• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloning and Expression Analysis on PmPGK1 and PmGPIC Genes in Pinus massoniana

    2021-08-10 02:21:48XIALinchaoWUFanJIKongshu
    熱帶亞熱帶植物學(xué)報 2021年4期
    關(guān)鍵詞:老葉新葉葉綠體

    XIA Lin-chao, WU Fan, JI Kong-shu

    Cloning and Expression Analysis onandGenes in

    XIA Lin-chao*, WU Fan*, JI Kong-shu**

    (Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China)

    To understand the functions of phosphoglycerate kinase 1 (PGK1) and cytosolic glucose phosphate isomerase (CPIC) of, the cDNA ofandwere cloned by RACE, and the bioinformatic and subcellular localization of PmPGK1 and PmGPIC were analyzed, and then their expression patterns were performed by qRT-PCR. The results showed that the full-length cDNA ofandwere 2 106 and 1 848 bp, encoding 507 and 566 amino acids, respectively. PmPGK1 and PmGPIC proteins were located in chloroplast and cytosol, respectively. The expression ofwas in order of new leaf>old leaf> new stem>root>flower, while that ofwas old leaf>flower>new leaf>new stem>root. Under low temperature stress for 24 hours, the expression ofanddecreased at first and then increased, and the expression ofdecreased to a low level after 2 hours. Under high CO2stress for 24 hours, the expression ofwas significantly down-regulated, showing a trend of decrease-increase-decrease, while the down-regulation ofwas not obvious. Therefore, it was suggested that PmPGK1 mainly participated in the Calvin cycle and chloroplast/plast glycolysis, and PmGPIC was mainly involved in cytosolic glycolysis. The activities of PmPGK1 and PmGPIC were inhibited under low temperature stress, and PmPGK1 activity was significantly inhibited under high CO2stress, while PmGPIC activity was less affected.

    ;;; Gene clone; Subcellular localization

    Phosphoglycerate kinase (PGK) is an important, soluble, rate-limited kinase used for basic metabolism in all organisms[1]. In plants, PGK participates in the Calvin cycle and glycolysis by catalyzing the release and transfer of high-energy phosphate groups between 3-phosphoglycerate (PGA) and 1,3-diphosphoglycerate (DPGA) and then catalyzing the reversible conversion of PGA and DPGA[2]. Glucose phosphate isomerase (GPI) is a multifunctional dimer protein in organisms that plays an important role in the carbohydrate meta- bolism cycle[3]. It catalyzes and breaks the molecular ring structure of fructose-6-phosphate (F6P) or glucose- 6-phosphate (G6P) and transfers the intramolecular protonits enzymatic acid-base catalytic mechanism and finally the two hexoses undergo reversible isome- rization[2,4].

    PGK exists in only one form in prokaryotes, while in most eukaryotes, there are 2-3 isozymes with different subcellular localizations[1,5]. PGK in plants is divided into two localization subtypes: cytosolic and chloroplast/plastidial PGK. Cytosol PGK mainly parti- cipates in cytoplasmic matrix glycolysis, while chloro- plastic/plastidial PGK is mainly involved in the dual metabolic pathway of the Calvin cycle and chloro- plastic/plastidial glycolysis[6]. GPI exists as a single form of cytosolic GPI in most animals and microorga- nisms, while there is also a plastidial GPI in plant cells[7]. Cytosolic GPI mainly participates in sucrose synthesis and glycolysis, and plastidial GPI is mainly involved in the metabolism of the oxidative pentose phosphate pathway (OPPP) and starch synthesis[8–9].

    At present, research on PGK and GPI mainly focuses on clinical diagnosis[10–12]. There are relatively few studies on the protein subcellular localization, biological function and gene expression analysis of isoenzymes encoding different subtypes of PGK and GPI in plants, and the researches of the two enzymes in plants are mainly concentrated on annual plants, such asor[13–16]. In this research, we cloned theandgenes of masson pine, which encode phosphoglycerate kinase 1 (PGK1) and cytosolic glucose phosphate isomerase (CPIC), respectively. To explore the function ofPGK1 andGPIC, bioinformatic analysis, sub- cellular localization analysis and quantitative real- time PCR (qRT-PCR) analysis based on tissue-specific expression, low temperature and high CO2stress were performed. The results of this research could advance our understanding of PGK and GPI in Masson pine and other plants.

