• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    General Solutions for Hydromagnetic Free Convection Flow over an In finite Plate with Newtonian Heating,Mass Diffusion and Chemical Reaction

    2017-05-09 11:46:34ConstatinFetecauNehadAliShahandDumitruVieru
    Communications in Theoretical Physics 2017年12期

    Constatin Fetecau,Nehad Ali Shah,and Dumitru Vieru

    1Academy of Romanian Scientists,Bucuresti 050094,Romania

    2Abdus Salam School of Mathematical Sciences GC,University Lahore,54600,Pakistan

    3Technical University of Iasi,Iasi 700050,Romania

    1 Introduction

    Natural or free convection flows are abundantly met in nature.They are particularly important in oceanic and atmospheric circulation, filtration processes,cooling of nuclear reactors,solar energy collectors and arise in fluids when the temperature changes imply variations of the density leading to buoyancy forces which affect their motion.Details about the applications of free convection flows can be found in the books of Ghoshdastidar[1]and Nield and Bejan[2]but one of the oldest and interesting studies regarding the free convection from a heated vertical plate is that of Turnbull[3]in presence of an electric field.Such flows,which are also affected by the differences in concentration,have been extensively studied due to their multiple applications in engineering and environmental processes.The study of free convection flow in the presence of magnetic field is also important in polymer industry,metallurgy,astrophysics and geophysics and the first authors who took into consideration the effects of magnetic field in their work seem to be Soundalgekaret al.[4]

    Hydromagnetic flows combined with heat and mass transfer by free convection have been studied by many authors due to their diverse applications in science and technology.The mass transfer,that means the transport of a constituent between two regions having different concentrations,is the basis of many biological and chemical processes.[5]It also appears in the theory of stellar and solar structures.On the other hand,in the last time,hydromagnetic free convection flows involving heat and mass transfer with chemical reaction received a special attention(see for instance the recent works of Reddyet al.[6?7]Raoet al.,[8]Srihari and Chirra Kesava Reddy,[9]Pattnaik and Biswal,[10]Sethet al.[11]and therein references).They are important in different areas of sciences and engineering and usually occur in magnetohydrodynamic power generation systems,cooling of nuclear reactors,power and cooling systems as well as in petro-chemical industry.

    However,the heat transfer characteristics are strongly dependent on the thermal boundary conditions,and in all above-mentioned papers the free convection flows are driven by a prescribed surface temperature or prescribed surface heat flux.Merkin[12]was the first author who assumed that the flow is set up by Newtonian heating from the surface.In such flows,which are also called conjugate convective flows and have important applications in many ture.Effects of Newtonian heating on the free convection lf ow of a viscous fluid along an in finite vertical or horizontal plate embedded in a porous medium have been studied by Lesnicet al.[14?15]and Popet al.[16]Other interesting solutions,in the absence of mass transfer,have been also established by Chaudhary and Jain,[17]Mebine and Adigio,[18]Narahari and Ishak,[19]Daset al.[20]and Hussananet al.[21]The effects of mass transfer on such flows have been studied by Narahari and Nayan,[22]Narahariet al.,[23]Narahari and Dutta[24]and Hussananet al.[25?26]However,none of these works took into consideration,heat source or chemical reaction.Free convection flows with Newtonian heating and mass diffusion in which the plate applies a shear stress to the fluid or slip effects are taken into consideration have been studied by Vieruet al.,[27]Khanet al.,[28]and Fetecauet al.[29]An interesting mathematical study of the free convection with dissipative heating has been developed by Sheremetet al.[30]

    The main purpose of this work is to provide a general study of hydromagnetic free convection flow of an engineering devices,[13]the rate of heat transfer from the plate surface is proportional to the local surface temperaincompressible viscous fluid over a moving in finite vertical plate with Newtonian heating,heat source and chemical reaction.Radiative and porous effects are not taken into consideration but,according to Magyari and Pantokratoras[31]and Fetecauet al.,[32]they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter.Exact analytical solutions are established for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient.They can generate exact solutions for any flow of this type and,for illustration,three special cases are considered and some known results from the literature are recovered or corrected.The in fluence of physical parameters on some flows with technical relevance is graphically underlined and discussed.Contributions of mechanical,thermal and concentration components of velocity on the fluid motion are together brought to light for motions due to a highly accelerating plate.The required time to reach the steady-state for cosine or sine oscillations of the concentration on the boundary is also determined.

    2 Mathematical Formulation of the Problem

    Let us consider the hydromagnetic free convection flow of an electrically conducting,incompressible viscous fluid with Newtonian heating and mass diffusion over a moving in finite non conducting vertical flat plate(Fig.1).At the initial momentt=0,both the fluid and the plate are at rest with the same temperatureT∞and the species concentrationC∞.After timet=0+the plate,whose concentration is raised or lowered to the valueC∞+Cwg(t),is moving in its plane against the gravitational field with an arbitrary velocityUf(t).HereCwandUare constants while the dimensionless functionsf(·)andg(·)are piecewise continuous andf(0)=g(0)=0.A transverse magnetic field of uniform strengthB,whose magnetic lines of force are fixed relative to the fluid,acts perpendicular to the plate and the magnetic Reynolds number is assumed to be small enough so that the induced magnetic field can be neglected.

    Fig.1 Schematic diagram of the flow con figuration.

    Radiative and porous effects are not taken into consideration but,as we already mentioned,they can be immediately included by a simple rescaling of Prandtl number,respectively the magnetic parameter.Our results are obtained in the presence of heat source and chemical reaction,but the viscous dissipation is neglected due to its small size.This assumption can be justi fied by small velocities usually encountered in free convection flows.[33]In these conditions,choosing a suitable Cartesian coordinate system and using the usual Boussinesqs approximation,our flow is governed by the following partial differential equations[10](the inertia terms are also neglected)

    whereu,T,andCare velocity,temperature and species concentration of the fluid,νis the kinematic viscosity,gis the acceleration due to gravity,βTis the thermal expansion coefficient,βCis the volumetric coefficient of concentration expansion,σis electrical conductivity,ρis fluid density,cpis the speci fic heat at constant pressure,kis the thermal conductivity,Qis the heat generation or absorption coefficient,Dis the chemical molecular diffusivity andRis chemical reaction parameter.

    The corresponding initial and boundary conditions are:

    wherehis the heat transfer coefficient for Newtonian heating.

