• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Damped Kadomtsev–Petviashvili Equation for Weakly Dissipative Solitons in Dense Relativistic Degenerate Plasmas

    2017-05-09 11:46:41AhmadAtaurRahmanSKhanandHadi
    Communications in Theoretical Physics 2017年12期

    S.AhmadAta-ur-RahmanS.A.Khanand F.Hadi

    1Department of Physics,University of Kotli Azad Jammu and Kashmir,11100 Kotli,Pakistan

    2Department of Physics,Theoretical Plasma Physics Group,Islami a College Peshawar(A Public SectorUniversity),Peshawar 25120,Pakistan

    3National Centre for Physics,Quaid-i-Azam University Campus,Islamabad 43520,Pakistan

    4Department of Nuclear Engineering,Kyoto University,Kyoto 615-8540,Japan

    5Department of Applied Physical and Material Sciences,University of Swat,Swat 19200,Pakistan

    1 Introduction

    Rapid advancements in physics and technology have made it possible to create plasma conditions in Earthbound laboratories that previously existed only in the unattainable regimes like interiors of stars and planets.[1]However,plasma behavior in this case is exotic and its description challenging.Additional complexities arise in plasmas under extreme conditions of density,temperature and magnetic field abundant in astrophysical and cosmological environments like white and brown dwarfs and neutron stars/magnetars.[2?5]Here,the plasmas are not only super-dense but quantum degenerate and relativistic as well.Such coexistence of plasma effects and quantum degeneracy is now well known in plasmas in strong laser field,[6]laboratory experiments on super-intense laser–solid target interactions,[7?8]fast ignition scheme,[9]and high energy density plasmas.[10?11]

    Quantum effects become prominent when electron thermal de Broglie wavelengthλBe= ?/mevte(where ? =h/2πwithhbeing the Planck’s constant,meis the electron mass andvteis the electron thermal velocity)approaches to or becomes larger than the average interelectron separation(~n?1/3e,nebeing the electron number density).Such a situation occurs when the plasma is cooled down to a very low temperature,or plasma density is increased to an extremely high level.Under such circumstances,the Pauli exclusion principle dictates that no two half-integral spin particles(fermions)can stay simultaneously in the same quantum state,so a large number of electrons are pushed into the higher(degenerate)energy states,which is commonly called the electron degeneracy.At this stage the electrons follow Fermi–Dirac distribution function and Fermi degeneracy pressure becomes dominant.As the de Broglie wavelength denotes the spatial extension of particle wave function,so the larger it is,the more dominant quantum effects will be.From the de finition ofλBit is evident that the quantum character of lighter species(electron,positron etc.)is more pronounced due to their smaller masses as compared to the heavier species like ions.

    In ultra-dense dynamical environments where the number density is extremely high,the electron Fermi energy is signi ficant in comparison to the electron rest mass energy.Consequently on the Fermi surface,the speed of electron becomes comparable to that of speed of light in vacuum and one can no longer ignore both the quantum and relativistic effects.[4,12]Matter under such condition of extreme density shows stronger quantum degeneracy,for instance in case of white dwarf stars the average bulk density can be~1030cm?3or even higher.[13]

    Chandrasekhar for the first time formulated a mathematical relation as an equation of state to describe the degeneracy pressure in such dense compact objects for two limits,i.e.,non-relativistic(P∝n5/3)and ultra-relativistic(P∝n4/3)limit.[14?15]He found that the Fermi degeneracy pressure will only keep the white dwarf star stable if its mass is less than a critical value estimated to be 1.4 solar masses,which is known as Chandrasekhar mass.Above this limit,the Fermi degeneracy pressure becomes insufficient to counter balance the catastrophic inward gravitational pull,[16]and collapse occurs.This pressure plays vital role in collective oscillations in relativistic and degenerate plasmas are very short scales.[17?18]In such plasma environments,when the amplitude of oscillation becomes reasonably large,then one must take the nonlinear effects into account,which shows the possibility of formation of localized nonlinear structures(solitons and shocks).Among various types of electrostatic nonlinear waves,solitons are of particular interest for many researchers as they provide with a good physical insight to incorporate the dynamic processes underlying the nonlinear phenomena.One-dimensional soliton can be modeled via the well known Korteweg-de Vries(KdV)equation or Sagdeev pseudopotential approach.In a two-dimensional system,the soliton was first modeled by Kadomstev and Petviashvili[19]via a two-dimensional partial differential equation for cold plasma system which is a multi-dimensional extension of the well-known KdV equation.Numerous studies[20?23]have been reported regarding KP equation for different plasma environments using various plasma compositions.Applications in relativisticdegenerate plasmas include study of the ion waves with low and arbitrary amplitude in a relativistically degenerate plasma[24]and geometry effects of on the evolution of the electrostatic potential and possibility of rogue waves in low amplitude limit.[25]

