order(q=0.9)and varying the parameter of the time delay(τ∈[0.4,1.6]),the transitions from one cycle to two cycles,two cycles to four cycles,and four cycles to chaos are observed atτ=1.18,τ=1.27,andτ=1.28.In the interval 0.54<τ<1.18,one cycle is observed.Chaos is observed in the intervalτ>1.28.The bifurcation diagram and the MLE are shown in Fig.6.

    The states of the system(6)under the designed controller(16)are illustrated in Fig.7 whenKr=?1,which shows that the sliding control law guarantees the states reaching the sliding surface and finally stabilization.

    Fig.6 Bifurcation diagram and Max Lyapunov Exponent with q=0.9.

    Fig.7 Time response of controlled commensurate fractional-order system states(The control u(t)is activated at t=15 s).

    Case 4Commensurate order with uncertainty and an external disturbance

    Fig.8 Time response of controlled commensurate fractional-order system states in the presence of uncertainty and an external disturbance(The control u(t)is activated at t=15 s).

    In this case,the fractional-order delayed commensurate system(q=0.99)is perturbed by an uncertainty term Δg(x,y)=0.45sin(πx)cos(πy)and an external disturbanced(t)=0.5sin(πt),where|Δg(x,y)|≤e1=0.45 and|d(t)|≤e2=0.5.The system state responses of the closed-loop system in the presence of the control law(16)are illustrated in Fig.8 whenKr=?1,which satis fies Theorem 2.

    5 Conclusions

    In this paper,a fractional-order delayed memristive chaotic system has been introduced and a fractional-order sliding mode controller is proposed in order to control the chaotic behavior in the system. According to the Lyapunov stability theorem,the control law can asymptotically stabilize the fractional-order delayed memristive chaotic system.The proposed control method is simple,robust and theoretically rigorous,and its performance is satisfactory in the presence of uncertainty and an external disturbance within non-commensurate order system and commensurate order system.It indicates that the sliding mode control has the anti-jamming capability.Finally,numerical simulations present the effectiveness of the control scheme.

    Considering that the current system research is not perfect,these studies tend to be more numerical simulation of the system,and did not develop to realize the hardware circuits.In the future,we should focus on how to construct chaotic hardware circuits with associated delay factors.

    [1]Leon O.Chua,IEEE Trans.Circuit Theory 18(1971)507.

    [2]D.B.Strukov,G.S.Snider,D.R.Stewart,and R.S.Williams,Nature(London)453(2008)80.

    [3]B.Muthuswamy and P.P.Kokate,IETE Tech.Rev.26(2009)417.

    [4]I.Vourkas and G.C.Sirakoulis,IEEE Trans.Nanotechnol.11(2012)1151.

    [5]Makoto Itoh and Leon O.Chua,Inter.J.Bifurcat.Chaos 18(2008)3183.

    [6]Corinto,Fernando,A.Ascoli,and M.Gilli,IEEE Trans.Circuits Syst.I,Reg.Papers 58(2011)1323.

    [7]D.W.Ding,S.J.Li,and N.Wang,Dynamic Analysis of Fractional-Order Memristive Chaotic System,J.Harbin Inst.Tech.(2017);doi:10.11916/j.issn.1005-9113.16136.

    [8]Abbas,Syed,V.S.Erturk,and S.Momani,Signal Process.102(2014)171.

    [9]A.K.Golmankhaneh,R.Are fi,and D.Baleanu,J.Vib.Control.21(2002)85.

    [10]Girejko,Ewa,and E.Pawluszewicz,J.Dynam.Control Syst.(2016)1.

    [11]Kamaljeet and D.Bahuguna,J.Dyn.Control Syst.22(2015)1.

    [12]Xu Beibei,et al.,Nonlinear Dynam.81(2005)19.

    [13]J.G.Lu,Phys.Lett.A 354(2006)301.

    [14]A.K.Golmankhaneh,R.Are fi,and D.Baleanu,Adv.Math.Phys.2013(2013)84.

    [15]C.Li and G.Chen,Chaos,Solitons and Fractals 22(2004)549.

    [16]J.Cao,C.Ma,H.Xie,and Z.Jiang,J.Computat.Nonlinear Dynam.(2010);doi:10.1115/1.4002092.