    By introducing the dimensionless variables and functions

    and dropping out the star notation,we attain to the following dimensionless initial boundary values problem:

    are the thermal Grashof number,the mass Grashof number,the buoyancy ratio parameter,the magnetic parameter,the Prandtl number and the Schmidt number,respectively.Of course,the characteristic velocityUhas been taken to be equal with(gβT/νU)(k/h)2T∞.

    It is worth pointing out thatPrandScare transport parameters representing the thermal diffusivity,respectively the mass diffusivity whileNgives the relative contribution of the mass transport rate on the flow into consideration.[24]AsβCcan be positive or negative[34]andβTis a positive quantity,Ncan be also positive or negative.IfNis positive,the mass and thermal buoyancy forces act in the same direction.In the contrary case,the two forces are opposite.Of course,N=0 in the absence of mass diffusion.

    3 Solution of the Problem

    The temperature fieldT(y,t)corresponding to this problem has been already determined by Vieruet al.[27]in a problem with shear stress on the boundary.Our interest here,is to determine the velocity and concentration fields as well as the corresponding Sherwood number and the skin friction coefficient whenT(y,t)is known.For completion,the thermal boundary layer thickness will be also determined.To do that,the Laplace transform technique will be used and the corresponding Laplace transform(Ref.[27],Eq.(19))

    In order to determine the differential equation describing the thickness of the thermal boundary layer,[35]we integrate Eq.(9)with respect toyfrom zero to in finity,respectively toδ1T,whereδ1Tis the thermal layer thickness,introduce the measure of thermal layer

    and use the boundary conditions(12)2and(13)2.The obtained equation is

    Applying the Laplace transform to Eq.(16)and using Eq.(14)as well as the fact thatδT(0)=0,we find that

    3.1 Species Concentration

    Applying the Laplace transform to Eq.(10)and using the corresponding initial and boundary conditions,we find that

    Here,G(q)is the Laplace transform ofg(t)andqis the transform parameter.

    The solution of the ordinary differential equation(19)subjected to the boundary conditions(20),is given as

    Applying the inverse Laplace transform to Eq.(21)and using Eq.(A1)from Appendix,the fact thatL?1{qG(q)}=g′(t)ifg(0)=0 and the convolution theorem,we find that

    where the function Φ is de fined in Appendix.

    The rate of mass transfer from the plate to fluid,in terms of Sherwood number,is given by

    Introducing the equality(22)into Eq.(23),we find that

    Now,we integrate Eq.(10)across the concentration layer from zero to in finity,respectively toδ1C,whereδ1Cis the concentration layer thickness,introduce the measure of the concentration boundary layer

    and use the boundary conditions(12)3and(13)3.It results that

    whose inverse Laplace transform is

    3.2 Velocity Field

    Applying the Laplace transform to Eq.(8)and bearing in mind the corresponding initial and boundary conditions,it results that

    Introducing Eqs.(14)and(21)into Eq.(29),it results that

    The solution of the ordinary differential equation(31)with the boundary conditions(30),is given by

    Applying the inverse Laplace transform to Eq.(32)and using again the convolution theorem and Eq.(A2)from Appendix,we find the velocity field under the form

    Appling the inverse Laplace transform to Eq.(37),um(y,t)remain unchanged while the thermal and concentration components of velocity become(see Eqs.(A1)and(A3)1)

    Another physical entity of interest is the skin friction coefficient at the plate[7,10]

    Introducing Eq.(33)in Eq.(40),we find the skin friction coefficient

    are its mechanical,thermal and concentration components.

    Thedifferentialequation describing thevelocity boundary layer thickness,namely

    is obtained integrating Eq.(8)across the velocity boundary layer and following the same line as before for temperature and concentration.The solution of this differential equation with the initial conditionδV(0)=0 can be also obtained by means of the Laplace transform technique.

    Applying the inverse Laplace transform to Eq.(46),and using Eqs.(A2)and(A3)2,it results

    4 Special Cases with Engineering Applications

    As we previously mentioned,the general expressions that have been here obtained for velocity,concentration,Sherwood number and the skin friction coefficient can generate exact solutions for any hydromagnetic free convection flow of this type.In order to validate their correctness,as well as to get some physical insight of certain fundamental flows with possible engineering applications,three special cases are considered and some results from the existing literature are recovered or corrected.

    Case 1Uniform Motion and Constant Concentration of the Plate

    By substituting the functionsf(·)andg(·)byH(·)(the Heaviside unit step function)in Eqs.(22),(34),and(36)and bearing in mind the fact that

    whereδ(·)is the Dirac delta function,we find the dimensionless fluid concentration

    and the mechanical and concentration components of ve-

    corresponding to the hydromagnetic free convection flow over an in finite plate,which is maintained at a constant concentration and is moving in its plane with a constant velocity.The thermal component of velocity remain unchanged while the expressions ofC0(y,t)andum0(y,t)are identical to those obtained in(Ref.[6],Eqs.(12)and(16)).

    The corresponding Sherwood number,namely

    are obtained substitutingf(t)byH(t)in Eqs.(42)and(44).As expected,Eq.(53)is identical to the first term of Eq.(19)from Ref.[6].In the absence of magnetic effects and chemical reaction,Eqs.(49),(50),(52),and(53)take the simple forms

    which are well known in the literature.

    By now substitutingf(t)andg(t)byH(t)in Eqs.(28)and(47),the expressions of the thickness of the corresponding boundary layers are obtained.The concentration boundary layer thickness,for instance,has the simple form

    whent→∞.

    Case 2Accelerated Plate with Ramp-Type Concentration

    By now lettingf(t)=g(t)H(t)ta(a>0)into Eqs.(22),(34),and(36),we find solutions

    corresponding to the hydromagnetic free convection flow due to a slowly(a<1),constantly(a=1)or highly(a>1)accelerating plate with ramp-type concentration.[36]Of course,the corresponding velocity field is

    whereuT(y,t)is given by Eq.(35).

