• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Damped Kadomtsev–Petviashvili Equation for Weakly Dissipative Solitons in Dense Relativistic Degenerate Plasmas

    2017-05-09 11:46:41AhmadAtaurRahmanSKhanandHadi
    Communications in Theoretical Physics 2017年12期

    S.AhmadAta-ur-RahmanS.A.Khanand F.Hadi

    1Department of Physics,University of Kotli Azad Jammu and Kashmir,11100 Kotli,Pakistan

    2Department of Physics,Theoretical Plasma Physics Group,Islami a College Peshawar(A Public SectorUniversity),Peshawar 25120,Pakistan

    3National Centre for Physics,Quaid-i-Azam University Campus,Islamabad 43520,Pakistan

    4Department of Nuclear Engineering,Kyoto University,Kyoto 615-8540,Japan

    5Department of Applied Physical and Material Sciences,University of Swat,Swat 19200,Pakistan

    1 Introduction

    Rapid advancements in physics and technology have made it possible to create plasma conditions in Earthbound laboratories that previously existed only in the unattainable regimes like interiors of stars and planets.[1]However,plasma behavior in this case is exotic and its description challenging.Additional complexities arise in plasmas under extreme conditions of density,temperature and magnetic field abundant in astrophysical and cosmological environments like white and brown dwarfs and neutron stars/magnetars.[2?5]Here,the plasmas are not only super-dense but quantum degenerate and relativistic as well.Such coexistence of plasma effects and quantum degeneracy is now well known in plasmas in strong laser field,[6]laboratory experiments on super-intense laser–solid target interactions,[7?8]fast ignition scheme,[9]and high energy density plasmas.[10?11]

    Quantum effects become prominent when electron thermal de Broglie wavelengthλBe= ?/mevte(where ? =h/2πwithhbeing the Planck’s constant,meis the electron mass andvteis the electron thermal velocity)approaches to or becomes larger than the average interelectron separation(~n?1/3e,nebeing the electron number density).Such a situation occurs when the plasma is cooled down to a very low temperature,or plasma density is increased to an extremely high level.Under such circumstances,the Pauli exclusion principle dictates that no two half-integral spin particles(fermions)can stay simultaneously in the same quantum state,so a large number of electrons are pushed into the higher(degenerate)energy states,which is commonly called the electron degeneracy.At this stage the electrons follow Fermi–Dirac distribution function and Fermi degeneracy pressure becomes dominant.As the de Broglie wavelength denotes the spatial extension of particle wave function,so the larger it is,the more dominant quantum effects will be.From the de finition ofλBit is evident that the quantum character of lighter species(electron,positron etc.)is more pronounced due to their smaller masses as compared to the heavier species like ions.

    In ultra-dense dynamical environments where the number density is extremely high,the electron Fermi energy is signi ficant in comparison to the electron rest mass energy.Consequently on the Fermi surface,the speed of electron becomes comparable to that of speed of light in vacuum and one can no longer ignore both the quantum and relativistic effects.[4,12]Matter under such condition of extreme density shows stronger quantum degeneracy,for instance in case of white dwarf stars the average bulk density can be~1030cm?3or even higher.[13]

    Chandrasekhar for the first time formulated a mathematical relation as an equation of state to describe the degeneracy pressure in such dense compact objects for two limits,i.e.,non-relativistic(P∝n5/3)and ultra-relativistic(P∝n4/3)limit.[14?15]He found that the Fermi degeneracy pressure will only keep the white dwarf star stable if its mass is less than a critical value estimated to be 1.4 solar masses,which is known as Chandrasekhar mass.Above this limit,the Fermi degeneracy pressure becomes insufficient to counter balance the catastrophic inward gravitational pull,[16]and collapse occurs.This pressure plays vital role in collective oscillations in relativistic and degenerate plasmas are very short scales.[17?18]In such plasma environments,when the amplitude of oscillation becomes reasonably large,then one must take the nonlinear effects into account,which shows the possibility of formation of localized nonlinear structures(solitons and shocks).Among various types of electrostatic nonlinear waves,solitons are of particular interest for many researchers as they provide with a good physical insight to incorporate the dynamic processes underlying the nonlinear phenomena.One-dimensional soliton can be modeled via the well known Korteweg-de Vries(KdV)equation or Sagdeev pseudopotential approach.In a two-dimensional system,the soliton was first modeled by Kadomstev and Petviashvili[19]via a two-dimensional partial differential equation for cold plasma system which is a multi-dimensional extension of the well-known KdV equation.Numerous studies[20?23]have been reported regarding KP equation for different plasma environments using various plasma compositions.Applications in relativisticdegenerate plasmas include study of the ion waves with low and arbitrary amplitude in a relativistically degenerate plasma[24]and geometry effects of on the evolution of the electrostatic potential and possibility of rogue waves in low amplitude limit.[25]

    It is noteworthy to mention here that all these investigations so far have been done without taking the collisional(dissipative)effects into account,which posses the characteristics of an integrable system(as a subclass of the Hamiltonian system)and is an extreme simpli fication of the real plasmas in nature.However with inclusion of the dissipative effects,the plasma remains no longer Hamiltonian and nonlinear localized structures in such type of non-Hamiltonian systems are known as dissipative solitons.[26?27]In addition to the interplay between nonlinearity and dispersion,which is necessary for the formation of a solitary wave structure in an integrable system,a balance between gain and loss should exist to have a dissipative nonlinear localized structure.[28]New features of dispersion and nonlinearity in dissipative longitudinal solitons in a 2D system have been pointed out in a complex plasma.[29]It is therefore tempting to search for the role of dissipative effects due to plasma-neutral collisions on the propagation of ion solitary waves.Inspired by the current interest in the dissipative solitons which link the dissipative solitons paradigm to plasma dynamics,we have undertaken an investigation of the dissipative solitons propagating in degenerate dense plasmas.It is worth mentioning that the present paper investigates for the first time the effects of transverse perturbations as well as the dissipative effects on the existence and propagation of ion solitary structures in a degenerate dense plasma by deriving a damped KP equation governing the dynamics of three dimensional dissipative solitons.