    [17]Xu,Yong,Y.Li,and D.Liu,J.Comput.Nonlinear Dynam.9(2014)031015.

    [18]Gui-Quan Sun,et al.,Sci.Rep.5(2015)11246.

    [19]Chang-Jin Xu,Pei-Luan Li,and Yi-Cheng Pang,Commun.Theor.Phys.67(2017)137.

    [20]L.Liu,F.Pan,and D.Xue,Opt.Inter.J.Light Electron Opt.125(2014)7020.

    [21]J.Cao,C.Ma,H.Xie,and Z.Jiang,J.Comput.Nonlinear Dynam.4(2010)1003.

    [22]R.Li,Opt.Int.J.Light Electron Opt.127(2016)6695.

    [23]Z.Wang,X.Huang,and G.Shi,Comput.Math.Appl.62(2011)1531.

    [24]Liping Chen,et al.,J.Comput.Nonlinear Dynam.10(2015).

    [25]G.Velmurugan and R.Rakkiyappan,Nonlinear Dynam.11(2015)1.

    [26]A.Babakhani,D.Baleanu,and R.Khanbabaie,Nonlinear Dynam.69(2012)721.

    [27]M.Xiao,W.X.Zheng,and J.Cao,IEEE Trans.Neur.Net.Lear.Syst.24(2012)118.

    [28]A.Y.T.Leung,H.X.Yang,and P.Zhu,Commun.Nonlinear Sci.19(2014)1142.

    [29]Chengdai Huang,J.Cao,and Z.Ma,Inter.J.Syst.Sci.47(2015)1.

    [30]Baleanu,Dumitru,et al.,Commun.Nonlinear Sci.25(2015)41.

    [31]G.C.Wu and D.Baleanu,Nonlinear Dynam.80(2015)1697.

    [32]W.Hu,D.Ding,Y.Zhang,N.Wang,and D.Liang,Optik 130(2017)189.

    [33]S.K.Agrawal,M.Srivastava,and S.Das,Chaos,Solitons&Fractals 45(2012)628.

    [34]H.Xi,S.Yu,R.Zhang,et al.,Opt.Inter.J.Light Electron Opt.125(2014)2036.

    [35]S.Kuntanapreeda,Nonlinear Dynam.84(2016)2505.

    [36]Kocamaz,Ugur Erkin,Y.Uyaroglu,and S.Vaidyanathan,Advances and Applications in Chaotic Systems,Springer International Publishing,Berlin(2016).

    [37]A.Boulkroune,A.Bouzeriba,and T.Bouden,Neurocomputing 173(2016)606.

    [38]Jun-Jun Liu,Xin Chen,and Jun-Min Wang,J.Dynam.Control Syst.22(2016)117.

    [39]Bao-Zhu Guo,Hua-Cheng Zhou,et al.,J.Dynam.Control Syst.20(2014)539.

    [40]B.Jiang,P.Shi,and Z.Mao,Circ.Syst.Signal Process.30(2011)1.

    [41]Z.Gao,B.Jiang,P.Shi,et al.,J.Franklin Inst.349(2012)1543.

    [42]L.Gao,Z.Wang,K.Zhou,et al.,Neurocomputing 166(2015)53.

    [43]Dasgupta Tanmoy,P.Paral,and S.Bhattacharya,Int.Conference Comput.Commun.Inform.IEEE(2015)pp.1-6.

    [44]S.Shao,M.Chen,and X.Yan,Nonlinear Dynam.83(2016)1855.

    [45]M.Zak,Phys.Lett.A 133(1988)18.

    [46]S.Mobayen,Nonlinear Dynam.82(2015)599.

    [47]Di-Yi Chen,Yu-Xiao Liu,and Xiao-Yi Ma,Nonlinear Dynam.67(2011)893.

    [48]Sundarapandian Vaidyanathan and Sivaperumal Sampath,Inter.J.Automat.Comput.9(2012)274.

    [49]I.Podlubny,Math.Sci.Eng.(1999).

    [50]W.Hu,D.Ding,and N.Wang,J.Comput.Nonlinear Dynam.12(2017)0410031.

    [51]Dadras Sara and H.R.Momeni,Phys.A Stat.Mech.Appl.389(2010)2434.