    1 Materials and methods

    1.1 Test materials

    The plant material used for rapid amplification of cDNA ends (RACE) analysis was derived from germi- nated seeds of masson pine (). The protoplast material used for subcellular localization was obtained from wild-type(Columbia ecotype) at3-4-week-old and not flowered. A laboratory-preserved pJIT166 transient expression vector was used for subcellular localization. Materials for tissue-specific expression were collected from 15- year-old masson pine in the arboreal garden of Nan- jing Forestry University. The annual masson pine seedlings were used for expression analysis under low-temperature and elevated-CO2stress, which were provided by Fujian Baisha Forest Farm and then planted in soil (nutrient soil∶vermiculite∶perlite= 1∶1∶1) in laboratory in September, 2018. The seedlings were grown in a naturally chamber with a cycle of 10 h light/14 h dark, day/night temperature of 30℃/26℃, and a relative humidity of 60%, with a slow seedling stage for about 15 days. Then the seedlings with the same growth state were selected for the following experiment.

    1.2 Total RNA extraction and full-length gene clone

    Total RNA was extracted from masson pine seedlings followed the RNAprep Pure RNA extraction kit (Tiangen, Beijing). The concentration and quality of the RNA were detected by a NanoDrop fluorometer (ThermoFisher, MA, USA) and electrophoresis, respec- tively. First-strand cDNA was synthesized by using TransScript?One-Step gDNA Removal and cDNA Synthesis SuperMix (TransGen, Beijing).

    Theandsequences were screened out after homology comparison between theandgene sequences ofobtained from the NCBI database (https://www. ncbi.nlm.nih.gov/) and the masson pine transcriptome database (NCBI access No.: PRJNA561037). The cloningand amplification of intermediate fragments were carried out using the amplification primers (Table 1). Then, according to the intermediate sequence, the 5?/3? RACE- specific primer was used to amplify the 5?/3? end sequence according to the instructions of the SMA- RTer RACE 5?/3? Kit (TaKaRa, Beijing). The full- length ofandcDNA was obtained after sequence alignment and splicing predicttion, and conserved domains from the NCBI database were used for PmPGK1 and PmGPIC conserved domain analysis.

    Table 1 Sequences of primers used in this study

    *: Lowercase letters are the carrier sequence.

    1.3 Bioinformatic analysis

    Blastn and Blastp from the NCBI were used to compare the homologous sequences ofandcDNA and the amino acid sequences of their encoded proteins. Then, MEGA 7.0 was used to con- struct PmPGK1 and PmGPIC phylogenetic trees by the neighbor-joining method. WoLF PSORT (https:// wolfpsort.hgc.jp/) was used to analyze the subcellular localization of PmPGK1 and PmGPIC proteins.

    1.4 Subcellular localization

    pJIT166 plasmid was double digested (restriction enzyme cutting sites:dIII andI). The recom- binant expression vector was constructed according to the ClonExpress II One-Step Cloning Kit (Vazyme Biotech, Nanjing). The recombinant plasmid was extracted according to the instructions of the Plasmid Maxi Kit (QIAGEN, Germany) after transformation intoand culture expansion. According to the manufacturer’s instructions (Real-time Biotech, Beijing), approximately 10 large and plump wild-type(Columbia ecotype) leaves were selected and cut into thin strips with a width of 0.5-1.0 mm to prepare protoplasts, and then, the pJIT166 recom- binant plasmid (>1g/L) was transformed into the prepared protoplast (10L). Finally, the abovesolu- tion was put it in a 22℃-25℃ dark environment for 14-16 h of incubation, and the fluorescence reaction was recorded at 488 and 543 nm by fluorescence microscopy.Protoplasts with empty vector accom- panied by green fluorescent protein (GFP) were used as the control group (CK group).

