• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear Analysis of Obliquely Propagating Longitudinal Waves in Partially Spin Polarized Degenerate Magnetized Plasma

    2017-05-09 11:46:44IqbalMurtazaandHussain
    Communications in Theoretical Physics 2017年12期

    Z.Iqbal,G.Murtaza,and A.Hussain

    1Salam Chair,Department of Physics,G.C.University Lahore,Katchery Road,Lahore 54000,Pakistan

    2Department of Physics,Mirpur University of Science and Technology,Mirpur-10250(AJK),Pakistan

    1 Introduction

    Electrostatic waves are the basic collective phenomena in plasmas.In the spectrum of low frequency electrostatic waves,ion acoustic(IA)wave,ion cyclotron(IC)and lower hybrid(LH)wave have received considerable attention of physicists due to their potential applications in space and laboratory plasmas.LH waves propagate perpendicular to the external magnetic field.The resonant interaction of LH waves with electrons and ions is responsible for the transfer of energy between the two species,which leads to plasma heating or particle acceleration.Due to this characteristic,LH waves are important in both laboratory[1?2]and space plasma environments.[3?6]In a classical plasma the dispersion of LH waves has been derived[7]by including electromagnetic and warm plasma effects and it has been shown that this dispersion relation is more consistent with numerical results than the previously reported analytical dispersion relation.Moreover it is shown that when the ion magnetization effects become important,the continuous LH mode breaks up into a series of segments of ion Bernstein modes.The dispersion relations of the dust LH wave and dust LH surface wave have been derived using the quantum hydrodynamic model as in Refs.[8–9].It is found that the dispersion relations of these waves are signi ficantly affected by the quantum corrections.Using a quantum hydrodynamic model the excitations of LH wave have been investigated by injecting an electron beam in a semiconductor plasma[10]and found that an increase of the electron number density and streaming speed of the electron beam enhance the instability.Recently,Tripti and Prerana[11]studied the dispersion properties of LH wave in electron-ion degenerate plasma with Bohm potential and exchange correlation potential effects.They found that these effects signi ficantly modify the dispersion properties of LH wave.

    The ion acoustic(IA)wave is one of the fundamental low frequency modes of plasma caused by density perturbations.These waves have been extensively studied in the solar wind and in various regions of the Earth’s magnetosphere.[12?14]The study of IA wave also gained its importance in quantum plasmas in order to understand the electrostatic wave propagation at the microscopic level.Electrostatic waves have also been studied in quantum plasma and it has been shown that,both the high frequency electron waves(Langmuir wave and upper-hybrid wave)and the low frequency ion acoustic and ion cyclotron waves can propagate when the plasmas are cold.[15]Using the quantum hydrodynamic(QHD)model,the effects of Bohm potential on the linear and nonlinear properties of the IA wave in an unmagnetized electron-ion plasma have been investigated in Ref.[16]and the quantum effects are found to modify the linear wave frequency.Hass and Mahmood[17?18]analyzed the linear and non linear IA waves in unmagnetized and magnetized quantum plasmas with arbitrary degeneracy of electrons.They found the dispersion relation of quantum IA wave in terms of generalized IA speed,valid for dilute and dense cases.

    The electrostatic IC mode is another fundamental mode of a magnetized plasma.In a multi-ion species plasma,IC waves can have frequencies near their respective ion gyrofrequencies.These waves were first observed by D’Angelo and Motley in laboratory plasmas[19?20]and subsequently have been observed in space plasma by Mosier and Gurnett.[21]These waves are studied due to their importance in the heating of plasmas.[22]The excitation ofelectrostatic IC waves by an ion beam in a two-component collisionless or collisional plasma has been investigated in Refs.[23–24].Very recently,the coupling of electrostatic IC and IA waves has been examined in a three-component magnetized plasma consisting of electrons,protons and alpha particles and the results have been applied to the study of solar wind plasma.[25]

    The QHD model was extended for spin-1/2 particles in Refs.[26–28].The derivation of QHD model for spin-1/2 particles was first presented by Kuzmenkov in 2001.Later,the so called spin-1/2 quantum plasmas in which the spin properties of electrons are taken into account,have received great attention due to the occurrence of some new wave phenomena.[29?37]Subsequently,the quantum kinetics for spin-1/2 quantum plasmas has been developed and applied to study the dispersion properties of various plasma waves.[31,38?43]

    However,generalized QHD equations were obtained in Ref.[34]by considering the electrons with spin-up and spin-down as two different fluids.In the presence of ambient magnetic field,the equilibrium concentration of spinup and spin-down electrons are different(nu/=nd),which is responsible for the difference of Fermi pressures of the spin-up and spin-down electrons and the model is called separate spin evolution(SSE).The difference of Fermi pressures gives rise to a new type of longitudinal collective excitation in degenerate quantum plasmas.This excitation is called the spin-electron acoustic wave(SEAW).Oblique propagation of longitudinal waves with the SSEQHD equations in electron-ion(e-i)and(e-p-i)plasmas further gives birth to new type of spin-dependent longitudinal waves.[35?36]Non-linear analysis of these waves is given in Refs.[44–45]The new spin-dependent wave has also been found by applying the SSE-QHD equations to the two-dimensional electron gas in plane samples and nanotubes embedded in an external magnetic field in Refs.[46–47]Further,generalization of SSE-QHD equations by including the spin-orbit interaction(quantumrelativistic effects)has been presented in Ref.[48]This generalization is based upon the nonlinear Pauli equation by including Fermi spin current contribution in the spin evolution.It is demonstrated that the SEAW spectrum signi ficantly changes due to transverse part of the electric field and an extra shift in the extraordinary wave spectrum is observed due to the spin-orbit interaction.