    [52]S.Bhalekar and V.Daftardar-Gejji,Fract.Calc.Appl.Anal.1(2011)1.

    猜你喜歡
    陳輝
    革命烈士和詩人陳輝
    Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
    “購物式”相親不可取
    Kinetic theory of Jeans’gravitational instability in millicharged dark matter system
    Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
    要想腸胃功能好 按摩中脘不可少
    保健與生活(2022年8期)2022-04-08 21:48:33
    Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures*
    Second-order interference of two independent photons with different spectra?
    真誠的道歉
    民間文學(2019年12期)2019-05-26 14:12:45
    見者發(fā)財
    极品少妇高潮喷水抽搐| 大陆偷拍与自拍| 午夜日本视频在线| 国产男女内射视频| 一本一本综合久久| 内地一区二区视频在线| 搞女人的毛片| 亚洲天堂av无毛| 久久影院123| 国产精品一区www在线观看| 欧美高清性xxxxhd video| 久久精品国产亚洲av涩爱| 亚洲av国产av综合av卡| 九色成人免费人妻av| 午夜福利视频1000在线观看| 国产成人a区在线观看| 亚洲av二区三区四区| 只有这里有精品99| 综合色丁香网| 18禁动态无遮挡网站| av在线亚洲专区| 91午夜精品亚洲一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 精品久久久久久久久亚洲| 听说在线观看完整版免费高清| 狂野欧美白嫩少妇大欣赏| 男人添女人高潮全过程视频| 国内少妇人妻偷人精品xxx网站| 国产精品人妻久久久影院| videossex国产| 丝瓜视频免费看黄片| 欧美激情久久久久久爽电影| 少妇人妻 视频| 亚洲,一卡二卡三卡| 干丝袜人妻中文字幕| 日日摸夜夜添夜夜添av毛片| 亚洲精品日韩av片在线观看| 毛片一级片免费看久久久久| 老女人水多毛片| 国产高清不卡午夜福利| 日日撸夜夜添| 国产老妇伦熟女老妇高清| 国产日韩欧美在线精品| 国产女主播在线喷水免费视频网站| 18禁裸乳无遮挡动漫免费视频 | 天天躁夜夜躁狠狠久久av| 大片电影免费在线观看免费| 久久久久网色| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 国产亚洲最大av| 最近的中文字幕免费完整| 秋霞伦理黄片| 国产精品成人在线| 国产高清有码在线观看视频| 亚洲国产精品国产精品| 肉色欧美久久久久久久蜜桃 | 18+在线观看网站| 亚洲精品自拍成人| 嫩草影院新地址| 如何舔出高潮| 在线天堂最新版资源| 最近最新中文字幕免费大全7| 好男人视频免费观看在线| 国产乱人偷精品视频| 成人亚洲欧美一区二区av| 日韩制服骚丝袜av| 久久国内精品自在自线图片| 国产成人a区在线观看| 三级国产精品欧美在线观看| 中国国产av一级| 色视频www国产| 欧美性猛交╳xxx乱大交人| 国产美女午夜福利| 欧美人与善性xxx| 国产精品无大码| 午夜亚洲福利在线播放| 丝瓜视频免费看黄片| 精品国产露脸久久av麻豆| 亚洲av.av天堂| 插阴视频在线观看视频| 成人欧美大片| av网站免费在线观看视频| 日本猛色少妇xxxxx猛交久久| 精品一区二区三区视频在线| 看黄色毛片网站| freevideosex欧美| av在线播放精品| 久久久久久久大尺度免费视频| 国产欧美亚洲国产| av免费在线看不卡| 精品人妻熟女av久视频| 18+在线观看网站| 街头女战士在线观看网站| 国产亚洲91精品色在线| 在线免费观看不下载黄p国产| 久久亚洲国产成人精品v| 国产一区二区三区av在线| 日本爱情动作片www.