    Making the same substitutions in Eqs.(24),(42),and(44),we find that

    Of a special interest is the casea=1 corresponding to the free convection flow due to a constantly accelerating plate.By makinga=1 in Eqs.(58)–(60),and(62)–(64)and using Eqs.(A4)–(A9),it results that

    It is worth pointing out the fact thatum1(y,t)from Eq.(66)is identical to the result of Reddyet al.(Ref.[6]Eq.(17)and Sethet al.(Ref.[37],Eq.(2.11))while the expression ofτm1from Eq.(69)corrects the similar result of Ref.[6].The corresponding expressions of the associated boundary layers thickness can be immediately obtained puttingf(t)=g(t)=H(t)tain Eqs.(28)and(47).Fora=1 Eq.(28)reduces to

    Case 3Oscillating Plate with Oscillatory Concentration

    Let us now assume that the plate,with oscillatory concentration on the boundary,is oscillating in its plane with the same frequencyωas well as the concentration.The dimensionless solutions corresponding to the free convection flow due to cosine or sine oscillations of the concentration on the boundary,namely

    are obtained substitutingf(t)andg(t)byH(t)cos(ωt)orH(t)sin(ωt)in Eqs.(22),(24),(34),(36),(42),and(44),respectively.As expected,the solutions(72)–(77)reduce to those given by Eqs.(49)–(54)if the frequencyωof oscillations tends to zero(foruCc(y,t),uC0(y,t)andτCc,τC0see also the general solutions(36)and(44)).Furthermore,all solutions corresponding to this subsection can be written as a sum of steady-state(permanent)and transient solutions.The steady-state solutions corresponding toCc(y,t)andCs(y,t),for instance,can be given by the equalities(see also Eq.(A10))

    Moreover,lengthy but straightforward computation show that these solutions can be written in the simple forms(see Eqs.(A11)and(A12))

    5 Numerical Results and Discussions

    In order to gain some physical insight of results that have been here obtained and to avoid repetition,the effects of buoyancy ratio parameter(N),heat generation or absorption coefficient(Q),Schmidt number(Sc)and chemical reaction parameter(R)on dimensionless concentration and velocity fields are graphically underlined in Figs.2–7 for fluid motions induced by a highly accelerating plate(f(t)=H(t)t3/2)with ramp-type concentration(g(t)=H(t)ta).Variations of Sherwood number(Sh)with respect toScandRare presented in Fig.8 while the diagrams of the skin friction coefficientτagainsttare given in Fig.9.Finally,for completion,the contributions of mechanical,thermal and concentration components of velocity on the fluid motion are brought to light by Fig.10 and the required time to reach the steady-state of mass transfer is graphically obtained in Figs.11 and 12 for flows with cosine or sine oscillations of concentration at the plate.Time variation of thermal or concentration boundary layer thickness is presented in Figs.13 and 14 for different values of physical parameters when the species concentration is constant on the boundary.

    Fig.2 Pro files of the dimensionless concentration C1(y,t)against y for R=1.5,t=0.5,and 1 with different values of Sc.

    Fig.3 Pro files of the dimensionless concentration Ca(y,t)against y for t=2.5,Sc=0.8,R=0.4,and 0.9 with different values of a.

    Pro files of the concentrationCa(y,t)againstyare presented in Figs.2 and 3 for different values ofSc,R,aand the timet.The species concentration,as expected,is an increasing function with respect toaandtbut it decreases for increasing values ofScandR.As it is known,[5]a diminution in the Schmidt numberScmeans an increase in mass diffusivity which enhances the species concentration in fluid.Consequently,an increase ofScorRlowers the concentration level of the fluid.In all cases,the concentration pro files smoothly descend from maximum values on the wall to the zero value for large values ofy.

    Fig.4 Pro files of the dimensionless velocity u3/2(y,t)against y at time t=2,M=0.2,Pr=1.5,Q=0.7,Sc=0.2,R=0.3,and different values of N.

    Fig.5 Pro files of the dimensionless velocity u3/2(y,t)against y at time t=2,for M=1,N=2,Pr=1.5,Sc=0.5,R=0.7,and different values of Q.

    Numerical values of the fluid velocityua(y,t),given by Eq.(61),are graphically displayed in Figs.4–7 fora=3/2 the plate concentrationC(0,t)=tH(t)and different value of physical parameters.Velocity pro files againstyare presented in Fig.4 for aiding(N>0)and opposing(N<0)flows at the timet=2.In the first case,when thermal and mass buoyancy forces act in the same direction,the fluid velocity increases for increasing values ofNas a result of the growth of concentration.N=0 implies the mass Grashof numberGm=0 and the mass diffusion phenomenon is absent.IfN<0,the mass buoyancy forces are negative and the fluid velocity is signi ficantly diminished.However,it increases for increasing values ofN.For positive values ofNgreater than a criticalNcvalue(about 1.9),in the plate vicinity,the fluid velocity increases from the common value on the wall up to a maximum value and then decreases to the stream value for large values ofy.

    Effects of the heat generation or absorption coefficientQon the fluid motion are displayed in Fig.5.The presence of heat generation(Q<0)generates thermal energy,which increases the fluid temperature.As a result,the fluid velocity increases due to the increasing thermal buoyancy force.An opposite effect appears in the case of heat absorption.More exactly,due to the heat absorption(Q>0),the fluid temperature diminishes and the thermal buoyancy force decreases.This implies a reduction of fluid velocity with increasing values ofQ.However,in the case of heat generation,for eachQless than a critical valueQc(about?0.5),the fluid velocity increases from the common value on the plate up to a maximum value and then smoothly decreases to the zero value for increasing values ofy.

    Fig.6 Pro files of the dimensionless velocity u3/2(y,t)against y at time t=2,for M=1,N=2,Pr=1.5,Q=0.5,Sc=0.5,and different values of R.

    Figure 6 displays the in fluence of chemical parameterRon the fluid velocity.The presence of destructive chemical reaction(R>0),as it results from Fig.3,diminishes the species concentration and implicitly reduces the mass buoyancy force.As a result,the fluid velocity decreases for increasing values ofR.Of course,an opposite trend appears in the case of non-destructive chemical reactions whenR<0.Variations of the fluid velocity are also presented in Fig.7 for two values ofPrand different values ofScwhile the other parameters are fixed.From this figure,it clearly results that the velocity is a decreasing function both withPrandSc.Consequently,the viscous forces predominate thermal diffusion or mass diffusion effects for increasing values of Prandtl,respectively Schmidt number.

    The variation of Sherwood numberShin time is graphically presented in Fig.8 at different values ofScandRfor flows with ramp-type surface concentration.It is found that the rate of mass transfer at the plate is an almost linearly increasing function oft.It also increases for increasing values ofScandR.Consequently,the destructive chemical reaction enhances the rate of mass transfer at the plate.An opposite effect produces the increase of the chemical molecular diffusivityD.