    From the above literature,one may notice that the low frequency electrostatic waves have been well studied in the classical and quantum plasma(without taking account of electron spin effects)regimes.The electron spin effects on the electrostatic wave have been investigated with the aid of SSE-QHD equations but in most of the investigations for electrostatic waves,the ion dynamic is ignored.In the present work we examine the electron spin effects on the linear low frequency obliquely propagating electrostatic(LH wave,IA wave,and IC wave)waves in degenerate magnetized plasma using the SSE-QHD equations and highlight the role of the new spin dependent wave on their spectra.

    The article is organized in the following manner.In Sec.2,the dynamic equations are described to investigate the linear properties of longitudinal waves in partially spin polarized plasma and a general dispersion equation of obliquely propagating longitudinal waves is derived.In Sec.3,analytical and numerical analysis of waves under consideration is presented.Finally,the conclusion is described in Sec.4.

    2 Governing Equations

    We study the obliquely propagating low frequency electrostatic waves in collisionless electron-ion plasma embedded in an external magnetic fieldB0that is directed along thezdirection and the wave is taken to propagate in(x,z)plane at an angleθwithz-axis.The electrons and ions are considered to be degenerate and magnetized.The continuity and momentum equations for ions are given as

    For governing the dynamics of electrons,we consider the SSE-QHD equations,which were recently developed in Refs.[34–35].In the SSE-QHD equations under the action of external magnetic field,each species with spin-up and spin-down are considered as a separate fluid.Therefore,the continuity equation with spin projection of each species is presented as

    wheres=u,dfor the spin-up and spin-down state of particles,nesandvesare the concentration and velocity field of electrons being in the spin states,Tez=(γe/?)(BxSey?BySex)is the z-projection of spin torqueis:iu=2,id=1,with the spin density projectionsSexandSey,each describing the evolution of the spin-up and spindown states of particles andγe=?μB,μBis the Bohr magneton.Therefore,the functionsSexandSeydo not bear subindexesuandd.In this model,thez-projection of the spin densitySezis not an independent variable,it is a combination of concentrations i.e.,Sez=neu?ned.The momentum equation for electrons is given as

    For the oblique propagation of longitudinal waves in electron-ion plasma,the required Maxewell’s equations can be written as

    In order to study the linear response,we linearize Eqs.(1)–(2)and(5)–(8)by considering the first order perturbations only.Assuming sinusoidal perturbation ei(k·r?ωt),the resulting equations lead to dispersion equation

    3 Analytical and Numerical Analysis of Low Frequency Longitudinal Waves

    In this section,we explicitly derive the dispersion relations of waves under consideration from the dispersion Eq.(9).To obtain numerical results,we choose the plasma regime having equilibrium number densityn0e=1027cm?3,the electrons Fermi temperature corresponding to this density isTFe=(3π2n0e)2/3(?2/2mekB)=4.23×107K,for degenerate ions[34,41]TFi=2.30×104K,which means that our results are applicable in the plasma regimes having thermal temperatureT<TFi.Further,for the variation of spin polarizationηwe keep number density fixed and consider the variation of ambient magnetic fieldB0in the range from 1010G to 4×1011G.Our results can be applied to the degenerate astrophysical plasma environments.

    3.1 Lower Hybrid Waves

    In this section we are interested to study the dispersion properties of LH waves.In the first case,ions are unmagnetized and electrons are magnetized and the propagation is perpendicular to ambient magnetic field(θ=π/2).Applying LH wave conditionωci?ω?ωce,we obtain

    From the above equation,we observe how the electron spin polarization affects the dispersion character of LH wave.Here,it is important to mention that we have neglected the Bohm potential effects because the same has already been discussed quite a lot in the literature.If we consider the electrons as a single fluid and assumeω2pe?ω2ce,we retrieve the results of LH wave discussed in Ref.[7].The dispersion relation(10)is plotted in Fig.1,which shows the effect of spin polarization on the frequency of wave.It is obvious from the graph that the frequency of LH waves decreases as we increase the spin polarization.The wave under consideration bears cyclotron character and one would expect the frequency of the wave to increase with magnetic field.Thus for fixed values of equilibrium number density,the spin polarizationηwould increase with magnetic field and the LH wave frequency would decrease as is evident from Eq.(10).

    Fig.1 The dispersion relation of LH wave(Eq.(10))for different values of spin polarization η =0.047,0.071 and 0.095 corresponding to B0=(2,3 and 4)×1010G and n0=1027cm?3.

    Fig.2 Figure shows the spectra of electrostatic waves propagating nearly perpendicular to magnetic field.The figure depicts dispersion branches of LH wave(upper curve),spin electron acoustic wave(middle curve)and IA wave having lowest frequency.