在线观看| 久久久久久久国产电影| 欧美日韩一区二区视频在线观看视频在线 | 久久ye,这里只有精品| 国产中年淑女户外野战色| 日韩在线高清观看一区二区三区| 国产一区二区在线观看日韩| 亚洲国产最新在线播放| 午夜精品一区二区三区免费看| 亚洲av欧美aⅴ国产| 91久久精品国产一区二区三区| 99热这里只有是精品在线观看| 搞女人的毛片| www.色视频.com| 高清欧美精品videossex| 秋霞伦理黄片| 国产 一区精品| 色播亚洲综合网| 精品亚洲乱码少妇综合久久| 男的添女的下面高潮视频| 综合色av麻豆| 国产欧美日韩一区二区三区在线 | 国产免费福利视频在线观看| 亚洲真实伦在线观看| 国产欧美另类精品又又久久亚洲欧美| 麻豆乱淫一区二区| 久久久久久久久久久免费av| av又黄又爽大尺度在线免费看| 国产淫片久久久久久久久| 波多野结衣巨乳人妻| 蜜臀久久99精品久久宅男| av国产精品久久久久影院| 别揉我奶头 嗯啊视频| 天堂中文最新版在线下载 | 免费黄频网站在线观看国产| 91午夜精品亚洲一区二区三区| 超碰av人人做人人爽久久| 18禁动态无遮挡网站| 美女脱内裤让男人舔精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产色片| 看免费成人av毛片| 啦啦啦在线观看免费高清www| 久久久久国产精品人妻一区二区| 女人久久www免费人成看片| 丰满人妻一区二区三区视频av| 国产精品一区www在线观看| 色5月婷婷丁香| 又大又黄又爽视频免费| 毛片女人毛片| 日韩成人伦理影院| 免费电影在线观看免费观看| 国产视频内射| av福利片在线观看| 男女国产视频网站| av黄色大香蕉| 一区二区三区精品91| 久久6这里有精品| 乱码一卡2卡4卡精品| 91久久精品电影网| 欧美成人a在线观看| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 插阴视频在线观看视频| 高清视频免费观看一区二区| 亚洲av免费在线观看| 久久久久性生活片| 人体艺术视频欧美日本| 国产精品精品国产色婷婷| 中文字幕免费在线视频6| av.在线天堂| 精品一区在线观看国产| 国产大屁股一区二区在线视频| 久久精品人妻少妇| 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验| 国产成人免费观看mmmm| 国产精品一二三区在线看| 日本熟妇午夜| 日本猛色少妇xxxxx猛交久久| 91精品国产九色| 免费观看在线日韩| av国产精品久久久久影院| 在线观看一区二区三区激情| 国产午夜精品久久久久久一区二区三区| 国产成人a∨麻豆精品| 夜夜爽夜夜爽视频| av国产免费在线观看| 美女cb高潮喷水在线观看| 国产在线男女| 日韩大片免费观看网站| 蜜桃亚洲精品一区二区三区| 男的添女的下面高潮视频| av在线播放精品| 成人综合一区亚洲| 亚洲av成人精品一二三区| 成年人午夜在线观看视频| 欧美+日韩+精品| 最近最新中文字幕免费大全7| 麻豆乱淫一区二区| 三级国产精品欧美在线观看| 王馨瑶露胸无遮挡在线观看| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频 | 久久久久久伊人网av| 久久人人爽人人片av| 久久久久久久久久久免费av| 欧美一区二区亚洲| 中文字幕久久专区| 免费av毛片视频| 少妇熟女欧美另类| 午夜福利在线观看免费完整高清在| av在线天堂中文字幕| 久久久a久久爽久久v久久| 国产亚洲5aaaaa淫片| 