• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    General Solutions for Hydromagnetic Free Convection Flow over an In finite Plate with Newtonian Heating,Mass Diffusion and Chemical Reaction

    2017-05-09 11:46:34ConstatinFetecauNehadAliShahandDumitruVieru
    Communications in Theoretical Physics 2017年12期

    Constatin Fetecau,Nehad Ali Shah,and Dumitru Vieru

    1Academy of Romanian Scientists,Bucuresti 050094,Romania

    2Abdus Salam School of Mathematical Sciences GC,University Lahore,54600,Pakistan

    3Technical University of Iasi,Iasi 700050,Romania

    1 Introduction

    Natural or free convection flows are abundantly met in nature.They are particularly important in oceanic and atmospheric circulation, filtration processes,cooling of nuclear reactors,solar energy collectors and arise in fluids when the temperature changes imply variations of the density leading to buoyancy forces which affect their motion.Details about the applications of free convection flows can be found in the books of Ghoshdastidar[1]and Nield and Bejan[2]but one of the oldest and interesting studies regarding the free convection from a heated vertical plate is that of Turnbull[3]in presence of an electric field.Such flows,which are also affected by the differences in concentration,have been extensively studied due to their multiple applications in engineering and environmental processes.The study of free convection flow in the presence of magnetic field is also important in polymer industry,metallurgy,astrophysics and geophysics and the first authors who took into consideration the effects of magnetic field in their work seem to be Soundalgekaret al.[4]

    Hydromagnetic flows combined with heat and mass transfer by free convection have been studied by many authors due to their diverse applications in science and technology.The mass transfer,that means the transport of a constituent between two regions having different concentrations,is the basis of many biological and chemical processes.[5]It also appears in the theory of stellar and solar structures.On the other hand,in the last time,hydromagnetic free convection flows involving heat and mass transfer with chemical reaction received a special attention(see for instance the recent works of Reddyet al.[6?7]Raoet al.,[8]Srihari and Chirra Kesava Reddy,[9]Pattnaik and Biswal,[10]Sethet al.[11]and therein references).They are important in different areas of sciences and engineering and usually occur in magnetohydrodynamic power generation systems,cooling of nuclear reactors,power and cooling systems as well as in petro-chemical industry.

    However,the heat transfer characteristics are strongly dependent on the thermal boundary conditions,and in all above-mentioned papers the free convection flows are driven by a prescribed surface temperature or prescribed surface heat flux.Merkin[12]was the first author who assumed that the flow is set up by Newtonian heating from the surface.In such flows,which are also called conjugate convective flows and have important applications in many ture.Effects of Newtonian heating on the free convection lf ow of a viscous fluid along an in finite vertical or horizontal plate embedded in a porous medium have been studied by Lesnicet al.[14?15]and Popet al.[16]Other interesting solutions,in the absence of mass transfer,have been also established by Chaudhary and Jain,[17]Mebine and Adigio,[18]Narahari and Ishak,[19]Daset al.[20]and Hussananet al.[21]The effects of mass transfer on such flows have been studied by Narahari and Nayan,[22]Narahariet al.,[23]Narahari and Dutta[24]and Hussananet al.[25?26]However,none of these works took into consideration,heat source or chemical reaction.Free convection flows with Newtonian heating and mass diffusion in which the plate applies a shear stress to the fluid or slip effects are taken into consideration have been studied by Vieruet al.,[27]Khanet al.,[28]and Fetecauet al.[29]An interesting mathematical study of the free convection with dissipative heating has been developed by Sheremetet al.[30]

    The main purpose of this work is to provide a general study of hydromagnetic free convection flow of an engineering devices,[13]the rate of heat transfer from the plate surface is proportional to the local surface temperaincompressible viscous fluid over a moving in finite vertical plate with Newtonian heating,heat source and chemical reaction.Radiative and porous effects are not taken into consideration but,according to Magyari and Pantokratoras[31]and Fetecauet al.,[32]they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter.Exact analytical solutions are established for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient.They can generate exact solutions for any flow of this type and,for illustration,three special cases are considered and some known results from the literature are recovered or corrected.The in fluence of physical parameters on some flows with technical relevance is graphically underlined and discussed.Contributions of mechanical,thermal and concentration components of velocity on the fluid motion are together brought to light for motions due to a highly accelerating plate.The required time to reach the steady-state for cosine or sine oscillations of the concentration on the boundary is also determined.

    2 Mathematical Formulation of the Problem

    Let us consider the hydromagnetic free convection flow of an electrically conducting,incompressible viscous fluid with Newtonian heating and mass diffusion over a moving in finite non conducting vertical flat plate(Fig.1).At the initial momentt=0,both the fluid and the plate are at rest with the same temperatureT∞and the species concentrationC∞.After timet=0+the plate,whose concentration is raised or lowered to the valueC∞+Cwg(t),is moving in its plane against the gravitational field with an arbitrary velocityUf(t).HereCwandUare constants while the dimensionless functionsf(·)andg(·)are piecewise continuous andf(0)=g(0)=0.A transverse magnetic field of uniform strengthB,whose magnetic lines of force are fixed relative to the fluid,acts perpendicular to the plate and the magnetic Reynolds number is assumed to be small enough so that the induced magnetic field can be neglected.

    Fig.1 Schematic diagram of the flow con figuration.

    Radiative and porous effects are not taken into consideration but,as we already mentioned,they can be immediately included by a simple rescaling of Prandtl number,respectively the magnetic parameter.Our results are obtained in the presence of heat source and chemical reaction,but the viscous dissipation is neglected due to its small size.This assumption can be justi fied by small velocities usually encountered in free convection flows.[33]In these conditions,choosing a suitable Cartesian coordinate system and using the usual Boussinesqs approximation,our flow is governed by the following partial differential equations[10](the inertia terms are also neglected)

    whereu,T,andCare velocity,temperature and species concentration of the fluid,νis the kinematic viscosity,gis the acceleration due to gravity,βTis the thermal expansion coefficient,βCis the volumetric coefficient of concentration expansion,σis electrical conductivity,ρis fluid density,cpis the speci fic heat at constant pressure,kis the thermal conductivity,Qis the heat generation or absorption coefficient,Dis the chemical molecular diffusivity andRis chemical reaction parameter.

    The corresponding initial and boundary conditions are:

    wherehis the heat transfer coefficient for Newtonian heating.