    Forθexactlyπ/2 we have only one wave solution i.e.,LH wave.However,if we consider small deviation fromθ=π/2 and impose constraintωci?ω?ωce,the dispersion equation acquires the following form

    In the absence of electron spin polarization,the Eq.(11)becomes second degree inω2,and has two real solutions,one is IA wave and the other LH wave.However,Eq.(11),as it is,is cubic inω2and thus has three real wave solutions corresponding to IA and LH waves and a new spin dependent wave called spin electron acoustic wave.It may be pointed out here that the spectra of low frequency longitudinal waves are modi fied due to new electron spin dependent mode,which appears as a result of our consideration of SSE-QHD equations.The dispersion relation(11)is graphically represented in Fig.2.At fixed values of spin polarizationηand the propagation angleθ,the graph depicts three curves with the upper curve describing the LH wave,the middle curve the SEAW and lower curve the IA wave.Also it is clear from the graph that the frequencies of all the three waves first increase at small wave numbers and then become constant at relatively large values.

    3.2 Ion Acoustic Wave

    If we consider parallel propagation and treat electrons inertialess the dispersion Eq.(9)takes the following form

    which is the dispersion relation of IA wave in a partially spin polarized degenerate magnetized plasma.In the long wavelength limitω2pe?k2v2Fe,the above dispersion relation reduces to Herec2Fs=(3π2n0e)1/3?/3memithe square acoustic speed in degenerate plasma.Further,for unpolarized plasma(η=0),we get the standard dispersion relation of IA wave in degenerate plasma.The graphical analysis of dispersion relation(13)is shown in Fig.3.From the figure,it is obvious that by increasing spin polarization,the frequency of IA wave reduces.However,without taking long wavelength limit,the frequency of IA wave increases but the increase is negligibly small as shown in Fig.4.It is important to mention here that if we retain the inertia of electrons,the spectrum of IA wave is modi fied with SEAW,which is already reported in Ref.[34].

    Fig.3 The dispersion relation of IA wave in the limit of long wavelength(Eq.(13))for different values of spin polarization η=0.1,0.7 and 0.9 corresponding to B0=4.20×1010G,2.94×1011G and 3.78×1011G and n0=1027cm?3.

    Fig.4 The figure exhibits dispersion character of IA wave without taking long wavelength limit(Eq.(12))for the same parameters as used in Fig.3.

    3.3 Ion Cyclotron Waves

    An electrostatic IC wave propagates nearly at right angle to the external magnetic field.If the angle is not exactlyπ/2,the electrons can move along the external magnetic field to carry charge from negative to positive region and carry out Debye shielding.The ions cannot do this effectively because their inertia prevents them from moving such long distances in a wave period;this is why we can neglect the parallel propagation of ions.[49]With these assumptions,the dispersion Eq.(9)becomes

    which is the modi fied dispersion relation of electrostatic IC waves with spin polarization effects.If we assume that the electrons are inertialess,the above dispersion relation attains the following form

    In case of long wave length limitk2v2Fe?ω2pe,the above dispersion relation reduces to

    In general,in deriving the dispersion relation of IC wave the electrons are considered to be inertialess.If we retain the inertia of electrons,then the dispersion Eq.(14)becomes cubic inω2,which means that it contains three real wave solutions.If the electrons are treated as single fluid we have only two wave solutions:IA and IC waves.But in case of partially spin polarized plasma we have three wave solutions instead of two.Thus,like LH waves the spectrum of IC waves is also modi fied with the new spin dependent wave.The dispersion Eq.(14)is plotted in Fig.7 for a fixed value of spin polarization.In this plot,the low frequency curve corresponds to IA wave,the middle curve corresponds to SEAW and the upper line shows the IC wave.In Fig.7 left hand side ofy-axis represent magnitude of solid curves(Red,Green,and Blue).As the lower thick blue line seems to be merged withx-axis and is therefore redrawn on the right hand side ofy-axis.Now the blue dashed curve is the actual representation of solid blue curve.

    Fig.5 Figure shows the increase in frequency of IC wave(Eq.(15))with increasing spin polarization η using the same parameters as in Fig.3.

    Fig.7 (Color online)Figure shows the existence of SEAW in the spectra of IC and IA waves.High frequency curve corresponds to IC wave,middle curve describes SEA wave and lower frequency wave is IA wave.Here,η=0.23 with B0=1011G and n0=1027cm?3.

    4 Conclusions

    The beauty of SSE is that it generates new wave phenomena in the spectrum of both the electrostatic and electromagnetic waves.Exploring the applications of SSEQHD model,we are probably the first to consider the problem of low frequency longitudinal waves in degenerate magnetized plasma and to have derived the general dispersion relation of longitudinal waves in a partially spin polarized degenerate magnetized plasma.In the spectrum of low frequency electrostatic waves we present analytical and numerical analysis of LH wave,IA wave,and IC wave.For perpendicular propagation,the frequency of LH wave decreases with increasing values of spin polarization(η).However at small deviation from perpendicular propagation,the spectra of LH and IA waves are modi fied with SEAW.Further,signi ficant frequency shifts are observed in the spectrum of IA wave with the variation of spin polarization effects.In case of inertialess electron,the frequency of IC wave increases with increasing spin polarization but if we impose the condition of long wavelength limit the frequency of IC wave decreases with increasing spin polarization.By taking account of inertia of electrons,the spectra of IC and IA waves are also modi fied with SEAW like in LH wave.