日韩欧美精品免费久久| 国产一区二区三区综合在线观看 | 欧美日本视频| 久久久国产一区二区| 中文字幕制服av| 纵有疾风起免费观看全集完整版| 一区二区三区免费毛片| 国产成人freesex在线| 大码成人一级视频| 亚洲精品中文字幕在线视频 | 99久久精品一区二区三区| 视频区图区小说| 乱系列少妇在线播放| 国产精品一区二区三区四区免费观看| 青春草亚洲视频在线观看| av在线app专区| 久久99蜜桃精品久久| 精品久久久精品久久久| 十八禁网站网址无遮挡 | 久久精品国产自在天天线| 国产老妇伦熟女老妇高清| 精品酒店卫生间| 丰满乱子伦码专区| 亚洲三级黄色毛片| 国产精品国产三级国产av玫瑰| 久久99热6这里只有精品| 天堂中文最新版在线下载 | 国产精品不卡视频一区二区| 日韩av免费高清视频| 亚洲精品国产av蜜桃| 国内少妇人妻偷人精品xxx网站| 美女内射精品一级片tv| 亚洲国产日韩一区二区| 在线观看国产h片| 国产亚洲av片在线观看秒播厂| 久久99蜜桃精品久久| 老司机影院成人| 内射极品少妇av片p| 精品久久国产蜜桃| 日韩视频在线欧美| 丰满人妻一区二区三区视频av| 蜜桃亚洲精品一区二区三区| 2021天堂中文幕一二区在线观| 免费观看的影片在线观看| 人妻制服诱惑在线中文字幕| 美女xxoo啪啪120秒动态图| 国产精品麻豆人妻色哟哟久久| 久久国产乱子免费精品| 韩国高清视频一区二区三区| 亚洲av国产av综合av卡| 亚洲成人久久爱视频| 九九在线视频观看精品| av卡一久久| av在线亚洲专区| 大片电影免费在线观看免费| 欧美3d第一页| 少妇高潮的动态图| eeuss影院久久| 日日摸夜夜添夜夜爱| 亚洲不卡免费看| 久久99精品国语久久久| 在线 av 中文字幕| 天堂中文最新版在线下载 | 亚洲,欧美,日韩| 中文精品一卡2卡3卡4更新| 蜜桃久久精品国产亚洲av| 国产黄频视频在线观看| 亚洲精品第二区| 欧美三级亚洲精品| 毛片一级片免费看久久久久| 白带黄色成豆腐渣| 亚洲国产精品成人综合色| 亚洲精华国产精华液的使用体验| a级毛片免费高清观看在线播放| 国产亚洲av片在线观看秒播厂| 3wmmmm亚洲av在线观看| 欧美 日韩 精品 国产| 亚洲激情五月婷婷啪啪| 麻豆成人午夜福利视频| 成人毛片60女人毛片免费| 精品久久久久久久末码| 国产白丝娇喘喷水9色精品| 国产视频首页在线观看| 看黄色毛片网站| 大片电影免费在线观看免费| 夜夜爽夜夜爽视频| 国产成人精品婷婷| 国产成人精品一,二区| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 汤姆久久久久久久影院中文字幕| 一级黄片播放器| av在线蜜桃| 国产在视频线精品| 亚洲成色77777| 亚洲,一卡二卡三卡| 尾随美女入室| 听说在线观看完整版免费高清| 久久这里有精品视频免费| 五月玫瑰六月丁香| 国产精品麻豆人妻色哟哟久久| 日韩制服骚丝袜av| 97在线人人人人妻| 99热网站在线观看| 中文在线观看免费www的网站| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 亚洲欧美日韩无卡精品| 成人二区视频| 亚洲欧美日韩无卡精品| 国产v大片淫在线免费观看| 日本与韩国留学比较| 秋霞在线观看毛片| 日日啪夜夜撸| 韩国av在线不卡| 男女边摸边吃奶| 国产人妻一区二区三区在| 亚洲av日韩在线播放| 插阴视频在线观看视频| 免费观看av网站的网址| 色婷婷久久久亚洲欧美| 中文天堂在线官网| 久久久久国产精品人妻一区二区| 亚洲精品久久久久久婷婷小说| 日韩 亚洲 欧美在线| 1000部很黄的大片| 国产淫片久久久久久久久| 国内精品美女久久久久久| 久久国内精品自在自线图片| av在线蜜桃| 热99国产精品久久久久久7| 欧美三级亚洲精品| 中文乱码字字幕精品一区二区三区| 精品熟女少妇av免费看| 