    It is noteworthy to mention here that all these investigations so far have been done without taking the collisional(dissipative)effects into account,which posses the characteristics of an integrable system(as a subclass of the Hamiltonian system)and is an extreme simpli fication of the real plasmas in nature.However with inclusion of the dissipative effects,the plasma remains no longer Hamiltonian and nonlinear localized structures in such type of non-Hamiltonian systems are known as dissipative solitons.[26?27]In addition to the interplay between nonlinearity and dispersion,which is necessary for the formation of a solitary wave structure in an integrable system,a balance between gain and loss should exist to have a dissipative nonlinear localized structure.[28]New features of dispersion and nonlinearity in dissipative longitudinal solitons in a 2D system have been pointed out in a complex plasma.[29]It is therefore tempting to search for the role of dissipative effects due to plasma-neutral collisions on the propagation of ion solitary waves.Inspired by the current interest in the dissipative solitons which link the dissipative solitons paradigm to plasma dynamics,we have undertaken an investigation of the dissipative solitons propagating in degenerate dense plasmas.It is worth mentioning that the present paper investigates for the first time the effects of transverse perturbations as well as the dissipative effects on the existence and propagation of ion solitary structures in a degenerate dense plasma by deriving a damped KP equation governing the dynamics of three dimensional dissipative solitons.

    This paper is arranged in the following fashion.The mathematical model and linear wave analysis are presented in Sec.2.The derivation of the damped KP equation along with its steady state and approximate time varying solutions are given in Sec.3.The results are numerically simulated in Sec.4,while Sec.5 is dedicated to recapitulate the entire study.

    2 Mathematical Model

    Let us consider a dense unmagnetized collisional plasma where the electrons are assumed to be ultrarelativistically degenerate while the ions as non-relativistic and degenerate.Then,the degeneracy parameter forith species follows that κj>1,where κj=εFj/Tj=1/2(3π2)2/3(n0λBj)2/3,which is a ratio of the Fermi energy to the thermal energy.In order to emphasize the dissipative effects,the collisions of both ions and electrons with the neutral particles are included and are represented by the simple relaxation term[30]in their respective momentum balance equations.The normalized electron momentum equation can be written as

    The Bohm potential term can in fact be neglected if we consider length scales much larger than the mean interparticle distance so that quantum statistical pressure dominates over the quantum diffraction effects.For typical values of various plasma parameters,the ion thermal pressure in white dwarf stars is much smaller in comparison with the electron degeneracy pressure and the ions can be considered as cold.The ion momentum balance equation can be expressed as

    In Eqs.(1)and(2),nj,vj,mj,vj,and?,respectively,denote the number density, fluid velocity,mass and plasmaneutral collisional frequency,wherej=ifor ions andj=efor electrons.The ultra-relativistic degenerate electrons are assumed to follow the equation of state of the form

    Here the polytropic indexγ=4/3(for ultra-relativistic case)andKe=3/4(π2/9)1/3?c?(3/4)?cwith ? =h/2π.Furthermore,the ions are assumed to obey the equation of state given as:

    and the polytropic index isα=5/3(for non-relativistic of quantum and relativistic effects in our model.We are interested in low frequency where the electrons being the lighter particles respond very quickly to the electric field and acquire equilibrium faster than the heavier plasma species like ions.To show this let us introduce the following rescaling

    where the characteristic velocity scale(quantum ionconvenience the tildes notation(~)is dropped in the remainder of this work.The normalized electron momentum Eq.(1)takes the form

    In this particular case of interest the plasma dynamics is three-dimensional and therefore we assume that?=(?x,?y,?z).Then above system of equations takes the form

    Similarly,the components of normalized ion momentum conservation equation(Eq.(8))can be expressed as

    While the continuity equation(Eq.(9))and the Poisson’s equation(Eq.(10))take the following forms

    2.1 Linear Mode Analysis

    A linear dispersion relation can be readily obtained by linearizing Eqs.(15)–(23)in the form

    whereK′e=γKe0,andK′i=αKi0.We have assumed thexdirection as the predominant direction for the propagation of waves due to weak transverse perturbations alongyandzdirections,such thatkx?kyandkz.

    In the absence of collisions(i.e.,υ→0)Eq.(24)reduces to the usual dispersion relation for ion waves in a relativistic degenerate superdense plasma.[31]However,one can further solve the dispersion relation(24)for complex frequency and realkx,by settingω=ωr+iωi,which gives

    It is clear that|ωi|is independent ofkxand it gives the damping(dissipation)rate(υdiss),such thatυdiss~|ωi|~υ=vi/ωpi.It is straightforward to note that the ionneutral collisional frequency determines the system dissipation rate.We further assume weak ion-neutral collisionυ?1 which implies thatυi?ωpi,i.e.,the ion-neutral collisional frequency is smaller than the characteristic ion plasma frequency.Since the system dissipation rate(υdiss)is low in comparison with the characteristic oscillation frequency(ωpi),therefore the model under consideration is a weakly dissipative degenerate dense plasma system.Furthermore,the appearance of collisionality parameter in Eq.(26)clearly manifests that the linear wave properties are strongly effected by electron(ion)-neutral collisions.The effect of plasma con figurational parameters such as collisional frequency and equilibrium plasma number density(throughK′eandK′i)on linear wave pro file is depicted in Figs.1 and 2.

    Fig.1 Variation of ωrversus kxfor different values of collisional frequency,i.e.,ν=0(solid line),ν=0.02(dashed line)and ν=0.06(dotted line).Other parameters used are n0=1030cm?3,α =5/3,and γ =4/3.

    Fig.2 Variation of the wavenumber threshold kxdwith ν,for different values of equilibrium plasma number density,i.e.,n0=1029cm?3(solid line),n0=5×1029cm?3(dashed line)and n0=1030cm?3(dotted line).Other parameters are α =5/3 and γ =4/3.