    Since our chosen parameters are typically found in the pulsating white dwarfs i.e.,n0=(1026–1028)cm?3andB0=(109–1011)G,therefore our present investigations are useful for understanding the existence of new waves and propagation of low frequency electrostatic waves in such dense astrophysical objects.Further,we hope that our findings may shed new light on further study of instabilities and nonlinear structures of electrostatic and electromagnetic waves.

    Fig.6 Figure shows the propagation character of the IC wave in limit of long wavelength(Eq.(16)).The parameters are the same as of Fig.3.

    [1]T.H.Stix,Phys.Rev.Lett.15(1965)878.

    [2]J.F.Drake,J.D.Huba,and N.T.Gladd,Phys.Fluids 26(1983)2247.

    [3]D.B.Melrose,Instabilities in Space and Laboratory Plasmas,Cambridge University Press,Cambridge(1986).

    [4]V.D.Shapiro,R.Bingham,J.M.Dawson,et al.,Phys.Scr.T 75(1998)39.

    [5]I.H.Cairns and B.F.McMillan,Phys.Plasmas 12(2005)102110.

    [6]B.F.McMillan and I.H.Cairns,Phys.Plasmas 14(2007)012103.

    [7]A.L.Verdon,I.H.Cairns,D.B.Melrose,and P.A.Robinson,Phys.Plasmas 16(2009)052105.

    [8]M.Salimullah,I.Zeba,Ch.Uzma,H.A.Shah,and G.Murtaza,Phys.Lett.A 372(2008)2291.

    [9]M.Ayub,H.A.Shah,M.N.S.Qureshi,and M.Salimullah,Commun.Theor.Phys.60(2013)623.

    [10]A Rasheed,M.Jamil,F.Areeb,M.Siddique,and M.Salimullah,J.Phys.D:Appl.Phys.49(2016)175109.

    [11]T.Rimza and P.Sharma,J.Phys:Conf.Series 836(2017)012028.

    [12]D.A.Gurnett and L.A.Frank,J.Geophys.Res.83(1978)58.

    [13]N.Lin,P.J.Kellogg,R.J.MacDowall,and S.P.Gary,Space Sci.Rev.97(2001)196.

    [14]M.Backrud-Ivgren,G.Stenberg,M.Andr,et al.,Ann.Geophys.23(2005)3739.

    [15]W.C.Hua,S.X.Xia,and W.C.Qun,Commun.Theor.Phys.53(2010)771.

    [16]F.Haas,L.G.Garcia,J.Goedert,and G.Manfredi,Phys.Plasmas 10(2003)3858.

    [17]F.Haas and S.Mahmood,Phys.Rev.E 92(2015)053112.

    [18]F.Haas and S.Mahmood,Phys.Rev.E 94(2016)033212.

    [19]N.D’Angelo and R.W.Motley,Phys.Fluids 5(1962)633.

    [20]R.W.Motley and N.D’Angelo,Phys.Fluids 6(1963)296.

    [21]S.R.Mosier and D.A.Gurnett,Nature(London)223(1969)605.

    [22]M.Kono,J.Vranjes,and N.Batool,Phys.Rev.Lett.112(2014)105001.

    [23]J.Sharma and S.C.Sharma,Phys.Plasmas 17(2010)123701.

    [24]J.Sharma,S.C.Sharma,and D.Kaur,Prog.Electromagn.Res.Lett.54(2015)123.

    [25]T.Sreeraj,S.V.Singh,and G.S.Lakhina,Phys.Plasmas 23(2016)082901.

    [26]L.S.Kuz’menkov,S.G.Maksimov,and V.V.Fedoseev,Theor.Math.Phys.126(2001)110.

    [27]L.S.Kuz’menkov,S.G.Maksimov,and V.V.Fedoseev,Theor.Math.Phys.126(2001)212.

    [28]M.Marklund and G.Brodin,Phys.Rev.Lett.98(2007)025001.

    [29]D.V.Vagin,N.E.Kim,P.A.Polyakov,and A.E.Rusakov,Izv.Ranser.Fiz.70(2006)443[Bull.Rus.Acad.Sci.:Phys.70(2006)505].

    [30]P.A.Andreev and L.S.Kuz’menkov,Moscow University Phys.Bull.62(2007)271.

    [31]G.Brodin,M.Marklund,J.Zamanian,A.Ericsson,and P.L.Mana,Phys.Rev.Lett.101(2008)245002.

    [32]A.P.Misra,G.Brodin,M.Marklund,and P.K.Shukla,J.Plasma Phys.76(2010)857.

    [33]A.Hussain,M.Stefan,and G.Brodin,Phys.Plasmas 21(2014)032104.

    [34]P.A.Andreev,Phys.Rev.E 91(2015)033111.

    [35]P.A.Andreev,Ann.Phys.361(2015)278.

    [36]P.A.Andreev and Z.Iqbal,Phys.Rev.E 93(2016)033209.

    [37]M.Shahid,Z.Iqbal,A.Hussain,and G.Murtaza,Phys.Scr.90(2015)025605.

    [38]F.A.Asenjo,J.Zamanian,M.Marklund,G.Brodin,and P.Johansson,New J.Phys.14(2012)073042.

    [39]J.Zamanian,M.Marklund,and G.Brodin,New J.Phys.12(2010)043019.

    [40]P.A.Andreev,Physica A 432(2015)108.

    [41]P.A.Andreev,Phys.Plasmas 23(2016)062103.

    [42]P.A.Andreev,Phys.Plasmas 24(2017)022114.