    By introducing the dimensionless variables and functions

    and dropping out the star notation,we attain to the following dimensionless initial boundary values problem:

    are the thermal Grashof number,the mass Grashof number,the buoyancy ratio parameter,the magnetic parameter,the Prandtl number and the Schmidt number,respectively.Of course,the characteristic velocityUhas been taken to be equal with(gβT/νU)(k/h)2T∞.

    It is worth pointing out thatPrandScare transport parameters representing the thermal diffusivity,respectively the mass diffusivity whileNgives the relative contribution of the mass transport rate on the flow into consideration.[24]AsβCcan be positive or negative[34]andβTis a positive quantity,Ncan be also positive or negative.IfNis positive,the mass and thermal buoyancy forces act in the same direction.In the contrary case,the two forces are opposite.Of course,N=0 in the absence of mass diffusion.

    3 Solution of the Problem

    The temperature fieldT(y,t)corresponding to this problem has been already determined by Vieruet al.[27]in a problem with shear stress on the boundary.Our interest here,is to determine the velocity and concentration fields as well as the corresponding Sherwood number and the skin friction coefficient whenT(y,t)is known.For completion,the thermal boundary layer thickness will be also determined.To do that,the Laplace transform technique will be used and the corresponding Laplace transform(Ref.[27],Eq.(19))

    In order to determine the differential equation describing the thickness of the thermal boundary layer,[35]we integrate Eq.(9)with respect toyfrom zero to in finity,respectively toδ1T,whereδ1Tis the thermal layer thickness,introduce the measure of thermal layer

    and use the boundary conditions(12)2and(13)2.The obtained equation is

    Applying the Laplace transform to Eq.(16)and using Eq.(14)as well as the fact thatδT(0)=0,we find that

    3.1 Species Concentration

    Applying the Laplace transform to Eq.(10)and using the corresponding initial and boundary conditions,we find that

    Here,G(q)is the Laplace transform ofg(t)andqis the transform parameter.

    The solution of the ordinary differential equation(19)subjected to the boundary conditions(20),is given as

    Applying the inverse Laplace transform to Eq.(21)and using Eq.(A1)from Appendix,the fact thatL?1{qG(q)}=g′(t)ifg(0)=0 and the convolution theorem,we find that

    where the function Φ is de fined in Appendix.

    The rate of mass transfer from the plate to fluid,in terms of Sherwood number,is given by

    Introducing the equality(22)into Eq.(23),we find that

    Now,we integrate Eq.(10)across the concentration layer from zero to in finity,respectively toδ1C,whereδ1Cis the concentration layer thickness,introduce the measure of the concentration boundary layer

    and use the boundary conditions(12)3and(13)3.It results that

    whose inverse Laplace transform is

    3.2 Velocity Field

    Applying the Laplace transform to Eq.(8)and bearing in mind the corresponding initial and boundary conditions,it results that

    Introducing Eqs.(14)and(21)into Eq.(29),it results that

    The solution of the ordinary differential equation(31)with the boundary conditions(30),is given by

    Applying the inverse Laplace transform to Eq.(32)and using again the convolution theorem and Eq.(A2)from Appendix,we find the velocity field under the form

    Appling the inverse Laplace transform to Eq.(37),um(y,t)remain unchanged while the thermal and concentration components of velocity become(see Eqs.(A1)and(A3)1)

    Another physical entity of interest is the skin friction coefficient at the plate[7,10]

    Introducing Eq.(33)in Eq.(40),we find the skin friction coefficient

    are its mechanical,thermal and concentration components.

    Thedifferentialequation describing thevelocity boundary layer thickness,namely

    is obtained integrating Eq.(8)across the velocity boundary layer and following the same line as before for temperature and concentration.The solution of this differential equation with the initial conditionδV(0)=0 can be also obtained by means of the Laplace transform technique.

    Applying the inverse Laplace transform to Eq.(46),and using Eqs.(A2)and(A3)2,it results

    4 Special Cases with Engineering Applications

    As we previously mentioned,the general expressions that have been here obtained for velocity,concentration,Sherwood number and the skin friction coefficient can generate exact solutions for any hydromagnetic free convection flow of this type.In order to validate their correctness,as well as to get some physical insight of certain fundamental flows with possible engineering applications,three special cases are considered and some results from the existing literature are recovered or corrected.

    Case 1Uniform Motion and Constant Concentration of the Plate

    By substituting the functionsf(·)andg(·)byH(·)(the Heaviside unit step function)in Eqs.(22),(34),and(36)and bearing in mind the fact that

    whereδ(·)is the Dirac delta function,we find the dimensionless fluid concentration

    and the mechanical and concentration components of ve-

    corresponding to the hydromagnetic free convection flow over an in finite plate,which is maintained at a constant concentration and is moving in its plane with a constant velocity.The thermal component of velocity remain unchanged while the expressions ofC0(y,t)andum0(y,t)are identical to those obtained in(Ref.[6],Eqs.(12)and(16)).

    The corresponding Sherwood number,namely

    are obtained substitutingf(t)byH(t)in Eqs.(42)and(44).As expected,Eq.(53)is identical to the first term of Eq.(19)from Ref.[6].In the absence of magnetic effects and chemical reaction,Eqs.(49),(50),(52),and(53)take the simple forms

    which are well known in the literature.

    By now substitutingf(t)andg(t)byH(t)in Eqs.(28)and(47),the expressions of the thickness of the corresponding boundary layers are obtained.The concentration boundary layer thickness,for instance,has the simple form

    whent→∞.

    Case 2Accelerated Plate with Ramp-Type Concentration

    By now lettingf(t)=g(t)H(t)ta(a>0)into Eqs.(22),(34),and(36),we find solutions

    corresponding to the hydromagnetic free convection flow due to a slowly(a<1),constantly(a=1)or highly(a>1)accelerating plate with ramp-type concentration.[36]Of course,the corresponding velocity field is

    whereuT(y,t)is given by Eq.(35).