    From Fig.1 it can be seen that for each value of collisional frequency the wavenumberkxhas a threshold value below which the wave is over-damped or in other words the propagation is not possible.It is seen that the real part of the wave frequency decreases asνincreases(see Fig.1).From Eq.(26)one can easily derive the relation for the critical value(kxd)given below:

    The variation ofkxdwithνfor different values of unperturbed plasma number density is shown in Fig.3.In the long wavelength limitk2xK′e?1,Eq.(25)yields the following relation for wave phase speed

    Fig.3 The time evolution of solitons for different val-

    3 Derivation of Damped KP Equation

    Toderivethenon-lineardamped KP equation,we make use of the standard reductive perturbation method.[32?33]In this regard,following stretching of independent space and time coordinates can be introduced

    whereλis the wave phase velocity normalized by quantum ion-sound speedCi,and is to be determined later.Further,?is a smallness real parameter(0<?<1)specifying the amplitude of perturbation and is proportional to the strength of nonlinearity.The normalized physical variablesni,ne,vix,viy,viz,and?are expanded as:

    Notice that the transverse components(vjy,vjz)of the ion fluid speed appear to evolve more slowly(at higher order in?)than the parallel velocity componentvjx.

    The next order in?gives the following set of equations

    The latter equation demands that in order to make the perturbation expansion consistent with that of Eqs.(30)and(31),and also to incorporate dissipative effects resulting form the ion-neutral collisions,it is necessary to take the following scaling

    which clearly justi fies the fact that the ion-neutral collisional rate(νi)is much smaller than the characteristic plasma frequency(ωpi)as assumed in the model under consideration.After the above substitution,Eq.(39)can be arranged as

    In order to eliminate the second order perturbed quantities,we solve Eqs.(36)–(38)and(41)–(45)while making use of Eq.(32)and arrive at the following expression

    Further substituting the values ofG1,G4,G7andG8into Eq.(46)as well as using the first-order quantities,we obtain an evolution equation in the form of damped KP equation,

    It is immediately noticed that Eq.(51)is in complete agreement with Eq.(26)i.e.,the system dissipation(damping)rate ?!?2~|ωi|.In damped KP equation(Eq.(47)),the term “Γ?”is the representative of dissipative effect caused by ion-neutral collisions,the so called“damping term”.It is worth mentioning here that the presence of lowest order nonlinear and dispersion terms restrict the KP equation to describe only a wave of small amplitude.For large amplitude waves,the width and velocity do not remain consistent with the predictions of KP equation,which causes its breakdown.In the absence of plasma-neutral collisions,i.e.,Γ=0,Eq.(47)reduces to the usual KP equation for the system under consideration.The usual KP equation(without dissipative term)is completely integrable or in other words,the energy of the system is conserved.[34]To show this mathematically,we assume the predominant propagation of wave along the parallel direction.Now we multiply Eq.(47)(with Γ =0)by?(ξ,τ)and then integrate the resultant expression within the limit(?∞,∞)subjected to the vanishing boundary conditions,i.e.,?(ξ,τ)and all its derivatives upto second order→0 asξ→±∞.In this way the following energy conservation equation is obtained,

    whereNandW,respectively,represent the amplitude and spatial width of the soliton.The relevant soliton parametersW,N,andUare related through the expressions

    It can be seen directly from Eq.(54)that the solitary waves increase in amplitude with an increase in velocity,while the corresponding spatial width decreases such thatNW2=12B/A=constant,for a fixed value of equilibrium plasma number density(n(0)).However,in the presence of dissipative effects(i.e.,Γ/=0),Eq.(47)does not represent a completely integrable system,or in other words the energy is not conserved.The energy equation(52)in this case becomes

    Thus,the KP equation(Eq.(47))in the presence of linear damping term(Γ?)cannot be solved analytically.However,an approximate solution can be found using the soliton perturbation technique,[26?27]provided that the system dissipation rate is small.We employ the same technique and find the time evolution solution of damped KP equation,using the leading-order approximation.As the presence of damping causes the deformation of solitary structure,so its amplitude,width and velocity become time dependent,such thatN=N(τ),W=W(τ),U=U(τ).In this way the leading-order one-soliton solution of the damped KP equation with ?!玂(?3/2)results

    In Eqs.(57)and(58)N(0)&ε(0)are,respectively,the initial soliton amplitude and energy.The soliton velocity and width can be expressed,respectively,as

    4 Numerical Analysis

    The time varying solutions presented above are approximate leading-order solutions and the reason is obvious i.e.,we have restricted our analysis to the first order in?only.However the analysis holds well for perturbations exhibiting dissipation.[26,35]All the higher orders in the perturbation scheme introduce only corrections to the leading-order solution.But these corrections do not affect the change in soliton parameters,which results from the damping.Thus the soliton’s amplitude,width and velocity change in the same manner as found in leadingorder solution.The exponentially decaying behavior of soliton amplitudeN(τ),energyε(τ)and velocityU(τ)with time due to the presence of dissipative effects is clearly manifested by Eqs.(57)–(59)respectively.However,Eq.(60)shows that the soliton spatial width grows exponentially with time,but the product of amplitude(N(τ))and square of width(W2(τ))always remains the same(i.e.,N(τ)W2(τ)=12B/A=constant)for a particular case.The numerical solutions exactly show similar behavior as presented in Figs.3 and 4.