    [43]Z.Iqbal,A.Hussain,G.Murtaza,and M.Ali,Phys.Plasmas 21(2014)122118.

    [44]P.A.Andreev,Phys.Plasmas 23(2016)012106.

    [45]Z.Iqbal and P.A.Andreev,Phys.Plasmas 23(2016)062320.

    [46]P.A.Andreev and L.S.Kuz’menkov,EPL 113(2016)17001.

    [47]P.A.Andreev,Phys.Plasmas 24(2017)022106.

    [48]P.A.Andreev and M.I.Trukhanova,e-print arXiv:1603.07506.

    [49]F.F.Chen,Introduction to Plasma Physics and Controlled Fusion,Vol.1,Plenum,New York(1984).

    亚洲 国产 在线| 黄色视频不卡| www.999成人在线观看| 国产三级中文精品| 国内少妇人妻偷人精品xxx网站 | 国产av不卡久久| 国产成年人精品一区二区| av国产免费在线观看| av在线天堂中文字幕| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲男人的天堂狠狠| 欧美绝顶高潮抽搐喷水| 日韩成人在线观看一区二区三区| 90打野战视频偷拍视频| 欧美在线一区亚洲| 亚洲欧美日韩高清专用| 一级毛片精品| 99久久久亚洲精品蜜臀av| 免费电影在线观看免费观看| 午夜精品在线福利| 成人18禁高潮啪啪吃奶动态图| 精品福利观看| 欧美午夜高清在线| 国产精品久久久久久人妻精品电影| 桃色一区二区三区在线观看| 久久午夜综合久久蜜桃| 亚洲精品在线美女| 色在线成人网| 亚洲一码二码三码区别大吗| 国产久久久一区二区三区| 老司机深夜福利视频在线观看| 伊人久久大香线蕉亚洲五| 日韩三级视频一区二区三区| 精品一区二区三区四区五区乱码| 欧美日本视频| 国产一区二区在线观看日韩 | 亚洲精品中文字幕在线视频| 99精品在免费线老司机午夜| 久久久久久久久免费视频了| 国产真实乱freesex| 在线看三级毛片| 国产97色在线日韩免费| 欧美日韩亚洲国产一区二区在线观看| 最近最新中文字幕大全电影3| 最近最新中文字幕大全电影3| 国产探花在线观看一区二区| 久久久精品大字幕| 亚洲avbb在线观看| 日韩av在线大香蕉| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品av在线| 亚洲全国av大片| 午夜免费观看网址| 夜夜爽天天搞| 91大片在线观看| 不卡av一区二区三区| 一级片免费观看大全| 国产探花在线观看一区二区| 国产v大片淫在线免费观看| 久久精品国产99精品国产亚洲性色| 亚洲 欧美一区二区三区| 日本成人三级电影网站| 男女下面进入的视频免费午夜| 国产成人精品无人区| 午夜激情福利司机影院| 真人做人爱边吃奶动态| 999久久久国产精品视频| av欧美777| 午夜福利免费观看在线| 色综合站精品国产| 亚洲精品美女久久av网站| www.自偷自拍.com| 欧美精品啪啪一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产又色又爽无遮挡免费看| 99国产综合亚洲精品| 成人国语在线视频| 亚洲最大成人中文| 天天躁狠狠躁夜夜躁狠狠躁| 色精品久久人妻99蜜桃| 九色国产91popny在线| 999久久久精品免费观看国产| 久久这里只有精品中国| 在线观看午夜福利视频| 日日爽夜夜爽网站| 伊人久久大香线蕉亚洲五| 丰满的人妻完整版| 亚洲精华国产精华精| 精品欧美一区二区三区在线| av福利片在线观看| 免费av毛片视频| 99国产精品一区二区蜜桃av| 国产久久久一区二区三区| 久久久久国产精品人妻aⅴ院| www.自偷自拍.com| 啪啪无遮挡十八禁网站| 91麻豆av在线| 老司机在亚洲福利影院| 美女大奶头视频| 亚洲精品国产精品久久久不卡| 精品熟女少妇八av免费久了| 国产熟女xx| 黄色成人免费大全| avwww免费| 久久精品国产亚洲av高清一级| 久久久久久亚洲精品国产蜜桃av| 又黄又粗又硬又大视频| 国产精品久久久av美女十八| 中国美女看黄片| 校园春色视频在线观看| 亚洲国产高清在线一区二区三| 久久天堂一区二区三区四区| av视频在线观看入口| 色综合欧美亚洲国产小说| 亚洲国产日韩欧美精品在线观看 | 中出人妻视频一区二区| 精品不卡国产一区二区三区| 久久中文看片网| 日本a在线网址| 美女扒开内裤让男人捅视频| 777久久人妻少妇嫩草av网站| 18禁黄网站禁片免费观看直播| 