    Figure 9 shows the skin friction coefficient variation againsttunder the in fluence ofQandN,respectivelyRandPr.The skin friction coefficient is an increasing function with respect tot,Q,N,Prand decreases for increasing positive values ofR.It increases almost linearly intforN=3 withQ=0.6 and 0.7 orPr=3.5 withR=0.5,1.0 and 1.5.From physical point of view,it means that a destructive chemical reaction diminishes the viscous drag at the plate while the heat absorption enhances it.Fig.9Variation of skin frictionτgiven by Eq.(41)againsttforM=0.4,Sc=0.5,f(t)=t3/2,g(t)=tand different values ofQ,N,R,andPr.

    Fig.8 Variation of Sherwood number Sh,given by Eq.(68),with respect to Sc and R.

    Fig. 10 Pro filesofthe dimensionlessvelocities um3/2(y,t),um3/2(y,t)+uT(y,t),and um3/2(y,t)+uT(y,t)+uC(y,t)against y for Pr=1.5,Q=0.5,Sc=0.5,R=0.7,M=0.6,N=2,and t=3.

    In order to evaluate the importance of thermal or mass diffusion effects on free convection flows of viscous fluids,the contributions of mechanical,thermal and concentration components of velocityu3/2(y,t)on the fluid motion are together brought to light in Fig.10.As it clearly results from this figure,each component signi ficantly influences the fluid velocity and cannot be neglected.

    In Figs.11 and 12,the required time to reach the steady-state for mass diffusion is graphically determined for flows with cosine or sine oscillations of concentration at the plate for two values of chemical reaction parameterR.This is the time after which the diagrams of starting solutions(72)or(78)are almost identical to those of steadystate solutions(86)1,respectively(86)2.At small values oft,the difference between the corresponding solutions is signi ficant but it quickly dissapears and the required time to reach the steady-state is higher for sine in comparison to cosine oscillations of concentration at the wall.This is obvious,because at timet=0 the concentration level at the plate is zero for sine oscillations.Furthermore,as it clearly results from these figures,the presence of destructive chemical reaction improves this time for increasing values ofR>0.

    Fig.11 Required time to reach the steady-state of mass transfer for cosine oscillations of concentration at the plate at Sc=0.9 and ω =2π/3.

    Figures 13 and 14 bring to light the time variation of the thickness of thermal or concentration boundary layers with respect toPrandQ,respectivelyScandRandg(t)=H(t).In all cases,the boundary layer thickness signi ficantly increases up to a critical value oft(aroundt=10)and then rapidly tends to the asymptotic value.The thermal boundary layer thickness is a decreasing function with respect toProrQand it rather reaches the asymptotic value for greater values of these parameters.A similar behavior appears from Fig.14 for the concentration boundary layer thickness with regard toRandSc.

    Fig.12 Required time to reach the steady-state of mass transfer for sine oscillations of concentration at the plate at Sc=0.9 and ω =2π/3.

    Fig.13 Time variation of thermal boundary layer thickness for different values of Prandtl number Pr and heat generation/obsorption parameter Q.

    Fig.14 Time variation of thermal boundary layer concentration for different values of Schmidt number Sc and chemical reaction parameter R.

    6 Conclusions

    Hydromagnetic free convection flow of an electrically conducting,incompressible viscous fluid over a moving infinite vertical plate with Newtonian heating,heat source,mass diffusion and chemical reaction is completely solved.Exact analytic solutions are established for velocity,con-centration,Sherwood number and skin friction coefficient when the plate is moving in its plane with an arbitrary velocity and the concentration at the wall is a timedependent function.They satisfy all imposed initial and boundary conditions and can generate exact solutions for any free convection flow of this type.For illustration,as well as to get some physical insight of the obtained results,three special cases with technical relevance are considered and some results from the existing literature are recovered or corrected.Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter.[31?32]

    The solutions corresponding to the motion due to a plate with uniform velocity(Stokes first problem)and constant concentration at the wall,as well as those induced by a constantly accelerating plate with ramp-type concentration at the wall,[36]are presented in simple forms in terms of exponential function and error function or complementary error function of Gauss.In addition,the solutions of the second problem can be written as simple integrals of the similar solutions corresponding to the first problem of Stokes.The solutions corresponding to motions due to an oscillating plate(Stokes second problem)with oscillatory concentration at the wall can be written as sum of steady-state(permanent)and transient solutions.These solutions,which are independent of the initial conditions but satisfy the boundary conditions and governing equations,are important for those who want to eliminate the transients from their experiments.Moreover,as it was to be expected,all solutions corresponding to cosine oscillations of the plate and of the concentration at the wall reduce to the similar solutions of Stokes first problem when the oscillation frequencyωtends to zero.

    Finally,in order to bring to light some physical penetration of results that have been obtained,the diagrams of dimensionless concentration and velocity fields,Sherwood number and skin friction coefficient are presented in different situations for typical values of pertinent parameters.However,in order to avoid repetition,their pro files have been here presented and discussed only for variations of physical parametersN,Q,ScandRwith ramp-type concentration at the wall.Contributions of mechanical,thermal and concentration components of velocity on the fluid motion are together underlined for motions due to highly accelerating plate.The required time to reach the steady-state of mass diffusion for cosine or sine oscillations of the concentration at the plate has been graphically determined and the main results that have been here obtained are:

    (i)The problem in consideration has been completely solved.Obtained results can generate exact solutions for any free convection flow of this type.

    (ii) Species concentration is increasing function in time and ramp-type parametera.

    (iii) The increase of mass diffusivity brings up the concentration level of the fluid while the presence of destructive chemical reaction diminishes it.

    (iv)For aiding flows(N>0),velocity of the fluid is increasing function with respect toN.An opposite trend appears in the case of opposing flows when(N<0).

    (v)Heat absorption(Q>0)causes a reduction of velocity for increasing value ofQ.This is due to the fact the fluid temperature diminishes and the thermal buoyancy force decreases.A reverse trend appears in the presence of heat generationQ<0.

    (vi)Destructive chemical reaction(R>0)reduces the mass buoyancy force and the fluid velocity decreases for increasing values ofRthrough the boundary layer region.The non-destructive chemical reaction(R<0)enhances the fluid velocity.

    (vii)Destructive chemical reaction enhances the rate of mass transfer at the plate.

    (viii)The presence of heat absorption enhances the viscous drag at the plate while the destructive chemical reaction diminishes it.

    (ix)Mechanical,thermal or concentration effects signi ficantly in fluence the fluid motion and they cannot be neglected.

    (x)Required time to reach the steady-state for the mass transfer is higher for sine in comparison to cosine oscillations of concentration of the plate and it is improved in the presence of destructive chemical reaction.