    Fig.4 The evolution of solitons for varying values of Γ,i.e.,Γ =0.01(a),Γ =0.017(b),and Γ =0.024(c).We have taken the equilibrium plasma number density n0=1030cm?3,whereas the initial condition and other related parameters are the same as used in Fig.3.

    5 Conclusions

    Summing up,we have investigated the linear and nonlinear characteristics of ion solitary waves in a weakly dissipative dense plasma system comprising of ultrarelativistic degenerate electrons and non-relativistic degenerate ion fluids.In the present study,we have mainly focused on the damping of ion solitary waves,which is caused by the ion-neutral collisional effect.For weakly nonlinear approximation,the damped KP equation is derived by using standard reductive perturbation approach.The analytical and numerical results support the formation and propagation of compressive solitons undergoing weak dissipation with time.We have shown that the plasma number density and ion-neutral collisional rate signi ficantly affect the soliton’s amplitude,width and velocity.Further,for numerical analysis,we have used the typical values of various plasma parameters relevant to interior of white dwarfs,reported in Ref.[12].

    The present study aims to be helpful in understanding the different aspects of localized nonlinear disturbances in dense plasma environments such as in white dwarf stars.Owing to the colossal number densities in the interior of white dwarfs,the electrons become relativistically degenerate through the implication of both Pauli’s exclusion mechanism and Heisenberg uncertainty principle,such that their quantum mechanical nature elucidates the equation of state as well as their structure and mass limitation.[4]

    [1]M.G.Haines,P.D.LePell,C.A.Coverdale,B.Jones,C.Deeney,and J.P.Apruzese,Phys.Rev.Lett.96(2006)075003.

    [2]G.Chabrier,F.Douchin,and A.Y.Potekhin,J.Phys.Condens.Matter 14(2002)9133.

    [3]F.C.Michel,Rev.Mod.Phys.54(1982)1.

    [4]S.L.Shapiro and S.A.Teukolsky,Black Holes,White Dwarfs,and Neutron Stars:The Physics of Compact Objects,John Wiley and Sons,New York(1983).

    [5]H.Gursky,Forntiers of Astrophysics,Harvard University Press,London(1976)

    [6]D.Kremp,Th.Bornath,M.Bonitz,and M.Schlanges,Phys.Rev.E 60(1999)4725.

    [7]J.Lindl,Phys.Plasmas 2(1995)3933.

    [8]S.X.Hu and C.H.Keitel,Phys.Rev.Lett.83(1999)4709.

    [9]P.T.Leon,S.Eleizer,M.Piera,and J.M.M.Val,inCurrent Trends in Inertial Fusion Research-Proceedings of the Fifth Symposium,eds.E.Panarella and R.Raman,NRC Research Press,Ottawa,Canada(2008)

    [10]R.P.Drake,Phys.Plasmas 16(2009)055501.

    [11]S.H.Glenzer and R.Redmer,Rev.Mod.Phys.81(2009)1625.

    [12]D.Koester and G.Chanmugam,Rep.Prog.Phys.53(1990)837.

    [13]P.K.Shukla and B.Eliasson,Rev.Mod.Phys.83(2011)885.

    [14]S.Chandrasekhar,An Introduction to the Study of Stellar Structure,University of Chicago Press,Chicago(1939)

    [15]S.Chandrasekhar,Mon.Not.R.Astron.Soc.170(1935)405.

    [16]G.Fontaine and F.Wesemae,in Encyclopedia of Astronomy and Astrophysics,ed.P.Murdin,Nature,New York(2001)

    [17]H.D.Sivak,Physica A 129(1985)408.

    [18]S.A.Khan,K.Ayub,and A.Ahmad,Phys.Plasmas 19(2012)102104.

    [19]B.B.Kadomtsev and V.I.Petviashvili,Sov.Phys.Dokl.15(1970)539.

    [20]G.C.Das and K.M.Sen,Contrib.Plasma Phys.33(1993)15.

    [21]W.S.Duan,Chaos,Solitons and Fractals 14(2002)503.

    [22]S.K.El-Labany,W.M.Moslem,W.F.El-Taibany,and M.Mahmood,Phys.Scr.70(2004)317.

    [23]H.Rehman,S.A.Khan,W.Masood,and M.Siddiq,Phys.Plasmas 15(2008)124501.

    [24]I.Zeba,W.M.Moslem,and P.K.Shukla,Astrophys.J.750(2012)72.

    [25]A.Rahman,S.Ali,W.M.Moslem,and A.Mushtaq,Phys.Plasmas 20(2013)072103.

    [26]V.I.Karpman and E.M.Maslov,Sov.Phys.JETP 46(1977)281.

    [27]R.L.Herman,J.Phys.A 23(1990)2327.

    [28]S.Ghosh and N.Chakrabarti,Phys.Rev.E 84(2011)046601.

    [29]D.Samsonov,A.V.Ivlev,R.A.Quinn,G.Mor fill,and S.Zhdanov,Phys.Rev.Lett.88(2002)095004.

    [30]F.Haas and A.Bret,Europhys.Lett.97(2012)26001.