    Making the same substitutions in Eqs.(24),(42),and(44),we find that

    Of a special interest is the casea=1 corresponding to the free convection flow due to a constantly accelerating plate.By makinga=1 in Eqs.(58)–(60),and(62)–(64)and using Eqs.(A4)–(A9),it results that

    It is worth pointing out the fact thatum1(y,t)from Eq.(66)is identical to the result of Reddyet al.(Ref.[6]Eq.(17)and Sethet al.(Ref.[37],Eq.(2.11))while the expression ofτm1from Eq.(69)corrects the similar result of Ref.[6].The corresponding expressions of the associated boundary layers thickness can be immediately obtained puttingf(t)=g(t)=H(t)tain Eqs.(28)and(47).Fora=1 Eq.(28)reduces to

    Case 3Oscillating Plate with Oscillatory Concentration

    Let us now assume that the plate,with oscillatory concentration on the boundary,is oscillating in its plane with the same frequencyωas well as the concentration.The dimensionless solutions corresponding to the free convection flow due to cosine or sine oscillations of the concentration on the boundary,namely

    are obtained substitutingf(t)andg(t)byH(t)cos(ωt)orH(t)sin(ωt)in Eqs.(22),(24),(34),(36),(42),and(44),respectively.As expected,the solutions(72)–(77)reduce to those given by Eqs.(49)–(54)if the frequencyωof oscillations tends to zero(foruCc(y,t),uC0(y,t)andτCc,τC0see also the general solutions(36)and(44)).Furthermore,all solutions corresponding to this subsection can be written as a sum of steady-state(permanent)and transient solutions.The steady-state solutions corresponding toCc(y,t)andCs(y,t),for instance,can be given by the equalities(see also Eq.(A10))

    Moreover,lengthy but straightforward computation show that these solutions can be written in the simple forms(see Eqs.(A11)and(A12))

    5 Numerical Results and Discussions

    In order to gain some physical insight of results that have been here obtained and to avoid repetition,the effects of buoyancy ratio parameter(N),heat generation or absorption coefficient(Q),Schmidt number(Sc)and chemical reaction parameter(R)on dimensionless concentration and velocity fields are graphically underlined in Figs.2–7 for fluid motions induced by a highly accelerating plate(f(t)=H(t)t3/2)with ramp-type concentration(g(t)=H(t)ta).Variations of Sherwood number(Sh)with respect toScandRare presented in Fig.8 while the diagrams of the skin friction coefficientτagainsttare given in Fig.9.Finally,for completion,the contributions of mechanical,thermal and concentration components of velocity on the fluid motion are brought to light by Fig.10 and the required time to reach the steady-state of mass transfer is graphically obtained in Figs.11 and 12 for flows with cosine or sine oscillations of concentration at the plate.Time variation of thermal or concentration boundary layer thickness is presented in Figs.13 and 14 for different values of physical parameters when the species concentration is constant on the boundary.

    Fig.2 Pro files of the dimensionless concentration C1(y,t)against y for R=1.5,t=0.5,and 1 with different values of Sc.

    Fig.3 Pro files of the dimensionless concentration Ca(y,t)against y for t=2.5,Sc=0.8,R=0.4,and 0.9 with different values of a.

    Pro files of the concentrationCa(y,t)againstyare presented in Figs.2 and 3 for different values ofSc,R,aand the timet.The species concentration,as expected,is an increasing function with respect toaandtbut it decreases for increasing values ofScandR.As it is known,[5]a diminution in the Schmidt numberScmeans an increase in mass diffusivity which enhances the species concentration in fluid.Consequently,an increase ofScorRlowers the concentration level of the fluid.In all cases,the concentration pro files smoothly descend from maximum values on the wall to the zero value for large values ofy.

    Fig.4 Pro files of the dimensionless velocity u3/2(y,t)against y at time t=2,M=0.2,Pr=1.5,Q=0.7,Sc=0.2,R=0.3,and different values of N.

    Fig.5 Pro files of the dimensionless velocity u3/2(y,t)against y at time t=2,for M=1,N=2,Pr=1.5,Sc=0.5,R=0.7,and different values of Q.

    Numerical values of the fluid velocityua(y,t),given by Eq.(61),are graphically displayed in Figs.4–7 fora=3/2 the plate concentrationC(0,t)=tH(t)and different value of physical parameters.Velocity pro files againstyare presented in Fig.4 for aiding(N>0)and opposing(N<0)flows at the timet=2.In the first case,when thermal and mass buoyancy forces act in the same direction,the fluid velocity increases for increasing values ofNas a result of the growth of concentration.N=0 implies the mass Grashof numberGm=0 and the mass diffusion phenomenon is absent.IfN<0,the mass buoyancy forces are negative and the fluid velocity is signi ficantly diminished.However,it increases for increasing values ofN.For positive values ofNgreater than a criticalNcvalue(about 1.9),in the plate vicinity,the fluid velocity increases from the common value on the wall up to a maximum value and then decreases to the stream value for large values ofy.

    Effects of the heat generation or absorption coefficientQon the fluid motion are displayed in Fig.5.The presence of heat generation(Q<0)generates thermal energy,which increases the fluid temperature.As a result,the fluid velocity increases due to the increasing thermal buoyancy force.An opposite effect appears in the case of heat absorption.More exactly,due to the heat absorption(Q>0),the fluid temperature diminishes and the thermal buoyancy force decreases.This implies a reduction of fluid velocity with increasing values ofQ.However,in the case of heat generation,for eachQless than a critical valueQc(about?0.5),the fluid velocity increases from the common value on the plate up to a maximum value and then smoothly decreases to the zero value for increasing values ofy.

    Fig.6 Pro files of the dimensionless velocity u3/2(y,t)against y at time t=2,for M=1,N=2,Pr=1.5,Q=0.5,Sc=0.5,and different values of R.

    Figure 6 displays the in fluence of chemical parameterRon the fluid velocity.The presence of destructive chemical reaction(R>0),as it results from Fig.3,diminishes the species concentration and implicitly reduces the mass buoyancy force.As a result,the fluid velocity decreases for increasing values ofR.Of course,an opposite trend appears in the case of non-destructive chemical reactions whenR<0.Variations of the fluid velocity are also presented in Fig.7 for two values ofPrand different values ofScwhile the other parameters are fixed.From this figure,it clearly results that the velocity is a decreasing function both withPrandSc.Consequently,the viscous forces predominate thermal diffusion or mass diffusion effects for increasing values of Prandtl,respectively Schmidt number.

    The variation of Sherwood numberShin time is graphically presented in Fig.8 at different values ofScandRfor flows with ramp-type surface concentration.It is found that the rate of mass transfer at the plate is an almost linearly increasing function oft.It also increases for increasing values ofScandR.Consequently,the destructive chemical reaction enhances the rate of mass transfer at the plate.An opposite effect produces the increase of the chemical molecular diffusivityD.