久久亚洲真实| 久久久久精品国产欧美久久久| 日本熟妇午夜| 1024香蕉在线观看| 久久性视频一级片| 国产精品永久免费网站| 久久香蕉精品热| 色综合亚洲欧美另类图片| 日本一二三区视频观看| 精品久久久久久久久久免费视频| 不卡一级毛片| 嫩草影院精品99| 国产成人一区二区三区免费视频网站| 欧美日本视频| 国产三级在线视频| 麻豆av在线久日| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费电影在线观看| 哪里可以看免费的av片| 中文字幕精品亚洲无线码一区| 亚洲一区二区三区不卡视频| www日本黄色视频网| 91av网站免费观看| 国产精品永久免费网站| 亚洲成人久久性| 91成年电影在线观看| 99热6这里只有精品| 中文字幕av在线有码专区| 在线视频色国产色| 最近最新免费中文字幕在线| 欧美成人免费av一区二区三区| 国产午夜精品论理片| 午夜福利18| 一个人观看的视频www高清免费观看 | 日韩精品青青久久久久久| 国产一区二区在线观看日韩 | 国产精品野战在线观看| 黄色毛片三级朝国网站| 香蕉久久夜色| 日韩大尺度精品在线看网址| 久久 成人 亚洲| 久久 成人 亚洲| 搡老熟女国产l中国老女人| 国产午夜精品论理片| 在线观看66精品国产| 午夜福利在线在线| 亚洲av五月六月丁香网| 国产精品久久久久久亚洲av鲁大| 制服丝袜大香蕉在线| 精品日产1卡2卡| 成人国产综合亚洲| 成人国产一区最新在线观看| 最近最新免费中文字幕在线| 精品一区二区三区av网在线观看| 最好的美女福利视频网| 中国美女看黄片| 免费一级毛片在线播放高清视频| 18禁黄网站禁片免费观看直播| 人成视频在线观看免费观看| 国产av麻豆久久久久久久| 好男人电影高清在线观看| 成人午夜高清在线视频| 最新美女视频免费是黄的| 国产午夜福利久久久久久| 精品久久久久久久毛片微露脸| 久久久久久亚洲精品国产蜜桃av| 日本成人三级电影网站| 嫩草影院精品99| 特大巨黑吊av在线直播| 日本黄色视频三级网站网址| 听说在线观看完整版免费高清| 亚洲精品国产一区二区精华液| 日本成人三级电影网站| 90打野战视频偷拍视频| 国产片内射在线| 亚洲一区二区三区色噜噜| 国产精品日韩av在线免费观看| 日本撒尿小便嘘嘘汇集6| 国产精品乱码一区二三区的特点| av有码第一页| 欧美一级毛片孕妇| 一区二区三区高清视频在线| 狠狠狠狠99中文字幕| 最近最新中文字幕大全电影3| 午夜两性在线视频| 变态另类丝袜制服| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕日韩| 一夜夜www| 正在播放国产对白刺激| 熟女电影av网| 国产精品精品国产色婷婷| 免费看日本二区| 日本黄色视频三级网站网址| 精品国产乱码久久久久久男人| 最近最新中文字幕大全电影3| 999精品在线视频| 九色成人免费人妻av| 欧美一级毛片孕妇| 国产99白浆流出| 露出奶头的视频| 精品日产1卡2卡| 午夜福利高清视频| 欧美日韩亚洲综合一区二区三区_| 91麻豆av在线| 精品一区二区三区视频在线观看免费| 亚洲精品美女久久av网站| 国产视频内射| 亚洲 国产 在线| 久久久精品欧美日韩精品| 国产片内射在线| 我的老师免费观看完整版| 亚洲中文日韩欧美视频| 欧美黑人精品巨大| 国产麻豆成人av免费视频| 日本熟妇午夜| 国产一区二区在线av高清观看| aaaaa片日本免费| 成人高潮视频无遮挡免费网站| 亚洲熟妇中文字幕五十中出| 美女扒开内裤让男人捅视频| 国产精品久久久久久亚洲av鲁大| 亚洲精华国产精华精| 蜜桃久久精品国产亚洲av| 国产精品久久久久久久电影 | 啦啦啦免费观看视频1| 最近在线观看免费完整版| 看免费av毛片| 国产av一区二区精品久久| 在线观看日韩欧美| 又黄又爽又免费观看的视频| 变态另类丝袜制服| 国产久久久一区二区三区| 波多野结衣高清无吗| 精品高清国产在线一区| 蜜桃久久精品国产亚洲av| 日韩中文字幕欧美一区二区| 国产三级在线视频| 亚洲人成77777在线视频| 99久久国产精品久久久| 亚洲精品av麻豆狂野| 黄色 视频免费看| 亚洲av美国av| 欧美性猛交╳xxx乱大交人| 欧美中文日本在线观看视频| 在线观看舔阴道视频| av中文乱码字幕在线| 在线观看美女被高潮喷水网站 | 亚洲专区国产一区二区| 国产激情偷乱视频一区二区| 一本综合久久免费| 久久欧美精品欧美久久欧美| 国产成年人精品一区二区| 在线观看午夜福利视频| 国产视频内射| 一本精品99久久精品77| 欧美性长视频在线观看| 好男人电影高清在线观看| 国产精品一区二区三区四区久久| 久久久久久大精品| 国产成人aa在线观看| 天堂av国产一区二区熟女人妻 | 三级男女做爰猛烈吃奶摸视频| 欧美午夜高清在线| 亚洲av第一区精品v没综合| 少妇的丰满在线观看| 黑人欧美特级aaaaaa片| 亚洲国产精品合色在线| 久久久久亚洲av毛片大全| 九九热线精品视视频播放| 无人区码免费观看不卡| 91大片在线观看| 一区二区三区高清视频在线| 亚洲熟妇中文字幕五十中出| 毛片女人毛片| 精品一区二区三区av网在线观看| 欧美绝顶高潮抽搐喷水| 少妇人妻一区二区三区视频| videosex国产| 99国产精品一区二区蜜桃av| 精品久久久久久久毛片微露脸| 午夜福利视频1000在线观看| 精品午夜福利视频在线观看一区| 色综合婷婷激情| 麻豆久久精品国产亚洲av| 五月伊人婷婷丁香| 成人午夜高清在线视频| www.