    1.5 Expression patterns

    For tissue-specific expression analysis, total RNA from 5 tissues, including new leaves (NL), old leaves (OL), new stems (NS), flowers (F) and roots (R), was extracted with three biological replicates for each treatment using a Plant RNA Isolation Kit (Tiangen Biotech, Beijing). Then, first-strand cDNA was syn- thesized with FastKing gDNA Dispelling RT Super- Mix (Tiangen Biotech, Beijing) according to the manufacturer’s instructions. For cold stress, annual seedlings were placed in a refrigerator at 4℃ and the seedling leaves were collected at 0, 2, 4, 8, 12 and 24 h, respectively. For elevated-CO2stress, the seedlings were moved into a growth chamber with 10 h light/14 h dark at 25℃. Air containing approximately 400- 450 mg/m3CO2(approximately two times the ambient CO2concentration) was injected into the growth chamber constantly for at least 24 h. Then, the seedling leaves were sampled after 0, 6, 12 and 24 h of treatment. For qRT-PCR, the mixtures consisted of 10L of 2×ChamQTMUniversal SYBR?qPCR Master Mix (Vazyme Biotech, Nanjing), 0.4L of forward primer and reverse primer, 2L of cDNA, and 7.2L of ddH2O. The qRT-PCR program consisted of three stages: 95℃ for 30 s (preincubation), 95℃ for 10 s, 60℃ for 30 s, and 72℃ for 30 s, cycling 40 times (amplification), and 95℃ for 15 s, 60℃ for 1 min and 95℃ for 15 s (melting curves). QRT-PCR quality was estimated based on the melting curves.(NCBI Accession No.: KM496525.1) was used as the internal control[17]. The gene-specific primers employed are shown in Table 1. Three independent technical replicates were performed for each treatment. Quan- tification was achieved using comparative cycle threshold (Ct) values, and gene expression levels were calculated using the 2–??CTmethod[17].

    2 Results

    2.1 Full-length clone of PmPGK1 and PmGPIC

    The intermediate fragments ofandwere 1 564 and 1 305 bp, respectively. The 5?/3? RACE sequences ofwere 297 and 1 225 bp, respectively, and those ofwere 1 056 and 1 117 bp, respectively. After sequence alignment and splicing, it was found that the full-length ofandwere 1 848 bp (NCBI Acce- ssion No.: MT586614) and 2 106 bp (NCBI Accession No.: MT591683), respectively (Table 2). According to ORF Finder analysis, the 5?/3? cDNA ends ofhad 93 and 324 bp untranslated regions (UTRs), respectively. The open reading frame (ORF) ofcovered 1 524 bp, encoding 507 amino acids. In contrast, the 5?/3? cDNA ends ofhad 146 and 259 bp UTRs, respecttively. The ORF ofcovered 1 701 bp, encoding 566 amino acids. Conserved domain analysis showed thatandwere members of the phosphoglycerate kinase super- family and PLN06249 superfamily, respectively (Fig. 1).

    2.2 Sequence alignment and phylogenetic tree

    The Blastn comparison results showed that the similarity ofbetweenand(the only species reportedsequence from gymnosperms) was 98.53%, and that betweenand angiosperms was 73%-80%. The similarity ofwithinreached 93.66%, and with those in,, andwas 85.60%, 84.23% and 83.64%, respectively.

    The similarity of PGK1 betweenandwas 99.01%. In terms of known angiosperm plants, the similarity with the chloro- plastic PGK of,andwas 87.65%, 85.22% and 84.28%,respectively, and that with the cytosolic PGK of,andwere 87.92%, 87.89% and 83.56%, respecttively. For GPIC, among the known angiosperms, the simila- rities between Masson pine and,andwere higher than those with others, reaching 81.16%, 80.86% and 80.43%, respectively.