    This paper is arranged in the following fashion.The mathematical model and linear wave analysis are presented in Sec.2.The derivation of the damped KP equation along with its steady state and approximate time varying solutions are given in Sec.3.The results are numerically simulated in Sec.4,while Sec.5 is dedicated to recapitulate the entire study.

    2 Mathematical Model

    Let us consider a dense unmagnetized collisional plasma where the electrons are assumed to be ultrarelativistically degenerate while the ions as non-relativistic and degenerate.Then,the degeneracy parameter forith species follows that κj>1,where κj=εFj/Tj=1/2(3π2)2/3(n0λBj)2/3,which is a ratio of the Fermi energy to the thermal energy.In order to emphasize the dissipative effects,the collisions of both ions and electrons with the neutral particles are included and are represented by the simple relaxation term[30]in their respective momentum balance equations.The normalized electron momentum equation can be written as

    The Bohm potential term can in fact be neglected if we consider length scales much larger than the mean interparticle distance so that quantum statistical pressure dominates over the quantum diffraction effects.For typical values of various plasma parameters,the ion thermal pressure in white dwarf stars is much smaller in comparison with the electron degeneracy pressure and the ions can be considered as cold.The ion momentum balance equation can be expressed as

    In Eqs.(1)and(2),nj,vj,mj,vj,and?,respectively,denote the number density, fluid velocity,mass and plasmaneutral collisional frequency,wherej=ifor ions andj=efor electrons.The ultra-relativistic degenerate electrons are assumed to follow the equation of state of the form

    Here the polytropic indexγ=4/3(for ultra-relativistic case)andKe=3/4(π2/9)1/3?c?(3/4)?cwith ? =h/2π.Furthermore,the ions are assumed to obey the equation of state given as:

    and the polytropic index isα=5/3(for non-relativistic of quantum and relativistic effects in our model.We are interested in low frequency where the electrons being the lighter particles respond very quickly to the electric field and acquire equilibrium faster than the heavier plasma species like ions.To show this let us introduce the following rescaling

    where the characteristic velocity scale(quantum ionconvenience the tildes notation(~)is dropped in the remainder of this work.The normalized electron momentum Eq.(1)takes the form

    In this particular case of interest the plasma dynamics is three-dimensional and therefore we assume that?=(?x,?y,?z).Then above system of equations takes the form

    Similarly,the components of normalized ion momentum conservation equation(Eq.(8))can be expressed as

    While the continuity equation(Eq.(9))and the Poisson’s equation(Eq.(10))take the following forms

    2.1 Linear Mode Analysis

    A linear dispersion relation can be readily obtained by linearizing Eqs.(15)–(23)in the form

    whereK′e=γKe0,andK′i=αKi0.We have assumed thexdirection as the predominant direction for the propagation of waves due to weak transverse perturbations alongyandzdirections,such thatkx?kyandkz.

    In the absence of collisions(i.e.,υ→0)Eq.(24)reduces to the usual dispersion relation for ion waves in a relativistic degenerate superdense plasma.[31]However,one can further solve the dispersion relation(24)for complex frequency and realkx,by settingω=ωr+iωi,which gives

    It is clear that|ωi|is independent ofkxand it gives the damping(dissipation)rate(υdiss),such thatυdiss~|ωi|~υ=vi/ωpi.It is straightforward to note that the ionneutral collisional frequency determines the system dissipation rate.We further assume weak ion-neutral collisionυ?1 which implies thatυi?ωpi,i.e.,the ion-neutral collisional frequency is smaller than the characteristic ion plasma frequency.Since the system dissipation rate(υdiss)is low in comparison with the characteristic oscillation frequency(ωpi),therefore the model under consideration is a weakly dissipative degenerate dense plasma system.Furthermore,the appearance of collisionality parameter in Eq.(26)clearly manifests that the linear wave properties are strongly effected by electron(ion)-neutral collisions.The effect of plasma con figurational parameters such as collisional frequency and equilibrium plasma number density(throughK′eandK′i)on linear wave pro file is depicted in Figs.1 and 2.

    Fig.1 Variation of ωrversus kxfor different values of collisional frequency,i.e.,ν=0(solid line),ν=0.02(dashed line)and ν=0.06(dotted line).Other parameters used are n0=1030cm?3,α =5/3,and γ =4/3.

    Fig.2 Variation of the wavenumber threshold kxdwith ν,for different values of equilibrium plasma number density,i.e.,n0=1029cm?3(solid line),n0=5×1029cm?3(dashed line)and n0=1030cm?3(dotted line).Other parameters are α =5/3 and γ =4/3.