熟女人妻精品国产| 精品少妇一区二区三区视频日本电影| av国产免费在线观看| 国内毛片毛片毛片毛片毛片| 欧美丝袜亚洲另类 | 亚洲熟女毛片儿| 久久婷婷成人综合色麻豆| 久久久国产欧美日韩av| 亚洲狠狠婷婷综合久久图片| 麻豆成人午夜福利视频| 久久 成人 亚洲| 色在线成人网| 国产精品av久久久久免费| 俺也久久电影网| 亚洲精华国产精华精| 精品第一国产精品| 国产视频一区二区在线看| 午夜福利18| av视频在线观看入口| 日韩有码中文字幕| 国产单亲对白刺激| 全区人妻精品视频| 国产欧美日韩一区二区三| 久久中文字幕人妻熟女| 久久精品国产99精品国产亚洲性色| 国产精品亚洲美女久久久| 美女免费视频网站| 91国产中文字幕| 久久人妻av系列| 欧美三级亚洲精品| 精品国产美女av久久久久小说| 欧美日韩福利视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 50天的宝宝边吃奶边哭怎么回事| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 国产真实乱freesex| 久久国产精品人妻蜜桃| 欧美久久黑人一区二区| 亚洲av成人精品一区久久| 国产精品一区二区精品视频观看| 最好的美女福利视频网| АⅤ资源中文在线天堂| 久久久久九九精品影院| 特大巨黑吊av在线直播| 国产精品1区2区在线观看.| 村上凉子中文字幕在线| www.999成人在线观看| 一本久久中文字幕| 中出人妻视频一区二区| 亚洲专区字幕在线| 亚洲中文字幕一区二区三区有码在线看 | a级毛片在线看网站| 欧美成人免费av一区二区三区| 无限看片的www在线观看| 日本免费一区二区三区高清不卡| 久久久久久久久久黄片| 国产一区二区在线av高清观看| 在线观看日韩欧美| 精品国内亚洲2022精品成人| 日韩欧美 国产精品| 九九热线精品视视频播放| 国产视频内射| 国产精品99久久99久久久不卡| 丰满人妻一区二区三区视频av | e午夜精品久久久久久久| 成人永久免费在线观看视频| 一级a爱片免费观看的视频| 高清毛片免费观看视频网站| 国产99久久九九免费精品| 亚洲全国av大片| 国产精品久久久久久人妻精品电影| 日本熟妇午夜| 亚洲精品中文字幕一二三四区| 不卡av一区二区三区| 亚洲人成77777在线视频| 亚洲欧美日韩高清在线视频| 十八禁网站免费在线| 欧美大码av| 日韩免费av在线播放| av超薄肉色丝袜交足视频| 国产免费男女视频| 国产高清视频在线观看网站| 日韩欧美国产在线观看| 久久精品人妻少妇| 国产区一区二久久| 99国产极品粉嫩在线观看| 很黄的视频免费| 动漫黄色视频在线观看| 欧美zozozo另类| 伦理电影免费视频| ponron亚洲| 最近最新中文字幕大全免费视频| 亚洲精品国产一区二区精华液| 亚洲专区中文字幕在线| 操出白浆在线播放| 欧美又色又爽又黄视频| 在线观看免费午夜福利视频| 精品国产亚洲在线| 99在线视频只有这里精品首页| 一区二区三区激情视频| 操出白浆在线播放| 男人舔女人的私密视频| 久久精品国产99精品国产亚洲性色| 欧美又色又爽又黄视频| 可以免费在线观看a视频的电影网站| 国产三级中文精品| 可以免费在线观看a视频的电影网站| 欧美日本亚洲视频在线播放| 免费在线观看亚洲国产| 国产又色又爽无遮挡免费看| 欧美日韩亚洲国产一区二区在线观看| 国产私拍福利视频在线观看| 级片在线观看| 岛国视频午夜一区免费看| 亚洲天堂国产精品一区在线| 久久久久久久久久黄片| 久久久精品大字幕| 欧美日韩中文字幕国产精品一区二区三区| 欧美高清成人免费视频www| 久久久精品欧美日韩精品| 波多野结衣巨乳人妻| 岛国视频午夜一区免费看| 日日摸夜夜添夜夜添小说| 国产精品一及| 中文字幕久久专区| 亚洲av成人av| 日韩欧美在线乱码| 91成年电影在线观看| 老司机深夜福利视频在线观看| 国内毛片毛片毛片毛片毛片| 亚洲av五月六月丁香网| 一级片免费观看大全| 亚洲人成网站在线播放欧美日韩| 精品久久久久久成人av| 日韩 欧美 亚洲 中文字幕| 国产日本99.