    Figure 9 shows the skin friction coefficient variation againsttunder the in fluence ofQandN,respectivelyRandPr.The skin friction coefficient is an increasing function with respect tot,Q,N,Prand decreases for increasing positive values ofR.It increases almost linearly intforN=3 withQ=0.6 and 0.7 orPr=3.5 withR=0.5,1.0 and 1.5.From physical point of view,it means that a destructive chemical reaction diminishes the viscous drag at the plate while the heat absorption enhances it.Fig.9Variation of skin frictionτgiven by Eq.(41)againsttforM=0.4,Sc=0.5,f(t)=t3/2,g(t)=tand different values ofQ,N,R,andPr.

    Fig.8 Variation of Sherwood number Sh,given by Eq.(68),with respect to Sc and R.

    Fig. 10 Pro filesofthe dimensionlessvelocities um3/2(y,t),um3/2(y,t)+uT(y,t),and um3/2(y,t)+uT(y,t)+uC(y,t)against y for Pr=1.5,Q=0.5,Sc=0.5,R=0.7,M=0.6,N=2,and t=3.

    In order to evaluate the importance of thermal or mass diffusion effects on free convection flows of viscous fluids,the contributions of mechanical,thermal and concentration components of velocityu3/2(y,t)on the fluid motion are together brought to light in Fig.10.As it clearly results from this figure,each component signi ficantly influences the fluid velocity and cannot be neglected.

    In Figs.11 and 12,the required time to reach the steady-state for mass diffusion is graphically determined for flows with cosine or sine oscillations of concentration at the plate for two values of chemical reaction parameterR.This is the time after which the diagrams of starting solutions(72)or(78)are almost identical to those of steadystate solutions(86)1,respectively(86)2.At small values oft,the difference between the corresponding solutions is signi ficant but it quickly dissapears and the required time to reach the steady-state is higher for sine in comparison to cosine oscillations of concentration at the wall.This is obvious,because at timet=0 the concentration level at the plate is zero for sine oscillations.Furthermore,as it clearly results from these figures,the presence of destructive chemical reaction improves this time for increasing values ofR>0.

    Fig.11 Required time to reach the steady-state of mass transfer for cosine oscillations of concentration at the plate at Sc=0.9 and ω =2π/3.

    Figures 13 and 14 bring to light the time variation of the thickness of thermal or concentration boundary layers with respect toPrandQ,respectivelyScandRandg(t)=H(t).In all cases,the boundary layer thickness signi ficantly increases up to a critical value oft(aroundt=10)and then rapidly tends to the asymptotic value.The thermal boundary layer thickness is a decreasing function with respect toProrQand it rather reaches the asymptotic value for greater values of these parameters.A similar behavior appears from Fig.14 for the concentration boundary layer thickness with regard toRandSc.

    Fig.12 Required time to reach the steady-state of mass transfer for sine oscillations of concentration at the plate at Sc=0.9 and ω =2π/3.

    Fig.13 Time variation of thermal boundary layer thickness for different values of Prandtl number Pr and heat generation/obsorption parameter Q.

    Fig.14 Time variation of thermal boundary layer concentration for different values of Schmidt number Sc and chemical reaction parameter R.

    6 Conclusions

    Hydromagnetic free convection flow of an electrically conducting,incompressible viscous fluid over a moving infinite vertical plate with Newtonian heating,heat source,mass diffusion and chemical reaction is completely solved.Exact analytic solutions are established for velocity,con-centration,Sherwood number and skin friction coefficient when the plate is moving in its plane with an arbitrary velocity and the concentration at the wall is a timedependent function.They satisfy all imposed initial and boundary conditions and can generate exact solutions for any free convection flow of this type.For illustration,as well as to get some physical insight of the obtained results,three special cases with technical relevance are considered and some results from the existing literature are recovered or corrected.Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter.[31?32]

    The solutions corresponding to the motion due to a plate with uniform velocity(Stokes first problem)and constant concentration at the wall,as well as those induced by a constantly accelerating plate with ramp-type concentration at the wall,[36]are presented in simple forms in terms of exponential function and error function or complementary error function of Gauss.In addition,the solutions of the second problem can be written as simple integrals of the similar solutions corresponding to the first problem of Stokes.The solutions corresponding to motions due to an oscillating plate(Stokes second problem)with oscillatory concentration at the wall can be written as sum of steady-state(permanent)and transient solutions.These solutions,which are independent of the initial conditions but satisfy the boundary conditions and governing equations,are important for those who want to eliminate the transients from their experiments.Moreover,as it was to be expected,all solutions corresponding to cosine oscillations of the plate and of the concentration at the wall reduce to the similar solutions of Stokes first problem when the oscillation frequencyωtends to zero.

    Finally,in order to bring to light some physical penetration of results that have been obtained,the diagrams of dimensionless concentration and velocity fields,Sherwood number and skin friction coefficient are presented in different situations for typical values of pertinent parameters.However,in order to avoid repetition,their pro files have been here presented and discussed only for variations of physical parametersN,Q,ScandRwith ramp-type concentration at the wall.Contributions of mechanical,thermal and concentration components of velocity on the fluid motion are together underlined for motions due to highly accelerating plate.The required time to reach the steady-state of mass diffusion for cosine or sine oscillations of the concentration at the plate has been graphically determined and the main results that have been here obtained are:

    (i)The problem in consideration has been completely solved.Obtained results can generate exact solutions for any free convection flow of this type.

    (ii) Species concentration is increasing function in time and ramp-type parametera.

    (iii) The increase of mass diffusivity brings up the concentration level of the fluid while the presence of destructive chemical reaction diminishes it.

    (iv)For aiding flows(N>0),velocity of the fluid is increasing function with respect toN.An opposite trend appears in the case of opposing flows when(N<0).

    (v)Heat absorption(Q>0)causes a reduction of velocity for increasing value ofQ.This is due to the fact the fluid temperature diminishes and the thermal buoyancy force decreases.A reverse trend appears in the presence of heat generationQ<0.

    (vi)Destructive chemical reaction(R>0)reduces the mass buoyancy force and the fluid velocity decreases for increasing values ofRthrough the boundary layer region.The non-destructive chemical reaction(R<0)enhances the fluid velocity.

    (vii)Destructive chemical reaction enhances the rate of mass transfer at the plate.