    [31]L.Nahar,M.S.Zobaer,N.Roy,and A.A.Mamun,Phys.Plasmas 20(2013)022304.

    [32]H.Washimi and T.Taniuti,Phys.Rev.Lett.17(1966)996.

    [33]R.C.Davidson,Methods in Nonlinear Plasma Theory,Academic,New York(1972).

    [34]V.Yu.Belashov and S.V.Vladimirov,Solitary Waves in Dispersive Complex Media,Springer-Verlag,Berlin(2005)

    [35]A.C.Newell,Solitons in Mathematics and Physics,SIAM,Philadelphia,Penn(1985)

    [36]S.I.Popel,A.P.Golub,T.V.Losseva,A.V.Ivlev,S.A.Khrapak,and G.Mor fill,Phys.Rev.E 67(2003)056402.

    夫妻性生交免费视频一级片| 精品少妇久久久久久888优播| 成人亚洲精品一区在线观看| 午夜福利一区二区在线看| 91成人精品电影| 97在线人人人人妻| 欧美在线黄色| 国产片特级美女逼逼视频| 色94色欧美一区二区| 国产xxxxx性猛交| xxxhd国产人妻xxx| 一区二区av电影网| 日韩一本色道免费dvd| 蜜桃在线观看..| 成年av动漫网址| 精品亚洲成a人片在线观看| 少妇精品久久久久久久| av不卡在线播放| 亚洲成人手机| 最近手机中文字幕大全| 久久久久国产一级毛片高清牌| 日韩电影二区| 2021少妇久久久久久久久久久| 午夜免费鲁丝| 男人操女人黄网站| 成年动漫av网址| 国产精品蜜桃在线观看| 天堂俺去俺来也www色官网| 亚洲精品av麻豆狂野| 一级毛片电影观看| 电影成人av| freevideosex欧美| 亚洲成色77777| 熟妇人妻不卡中文字幕| 国产精品久久久久久久久免| 亚洲综合精品二区| 天天躁日日躁夜夜躁夜夜| 久久久久久久精品精品| 哪个播放器可以免费观看大片| 在线观看免费日韩欧美大片| 国产黄色免费在线视频| 国产一区二区 视频在线| 叶爱在线成人免费视频播放| 18禁观看日本| 久久精品国产鲁丝片午夜精品| 国产黄色视频一区二区在线观看| 校园人妻丝袜中文字幕| av在线播放精品| 波多野结衣一区麻豆| 欧美日韩视频精品一区| 人人妻人人爽人人添夜夜欢视频| 巨乳人妻的诱惑在线观看| 成年动漫av网址| 捣出白浆h1v1| 建设人人有责人人尽责人人享有的| 日韩成人av中文字幕在线观看| 国产综合精华液| 免费播放大片免费观看视频在线观看| 99国产精品免费福利视频| 边亲边吃奶的免费视频| 校园人妻丝袜中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 色哟哟·www| 大码成人一级视频| 91在线精品国自产拍蜜月| videossex国产| 久久韩国三级中文字幕| 男女高潮啪啪啪动态图| 亚洲国产精品一区二区三区在线| 免费看不卡的av| 男女午夜视频在线观看| 久久精品国产亚洲av天美| 午夜精品国产一区二区电影| 欧美精品高潮呻吟av久久| 国产成人午夜福利电影在线观看| 午夜激情久久久久久久| 久久久久久伊人网av| 免费在线观看黄色视频的| 亚洲天堂av无毛| 亚洲综合色惰| 99久久中文字幕三级久久日本| 国产欧美日韩综合在线一区二区| 欧美日韩视频精品一区| 久久99蜜桃精品久久| 大陆偷拍与自拍| 在线天堂中文资源库| 久久国产精品大桥未久av| 1024香蕉在线观看| 亚洲国产精品999| 国产有黄有色有爽视频| 欧美激情极品国产一区二区三区| 久久精品aⅴ一区二区三区四区 | 成人国产麻豆网| 日韩精品有码人妻一区| 欧美bdsm另类| 免费观看av网站的网址| 欧美xxⅹ黑人| 黄频高清免费视频| 久久久久国产网址| 中文字幕另类日韩欧美亚洲嫩草| 青草久久国产| 亚洲av欧美aⅴ国产| 成年美女黄网站色视频大全免费| 亚洲精品日韩在线中文字幕| 国产精品国产三级专区第一集| 亚洲精品,欧美精品| 免费观看a级毛片全部| 中文精品一卡2卡3卡4更新| 日本爱情动作片www.