    (xi)Thermal or concentration boundary layer thickness signi ficantly increases up to a critical value oftand then it rather reaches the asymptotic value for greater values ofQorPr,respectivelyRorSc.It is a decreasing function with respect to each of the respective parameters.

    Appendix

    The author Nehad Ali Shah is highly thankful and grateful to Abdus Salam School of Mathematical Sciences,GC University,Lahore,Pakistan and Higher Education Commission of Pakistan,for generous supporting and facilitating this research work.

    [1]P.S.Ghoshdastidar,Heat Transfer,Oxford University Press,Oxford(2004)p.225.

    [2]D.A.Nield and A.Bejan,Convection in Porous Media,Springer,Verlag,New York(2006)pp.94-97.

    [3]R.J.Turnbull,Phys.Fluids 12(1969)2255.

    [4]V.M.Soundalgekar,S.K.Gupta,and N.S.Birajdar,Nucl.Eng.Des.53(1979)339.

    [5]N.Ahmed and M.Dutta,Int.J.Phys.Sci.8(2013)254.

    [6]T.S.Reddy,M.C.Raju,and S.V.K.Varma,J.Appl.Fluid Mech.6(2013)443.

    [7]T.S.Reddy,M.C.Raju,and S.V.K.Varma,Journal of Computational and Applied Research in Mechanical Engineering(JCARME)3(2013)53.

    [8]B.M.Rao,G.V.Reddy,M.C.Raju,and S.V.K.Varma,IOSR J.Appl.Phys.(IOSR-JAP)3(2013)22.

    [9]K.Srihari,Chirra Kesava Reddy,Int.J.Mech.Eng.3(2014)1.

    [10]P.K.Pattnaik and T.Biswal,Walailak J.Sci.Technol.12(2015)749.

    [11]G.S.Seth,B.Kumbhakar,and S.Sarkar,Int.J.Eng.Sci.7(2015)94.

    [12]J.H.Merkin,Int.J.Heat Fluid Flow 15(1994)392.

    [13]V.Rajesh,Int.J.Heat Mass Tran.85(2012)221.

    [14]D.Lesnic,D.B.Ingham,and I.Pop,Int.J.Heat Mass Tran.42(1999)2621.

    [15]D.Lesnic,D.B.Ingham,and I.Pop,J.Porous Media 3(2000)227.

    [16]I.Pop,D.Lesnic,and D.B.Ingham,Hybrid Methods Eng.2(2000)31.

    [17]R.C.Chaudhary and P.Jain,J.Eng.Phys.Thermophys.80(2007)954.

    [18]P.Mebine and E.M.Adigio,Turk.J.Phys.33(2009)109.

    [19]M.Narahari and A.Ishak,J.Appl.Sci.11(2011)1096.

    [20]S.Das,C.Mandal,and R.N.Jana,Int.J.Comput.Appl.41(2012)36.

    [21]A.Hussanan,M.I.Anwar,F.Ali,I.Khan,and S.Sha fie,Heat Trans.Res.45(2014)119.

    [22]M.Narahari and M.Y.Nayan,Turkish J.Eng.Env.Sci.35(2011)187.

    [23]M.Narahari,R.Pendyala,and M.Y.Nayan,AIP Conference Proceedings 1482(2012)340.

    [24]M.Narahari and B.K.Dutta,Chem.Eng.Commun.199(2012)628.

    [25]A.Hussanan,Z.Ismail,I.Khan,and S.Sha fie,Materials Sciences and Application,2013,doi:104236/msa.2013.

    [26]A.Hussanan,Z.Ismail,I.Khan,A.G.Hussein,and S.Sha fie,Eur.Phys.J.Plus 129(2014)1.

    [27]D.Vieru,Corina Fetecau,C.Fetecau,and Nait Nigar,Z.Naturforsch.69a(2014)714.

    [28]A.Khan,I.Khan,and S.Sha fie,Jurnal Teknologi(Sciences and Engineering)78(2016)71.

    [29]C.Fetecau,D.Vieru,Fetecau Corina,and I.Pop,Eur.Phys.J.Plus 130(2015)1.

    [30]M.A.Sheremet,T.Grosan,and I.Pop,Eur.J.Mech.B/Fluid 53(2015)241.

    [31]E.Magyari and A.Pantokratoras,Int.Commun.Heat Mass Transfer 38(2011)554.

    [32]C.Fetecau and S.Akhter,Bull.Inst.Polit.Iasi,Sect.Matematica,Mecanica Teoretica,Fizica LIX 3(2013)15.

    [33]G.R.Pande,G.A.Georgantopoulos,and C.L.Goudas,Astrophys.Space Sci.60(1979)125.

    [34]M.Turkyilmazoglu and I.Pop,Int.J.Heat Mass Tran.55(2012)7635.

    [35]A.S.Dorfman,Conjugate Problems in Convective Heat Transfer,CRC Press,Boca Raton,London,New York(2010).

    [36]C.J.Toki and J.N.Tokis,Z.Angew.Math.Mech.87(2007)4.

    [37]G.S.Seth,S.M.Hussain,and S.Sarkar,Journal of Egyptian Mathematical Society 23(2015)197.