    (viii)The presence of heat absorption enhances the viscous drag at the plate while the destructive chemical reaction diminishes it.

    (ix)Mechanical,thermal or concentration effects signi ficantly in fluence the fluid motion and they cannot be neglected.

    (x)Required time to reach the steady-state for the mass transfer is higher for sine in comparison to cosine oscillations of concentration of the plate and it is improved in the presence of destructive chemical reaction.

    (xi)Thermal or concentration boundary layer thickness signi ficantly increases up to a critical value oftand then it rather reaches the asymptotic value for greater values ofQorPr,respectivelyRorSc.It is a decreasing function with respect to each of the respective parameters.

    Appendix

    The author Nehad Ali Shah is highly thankful and grateful to Abdus Salam School of Mathematical Sciences,GC University,Lahore,Pakistan and Higher Education Commission of Pakistan,for generous supporting and facilitating this research work.

    [1]P.S.Ghoshdastidar,Heat Transfer,Oxford University Press,Oxford(2004)p.225.

    [2]D.A.Nield and A.Bejan,Convection in Porous Media,Springer,Verlag,New York(2006)pp.94-97.

    [3]R.J.Turnbull,Phys.Fluids 12(1969)2255.

    [4]V.M.Soundalgekar,S.K.Gupta,and N.S.Birajdar,Nucl.Eng.Des.53(1979)339.

    [5]N.Ahmed and M.Dutta,Int.J.Phys.Sci.8(2013)254.

    [6]T.S.Reddy,M.C.Raju,and S.V.K.Varma,J.Appl.Fluid Mech.6(2013)443.

    [7]T.S.Reddy,M.C.Raju,and S.V.K.Varma,Journal of Computational and Applied Research in Mechanical Engineering(JCARME)3(2013)53.

    [8]B.M.Rao,G.V.Reddy,M.C.Raju,and S.V.K.Varma,IOSR J.Appl.Phys.(IOSR-JAP)3(2013)22.

    [9]K.Srihari,Chirra Kesava Reddy,Int.J.Mech.Eng.3(2014)1.

    [10]P.K.Pattnaik and T.Biswal,Walailak J.Sci.Technol.12(2015)749.

    [11]G.S.Seth,B.Kumbhakar,and S.Sarkar,Int.J.Eng.Sci.7(2015)94.

    [12]J.H.Merkin,Int.J.Heat Fluid Flow 15(1994)392.

    [13]V.Rajesh,Int.J.Heat Mass Tran.85(2012)221.

    [14]D.Lesnic,D.B.Ingham,and I.Pop,Int.J.Heat Mass Tran.42(1999)2621.

    [15]D.Lesnic,D.B.Ingham,and I.Pop,J.Porous Media 3(2000)227.

    [16]I.Pop,D.Lesnic,and D.B.Ingham,Hybrid Methods Eng.2(2000)31.

    [17]R.C.Chaudhary and P.Jain,J.Eng.Phys.Thermophys.80(2007)954.

    [18]P.Mebine and E.M.Adigio,Turk.J.Phys.33(2009)109.

    [19]M.Narahari and A.Ishak,J.Appl.Sci.11(2011)1096.

    [20]S.Das,C.Mandal,and R.N.Jana,Int.J.Comput.Appl.41(2012)36.

    [21]A.Hussanan,M.I.Anwar,F.Ali,I.Khan,and S.Sha fie,Heat Trans.Res.45(2014)119.

    [22]M.Narahari and M.Y.Nayan,Turkish J.Eng.Env.Sci.35(2011)187.

    [23]M.Narahari,R.Pendyala,and M.Y.Nayan,AIP Conference Proceedings 1482(2012)340.

    [24]M.Narahari and B.K.Dutta,Chem.Eng.Commun.199(2012)628.

    [25]A.Hussanan,Z.Ismail,I.Khan,and S.Sha fie,Materials Sciences and Application,2013,doi:104236/msa.2013.

    [26]A.Hussanan,Z.Ismail,I.Khan,A.G.Hussein,and S.Sha fie,Eur.Phys.J.Plus 129(2014)1.

    [27]D.Vieru,Corina Fetecau,C.Fetecau,and Nait Nigar,Z.Naturforsch.69a(2014)714.

    [28]A.Khan,I.Khan,and S.Sha fie,Jurnal Teknologi(Sciences and Engineering)78(2016)71.

    [29]C.Fetecau,D.Vieru,Fetecau Corina,and I.Pop,Eur.Phys.J.Plus 130(2015)1.

    [30]M.A.Sheremet,T.Grosan,and I.Pop,Eur.J.Mech.B/Fluid 53(2015)241.

    [31]E.Magyari and A.Pantokratoras,Int.Commun.Heat Mass Transfer 38(2011)554.

    [32]C.Fetecau and S.Akhter,Bull.Inst.Polit.Iasi,Sect.Matematica,Mecanica Teoretica,Fizica LIX 3(2013)15.

    [33]G.R.Pande,G.A.Georgantopoulos,and C.L.Goudas,Astrophys.Space Sci.60(1979)125.

    [34]M.Turkyilmazoglu and I.Pop,Int.J.Heat Mass Tran.55(2012)7635.

    [35]A.S.Dorfman,Conjugate Problems in Convective Heat Transfer,CRC Press,Boca Raton,London,New York(2010).

    [36]C.J.Toki and J.N.Tokis,Z.Angew.Math.Mech.87(2007)4.

    [37]G.S.Seth,S.M.Hussain,and S.Sarkar,Journal of Egyptian Mathematical Society 23(2015)197.