    From Fig.1 it can be seen that for each value of collisional frequency the wavenumberkxhas a threshold value below which the wave is over-damped or in other words the propagation is not possible.It is seen that the real part of the wave frequency decreases asνincreases(see Fig.1).From Eq.(26)one can easily derive the relation for the critical value(kxd)given below:

    The variation ofkxdwithνfor different values of unperturbed plasma number density is shown in Fig.3.In the long wavelength limitk2xK′e?1,Eq.(25)yields the following relation for wave phase speed

    Fig.3 The time evolution of solitons for different val-

    3 Derivation of Damped KP Equation

    Toderivethenon-lineardamped KP equation,we make use of the standard reductive perturbation method.[32?33]In this regard,following stretching of independent space and time coordinates can be introduced

    whereλis the wave phase velocity normalized by quantum ion-sound speedCi,and is to be determined later.Further,?is a smallness real parameter(0<?<1)specifying the amplitude of perturbation and is proportional to the strength of nonlinearity.The normalized physical variablesni,ne,vix,viy,viz,and?are expanded as:

    Notice that the transverse components(vjy,vjz)of the ion fluid speed appear to evolve more slowly(at higher order in?)than the parallel velocity componentvjx.

    The next order in?gives the following set of equations

    The latter equation demands that in order to make the perturbation expansion consistent with that of Eqs.(30)and(31),and also to incorporate dissipative effects resulting form the ion-neutral collisions,it is necessary to take the following scaling

    which clearly justi fies the fact that the ion-neutral collisional rate(νi)is much smaller than the characteristic plasma frequency(ωpi)as assumed in the model under consideration.After the above substitution,Eq.(39)can be arranged as

    In order to eliminate the second order perturbed quantities,we solve Eqs.(36)–(38)and(41)–(45)while making use of Eq.(32)and arrive at the following expression

    Further substituting the values ofG1,G4,G7andG8into Eq.(46)as well as using the first-order quantities,we obtain an evolution equation in the form of damped KP equation,

    It is immediately noticed that Eq.(51)is in complete agreement with Eq.(26)i.e.,the system dissipation(damping)rate ?!?2~|ωi|.In damped KP equation(Eq.(47)),the term “Γ?”is the representative of dissipative effect caused by ion-neutral collisions,the so called“damping term”.It is worth mentioning here that the presence of lowest order nonlinear and dispersion terms restrict the KP equation to describe only a wave of small amplitude.For large amplitude waves,the width and velocity do not remain consistent with the predictions of KP equation,which causes its breakdown.In the absence of plasma-neutral collisions,i.e.,Γ=0,Eq.(47)reduces to the usual KP equation for the system under consideration.The usual KP equation(without dissipative term)is completely integrable or in other words,the energy of the system is conserved.[34]To show this mathematically,we assume the predominant propagation of wave along the parallel direction.Now we multiply Eq.(47)(with Γ =0)by?(ξ,τ)and then integrate the resultant expression within the limit(?∞,∞)subjected to the vanishing boundary conditions,i.e.,?(ξ,τ)and all its derivatives upto second order→0 asξ→±∞.In this way the following energy conservation equation is obtained,

    whereNandW,respectively,represent the amplitude and spatial width of the soliton.The relevant soliton parametersW,N,andUare related through the expressions

    It can be seen directly from Eq.(54)that the solitary waves increase in amplitude with an increase in velocity,while the corresponding spatial width decreases such thatNW2=12B/A=constant,for a fixed value of equilibrium plasma number density(n(0)).However,in the presence of dissipative effects(i.e.,Γ/=0),Eq.(47)does not represent a completely integrable system,or in other words the energy is not conserved.The energy equation(52)in this case becomes

    Thus,the KP equation(Eq.(47))in the presence of linear damping term(Γ?)cannot be solved analytically.However,an approximate solution can be found using the soliton perturbation technique,[26?27]provided that the system dissipation rate is small.We employ the same technique and find the time evolution solution of damped KP equation,using the leading-order approximation.As the presence of damping causes the deformation of solitary structure,so its amplitude,width and velocity become time dependent,such thatN=N(τ),W=W(τ),U=U(τ).In this way the leading-order one-soliton solution of the damped KP equation with ?!玂(?3/2)results

    In Eqs.(57)and(58)N(0)&ε(0)are,respectively,the initial soliton amplitude and energy.The soliton velocity and width can be expressed,respectively,as

    4 Numerical Analysis

    The time varying solutions presented above are approximate leading-order solutions and the reason is obvious i.e.,we have restricted our analysis to the first order in?only.However the analysis holds well for perturbations exhibiting dissipation.[26,35]All the higher orders in the perturbation scheme introduce only corrections to the leading-order solution.But these corrections do not affect the change in soliton parameters,which results from the damping.Thus the soliton’s amplitude,width and velocity change in the same manner as found in leadingorder solution.The exponentially decaying behavior of soliton amplitudeN(τ),energyε(τ)and velocityU(τ)with time due to the presence of dissipative effects is clearly manifested by Eqs.(57)–(59)respectively.However,Eq.(60)shows that the soliton spatial width grows exponentially with time,but the product of amplitude(N(τ))and square of width(W2(τ))always remains the same(i.e.,N(τ)W2(τ)=12B/A=constant)for a particular case.The numerical solutions exactly show similar behavior as presented in Figs.3 and 4.