    深夜精品福利| 亚洲欧洲精品一区二区精品久久久| 18禁裸乳无遮挡免费网站照片 | 亚洲,欧美精品.| 精品乱码久久久久久99久播| 一个人免费在线观看的高清视频| 又大又爽又粗| 欧美成人免费av一区二区三区| 人人澡人人妻人| 亚洲精品久久午夜乱码| 免费一级毛片在线播放高清视频 | 我的亚洲天堂| 亚洲专区国产一区二区| 啦啦啦免费观看视频1| 精品乱码久久久久久99久播| 高清毛片免费观看视频网站 | 伊人久久大香线蕉亚洲五| 亚洲精品美女久久久久99蜜臀| 这个男人来自地球电影免费观看| 成人18禁高潮啪啪吃奶动态图| 777久久人妻少妇嫩草av网站| 国产在线观看jvid| 51午夜福利影视在线观看| 日韩一卡2卡3卡4卡2021年| 9色porny在线观看| 久久久久久免费高清国产稀缺| 国产av一区二区精品久久| 日韩欧美免费精品| 91麻豆av在线| 水蜜桃什么品种好| 亚洲av美国av| 久9热在线精品视频| 久久热在线av| 亚洲 欧美 日韩 在线 免费| 日本黄色日本黄色录像| 久99久视频精品免费| 午夜免费鲁丝| 999久久久国产精品视频| 国产精品一区二区三区四区久久 | 亚洲精品久久成人aⅴ小说| 51午夜福利影视在线观看| 国产精品亚洲av一区麻豆| 咕卡用的链子| 日本五十路高清| 露出奶头的视频| 欧美日韩福利视频一区二区| 国产成人av激情在线播放| 又紧又爽又黄一区二区| 不卡一级毛片| 一区二区三区激情视频| 激情视频va一区二区三区| 国产视频一区二区在线看| 精品少妇一区二区三区视频日本电影| 国产乱人伦免费视频| 777久久人妻少妇嫩草av网站| 免费日韩欧美在线观看| 美女福利国产在线| 91在线观看av| 国产亚洲精品综合一区在线观看 | 一本一本综合久久| 日韩欧美三级三区| 亚洲男人的天堂狠狠| 免费在线观看成人毛片| 1024手机看黄色片| 亚洲人成网站在线播| 老女人水多毛片| 赤兔流量卡办理| 看十八女毛片水多多多| 少妇被粗大猛烈的视频| 亚洲av日韩精品久久久久久密| 国产欧美日韩一区二区精品| 欧美最黄视频在线播放免费| 久久欧美精品欧美久久欧美| 国产精品爽爽va在线观看网站| 国产欧美日韩一区二区精品| 少妇的逼水好多| 久久久久亚洲av毛片大全| 中文字幕熟女人妻在线| 欧美成人免费av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 12—13女人毛片做爰片一| 精品国产三级普通话版| 一区二区三区免费毛片| 欧美最黄视频在线播放免费| 国内少妇人妻偷人精品xxx网站| 日韩欧美一区二区三区在线观看| 久久天躁狠狠躁夜夜2o2o| 久久久久精品国产欧美久久久| 国产视频一区二区在线看| 香蕉av资源在线| 国产精华一区二区三区| 午夜精品一区二区三区免费看| 日韩欧美 国产精品| 国产亚洲欧美在线一区二区| 国产精品伦人一区二区| 在线a可以看的网站| 高清日韩中文字幕在线| 给我免费播放毛片高清在线观看| 国产在线男女| 精华霜和精华液先用哪个| 69av精品久久久久久| 99热这里只有精品一区| 不卡一级毛片| 免费看美女性在线毛片视频| 日本在线视频免费播放| 国产爱豆传媒在线观看| 51午夜福利影视在线观看| 蜜桃久久精品国产亚洲av| 在线a可以看的网站| 深夜精品福利| 热99re8久久精品国产| 在线播放无遮挡| 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看| 人妻丰满熟妇av一区二区三区| 老熟妇仑乱视频hdxx| 亚洲无线在线观看| 欧美中文日本在线观看视频| 欧美区成人在线视频| 美女高潮喷水抽搐中文字幕| 免费人成视频x8x8入口观看| 麻豆国产av国片精品| 18禁黄网站禁片午夜丰满| 国产精品久久久久久久久免 | 别揉我奶头 嗯啊视频| 国产色爽女视频免费观看| 精品久久久久久久人妻蜜臀av| 欧美乱色亚洲激情| 欧美日韩瑟瑟在线播放| 国产精品亚洲美女久久久| 女同久久另类99精品国产91| 一进一出抽搐gif免费好疼| 亚洲自拍偷在线| 在线观看一区二区三区| 黄色视频,在线免费观看| 午夜免费激情av| 国产单亲对白刺激| 免费在线观看日本一区| 搡老熟女国产l中国老女人| 精品不卡国产一区二区三区| 久久久久久九九精品二区国产| 国产伦精品一区二区三区视频9| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 九九在线视频观看精品| 极品教师在线免费播放| 久久国产精品人妻蜜桃| 午夜福利在线在线| 久久亚洲真实| 国产精品人妻久久久久久| 欧美在线黄色| 麻豆国产av国片精品| 在线观看舔阴道视频| 欧美在线黄色| 久99久视频精品免费| 熟妇人妻久久中文字幕3abv| 婷婷六月久久综合丁香| 可以在线观看的亚洲视频| 久久精品国产亚洲av涩爱 | 九色国产91popny在线| 不卡一级毛片| 女人十人毛片免费观看3o分钟| 国产在视频线在精品| 亚洲中文字幕一区二区三区有码在线看| 国产精品爽爽va在线观看网站| 午夜福利成人在线免费观看| 91久久精品电影网| 两个人视频免费观看高清| 观看免费一级毛片| 丁香欧美五月| 精品一区二区三区视频在线| 欧美乱色亚洲激情| 免费高清视频大片| 免费看日本二区| 午夜两性在线视频| 超碰av人人做人人爽久久| www.