    97超碰精品成人国产| h日本视频在线播放| kizo精华| ponron亚洲| 日韩av不卡免费在线播放| 国产 一区精品| 国产成人免费观看mmmm| 亚洲五月天丁香| 如何舔出高潮| 中文字幕人妻熟人妻熟丝袜美| 国产成人freesex在线| 亚洲精品久久久久久婷婷小说 | 校园人妻丝袜中文字幕| 欧美xxxx黑人xx丫x性爽| 亚洲精品456在线播放app| 精品久久久久久成人av| 亚洲色图av天堂| 黄色一级大片看看| 国内揄拍国产精品人妻在线| 男女国产视频网站| 最近2019中文字幕mv第一页| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| 中文精品一卡2卡3卡4更新| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩高清专用| 又黄又爽又刺激的免费视频.| 免费av不卡在线播放| 黄片wwwwww| 免费大片18禁| 国产精品久久久久久久久免| 少妇熟女aⅴ在线视频| 国产精品福利在线免费观看| 日韩成人av中文字幕在线观看| 久久精品夜色国产| 18+在线观看网站| 国产乱人视频| 18禁在线播放成人免费| 一级av片app| 亚洲无线观看免费| 中文欧美无线码| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区国产| 亚洲成av人片在线播放无| 在线观看av片永久免费下载| 欧美性猛交╳xxx乱大交人| 最近2019中文字幕mv第一页| 国产伦一二天堂av在线观看| 亚洲国产精品sss在线观看| 青春草亚洲视频在线观看| 久久久久网色| 国产午夜精品一二区理论片| 国产精品无大码| 淫秽高清视频在线观看| 少妇人妻精品综合一区二区| 97超碰精品成人国产| 婷婷色麻豆天堂久久 | 精品少妇黑人巨大在线播放 | 亚洲av电影不卡..在线观看| 老司机影院毛片| 国产精品av视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品456在线播放app| 免费看光身美女| 国产一区二区三区av在线| av在线天堂中文字幕| 日韩一区二区三区影片| 免费看光身美女| 亚洲精品成人久久久久久| 搡老妇女老女人老熟妇| 日本三级黄在线观看| 免费无遮挡裸体视频| 男人舔女人下体高潮全视频| 日韩高清综合在线| 啦啦啦韩国在线观看视频| 边亲边吃奶的免费视频| 国产成人福利小说| 久久精品国产99精品国产亚洲性色| 国产伦一二天堂av在线观看| 亚洲国产精品sss在线观看| av视频在线观看入口| 国产精品久久久久久久久免| 国产精品一区二区三区四区免费观看| www.色视频.com| 亚洲va在线va天堂va国产| 老女人水多毛片| 国产成人精品久久久久久| 亚州av有码| 国模一区二区三区四区视频| 国产亚洲一区二区精品| 免费观看精品视频网站| 国产一级毛片七仙女欲春2| 久久99热这里只有精品18| 一级二级三级毛片免费看| 国内精品宾馆在线| 尤物成人国产欧美一区二区三区| 一级毛片我不卡| 麻豆乱淫一区二区| 午夜激情福利司机影院| 日韩欧美在线乱码| 精品不卡国产一区二区三区| 欧美激情国产日韩精品一区| 精品人妻偷拍中文字幕| 在线播放国产精品三级| 久99久视频精品免费| 久久久久久久久久久丰满| kizo精华| 纵有疾风起免费观看全集完整版 | 亚洲av二区三区四区| 亚洲欧美精品专区久久| 床上黄色一级片| 老司机影院成人| 天堂网av新在线| 国产一级毛片七仙女欲春2| 久久精品影院6| 精品午夜福利在线看| 丰满乱子伦码专区| 欧美激情在线99| 麻豆乱淫一区二区| 国产欧美日韩精品一区二区| 小说图片视频综合网站| 1000部很黄的大片| 九色成人免费人妻av| 91久久精品国产一区二区成人| 国内精品宾馆在线| 久久人妻av系列| 九九在线视频观看精品| 国产一区二区在线观看日韩| 久久久精品94久久精品| 乱系列少妇在线播放| 国产成人a区在线观看| 国产高清不卡午夜福利| 久久欧美精品欧美久久欧美| 26uuu在线亚洲综合色| 亚洲国产精品专区欧美| 最近视频中文字幕2019在线8| 一区二区三区乱码不卡18| 欧美丝袜亚洲另类| 久久99热6这里只有精品| 99热这里只有是精品50| 日韩国内少妇激情av| 日本免费在线观看一区| 国产精品国产三级专区第一集| 亚洲成人精品中文字幕电影| 国产精品女同一区二区软件| 热99re8久久精品国产| av在线老鸭窝| 久久草成人影院| 99热这里只有是精品在线观看| 人人妻人人看人人澡| 日本-黄色视频高清免费观看| 免费观看a级毛片全部| 国产精品一及| 淫秽高清视频在线观看| videossex国产| 午夜福利在线观看吧| 非洲黑人性xxxx精品又粗又长| 99久久成人亚洲精品观看| 大又大粗又爽又黄少妇毛片口| 国产毛片a区久久久久| 最新中文字幕久久久久| 日本猛色少妇xxxxx猛交久久| 国模一区二区三区四区视频| 韩国av在线不卡| 丝袜喷水一区| 日韩,欧美,国产一区二区三区 | 精品一区二区免费观看| 国产av不卡久久| 插阴视频在线观看视频| 最近2019中文字幕mv第一页| 久久久a久久爽久久v久久| 少妇熟女aⅴ在线视频| 汤姆久久久久久久影院中文字幕 | 久久久久久久久中文| 在线观看66精品国产| 又粗又爽又猛毛片免费看| 亚洲欧洲国产日韩| 狂野欧美激情性xxxx在线观看| 国产精品女同一区二区软件| 国产片特级美女逼逼视频| 国产淫片久久久久久久久| 国产色婷婷99| 欧美区成人在线视频| 婷婷色综合大香蕉| av免费观看日本| 国产成人精品婷婷| 美女xxoo啪啪120秒动态图| 久久久色成人| 两个人视频免费观看高清| 日韩 亚洲 欧美在线| 国产乱来视频区| 中文字幕制服av| 久久久久久久久久成人| 天天一区二区日本电影三级| 国产精品无大码| 热99在线观看视频| 亚洲国产欧美在线一区| 日韩成人av中文字幕在线观看| av女优亚洲男人天堂| 国产亚洲av片在线观看秒播厂 | 水蜜桃什么品种好| 中文字幕免费在线视频6| 看十八女毛片水多多多| 亚洲真实伦在线观看| 日日撸夜夜添| 