    Fig.4 The evolution of solitons for varying values of Γ,i.e.,Γ =0.01(a),Γ =0.017(b),and Γ =0.024(c).We have taken the equilibrium plasma number density n0=1030cm?3,whereas the initial condition and other related parameters are the same as used in Fig.3.

    5 Conclusions

    Summing up,we have investigated the linear and nonlinear characteristics of ion solitary waves in a weakly dissipative dense plasma system comprising of ultrarelativistic degenerate electrons and non-relativistic degenerate ion fluids.In the present study,we have mainly focused on the damping of ion solitary waves,which is caused by the ion-neutral collisional effect.For weakly nonlinear approximation,the damped KP equation is derived by using standard reductive perturbation approach.The analytical and numerical results support the formation and propagation of compressive solitons undergoing weak dissipation with time.We have shown that the plasma number density and ion-neutral collisional rate signi ficantly affect the soliton’s amplitude,width and velocity.Further,for numerical analysis,we have used the typical values of various plasma parameters relevant to interior of white dwarfs,reported in Ref.[12].

    The present study aims to be helpful in understanding the different aspects of localized nonlinear disturbances in dense plasma environments such as in white dwarf stars.Owing to the colossal number densities in the interior of white dwarfs,the electrons become relativistically degenerate through the implication of both Pauli’s exclusion mechanism and Heisenberg uncertainty principle,such that their quantum mechanical nature elucidates the equation of state as well as their structure and mass limitation.[4]

    [1]M.G.Haines,P.D.LePell,C.A.Coverdale,B.Jones,C.Deeney,and J.P.Apruzese,Phys.Rev.Lett.96(2006)075003.

    [2]G.Chabrier,F.Douchin,and A.Y.Potekhin,J.Phys.Condens.Matter 14(2002)9133.

    [3]F.C.Michel,Rev.Mod.Phys.54(1982)1.

    [4]S.L.Shapiro and S.A.Teukolsky,Black Holes,White Dwarfs,and Neutron Stars:The Physics of Compact Objects,John Wiley and Sons,New York(1983).

    [5]H.Gursky,Forntiers of Astrophysics,Harvard University Press,London(1976)

    [6]D.Kremp,Th.Bornath,M.Bonitz,and M.Schlanges,Phys.Rev.E 60(1999)4725.

    [7]J.Lindl,Phys.Plasmas 2(1995)3933.

    [8]S.X.Hu and C.H.Keitel,Phys.Rev.Lett.83(1999)4709.

    [9]P.T.Leon,S.Eleizer,M.Piera,and J.M.M.Val,inCurrent Trends in Inertial Fusion Research-Proceedings of the Fifth Symposium,eds.E.Panarella and R.Raman,NRC Research Press,Ottawa,Canada(2008)

    [10]R.P.Drake,Phys.Plasmas 16(2009)055501.

    [11]S.H.Glenzer and R.Redmer,Rev.Mod.Phys.81(2009)1625.

    [12]D.Koester and G.Chanmugam,Rep.Prog.Phys.53(1990)837.

    [13]P.K.Shukla and B.Eliasson,Rev.Mod.Phys.83(2011)885.

    [14]S.Chandrasekhar,An Introduction to the Study of Stellar Structure,University of Chicago Press,Chicago(1939)

    [15]S.Chandrasekhar,Mon.Not.R.Astron.Soc.170(1935)405.

    [16]G.Fontaine and F.Wesemae,in Encyclopedia of Astronomy and Astrophysics,ed.P.Murdin,Nature,New York(2001)

    [17]H.D.Sivak,Physica A 129(1985)408.

    [18]S.A.Khan,K.Ayub,and A.Ahmad,Phys.Plasmas 19(2012)102104.

    [19]B.B.Kadomtsev and V.I.Petviashvili,Sov.Phys.Dokl.15(1970)539.

    [20]G.C.Das and K.M.Sen,Contrib.Plasma Phys.33(1993)15.

    [21]W.S.Duan,Chaos,Solitons and Fractals 14(2002)503.

    [22]S.K.El-Labany,W.M.Moslem,W.F.El-Taibany,and M.Mahmood,Phys.Scr.70(2004)317.

    [23]H.Rehman,S.A.Khan,W.Masood,and M.Siddiq,Phys.Plasmas 15(2008)124501.

    [24]I.Zeba,W.M.Moslem,and P.K.Shukla,Astrophys.J.750(2012)72.

    [25]A.Rahman,S.Ali,W.M.Moslem,and A.Mushtaq,Phys.Plasmas 20(2013)072103.

    [26]V.I.Karpman and E.M.Maslov,Sov.Phys.JETP 46(1977)281.

    [27]R.L.Herman,J.Phys.A 23(1990)2327.

    [28]S.Ghosh and N.Chakrabarti,Phys.Rev.E 84(2011)046601.

    [29]D.Samsonov,A.V.Ivlev,R.A.Quinn,G.Mor fill,and S.Zhdanov,Phys.Rev.Lett.88(2002)095004.

    [30]F.Haas and A.Bret,Europhys.Lett.97(2012)26001.

    [31]L.Nahar,M.S.Zobaer,N.Roy,and A.A.Mamun,Phys.Plasmas 20(2013)022304.

    [32]H.Washimi and T.Taniuti,Phys.Rev.Lett.17(1966)996.