免费观看| 五月伊人婷婷丁香| 色av中文字幕| 18禁国产床啪视频网站| 九色国产91popny在线| 久久香蕉国产精品| 国产1区2区3区精品| 91av网站免费观看| 日韩国内少妇激情av| 中国美女看黄片| 精品少妇一区二区三区视频日本电影| 久久香蕉激情| 国内少妇人妻偷人精品xxx网站 | 老司机午夜福利在线观看视频| 国产野战对白在线观看| 亚洲人与动物交配视频| 日韩免费av在线播放| 制服诱惑二区| 久久久久亚洲av毛片大全| 免费在线观看成人毛片| 久久精品aⅴ一区二区三区四区| 日韩欧美在线二视频| 亚洲国产欧洲综合997久久,| 日日摸夜夜添夜夜添小说| 制服丝袜大香蕉在线| 无限看片的www在线观看| 最近最新免费中文字幕在线| 日本黄色视频三级网站网址| 免费在线观看亚洲国产| 亚洲成人精品中文字幕电影| 亚洲天堂国产精品一区在线| 天堂动漫精品| 国产熟女xx| 日本免费a在线| 又紧又爽又黄一区二区| 成人手机av| 午夜免费成人在线视频| 99久久综合精品五月天人人| 亚洲,欧美精品.| 亚洲精品国产一区二区精华液| 欧美黑人欧美精品刺激| 看免费av毛片| 国产黄色小视频在线观看| 岛国在线观看网站| 天天添夜夜摸| 又紧又爽又黄一区二区| 精品熟女少妇八av免费久了| 免费看a级黄色片| 国产精品永久免费网站| 深夜精品福利| 又黄又粗又硬又大视频| 免费搜索国产男女视频| 免费在线观看影片大全网站| 亚洲成人久久爱视频| 欧美在线黄色| www.熟女人妻精品国产| 久久久久久大精品| 天天一区二区日本电影三级| 一本一本综合久久| www.自偷自拍.com| 成人18禁在线播放| 天堂动漫精品| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 免费在线观看影片大全网站| bbb黄色大片| 一区福利在线观看| 成人三级做爰电影| 国产不卡一卡二| 亚洲一区高清亚洲精品| 精华霜和精华液先用哪个| 欧美极品一区二区三区四区| 亚洲美女视频黄频| 欧美一级a爱片免费观看看 | 欧美 亚洲 国产 日韩一| 一个人免费在线观看电影 | 精品国产亚洲在线| 91国产中文字幕| 村上凉子中文字幕在线| 人妻久久中文字幕网| 亚洲熟妇中文字幕五十中出| 国产成人av激情在线播放| 国产黄a三级三级三级人| 欧美日韩瑟瑟在线播放| 亚洲精品久久国产高清桃花| 此物有八面人人有两片| 成熟少妇高潮喷水视频| 亚洲精品国产精品久久久不卡| 国产亚洲精品综合一区在线观看 | 精品福利观看| 国产精品美女特级片免费视频播放器 | 91在线观看av| av有码第一页| 国产av麻豆久久久久久久| 波多野结衣巨乳人妻| 久久精品国产清高在天天线| 色尼玛亚洲综合影院| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| 丰满人妻一区二区三区视频av | 久久精品影院6| 久久人妻av系列| 男女做爰动态图高潮gif福利片| 亚洲欧洲精品一区二区精品久久久| 18禁黄网站禁片免费观看直播| 久久性视频一级片| 日韩欧美 国产精品| 欧美日韩一级在线毛片| 人妻夜夜爽99麻豆av| 欧美日韩福利视频一区二区| 动漫黄色视频在线观看| 久久久久国内视频| 亚洲精品中文字幕在线视频| 久久精品91无色码中文字幕| 国产乱人伦免费视频| av视频在线观看入口| 欧美绝顶高潮抽搐喷水| cao死你这个sao货| 国产一区二区三区视频了| 午夜福利成人在线免费观看| 88av欧美| 曰老女人黄片| 午夜福利视频1000在线观看| av国产免费在线观看| 高清在线国产一区| 精品国产乱码久久久久久男人| 国产99白浆流出| 国产69精品久久久久777片 | 久久精品影院6| 看黄色毛片网站| 欧美成人性av电影在线观看| 精品少妇一区二区三区视频日本电影| 欧美丝袜亚洲另类 | 亚洲精品久久成人aⅴ小说| 精品久久久久久久人妻蜜臀av| 一个人免费在线观看电影 | 2021天堂中文幕一二区在线观| 一卡2卡三卡四卡精品乱码亚洲| 亚洲无线在线观看| 国产精品乱码一区二三区的特点| bbb黄色大片| 国产不卡一卡二| 日韩欧美在线乱码| 母亲3免费完整高清在线观看| 国产av在哪里看| 性欧美人与动物交配| 国产一区二区在线av高清观看| 丁香六月欧美| 国产成人精品久久二区二区91| 日本免费一区二区三区高清不卡| 婷婷丁香在线五月| 国产亚洲欧美在线一区二区| 成人高潮视频无遮挡免费网站| 无人区码免费观看不卡| 午夜a级毛片| 黑人操中国人逼视频| 午夜福利在线观看吧| 亚洲美女黄片视频| 精品午夜福利视频在线观看一区| 九九热线精品视视频播放| 欧美 亚洲 国产 日韩一| 亚洲人与动物交配视频| 亚洲,欧美精品.| 久久久久免费精品人妻一区二区| 99在线视频只有这里精品首页| 丁香欧美五月| 人人妻人人看人人澡| 亚洲五月天丁香|