两个人视频免费观看高清| 少妇熟女欧美另类| 午夜精品一区二区三区免费看| 国产av码专区亚洲av| 91av网一区二区| 嫩草影院精品99| 亚洲欧美日韩高清专用| 国产久久久一区二区三区| 欧美+日韩+精品| 嫩草影院新地址| 边亲边吃奶的免费视频| 亚洲真实伦在线观看| 欧美一区二区亚洲| 简卡轻食公司| 天堂影院成人在线观看| 日日摸夜夜添夜夜添av毛片| 人妻夜夜爽99麻豆av| av免费观看日本| 一级二级三级毛片免费看| 日日干狠狠操夜夜爽| 1024手机看黄色片| 99热这里只有精品一区| 中国美白少妇内射xxxbb| 久久热精品热| 舔av片在线| 午夜精品在线福利| 久久久久久久国产电影| 搞女人的毛片| 男人舔女人下体高潮全视频| 观看美女的网站| 搡女人真爽免费视频火全软件| 亚洲va在线va天堂va国产| 亚洲人成网站高清观看| 你懂的网址亚洲精品在线观看 | 亚洲人与动物交配视频| 精品久久久久久久人妻蜜臀av| 九九在线视频观看精品| 日韩精品有码人妻一区| 免费观看人在逋| 最近的中文字幕免费完整| 亚洲av中文字字幕乱码综合| 国内少妇人妻偷人精品xxx网站| 久久久精品94久久精品| 人妻系列 视频| 精品酒店卫生间| 黄片wwwwww| 国产在视频线精品| 啦啦啦韩国在线观看视频| 一区二区三区高清视频在线| 青春草亚洲视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成人亚洲欧美一区二区av| 亚洲av成人av| 国产中年淑女户外野战色| 亚洲人成网站在线观看播放| 国产三级在线视频| 国产精品久久久久久av不卡| av在线老鸭窝| 日本-黄色视频高清免费观看| 少妇丰满av| 久久久久久久午夜电影| 午夜精品在线福利| videos熟女内射| av在线观看视频网站免费| 嫩草影院入口| 一级爰片在线观看| 91aial.com中文字幕在线观看| 国产精品久久久久久av不卡| 亚洲在线自拍视频| 日本免费一区二区三区高清不卡| 国产精品女同一区二区软件| 中文在线观看免费www的网站| 永久网站在线| 男女国产视频网站| 午夜精品在线福利| 国产亚洲精品av在线| 免费播放大片免费观看视频在线观看 | 国产亚洲av嫩草精品影院| 精品人妻一区二区三区麻豆| 中文字幕精品亚洲无线码一区| 久久鲁丝午夜福利片| 日日撸夜夜添| 非洲黑人性xxxx精品又粗又长| 一个人看的www免费观看视频| 精品一区二区免费观看| av女优亚洲男人天堂| 亚洲性久久影院| 亚洲乱码一区二区免费版| 天美传媒精品一区二区| 久久精品久久久久久久性| 黄色配什么色好看| 天堂√8在线中文| 18禁动态无遮挡网站| 人体艺术视频欧美日本| 青春草亚洲视频在线观看| 亚洲人成网站高清观看| 亚洲自拍偷在线| 日韩高清综合在线| 在线播放无遮挡| 久久精品夜夜夜夜夜久久蜜豆| 好男人在线观看高清免费视频| 亚洲精华国产精华液的使用体验| 草草在线视频免费看| 国产亚洲av嫩草精品影院| 久久久欧美国产精品| 日韩中字成人| 日本欧美国产在线视频| 麻豆成人av视频| 国产 一区精品| 午夜老司机福利剧场| 九九爱精品视频在线观看| 日本-黄色视频高清免费观看| 淫秽高清视频在线观看| 别揉我奶头 嗯啊视频| 亚洲欧美精品自产自拍| 国产欧美另类精品又又久久亚洲欧美| 午夜激情福利司机影院| 女人久久www免费人成看片 | 午夜激情欧美在线| 欧美+日韩+精品| 久久精品久久久久久噜噜老黄 | 高清午夜精品一区二区三区| 国产精品,欧美在线| 国产成人a∨麻豆精品| 午夜亚洲福利在线播放| 成年av动漫网址| 男的添女的下面高潮视频| 两个人视频免费观看高清| 日本一本二区三区精品| 亚洲欧美精品专区久久| 男人的好看免费观看在线视频| 欧美变态另类bdsm刘玥| 免费av毛片视频| 好男人在线观看高清免费视频| 国产精品人妻久久久久久| 日韩一本色道免费dvd| 一区二区三区免费毛片| av专区在线播放| 日本免费一区二区三区高清不卡| 久久久久久大精品| 亚洲av电影不卡..在线观看| 一个人看的www免费观看视频| 亚洲乱码一区二区免费版| 狠狠狠狠99中文字幕| 欧美另类亚洲清纯唯美| 午夜福利高清视频| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩无卡精品| 一本一本综合久久| 国产色婷婷99| 夜夜看夜夜爽夜夜摸| 国产成人精品婷婷| 国产黄色视频一区二区在线观看 | 日韩精品有码人妻一区| 人妻少妇偷人精品九色| 欧美不卡视频在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 色吧在线观看| 国产乱来视频区| 国产老妇女一区| 国产精品爽爽va在线观看网站| 中文字幕制服av| 精品一区二区三区人妻视频| 舔av片在线| 久久久久久久亚洲中文字幕| 黄片wwwwww| 最近2019中文字幕mv第一页| 欧美日本视频| 五月伊人婷婷丁香| 久久韩国三级中文字幕| 亚洲精品456在线播放app| 国内精品一区二区在线观看| 精品国产三级普通话版| 一区二区三区乱码不卡18| 国产精品人妻久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 网址你懂的国产日韩在线| АⅤ资源中文在线天堂| 国产v大片淫在线免费观看| 国产精品久久久久久久电影| 国国产精品蜜臀av免费| 人妻系列 视频| 夫妻性生交免费视频一级片| 国产亚洲午夜精品一区二区久久 | 亚洲欧美精品专区久久| av卡一久久| 尾随美女入室| 亚洲国产精品专区欧美| 国产人妻一区二区三区在| 中文字幕av在线有码专区| 亚洲美女视频黄频| 99久国产av精品国产电影| 亚洲欧美成人精品一区二区| 亚洲欧美成人综合另类久久久 | 国产精品.