在线观看| 9色porny在线观看| 9191精品国产免费久久| 少妇 在线观看| 免费黄频网站在线观看国产| 国产精品久久久久久精品古装| 欧美亚洲日本最大视频资源| 亚洲av在线观看美女高潮| 老汉色∧v一级毛片| 日本午夜av视频| 最近最新中文字幕免费大全7| 久久精品国产亚洲av涩爱| 日韩一本色道免费dvd| 伦理电影免费视频| 亚洲一级一片aⅴ在线观看| 人人澡人人妻人| 一级a爱视频在线免费观看| 久久精品久久精品一区二区三区| 哪个播放器可以免费观看大片| 国产欧美日韩综合在线一区二区| 精品第一国产精品| 国产亚洲一区二区精品| 国产av一区二区精品久久| 熟女电影av网| 少妇人妻久久综合中文| 看免费av毛片| 免费日韩欧美在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲男人天堂网一区| 国产成人精品在线电影| 在线观看美女被高潮喷水网站| 欧美日韩精品网址| 伊人久久大香线蕉亚洲五| 婷婷色av中文字幕| 18禁国产床啪视频网站| 大话2 男鬼变身卡| 国产成人免费观看mmmm| 一边亲一边摸免费视频| av不卡在线播放| 极品少妇高潮喷水抽搐| 亚洲男人天堂网一区| 午夜日本视频在线| 大码成人一级视频| 国产在视频线精品| 亚洲伊人色综图| 亚洲成av片中文字幕在线观看 | 亚洲第一区二区三区不卡| 汤姆久久久久久久影院中文字幕| 国产片内射在线| 少妇的逼水好多| 久久精品熟女亚洲av麻豆精品| 18禁动态无遮挡网站| 纯流量卡能插随身wifi吗| 久久婷婷青草| 九草在线视频观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 黄片播放在线免费| 日本vs欧美在线观看视频| 十分钟在线观看高清视频www| 日本免费在线观看一区| 女性被躁到高潮视频| 国产爽快片一区二区三区| 999久久久国产精品视频| 国产淫语在线视频| 亚洲国产日韩一区二区| 麻豆av在线久日| 最黄视频免费看| 国产精品无大码| 亚洲国产av影院在线观看| 国产成人免费观看mmmm| 天堂中文最新版在线下载| 99香蕉大伊视频| 亚洲国产av新网站| 激情五月婷婷亚洲| 美国免费a级毛片| 色播在线永久视频| 日韩免费高清中文字幕av| 三级国产精品片| 一级爰片在线观看| 欧美日韩综合久久久久久| 欧美精品一区二区大全| 波多野结衣一区麻豆| 国产精品亚洲av一区麻豆 | 日韩在线高清观看一区二区三区| 国产精品麻豆人妻色哟哟久久| 成年人免费黄色播放视频| 视频在线观看一区二区三区| 国产 一区精品| 只有这里有精品99| 亚洲欧美成人综合另类久久久| 最新中文字幕久久久久| 欧美中文综合在线视频| 看免费av毛片| 丰满乱子伦码专区| 亚洲精品日本国产第一区| 国产日韩欧美亚洲二区| 欧美+日韩+精品| 亚洲一区二区三区欧美精品| 欧美精品国产亚洲| av卡一久久| 欧美日韩精品网址| 蜜桃国产av成人99| 午夜免费观看性视频| 欧美精品高潮呻吟av久久| 久久鲁丝午夜福利片| 大香蕉久久成人网| 成人国语在线视频| 成人漫画全彩无遮挡| 久久午夜福利片| 国产精品成人在线| 一级毛片电影观看| 麻豆精品久久久久久蜜桃| 一区福利在线观看| 肉色欧美久久久久久久蜜桃| 一区二区av电影网| 日本猛色少妇xxxxx猛交久久| 精品国产乱码久久久久久小说| 少妇的丰满在线观看| www日本在线高清视频| 美女福利国产在线| 久久久a久久爽久久v久久| 捣出白浆h1v1| 你懂的网址亚洲精品在线观看| 交换朋友夫妻互换小说| 国产精品无大码| 男女国产视频网站| 久久久久久久精品精品| 狂野欧美激情性bbbbbb| 国产免费又黄又爽又色| 老司机影院毛片| 99热国产这里只有精品6| 色视频在线一区二区三区| 国产精品久久久久成人av| 亚洲av男天堂| 亚洲精品国产色婷婷电影| 91精品国产国语对白视频| 日韩中文字幕欧美一区二区 | 亚洲图色成人| 国产成人精品福利久久| 国产欧美日韩综合在线一区二区| www.精华液| 最近中文字幕高清免费大全6| 激情视频va一区二区三区| a级片在线免费高清观看视频| 亚洲中文av在线| 国产精品国产三级专区第一集| 欧美另类一区| 久久韩国三级中文字幕| 毛片一级片免费看久久久久| 男人舔女人的私密视频| 久久女婷五月综合色啪小说| 色吧在线观看| 国产高清国产精品国产三级| 久久国内精品自在自线图片| 亚洲精品一区蜜桃| 久热这里只有精品99| 99精国产麻豆久久婷婷| 日日撸夜夜添| 曰老女人黄片| 在线观看免费视频网站a站| 看免费成人av毛片| 丝袜人妻中文字幕| 亚洲国产精品一区三区| 97精品久久久久久久久久精品| 精品亚洲乱码少妇综合久久| videosex国产| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 精品一区二区三卡| 成人毛片a级毛片在线播放| 女人精品久久久久毛片| av在线播放精品| 男人爽女人下面视频在线观看| 国产精品蜜桃在线观看| 