    [33]R.C.Davidson,Methods in Nonlinear Plasma Theory,Academic,New York(1972).

    [34]V.Yu.Belashov and S.V.Vladimirov,Solitary Waves in Dispersive Complex Media,Springer-Verlag,Berlin(2005)

    [35]A.C.Newell,Solitons in Mathematics and Physics,SIAM,Philadelphia,Penn(1985)

    [36]S.I.Popel,A.P.Golub,T.V.Losseva,A.V.Ivlev,S.A.Khrapak,and G.Mor fill,Phys.Rev.E 67(2003)056402.

    视频区图区小说| 中文字幕制服av| 亚洲精品成人av观看孕妇| 岛国在线观看网站| 精品少妇内射三级| 中国国产av一级| 777米奇影视久久| 菩萨蛮人人尽说江南好唐韦庄| 国产成人av教育| 视频区图区小说| 亚洲伊人久久精品综合| 国产国语露脸激情在线看| 成人手机av| 久久精品国产亚洲av高清一级| 国产一区二区激情短视频 | 国产不卡av网站在线观看| 女人高潮潮喷娇喘18禁视频| 嫩草影视91久久| 日韩欧美国产一区二区入口| 不卡av一区二区三区| 老司机影院成人| 岛国在线观看网站| 亚洲国产精品成人久久小说| 美女国产高潮福利片在线看| 亚洲精品一卡2卡三卡4卡5卡 | 久久ye,这里只有精品| 国产日韩一区二区三区精品不卡| 青青草视频在线视频观看| 午夜福利视频精品| 又黄又粗又硬又大视频| 曰老女人黄片| 亚洲五月色婷婷综合| 亚洲中文字幕日韩| www.自偷自拍.com| 欧美97在线视频| 日韩欧美一区二区三区在线观看 | 多毛熟女@视频| 久久人人爽av亚洲精品天堂| 黄色毛片三级朝国网站| 亚洲午夜精品一区,二区,三区| 国产亚洲一区二区精品| 久久久精品区二区三区| 亚洲成人免费电影在线观看| av在线老鸭窝| 国产一区二区三区综合在线观看| 精品福利永久在线观看| 欧美日韩视频精品一区| 成人国语在线视频| 看免费av毛片| 欧美国产精品va在线观看不卡| 亚洲三区欧美一区| 涩涩av久久男人的天堂| 99精品欧美一区二区三区四区| 国产三级黄色录像| 91av网站免费观看| 嫁个100分男人电影在线观看| 人人妻人人澡人人看| 成人三级做爰电影| 精品一区二区三区av网在线观看 | av片东京热男人的天堂| www.熟女人妻精品国产| 日日夜夜操网爽| 日日爽夜夜爽网站| 久久精品亚洲熟妇少妇任你| 亚洲熟女毛片儿| 女人高潮潮喷娇喘18禁视频| 欧美老熟妇乱子伦牲交| 精品免费久久久久久久清纯 | 天天影视国产精品| 热99久久久久精品小说推荐| 国产成人精品久久二区二区91| 99久久国产精品久久久| 午夜免费鲁丝| 老司机深夜福利视频在线观看 | 老鸭窝网址在线观看| 国产欧美日韩精品亚洲av| 欧美xxⅹ黑人| 亚洲美女黄色视频免费看| 国产精品亚洲av一区麻豆| 美女扒开内裤让男人捅视频| 久久人人爽av亚洲精品天堂| 欧美精品啪啪一区二区三区 | 欧美激情极品国产一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品久久久久久婷婷小说| 在线观看免费午夜福利视频| 色综合欧美亚洲国产小说| 国产日韩一区二区三区精品不卡| 亚洲va日本ⅴa欧美va伊人久久 | 久久av网站| 国产欧美亚洲国产| 国产男女超爽视频在线观看| 美女福利国产在线| tocl精华| 成人手机av| 人妻一区二区av| 国产精品九九99| 久久精品人人爽人人爽视色| 伊人亚洲综合成人网| 亚洲av国产av综合av卡| 久久久久视频综合| 亚洲 欧美一区二区三区| 青青草视频在线视频观看| 国产精品一区二区在线不卡| 亚洲精品国产av成人精品| 蜜桃国产av成人99| av视频免费观看在线观看| 久久中文字幕一级| tocl精华| √禁漫天堂资源中文www| 丰满少妇做爰视频| 久久久久久免费高清国产稀缺| 欧美97在线视频| 亚洲人成77777在线视频| 大香蕉久久成人网| 美女扒开内裤让男人捅视频| 又黄又粗又硬又大视频| 精品亚洲乱码少妇综合久久| 捣出白浆h1v1| 精品福利永久在线观看| 日韩有码中文字幕| 91老司机精品| 欧美日韩国产mv在线观看视频| 欧美成人午夜精品| 亚洲av成人不卡在线观看播放网 | 国产亚洲午夜精品一区二区久久| www.