    Table 2 Sequence of full-length cDNA of PmPGK1 and PmGPIC

    According to PGK phylogenetic analysis,clustered withfirstly, showing the closest relationship, and then clustered with angio- sperms (Fig. 2: A). For GPIC, masson pine,,andwere clustered initially, with a confidence of 100%, and then sequentially clustered with monocotyledonous or dicotyledonous plants (Fig. 2: B). These results were consistent with the homology comparison results.

    2.3 Subcellular localization

    The localization results showed that the empty vector GFP fluorescence signal was expressed in the cell membrane, cytoplasm and nucleus (Fig. 3: a-d). WoLF PSORT predicted that PmPGK1 was located in the cytosol, which was different from the subcellularlocalization result that it was located in the chloroplast (Fig. 3: e-h). The fluorescence signal of PmGPIC filled the cytoplasmic matrix (Fig. 3: i-l), which was consistent with the prediction of WoLF PSORT.

    Fig. 1 Conserved domain of amino acids of PmPGK1(A) andPmGPIC(B)

    2.4 Gene expression pattern

    Tissue-specific expression analysis revealed that the expression ofin new leaf (NL) was the highest, followed by new stem (NS) and old leaf (OL). The expression difference among three tissues was relatively small. The lowest expression was observed in flower (F), which had significant difference from that in other tissues (<0.05) (Fig. 4: A). For, the expression was the highest in old leaf and nearly zero in the roots (R). There were significant differences among all tissues except new leaf and flower (Fig. 4: A).

    Under low-temperature stress within 12 h, the expression ofanddecreased with the time, and the decrease inwas more obvious than that in. The expression level ofdecreased to the lowest level after 12 h stress, showing a significant difference from that in other groups (Fig. 4: B). On the other hand, along the time, there was no significant difference in expression ofamong the experimental groups (Fig. 4: B). Under elevated-CO2stress,showed signi- ficant differences among different time and showing a trend of decreasing-increasing-decreasing (Fig. 4: C). The expression ofdid not change signify- cantly under high-CO2stress and within 24 h (Fig. 4: C).

    3 Conclusion and discussion

    Both of PGK and GPI have two localization sub- types in plant cells, i.e. cytoplasmic and plastidial. Isoenzymes of different localization types perform different functions in cell metabolism[1,7]. According to the subcellular localization, it was found that PmPGK1 was located in the chloroplast, belonging to chloroplastic/plastidial subtype, mainly involved in Calvin cycle and chloroplast/plastid glycolytic meta- bolism and catalyzes the reversible reaction between PGA and DPGA[6,13–14]. This result is the same as AtPGK1 inby Rosa-Téllez et al.[13], but contrary to that of Huang et al.[18], who proved that PGK1 was localized in the cytosol. PmGPIC was located in the cytosol, which proved that it was mainly involved in sucrose synthesis and glycolytic metabolism in the cell matrix and catalyzed the reversible isomerization between F6P and G6P. Currently, there are no reports on the subcellular localization of plant GPI isoenzymes.

    Fig. 2 Phylogenetic treeof PGK1 (A) and GPIC (B).Pra: Prunus avium; Prp: P. persica; Ql: Quercus lobata; Qs: Q. suber; Ad: Arachis duranensis; Ai: A. ipaensis; Hb: Hevea brasiliensis; Rc: Ricinus communis; Poa: Populus alba; Pot: P. trichocarpa; Ns: Nicotiana sylvestris; Nt: N. tabacum; Cma: Cucurbita maxima; Cmo: C. moschata; Cs: C. sativus; Cm: C. melo; Gh: Gossypium hirsutum; Gr: G. raimondii; Ao: Asparagus officinalis; Pp: Pinus pinaster; Pm: P. massoniana; In: Ipomoea nil; It: I. triloba; Nn: Nelumbo nucifera; Ac: Ananas comosus; Eg: Elaeis guineensis; Pd: Phoenix dactylifera; At: Amborella trichopoda; As: Apostasia shenzhenica; Cj: Cryptomeria japonica; Cl: Cedrus libani.