熟女人妻精品国产| 2021天堂中文幕一二区在线观| 色播亚洲综合网| 怎么达到女性高潮| 精华霜和精华液先用哪个| 午夜福利视频1000在线观看| 老司机深夜福利视频在线观看| 欧美午夜高清在线| 亚洲一区高清亚洲精品| 欧美日韩综合久久久久久 | 精品免费久久久久久久清纯| 中文字幕免费在线视频6| 久久久久免费精品人妻一区二区| 亚洲av免费在线观看| 亚洲黑人精品在线| 国产精品一区二区性色av| 97超视频在线观看视频| 免费看日本二区| 在线观看免费视频日本深夜| 一级毛片久久久久久久久女| 午夜精品一区二区三区免费看| 色在线成人网| 熟女人妻精品中文字幕| 国产精品亚洲一级av第二区| 少妇裸体淫交视频免费看高清| 国产又黄又爽又无遮挡在线| 亚洲国产精品sss在线观看| 日韩欧美精品免费久久 | 99国产精品一区二区蜜桃av| 精品久久久久久久人妻蜜臀av| 国内揄拍国产精品人妻在线| 在现免费观看毛片| 国产午夜精品论理片| 国产精品,欧美在线| 一级黄片播放器| h日本视频在线播放| 久久久久久国产a免费观看| 成熟少妇高潮喷水视频| 欧美+亚洲+日韩+国产| 亚洲精华国产精华精| 日日摸夜夜添夜夜添小说| 日韩中字成人| x7x7x7水蜜桃| 一区二区三区高清视频在线| 久久久久国内视频| 天天一区二区日本电影三级| 变态另类丝袜制服| 亚洲欧美精品综合久久99| 成年女人看的毛片在线观看| 丝袜美腿在线中文| 在线播放无遮挡| 色吧在线观看| 精品日产1卡2卡| 1000部很黄的大片| 俺也久久电影网| 亚洲一区二区三区不卡视频| 成年女人永久免费观看视频| 国产aⅴ精品一区二区三区波| 午夜免费成人在线视频| 久9热在线精品视频| 国产精品国产高清国产av| 色综合站精品国产| 亚洲人成网站高清观看| 久久久成人免费电影| 无人区码免费观看不卡| 黄色日韩在线| 亚洲av第一区精品v没综合| 中文字幕久久专区| 日韩欧美一区二区三区在线观看| 极品教师在线视频| 人人妻,人人澡人人爽秒播| www.www免费av| 国产免费男女视频| 90打野战视频偷拍视频| 亚洲欧美日韩高清在线视频| www.色视频.com| 日本撒尿小便嘘嘘汇集6| 熟女电影av网| 久久久久久久精品吃奶| 欧美绝顶高潮抽搐喷水| or卡值多少钱| 国产欧美日韩精品一区二区| 精品午夜福利在线看| 校园春色视频在线观看| 日本与韩国留学比较| 午夜精品在线福利| h日本视频在线播放| av在线天堂中文字幕| 人妻丰满熟妇av一区二区三区| 在线观看一区二区三区| 国产v大片淫在线免费观看| 成人av一区二区三区在线看| 桃红色精品国产亚洲av| 人妻制服诱惑在线中文字幕| 乱人视频在线观看| 欧美最黄视频在线播放免费| 欧美黑人欧美精品刺激| 尤物成人国产欧美一区二区三区| 久久精品久久久久久噜噜老黄 | 91麻豆精品激情在线观看国产| 久久九九热精品免费| 91在线观看av| 少妇人妻一区二区三区视频| 亚洲精品影视一区二区三区av| 欧美成人免费av一区二区三区| 91狼人影院| 亚洲第一区二区三区不卡| 十八禁网站免费在线| 精品人妻熟女av久视频| 乱码一卡2卡4卡精品| 欧美区成人在线视频| www.色视频.com| 高清毛片免费观看视频网站| 男女那种视频在线观看| 日本免费一区二区三区高清不卡| 国产精品一区二区三区四区久久| 1024手机看黄色片| 免费在线观看日本一区| 亚洲精品一区av在线观看| 制服丝袜大香蕉在线| 国产中年淑女户外野战色| 色5月婷婷丁香| 亚洲国产精品999在线| 男女视频在线观看网站免费| 又爽又黄a免费视频| 每晚都被弄得嗷嗷叫到高潮| or卡值多少钱| 国产精品野战在线观看| 深夜精品福利| 国产成人a区在线观看| av欧美777| 桃色一区二区三区在线观看| 欧美三级亚洲精品| 国产成人影院久久av| 老熟妇乱子伦视频在线观看| 免费大片18禁| 国产精品人妻久久久久久| 我的女老师完整版在线观看| 国产成人啪精品午夜网站| 12—13女人毛片做爰片一| 桃红色精品国产亚洲av| 亚洲国产高清在线一区二区三| 性插视频无遮挡在线免费观看| 天天一区二区日本电影三级| 狠狠狠狠99中文字幕| 欧美日韩国产亚洲二区| 国产精品精品国产色婷婷| 赤兔流量卡办理| 亚洲内射少妇av| 九色国产91popny在线| 九九久久精品国产亚洲av麻豆| 欧美成人免费av一区二区三区| 久久人人精品亚洲av| 在线免费观看不下载黄p国产 | 亚州av有码| 天堂影院成人在线观看| 国产免费av片在线观看野外av| 欧美极品一区二区三区四区| 18禁黄网站禁片免费观看直播| 色视频www国产| 日本免费一区二区三区高清不卡| bbb黄色大片| 国产免费一级a男人的天堂| 18禁裸乳无遮挡免费网站照片| 一个人看的www免费观看视频| 狠狠狠狠99中文字幕| 欧美+日韩+精品| a级毛片a级免费在线| a级一级毛片免费在线观看| 长腿黑丝高跟| 脱女人内裤的视频| 免费电影在线观看免费观看| 亚洲成a人片在线一区二区| 亚洲国产高清在线一区二区三| 久久亚洲真实| a级一级毛片免费在线观看| 国产精品av视频在线免费观看| 特大巨黑吊av在线直播| 亚洲第一电影网av| 色噜噜av男人的天堂激情| 国产成人欧美在线观看| 18禁黄网站禁片免费观看直播| 亚洲一区高清亚洲精品| 亚洲精品成人久久久久久| 成年女人毛片免费观看观看9| 亚洲自拍偷在线| 欧美丝袜亚洲另类 | 一二三四社区在线视频社区8| 又黄又爽又刺激的免费视频.| 丁香欧美五月| 99热这里只有精品一区| 免费av毛片视频| 国产精品久久电影中文字幕| 婷婷六月久久综合丁香| 国产又黄又爽又无遮挡在线| 国产高清视频在线观看网站| 丁香六月欧美| 亚洲性夜色夜夜综合| 国产亚洲精品综合一区在线观看| 国内毛片毛片毛片毛片毛片| 少妇熟女aⅴ在线视频| 乱人视频在线观看| 亚洲无线观看免费| 波多野结衣高清作品| 日本一本二区三区精品| 欧美黄色片欧美黄色片| 一本精品99久久精品77| 亚洲国产精品999在线| 免费在线观看成人毛片| 91午夜精品亚洲一区二区三区 | 日本三级黄在线观看| 精品人妻1区二区| 熟女人妻精品中文字幕| 日本五十路高清| 99在线视频只有这里精品首页| 夜夜看夜夜爽夜夜摸| 精品免费久久久久久久清纯| 国产乱人伦免费视频| 久久午夜福利片| 精品不卡国产一区二区三区| 真人一进一出gif抽搐免费| 国内精品美女久久久久久| av女优亚洲男人天堂| 每晚都被弄得嗷嗷叫到高潮| x7x7x7水蜜桃| 成人三级黄色视频| 欧美国产日韩亚洲一区| 黄片小视频在线播放| 国产精品一区二区免费欧美| 国产av不卡久久| 麻豆一二三区av精品| 久久久久久久午夜电影| 搡老熟女国产l中国老女人| 天美传媒精品一区二区| 国产精品一区二区三区四区免费观看 | 一本一本综合久久| 好男人电影高清在线观看| 亚洲人成伊人成综合网2020| 亚洲成人中文字幕在线播放| 欧美国产日韩亚洲一区| 亚洲18禁久久av| 亚洲在线自拍视频| www.