精华液| 丰满迷人的少妇在线观看| 久久久久网色| 黑人巨大精品欧美一区二区蜜桃| av视频免费观看在线观看| 黄频高清免费视频| e午夜精品久久久久久久| 青青草视频在线视频观看| 一级a爱视频在线免费观看| 日本欧美视频一区| 亚洲精品国产精品久久久不卡| 日本a在线网址| 久久这里只有精品19| 一级毛片女人18水好多| 另类精品久久| 亚洲视频免费观看视频| 伊人亚洲综合成人网| 免费观看a级毛片全部| 国产精品亚洲av一区麻豆| 久久青草综合色| 97人妻天天添夜夜摸| 国产在线一区二区三区精| 久久久久精品人妻al黑| 久久精品久久久久久噜噜老黄| 欧美大码av| av免费在线观看网站| 久久中文看片网| 人人妻人人澡人人看| 免费日韩欧美在线观看| 十八禁网站网址无遮挡| 大码成人一级视频| 999久久久精品免费观看国产| 国产欧美亚洲国产| 亚洲国产中文字幕在线视频| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久久久久久大奶| 久久青草综合色| 日本91视频免费播放| 大型av网站在线播放| 欧美大码av| www.自偷自拍.com| 超色免费av| 在线观看免费高清a一片| 波多野结衣av一区二区av| 久久免费观看电影| 一级毛片精品| 久久狼人影院| 国产麻豆69| 老司机亚洲免费影院| 人妻 亚洲 视频| 亚洲五月婷婷丁香| 我要看黄色一级片免费的| 另类亚洲欧美激情| 日本撒尿小便嘘嘘汇集6| 日韩 亚洲 欧美在线| 91精品三级在线观看| 老司机午夜十八禁免费视频| 老熟妇乱子伦视频在线观看 | 久久久久国产一级毛片高清牌| 日韩一区二区三区影片| 亚洲精品中文字幕一二三四区 | 丰满饥渴人妻一区二区三| 国产欧美亚洲国产| 亚洲avbb在线观看| 成人国产一区最新在线观看| 黑丝袜美女国产一区| 熟女少妇亚洲综合色aaa.| 国产一级毛片在线| av超薄肉色丝袜交足视频| 亚洲 欧美一区二区三区| 国产xxxxx性猛交| 男人操女人黄网站| 国产精品一区二区精品视频观看| 老司机影院毛片| 黑人猛操日本美女一级片| 亚洲 国产 在线| 欧美精品一区二区大全| 热re99久久国产66热| 人妻 亚洲 视频| 国产国语露脸激情在线看| 老熟妇乱子伦视频在线观看 | 久久ye,这里只有精品| 欧美日韩亚洲高清精品| 啦啦啦 在线观看视频| 香蕉丝袜av| 一区二区日韩欧美中文字幕| 视频在线观看一区二区三区| 欧美少妇被猛烈插入视频| 欧美成人午夜精品| 日韩,欧美,国产一区二区三区| 99久久国产精品久久久| av在线播放精品| 蜜桃国产av成人99| 久久天堂一区二区三区四区| tocl精华| 精品久久久精品久久久| 日韩精品免费视频一区二区三区| 大香蕉久久成人网| 久久ye,这里只有精品| 少妇粗大呻吟视频| 99精品欧美一区二区三区四区| 亚洲精华国产精华精| 成人三级做爰电影| 少妇猛男粗大的猛烈进出视频| 一区二区三区激情视频| 成年动漫av网址| 麻豆av在线久日| 男女高潮啪啪啪动态图| 国产精品99久久99久久久不卡| 精品人妻在线不人妻| 丝袜人妻中文字幕| 久久热在线av| 婷婷色av中文字幕| 亚洲精品美女久久av网站| 麻豆国产av国片精品| 久久99热这里只频精品6学生| 女人被躁到高潮嗷嗷叫费观| 国产三级黄色录像| 国产区一区二久久| 美女国产高潮福利片在线看| 国产欧美日韩一区二区三 | 最黄视频免费看| av又黄又爽大尺度在线免费看| 欧美老熟妇乱子伦牲交| 在线永久观看黄色视频| 精品免费久久久久久久清纯 | tube8黄色片| 国产一区二区三区在线臀色熟女 | 亚洲少妇的诱惑av| 老司机影院毛片| 久久久久视频综合| 欧美日韩av久久| kizo精华| 男女边摸边吃奶| 国产人伦9x9x在线观看| 国产精品久久久久久精品古装| 精品人妻在线不人妻| 极品人妻少妇av视频| 99热全是精品| 男女下面插进去视频免费观看| 热re99久久国产66热| 免费在线观看完整版高清| av又黄又爽大尺度在线免费看| 亚洲精品国产av蜜桃| 欧美在线一区亚洲| 男男h啪啪无遮挡| 国产欧美日韩一区二区三 | 18禁观看日本| 国产精品偷伦视频观看了| 免费日韩欧美在线观看| 免费观看av网站的网址| 人妻人人澡人人爽人人| 人人妻人人澡人人爽人人夜夜| 久久影院123| 国产成人系列免费观看| av片东京热男人的天堂| 99久久人妻综合| 后天国语完整版免费观看| 成年人午夜在线观看视频| 五月开心婷婷网| 国产高清国产精品国产三级| 日韩欧美一区二区三区在线观看 | 精品国产乱码久久久久久男人| 亚洲色图综合在线观看| 久久久久精品人妻al黑| 国产成人av激情在线播放| 国产av一区二区精品久久| 国产97色在线日韩免费| 亚洲少妇的诱惑av| 日韩制服骚丝袜av| 91字幕亚洲| 国产精品成人在线| 