好男人在线观看高清免费视频| 免费观看av网站的网址| 在现免费观看毛片| 永久免费av网站大全| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花 | av又黄又爽大尺度在线免费看| 观看免费一级毛片| 日韩三级伦理在线观看| 男人添女人高潮全过程视频| 97在线视频观看| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| 91精品一卡2卡3卡4卡| 91久久精品国产一区二区三区| 小蜜桃在线观看免费完整版高清| 国产亚洲最大av| 欧美高清成人免费视频www| 精品一区在线观看国产| 国产成人一区二区在线| 欧美日韩视频高清一区二区三区二| 国产精品不卡视频一区二区| 午夜免费鲁丝| 成人免费观看视频高清| 丰满少妇做爰视频| 国产免费福利视频在线观看| 亚洲成人久久爱视频| 日韩av在线免费看完整版不卡| 亚洲成人久久爱视频| 久久精品人妻少妇| 韩国高清视频一区二区三区| 欧美日韩精品成人综合77777| 中文字幕亚洲精品专区| 九九久久精品国产亚洲av麻豆| 精品亚洲乱码少妇综合久久| 国产成年人精品一区二区| 欧美一级a爱片免费观看看| 国产成人精品婷婷| 18+在线观看网站| 听说在线观看完整版免费高清| 人妻一区二区av| 黄色怎么调成土黄色| 十八禁网站网址无遮挡 | 亚洲av一区综合| 特级一级黄色大片| 国产成人a∨麻豆精品| 国产高清不卡午夜福利| 日韩亚洲欧美综合| 亚洲一区二区三区欧美精品 | 亚洲伊人久久精品综合| 丝袜喷水一区| 久久久久久国产a免费观看| 国产在线男女| 亚洲精品国产色婷婷电影| 日日摸夜夜添夜夜添av毛片| 久久6这里有精品| 久久久久久久久久久免费av| 午夜福利视频1000在线观看| 午夜福利高清视频| 国产视频内射| 免费播放大片免费观看视频在线观看| 97在线人人人人妻| 日韩av免费高清视频| 亚洲人成网站在线观看播放| 欧美一区二区亚洲| 女人久久www免费人成看片| 好男人视频免费观看在线| 全区人妻精品视频| 乱系列少妇在线播放| 日产精品乱码卡一卡2卡三| 成人二区视频| 国产精品久久久久久精品电影| 中文字幕人妻熟人妻熟丝袜美| 丰满人妻一区二区三区视频av| 精品一区二区三卡| av在线天堂中文字幕| 久久久久国产网址| 亚洲欧美清纯卡通| 中文字幕av成人在线电影| 三级国产精品片| 亚洲精品日韩av片在线观看| 新久久久久国产一级毛片| 在线观看三级黄色| 久久久欧美国产精品| 青青草视频在线视频观看| 欧美激情久久久久久爽电影| 最近手机中文字幕大全| 亚洲精品乱码久久久久久按摩| 免费看av在线观看网站| www.色视频.com| 成人综合一区亚洲| 偷拍熟女少妇极品色| 人妻制服诱惑在线中文字幕| 亚洲精品国产av成人精品| 亚洲av欧美aⅴ国产| 韩国高清视频一区二区三区| 日本wwww免费看| 久久久a久久爽久久v久久| 国产精品三级大全| 久久久久久久久久成人| 丰满少妇做爰视频| 日韩一本色道免费dvd| 国产69精品久久久久777片| 日韩伦理黄色片| 免费黄频网站在线观看国产| 男女国产视频网站| 少妇高潮的动态图| 国产精品嫩草影院av在线观看| 久久久亚洲精品成人影院| 男人狂女人下面高潮的视频| 99久久中文字幕三级久久日本| 亚洲丝袜综合中文字幕| 嫩草影院新地址| 精品国产一区二区三区久久久樱花 | 91精品伊人久久大香线蕉| 色网站视频免费| 国产精品一区www在线观看| 中文欧美无线码| 永久免费av网站大全| 欧美+日韩+精品| 18禁在线播放成人免费| kizo精华| 狂野欧美激情性xxxx在线观看| 又黄又爽又刺激的免费视频.