久久久| 久久精品影院6| 国产视频内射| 国产免费福利视频在线观看| 国产精品三级大全| 少妇熟女欧美另类| 亚洲中文字幕日韩| 99在线人妻在线中文字幕| 99久久精品国产国产毛片| 18禁动态无遮挡网站| 国产在线男女| 你懂的网址亚洲精品在线观看 | 国产乱人偷精品视频| 国产极品天堂在线| 亚洲国产精品专区欧美| 欧美性猛交╳xxx乱大交人| 秋霞在线观看毛片| 精品久久久久久成人av| 日本免费在线观看一区| 国产精品久久久久久精品电影| 毛片女人毛片| 国产在线男女| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久| 午夜精品一区二区三区免费看| 男的添女的下面高潮视频| 亚洲国产欧美人成| 国产精品久久久久久久久免| 国产av码专区亚洲av| 淫秽高清视频在线观看| 久久精品久久久久久久性| 色综合色国产| 国产成人91sexporn| 色播亚洲综合网| 又爽又黄a免费视频| 国产午夜精品久久久久久一区二区三区| 18禁动态无遮挡网站| 人妻夜夜爽99麻豆av| 精品免费久久久久久久清纯| 亚洲人成网站高清观看| 日韩欧美 国产精品| 成人漫画全彩无遮挡| 精品久久久久久久久久久久久| 国产av在哪里看| 99久久精品国产国产毛片| 午夜免费男女啪啪视频观看| 精品久久久久久电影网 | 一个人看的www免费观看视频| 草草在线视频免费看| 性插视频无遮挡在线免费观看| 别揉我奶头 嗯啊视频| 99视频精品全部免费 在线| 久久精品综合一区二区三区| 国产亚洲av片在线观看秒播厂 | 成年女人看的毛片在线观看| 一级毛片久久久久久久久女| 日韩一区二区视频免费看| 美女大奶头视频| 简卡轻食公司| 亚洲成人av在线免费| 亚洲五月天丁香| 欧美人与善性xxx| 亚洲va在线va天堂va国产| 99久久精品一区二区三区| 黄片wwwwww| 亚洲va在线va天堂va国产| 国产午夜精品论理片| av免费在线看不卡| 青春草国产在线视频| ponron亚洲| 禁无遮挡网站| 小说图片视频综合网站| 日日干狠狠操夜夜爽| 久久这里有精品视频免费| 国产不卡一卡二| 国产中年淑女户外野战色| 精品熟女少妇av免费看| 欧美xxxx黑人xx丫x性爽| 久久鲁丝午夜福利片| 我要看日韩黄色一级片| 天堂影院成人在线观看| 波多野结衣高清无吗| 久久6这里有精品| 欧美97在线视频| 欧美bdsm另类| 免费在线观看成人毛片| 精品国产露脸久久av麻豆 | 久久热精品热| 99久国产av精品国产电影| 99久久九九国产精品国产免费| 亚洲国产欧洲综合997久久,| 国产在线一区二区三区精 | 中文字幕熟女人妻在线| 亚洲人成网站高清观看| 欧美又色又爽又黄视频| 69人妻影院| 波多野结衣巨乳人妻| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲网站| 日本免费在线观看一区| 国产精品久久视频播放| 中国美白少妇内射xxxbb| 我的女老师完整版在线观看| 亚洲欧美精品综合久久99| 亚洲精品aⅴ在线观看| 久久午夜福利片| 国产精品99久久久久久久久| 在线免费观看的www视频| 成人亚洲精品av一区二区| 国内少妇人妻偷人精品xxx网站| 天天躁日日操中文字幕| 国产成人一区二区在线| 一边亲一边摸免费视频| 99热全是精品| 日本免费在线观看一区| 亚洲欧美日韩卡通动漫| 看片在线看免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久人妻av系列| 日本午夜av视频| 久久人人爽人人片av| 在线天堂最新版资源| 日本爱情动作片www.在线观看| 国产欧美日韩精品一区二区| 久久人人爽人人爽人人片va| 青春草视频在线免费观看| 在线免费观看的www视频| 18禁动态无遮挡网站| 久久99蜜桃精品久久| 人妻少妇偷人精品九色| 熟女电影av网| 91精品伊人久久大香线蕉| 中文资源天堂在线| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 亚洲欧美成人综合另类久久久 | 纵有疾风起免费观看全集完整版 | 亚洲怡红院男人天堂| 建设人人有责人人尽责人人享有的 | 99九九线精品视频在线观看视频| 美女被艹到高潮喷水动态| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人免费av一区二区三区| 日韩欧美 国产精品| 国产亚洲精品久久久com| 国产精品一区二区在线观看99 | 久久这里只有精品中国| 91精品国产九色| 亚洲欧美精品专区久久| 国产69精品久久久久777片| 久久99精品国语久久久| 国产中年淑女户外野战色| 2022亚洲国产成人精品| 少妇熟女欧美另类| 日韩精品青青久久久久久| 久久人人爽人人片av| 在线观看av片永久免费下载| 男插女下体视频免费在线播放| .国产精品久久| 久久韩国三级中文字幕| kizo精华| 少妇的逼好多水| 久久人妻av系列| 最新中文字幕久久久久| 九九爱精品视频在线观看| 亚洲自偷自拍三级| av黄色大香蕉| 亚洲国产欧美在线一区| 中文字幕久久专区| 男女国产视频网站| 亚洲成av人片在线播放无| 欧美性猛交黑人性爽| 亚洲av中文字字幕乱码综合| 久久久久久久午夜电影| 亚洲精华国产精华液的使用体验| 亚洲国产欧美人成| 国产成人午夜福利电影在线观看| 青春草亚洲视频在线观看| 国产探花极品一区二区| 69av精品久久久久久| 欧美区成人在线视频| 国语对白做爰xxxⅹ性视频网站| 三级国产精品欧美在线观看| 午夜爱爱视频在线播放| 自拍偷自拍亚洲精品老妇| 欧美成人免费av一区二区三区| av免费在线看不卡| 午夜精品一区二区三区免费看| 九九热线精品视视频播放| 中文资源天堂在线| 性插视频无遮挡在线免费观看| 超碰av人人做人人爽久久| 不卡视频在线观看欧美| 在线观看美女被高潮喷水网站| 岛国毛片在线播放| 亚洲婷婷狠狠爱综合网| 大话2 男鬼变身卡| 热99re8久久精品国产| 哪个播放器可以免费观看大片| 内地一区二区视频在线| 国产一区亚洲一区在线观看| 久久精品熟女亚洲av麻豆精品 | 国产精品一区二区性色av| 日韩一区二区三区影片| 亚洲在线自拍视频| 一边亲一边摸免费视频| 少妇的逼水好多| 亚洲av电影在线观看一区二区三区 | 免费看a级黄色片| 久热久热在线精品观看| 热99在线观看视频| 国产色爽女视频免费观看| 亚洲欧洲日产国产| 亚洲人成网站在线观看播放| 天美传媒精品一区二区|