一边摸一边做爽爽视频免费| 亚洲国产欧美一区二区综合| 欧美国产精品va在线观看不卡| 亚洲人成77777在线视频| 久久99热这里只频精品6学生| 热99久久久久精品小说推荐| 久久久精品94久久精品| 国产av一区二区精品久久| 狂野欧美激情性xxxx| 成人国产一区最新在线观看| 亚洲天堂av无毛| 少妇 在线观看| 中文字幕人妻丝袜制服| 午夜日韩欧美国产| 国产男女超爽视频在线观看| 久久精品国产综合久久久| 捣出白浆h1v1| 制服人妻中文乱码| 少妇被粗大的猛进出69影院| 伦理电影免费视频| 国产免费av片在线观看野外av| 色婷婷av一区二区三区视频| 欧美精品亚洲一区二区| 久久久国产精品麻豆| 午夜免费成人在线视频| 亚洲国产看品久久| 亚洲国产精品999| 国产欧美日韩综合在线一区二区| 一边摸一边抽搐一进一出视频| 啦啦啦 在线观看视频| 欧美日韩成人在线一区二区| 精品国内亚洲2022精品成人 | 少妇 在线观看| 十八禁网站免费在线| 爱豆传媒免费全集在线观看| 亚洲自偷自拍图片 自拍| 美女中出高潮动态图| tocl精华| 亚洲va日本ⅴa欧美va伊人久久 | 免费在线观看黄色视频的| a级毛片黄视频| 国产伦理片在线播放av一区| 少妇人妻久久综合中文| 日韩中文字幕欧美一区二区| 亚洲精品中文字幕一二三四区 | 久久 成人 亚洲| 一个人免费看片子| 国产精品 国内视频| 91大片在线观看| 曰老女人黄片| 亚洲av美国av| 三级毛片av免费| 国产老妇伦熟女老妇高清| 成年动漫av网址| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| 国产又色又爽无遮挡免| 久久久国产成人免费| 高清欧美精品videossex| 精品乱码久久久久久99久播| 日本vs欧美在线观看视频| 丝袜脚勾引网站| 国产亚洲欧美在线一区二区| 国产精品免费大片| 自线自在国产av| 久久天躁狠狠躁夜夜2o2o| 国产1区2区3区精品| 日韩欧美一区视频在线观看| 免费在线观看黄色视频的| 国产精品免费视频内射| 午夜福利在线免费观看网站| 亚洲欧洲精品一区二区精品久久久| 精品人妻一区二区三区麻豆| 久久久久视频综合| 少妇精品久久久久久久| 2018国产大陆天天弄谢| 欧美变态另类bdsm刘玥| 久久久久精品国产欧美久久久 | 精品国产乱码久久久久久小说| 女人被躁到高潮嗷嗷叫费观| 精品国产一区二区久久| 老熟妇仑乱视频hdxx| 久久久国产成人免费| 国产高清视频在线播放一区 | 在线观看一区二区三区激情| 亚洲国产欧美在线一区| 精品人妻在线不人妻| e午夜精品久久久久久久| 黄网站色视频无遮挡免费观看| 飞空精品影院首页| 午夜两性在线视频| www.999成人在线观看| 国产97色在线日韩免费| 热re99久久精品国产66热6| 久久女婷五月综合色啪小说| 搡老乐熟女国产| 91成人精品电影| 亚洲熟女精品中文字幕| 亚洲午夜精品一区,二区,三区| 久久人妻福利社区极品人妻图片| 日本av手机在线免费观看| 巨乳人妻的诱惑在线观看| 男人操女人黄网站| 一二三四在线观看免费中文在| 天天添夜夜摸| 国产一区二区 视频在线| 免费在线观看影片大全网站| 欧美在线一区亚洲| 亚洲五月婷婷丁香| 超碰成人久久| 人妻一区二区av| 高清av免费在线| 99国产极品粉嫩在线观看| 汤姆久久久久久久影院中文字幕| 亚洲国产精品成人久久小说| 91成年电影在线观看| 人人澡人人妻人| 另类亚洲欧美激情| 亚洲国产精品一区三区| 国产在线视频一区二区| 99久久99久久久精品蜜桃| 久久国产精品大桥未久av| 亚洲自偷自拍图片 自拍| 欧美精品一区二区大全| 欧美成人午夜精品| 在线观看免费午夜福利视频| 午夜福利视频在线观看免费| 夫妻午夜视频| 91精品三级在线观看| 少妇猛男粗大的猛烈进出视频| 大陆偷拍与自拍| 无限看片的www在线观看| 69av精品久久久久久 | 久久久久久久大尺度免费视频| 国产欧美日韩综合在线一区二区| 免费黄频网站在线观看国产| 多毛熟女@视频| 免费在线观看完整版高清| av国产精品久久久久影院| 亚洲人成77777在线视频| av不卡在线播放| 纵有疾风起免费观看全集完整版| 欧美成人午夜精品| 日本一区二区免费在线视频| 国产一区有黄有色的免费视频| 国产成人啪精品午夜网站| 欧美变态另类bdsm刘玥| 国产99久久九九免费精品| 色94色欧美一区二区| 免费在线观看视频国产中文字幕亚洲 | 免费人妻精品一区二区三区视频| 国产高清视频在线播放一区 | 少妇被粗大的猛进出69影院| 亚洲精品久久午夜乱码| 99精国产麻豆久久婷婷| 性高湖久久久久久久久免费观看| 9191精品国产免费久久| 男女之事视频高清在线观看| 一二三四在线观看免费中文在| 欧美成狂野欧美在线观看| 久久人人97超碰香蕉20202| 两人在一起打扑克的视频| 男人添女人高潮全过程视频| 亚洲国产精品一区三区| 国产成人精品在线电影| 老熟妇乱子伦视频在线观看 | 老司机影院成人| 日韩大码丰满熟妇| www.