成年动漫av网址| www.av在线官网国产| a级毛片在线看网站| 亚洲成国产人片在线观看| 亚洲综合色网址| 丝袜美足系列| 丝袜在线中文字幕| 涩涩av久久男人的天堂| 成人毛片a级毛片在线播放| 可以免费在线观看a视频的电影网站 | 亚洲一码二码三码区别大吗| 亚洲av.av天堂| 国产精品99久久99久久久不卡 | 久久人人97超碰香蕉20202| 国产高清不卡午夜福利| 黄色一级大片看看| 日韩精品免费视频一区二区三区| 不卡视频在线观看欧美| 18在线观看网站| 一级片'在线观看视频| 午夜91福利影院| 丝袜在线中文字幕| 人人妻人人爽人人添夜夜欢视频| 成人手机av| 久久ye,这里只有精品| 欧美亚洲日本最大视频资源| 亚洲国产日韩一区二区| 日韩制服骚丝袜av| 9191精品国产免费久久| av女优亚洲男人天堂| 欧美成人午夜免费资源| 亚洲成人av在线免费| 中文精品一卡2卡3卡4更新| 欧美日韩国产mv在线观看视频| 国产精品蜜桃在线观看| 男男h啪啪无遮挡| 天堂8中文在线网| 国产精品一二三区在线看| 亚洲在久久综合| 在线观看免费日韩欧美大片| 少妇人妻久久综合中文| 国产免费视频播放在线视频| 黄色 视频免费看| 在线观看人妻少妇| 免费大片黄手机在线观看| 人人妻人人澡人人看| 毛片一级片免费看久久久久| 久久精品久久久久久久性| 日韩一区二区视频免费看| 亚洲欧美精品自产自拍| 最近最新中文字幕免费大全7| 国产免费视频播放在线视频| 国产精品麻豆人妻色哟哟久久| 日韩av不卡免费在线播放| 啦啦啦中文免费视频观看日本| 日韩一区二区三区影片| 国产伦理片在线播放av一区| 婷婷色综合大香蕉| av在线播放精品| 18禁观看日本| 成人免费观看视频高清| 日韩制服骚丝袜av| a级毛片黄视频| 不卡视频在线观看欧美| 成人黄色视频免费在线看| 国产av国产精品国产| 国产精品久久久久久精品古装| 国产一区二区激情短视频 | 一区福利在线观看| 免费观看av网站的网址| 亚洲国产av影院在线观看| 久久韩国三级中文字幕| 精品人妻一区二区三区麻豆| 婷婷色综合大香蕉| 在线观看美女被高潮喷水网站| 中文字幕制服av| 香蕉丝袜av| 国产成人精品婷婷| 国产 精品1| 蜜桃在线观看..| 人人妻人人澡人人看| 色婷婷久久久亚洲欧美| 国产成人精品一,二区| 久久久久久久久久久久大奶| 国产综合精华液| 涩涩av久久男人的天堂| 国产黄频视频在线观看| 9191精品国产免费久久| 久久婷婷青草| 26uuu在线亚洲综合色| 日韩免费高清中文字幕av| 考比视频在线观看| 街头女战士在线观看网站| 啦啦啦在线免费观看视频4| 一级爰片在线观看| 亚洲在久久综合| 十分钟在线观看高清视频www| 欧美精品亚洲一区二区| 叶爱在线成人免费视频播放| 少妇人妻 视频| 一本大道久久a久久精品| 在线观看免费视频网站a站| 伊人亚洲综合成人网| 激情五月婷婷亚洲| 欧美成人精品欧美一级黄| 最近最新中文字幕大全免费视频 | 久久国产精品男人的天堂亚洲| 色婷婷久久久亚洲欧美| 国产成人精品福利久久| 人人妻人人澡人人看| 一级a爱视频在线免费观看| 99精国产麻豆久久婷婷| 成人影院久久| 丁香六月天网| 婷婷色麻豆天堂久久| 丝袜美腿诱惑在线| 看非洲黑人一级黄片| 天天躁日日躁夜夜躁夜夜| 欧美日本中文国产一区发布| 日韩一卡2卡3卡4卡2021年| 性色avwww在线观看| 亚洲精品av麻豆狂野| 丝袜喷水一区| 午夜av观看不卡| 咕卡用的链子| 免费大片黄手机在线观看| xxx大片免费视频| 天堂俺去俺来也www色官网| 伦理电影大哥的女人| 熟女少妇亚洲综合色aaa.| 女的被弄到高潮叫床怎么办| 久久99一区二区三区| 欧美精品国产亚洲| 久久久久久久大尺度免费视频| 亚洲欧美精品自产自拍| 久久久久久久精品精品| av在线老鸭窝| 91国产中文字幕| 精品一区二区三区四区五区乱码 | 国产极品天堂在线| 国产成人免费无遮挡视频| 美女中出高潮动态图| 婷婷色麻豆天堂久久| 大片免费播放器 马上看| 黄片小视频在线播放| 黑人猛操日本美女一级片| www.