色视频.com| 国产在视频线在精品| 国产成年人精品一区二区| 亚洲在线观看片| 国产高清视频在线观看网站| 人人妻人人看人人澡| 听说在线观看完整版免费高清| 国产免费男女视频| 午夜福利在线观看吧| 亚洲 欧美 日韩 在线 免费| 国产成人aa在线观看| 国产男靠女视频免费网站| 国产精品久久久久久久久免 | 夜夜夜夜夜久久久久| 亚洲欧美日韩无卡精品| 成人亚洲精品av一区二区| 黄色女人牲交| 亚洲在线自拍视频| 噜噜噜噜噜久久久久久91| 91狼人影院| av视频在线观看入口| av天堂中文字幕网| 精品一区二区三区视频在线| 2021天堂中文幕一二区在线观| 欧美成人免费av一区二区三区| 草草在线视频免费看| 男女那种视频在线观看| 综合色av麻豆| 亚洲国产精品合色在线| 性插视频无遮挡在线免费观看| 小说图片视频综合网站| 欧美日韩福利视频一区二区| 深夜a级毛片| 亚洲av日韩精品久久久久久密| 午夜久久久久精精品| 国产不卡一卡二| 午夜激情福利司机影院| 每晚都被弄得嗷嗷叫到高潮| 午夜精品在线福利| 中文亚洲av片在线观看爽| 亚洲七黄色美女视频| 精品久久久久久久人妻蜜臀av| 美女黄网站色视频| 精品久久久久久成人av| 午夜福利在线在线| 亚洲最大成人手机在线| 国产伦在线观看视频一区| 国产一区二区激情短视频| 亚洲精品乱码久久久v下载方式| 免费看a级黄色片| 一进一出抽搐动态| 欧美日韩黄片免| 性色avwww在线观看| 婷婷精品国产亚洲av| av视频在线观看入口| 欧美激情国产日韩精品一区| or卡值多少钱| 看片在线看免费视频| www.999成人在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美bdsm另类| 性欧美人与动物交配| 最好的美女福利视频网| 国产成人aa在线观看| 亚洲中文字幕日韩| 精品久久久久久久末码| 亚洲最大成人中文| 51午夜福利影视在线观看| 熟妇人妻久久中文字幕3abv| 一级毛片久久久久久久久女| 丁香六月欧美| 我要搜黄色片| 国产毛片a区久久久久| 69av精品久久久久久| av福利片在线观看| 最近在线观看免费完整版| 亚洲av成人不卡在线观看播放网| 亚洲av不卡在线观看| 日韩欧美三级三区| 久久久久免费精品人妻一区二区| 中国美女看黄片| 中文字幕av成人在线电影| 特大巨黑吊av在线直播| 亚洲熟妇中文字幕五十中出| 老司机深夜福利视频在线观看| a在线观看视频网站| 男人舔奶头视频| 亚洲久久久久久中文字幕| 美女高潮喷水抽搐中文字幕| 色5月婷婷丁香| 成人无遮挡网站| 日韩免费av在线播放| 老司机福利观看| 波多野结衣高清作品| 国产成+人综合+亚洲专区| 午夜老司机福利剧场| 国产三级中文精品| 日本在线视频免费播放| 久久久久久久久久黄片| 国产熟女xx| www.www免费av| 99国产极品粉嫩在线观看| 久久伊人香网站| 99在线人妻在线中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 国产精华一区二区三区| 久久人人精品亚洲av| 乱码一卡2卡4卡精品| 嫩草影院精品99| 婷婷精品国产亚洲av| bbb黄色大片| 一a级毛片在线观看| 欧美最黄视频在线播放免费| 噜噜噜噜噜久久久久久91| 亚洲一区二区三区不卡视频| 国产黄色小视频在线观看| 欧美日韩瑟瑟在线播放| а√天堂www在线а√下载| 免费无遮挡裸体视频| 日韩欧美精品免费久久 | 嫩草影院精品99| 99精品久久久久人妻精品| 欧美一区二区精品小视频在线| 嫁个100分男人电影在线观看| 日本成人三级电影网站| 一本久久中文字幕| 成年女人看的毛片在线观看| 亚洲最大成人手机在线| 麻豆久久精品国产亚洲av| 精品一区二区三区视频在线| 我的老师免费观看完整版| bbb黄色大片| 婷婷精品国产亚洲av在线| 久久久久性生活片| 亚洲欧美日韩无卡精品| 精品日产1卡2卡| 久久99热这里只有精品18| 级片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久久久精品国产欧美久久久| 亚洲精品色激情综合| 国产探花在线观看一区二区| 久久精品综合一区二区三区| 看黄色毛片网站| 国产精品精品国产色婷婷| 欧美乱色亚洲激情| 男女视频在线观看网站免费| 午夜福利在线观看免费完整高清在 | 直男gayav资源| 亚洲熟妇中文字幕五十中出| 伊人久久精品亚洲午夜| 亚洲人成电影免费在线| 久久这里只有精品中国| 亚洲中文日韩欧美视频| 欧美成人一区二区免费高清观看| 2021天堂中文幕一二区在线观| 国产精品一区二区免费欧美| 欧美日韩乱码在线| 99久久久亚洲精品蜜臀av| 99热这里只有精品一区| 噜噜噜噜噜久久久久久91| 一区二区三区激情视频| 91麻豆av在线| 琪琪午夜伦伦电影理论片6080| 在线观看66精品国产| 日本撒尿小便嘘嘘汇集6| 美女高潮喷水抽搐中文字幕| 又黄又爽又免费观看的视频| 一进一出抽搐动态| 高清日韩中文字幕在线| 老司机深夜福利视频在线观看| 午夜精品久久久久久毛片777| 久久这里只有精品中国| 中文资源天堂在线| 久久久色成人| 国产精品av视频在线免费观看| 在线观看舔阴道视频| 久久久色成人| 国产一区二区在线观看日韩| 人人妻人人看人人澡| 成人午夜高清在线视频| ponron亚洲| 中文字幕人妻熟人妻熟丝袜美| 日本免费a在线| 99久久久亚洲精品蜜臀av| 欧美国产日韩亚洲一区| 免费看美女性在线毛片视频| 国产高潮美女av| 亚洲av不卡在线观看| 成年女人永久免费观看视频| 99视频精品全部免费 在线| 国产v大片淫在线免费观看| 色综合站精品国产| 精品国产亚洲在线| 国产精品久久电影中文字幕| 深爱激情五月婷婷| 国产精品综合久久久久久久免费|