自偷自拍.com| 亚洲avbb在线观看| 精品人妻熟女毛片av久久网站| 精品卡一卡二卡四卡免费| 高清黄色对白视频在线免费看| 亚洲精品第二区| tocl精华| 免费黄频网站在线观看国产| 中文字幕最新亚洲高清| 午夜福利免费观看在线| 男人爽女人下面视频在线观看| 国产精品偷伦视频观看了| www.自偷自拍.com| 国产男女内射视频| 一二三四社区在线视频社区8| 精品高清国产在线一区| cao死你这个sao货| 免费在线观看影片大全网站| 爱豆传媒免费全集在线观看| 亚洲,欧美精品.| 亚洲成人手机| 国产精品 国内视频| 美女视频免费永久观看网站| 久久久久久亚洲精品国产蜜桃av| 久久久精品免费免费高清| 我的亚洲天堂| 99国产综合亚洲精品| 亚洲欧美精品综合一区二区三区| 欧美人与性动交α欧美精品济南到| 国产亚洲av片在线观看秒播厂| 一级毛片电影观看| 国产一区二区三区综合在线观看| av电影中文网址| 亚洲一区二区三区欧美精品| 日韩制服丝袜自拍偷拍| 久久久国产一区二区| 欧美黄色片欧美黄色片| 搡老熟女国产l中国老女人| 麻豆av在线久日| 亚洲专区中文字幕在线| 久久久国产一区二区| 十八禁网站免费在线| 中文字幕精品免费在线观看视频| 嫁个100分男人电影在线观看| av线在线观看网站| 夜夜夜夜夜久久久久| 热99久久久久精品小说推荐| 色播在线永久视频| 麻豆av在线久日| 自线自在国产av| 午夜久久久在线观看| 久久久水蜜桃国产精品网| 欧美性长视频在线观看| 91国产中文字幕| 精品亚洲成国产av| 精品一区在线观看国产| 国产一区二区三区在线臀色熟女 | 如日韩欧美国产精品一区二区三区| 涩涩av久久男人的天堂| 亚洲国产精品一区三区| 国产有黄有色有爽视频| 在线观看www视频免费| 三级毛片av免费| 国产av一区二区精品久久| 91精品伊人久久大香线蕉| 伊人亚洲综合成人网| 国产欧美日韩一区二区三区在线| 国产男女内射视频| 国产精品.久久久| 老司机亚洲免费影院| 国产熟女午夜一区二区三区| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片| 国产在线观看jvid| 2018国产大陆天天弄谢| 国产高清视频在线播放一区 | 桃花免费在线播放| 欧美日韩黄片免| 国产一区二区三区av在线| 久久久久久人人人人人| 久久精品亚洲av国产电影网| 免费在线观看影片大全网站| 最黄视频免费看| 男人舔女人的私密视频| 一区二区av电影网| 三上悠亚av全集在线观看| 国产色视频综合| 国产亚洲一区二区精品| av超薄肉色丝袜交足视频| 国产亚洲av高清不卡| 香蕉国产在线看| 欧美日韩亚洲高清精品| 久9热在线精品视频| 欧美+亚洲+日韩+国产| 一区二区av电影网| 亚洲成人免费av在线播放| 久久久久久亚洲精品国产蜜桃av| 国产成人系列免费观看| www.精华液| 欧美黄色片欧美黄色片| 一级毛片精品| 美女脱内裤让男人舔精品视频| 国产成+人综合+亚洲专区| 亚洲欧美一区二区三区黑人| a级毛片黄视频| a在线观看视频网站| 成人av一区二区三区在线看 | 亚洲专区中文字幕在线| av片东京热男人的天堂| 美女午夜性视频免费| 欧美中文综合在线视频| 欧美黄色片欧美黄色片| 中文字幕av电影在线播放| 最近中文字幕2019免费版| 老司机亚洲免费影院| 91国产中文字幕| 男人舔女人的私密视频| 久久久久久亚洲精品国产蜜桃av| 搡老岳熟女国产| 熟女少妇亚洲综合色aaa.| 久久天堂一区二区三区四区| 国产精品欧美亚洲77777| 他把我摸到了高潮在线观看 | 中文字幕av电影在线播放| 美女脱内裤让男人舔精品视频| 久久久久网色| 中亚洲国语对白在线视频| 国产精品一二三区在线看| tocl精华| 老熟女久久久| 女人精品久久久久毛片| 美女午夜性视频免费| 制服人妻中文乱码| 视频区欧美日本亚洲| av不卡在线播放| 国产精品秋霞免费鲁丝片| 国产精品久久久av美女十八| 男女国产视频网站| 人人妻人人爽人人添夜夜欢视频| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久久毛片微露脸 | 成年动漫av网址| 黄片播放在线免费| 人人妻人人澡人人爽人人夜夜| 老司机影院成人| 免费高清在线观看视频在线观看| 欧美 日韩 精品 国产| 亚洲免费av在线视频| 午夜免费观看性视频|