自偷自拍.com| 国产 一区精品| 看免费av毛片| 国产精品麻豆人妻色哟哟久久| 香蕉国产在线看| 9191精品国产免费久久| 亚洲三级黄色毛片| 国产 一区精品| 精品久久久精品久久久| 久久久精品免费免费高清| 免费观看a级毛片全部| 精品久久久精品久久久| 国产av一区二区精品久久| 中文欧美无线码| 王馨瑶露胸无遮挡在线观看| 美女午夜性视频免费| 国产极品天堂在线| 亚洲成人手机| 青春草视频在线免费观看| 制服诱惑二区| 最近手机中文字幕大全| 欧美av亚洲av综合av国产av | 免费观看在线日韩| 久久久精品94久久精品| 亚洲国产欧美日韩在线播放| 国产av精品麻豆| 一级片'在线观看视频| 久久久精品区二区三区| 亚洲av电影在线进入| xxx大片免费视频| 日韩三级伦理在线观看| 国产人伦9x9x在线观看 | 国产欧美亚洲国产| 91国产中文字幕| 久久久久久久久免费视频了| 黄色 视频免费看| 永久免费av网站大全| 亚洲情色 制服丝袜| 久久人人97超碰香蕉20202| 天天操日日干夜夜撸| 日日爽夜夜爽网站| 亚洲国产看品久久| 欧美人与性动交α欧美精品济南到 | 丰满乱子伦码专区| 成年av动漫网址| 在线观看www视频免费| 欧美老熟妇乱子伦牲交| 亚洲人成电影观看| 欧美人与性动交α欧美软件| av视频免费观看在线观看| 免费播放大片免费观看视频在线观看| 母亲3免费完整高清在线观看 | 亚洲国产色片| 精品一品国产午夜福利视频| av免费观看日本| 在现免费观看毛片| 人人妻人人爽人人添夜夜欢视频| 99久久中文字幕三级久久日本| 国产精品国产三级国产专区5o| 伦精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看www视频免费| 免费观看av网站的网址| 日本av手机在线免费观看| 日本欧美视频一区| 久久久久精品久久久久真实原创| 9热在线视频观看99| 精品人妻熟女毛片av久久网站| 爱豆传媒免费全集在线观看| 亚洲精品中文字幕在线视频| 美女大奶头黄色视频| 午夜日韩欧美国产| 国产精品一区二区在线观看99| 国产成人av激情在线播放| 人妻少妇偷人精品九色| 国产深夜福利视频在线观看| 香蕉丝袜av| 中文字幕av电影在线播放| 在线精品无人区一区二区三| 日韩大片免费观看网站| 少妇人妻久久综合中文| 亚洲欧美一区二区三区国产| 午夜福利在线免费观看网站| 青春草亚洲视频在线观看| 少妇精品久久久久久久| 国产精品无大码| www日本在线高清视频| 波野结衣二区三区在线| 看免费av毛片| 亚洲精品一二三| 久久久国产一区二区| 久久久久久久国产电影| 精品少妇黑人巨大在线播放| 国产男女内射视频| 天天躁夜夜躁狠狠躁躁| 日韩av在线免费看完整版不卡| 一本大道久久a久久精品| 久久亚洲国产成人精品v| 夫妻午夜视频| 国产xxxxx性猛交| 日日撸夜夜添| 久久精品国产亚洲av天美| freevideosex欧美| 曰老女人黄片| 亚洲第一区二区三区不卡| 国产av国产精品国产| 亚洲视频免费观看视频| 国产亚洲欧美精品永久| 一个人免费看片子| 美女国产视频在线观看| 性色av一级| 婷婷色麻豆天堂久久| 水蜜桃什么品种好| 欧美激情高清一区二区三区 | 五月伊人婷婷丁香| 一级黄片播放器| av网站免费在线观看视频| 亚洲四区av| 99国产综合亚洲精品| 精品卡一卡二卡四卡免费| 国产男女超爽视频在线观看| 午夜福利影视在线免费观看| 精品国产乱码久久久久久男人| 中文字幕精品免费在线观看视频| 女人久久www免费人成看片| 大片电影免费在线观看免费| 国产野战对白在线观看| 视频区图区小说| 亚洲三区欧美一区| 老鸭窝网址在线观看| 免费日韩欧美在线观看| 国产高清不卡午夜福利| 亚洲国产欧美网| 亚洲国产日韩一区二区| 91久久精品国产一区二区三区| 欧美精品高潮呻吟av久久| 国产国语露脸激情在线看| 亚洲精品中文字幕在线视频| 国产 一区精品| 国产亚洲一区二区精品| 亚洲精品aⅴ在线观看| 99九九在线精品视频| 国产精品.久久久| 欧美中文综合在线视频| videos熟女内射| 国产97色在线日韩免费| 91成人精品电影| xxx大片免费视频| 精品视频人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91| 天天躁狠狠躁夜夜躁狠狠躁| 桃花免费在线播放| 久久精品国产鲁丝片午夜精品| 亚洲伊人久久精品综合| 18禁观看日本| 亚洲欧洲国产日韩| 中文字幕亚洲精品专区| 日韩中字成人| 黑人巨大精品欧美一区二区蜜桃| 一区二区av电影网| 精品亚洲成a人片在线观看| 色婷婷av一区二区三区视频| 乱人伦中国视频| 精品一区二区免费观看| 亚洲精品一区蜜桃| 桃花免费在线播放| 亚洲欧美色中文字幕在线| 十分钟在线观看高清视频www| 一个人免费看片子| 久久久久视频综合| 国产亚洲精品第一综合不卡| 美女国产视频在线观看| 97在线人人人人妻| 久久久久视频综合| 亚洲第一av免费看| 日韩三级伦理在线观看| 国产xxxxx性猛交| 国产男女内射视频| 国产色婷婷99| 日韩中文字幕视频在线看片| 国产免费又黄又爽又色| 日韩中文字幕视频在线看片| 日韩视频在线欧美| 久久久精品94久久精品| 久久毛片免费看一区二区三区| 国产视频首页在线观看| 人妻一区二区av|