| 日日撸夜夜添| 精品人妻一区二区三区麻豆| 少妇丰满av| 91精品国产九色| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 日本与韩国留学比较| 国产视频内射| 国产极品天堂在线| 秋霞在线观看毛片| 婷婷色麻豆天堂久久| 三级国产精品片| 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| 日韩欧美 国产精品| 男人和女人高潮做爰伦理| 精品国产露脸久久av麻豆| av卡一久久| 制服丝袜香蕉在线| 久久99热6这里只有精品| 日韩制服骚丝袜av| 午夜视频国产福利| 女人十人毛片免费观看3o分钟| 欧美xxⅹ黑人| 亚洲精品中文字幕在线视频 | 日日摸夜夜添夜夜添av毛片| 成人无遮挡网站| 在线观看av片永久免费下载| 精品99又大又爽又粗少妇毛片| 国产男人的电影天堂91| 伦精品一区二区三区| 亚洲va在线va天堂va国产| freevideosex欧美| 直男gayav资源| 一级毛片电影观看| 国产精品一区二区在线观看99| 成年人午夜在线观看视频| 久久国产乱子免费精品| 精品久久久噜噜| 一级毛片久久久久久久久女| 高清午夜精品一区二区三区| a级毛色黄片| 国产成人免费观看mmmm| 日日摸夜夜添夜夜添av毛片| 日韩免费高清中文字幕av| 日产精品乱码卡一卡2卡三| 日日啪夜夜爽| 嫩草影院精品99| 大陆偷拍与自拍| 久久人人爽人人片av| 精品一区二区免费观看| 亚洲欧美成人精品一区二区| 一区二区三区乱码不卡18| 欧美亚洲 丝袜 人妻 在线| 又爽又黄a免费视频| 久久久精品欧美日韩精品| 大陆偷拍与自拍| 久久久久性生活片| 最近最新中文字幕免费大全7| 中国美白少妇内射xxxbb| 一本久久精品| 亚洲欧美日韩无卡精品| 黄色欧美视频在线观看| 91在线精品国自产拍蜜月| 人妻夜夜爽99麻豆av| 免费看日本二区| 777米奇影视久久| 国产一区二区三区综合在线观看 | 国产精品国产av在线观看| 午夜福利视频精品| 亚洲精品日韩在线中文字幕| 极品少妇高潮喷水抽搐| 久久人人爽av亚洲精品天堂 | 国产男人的电影天堂91| 九草在线视频观看| 亚洲欧美一区二区三区国产| 少妇人妻久久综合中文| 欧美高清成人免费视频www| 性色avwww在线观看| 蜜臀久久99精品久久宅男| 最近最新中文字幕大全电影3| 免费大片18禁| 美女脱内裤让男人舔精品视频| 性色av一级| 中文精品一卡2卡3卡4更新| 国产毛片a区久久久久| 下体分泌物呈黄色| 日韩制服骚丝袜av| 亚洲国产精品999| 99久国产av精品国产电影| 日韩中字成人| 精品久久久久久久人妻蜜臀av| 国模一区二区三区四区视频| 街头女战士在线观看网站| 精品久久久噜噜| 欧美激情在线99| 亚洲精品乱码久久久久久按摩| 精品人妻一区二区三区麻豆| 视频中文字幕在线观看| 99视频精品全部免费 在线| 婷婷色av中文字幕| 99热网站在线观看| 男女无遮挡免费网站观看| 久久久精品94久久精品| 久久久久久久久久成人| 69人妻影院| 少妇高潮的动态图| 能在线免费看毛片的网站| 人妻夜夜爽99麻豆av| 婷婷色av中文字幕| 欧美日韩精品成人综合77777| 内地一区二区视频在线| 中国三级夫妇交换| 麻豆成人av视频| 国产精品久久久久久精品电影小说 | 我的女老师完整版在线观看| 亚洲在久久综合| 水蜜桃什么品种好| 99热网站在线观看| 国产成人freesex在线| 亚洲人与动物交配视频| 免费av毛片视频| 国产探花极品一区二区| 在现免费观看毛片| 国产精品秋霞免费鲁丝片| 人人妻人人爽人人添夜夜欢视频 | 18禁动态无遮挡网站| 丰满乱子伦码专区| 精品熟女少妇av免费看| 成年av动漫网址| 美女xxoo啪啪120秒动态图| 纵有疾风起免费观看全集完整版| 亚洲精品一区蜜桃| 久久人人爽av亚洲精品天堂 | 国产亚洲最大av| 国产午夜福利久久久久久| 亚洲人成网站在线播| 久久久精品欧美日韩精品| 麻豆久久精品国产亚洲av| 亚洲国产精品国产精品| 午夜免费鲁丝| 日韩av在线免费看完整版不卡| 国产一区有黄有色的免费视频| 亚洲欧美日韩卡通动漫|