    The expression ofin leaf was higher than that in other tissues, which was consistent with the results in[13]and[19]. On the other hand,was also expressed in root, new stem and flower, suggesting that it is involved in glycolytic metabolism in these organs. Compared with,in[13,18]and[19]showed the highest expression in flower. This discre- pancy may be caused by some metabolic differences between perennial trees and annual herbs.was mainly expressed in leaves and flowers, and the expression level was highest in old leaves. Therefore, it is speculated that the transformation reaction between F6P and G6P catalyzed byGPIC in old leaves was stronger than that in new leaves and flowers. This result was consistent with that of Troncoso-Ponce et al.[16].

    Fig. 3 Subcellular localization of PmPGK1 and PmGPIC proteins in protoplast of Arabidopsis thaliana.A: pJIT166-GFP; B: pJIT166-PmPGK1-GFP; C: pJIT166-PmGPIC-GFP; a, e, f: Chloroplast autofluorescence field; b, f, j: GFP field; c, g, k: Bright field; d, h, l: Merged pictures.

    Fig. 4 Expression of PmPGK1 and PmGPIC in different tissues (A), under low-temperature stress (B) and high-CO2 stress (C). NL: New leaf; OL: Old leaf; NS: New stem; F: Flower; R: Root. Different letters upon column indicate significant differences at 0.05 level by Duncan test.

    Previous studies have proven that low tempera- ture could reduce the stability of chlorophyll, the solubility of CO2in cells and the affinity of Rubisco to CO2, directly affecting the integrity and activity of the photosynthetic system[20–21]. As important regulating enzymes in the Calvin cycle, RuBP carboxylase (Ru- BPCase), phosphoribulose kinase (PRK) and 1,6- fructose bisphosphatase (FBP) all showed a decreasing trend of expression under low temperature stress[22–25]. The reaction product of RuBPCase and PRK was the reaction substrate of PmPGK1; therefore, the influence of low temperature on both led to a decrease in the activity of PmPGK1 and gene expression. Mean- while, the respiration metabolism of plants under low temperature stress was dominated by the tricarboxylic acid cycle (TCA), at which time the glycolysis pathwaywas inhibited[26]. In addition, FBP activity was reduced under low temperature, resulting in a decrease in the catalytic substrate of PmGPIC[23,25]. Based on the above factors, the expression ofwas more downregulated after low temperature treatment than that of, showing a sharp decline.

    Previous studies[27]have shown that the expre- ssion of all genes in the Calvin cycle, except GAPDH, decrease under a high CO2concentration in masson pine; therefore, it was speculated that the photo- synthetic acclimation of masson pine could be com- pleted within 6 h. In addition, it was found that an increased CO2concentration leads to a significant increase in hexokinase (HK) activity[27], while HK strongly inhibits the activity of Rubisco and Rubisco small subunit (RbcS)[28–29], in turn decreasing the content of PGA (the direct catalytic substrate for the transformation of RuBP to PGK, resulting in a signi- ficant decrease in the expression of). According to the changes in the expression levels of the two genes, PmGPIC was less affected by CO2stress than PmPGK1. The transcriptome sequencing results in a previous study[27]showed that the expression levels ofwere higher after treatment than those at 0 h, which was different from the finding in this experi- ment, but the overall trends of change were consistent. Invertase (INV) phosphorylates glucose and fructose to form the catalytic substrate of GPIC[2]. Under elevated CO2conditions, the expression levels of INV and HK in Masson pine were significantly increased[27], so the expression level ofwas slightly increased after 6 h. The decrease inafter 12 h might have been caused by gradual decreases in the accumulation of photosynthetic products and the glucose metabolic rate. In addition, since photosyn- thetic adaptation is more obvious in annual needles than in that mature needles under elevated-CO2stress[30], more detection could be used before photosynthetic adaptation, and the response mechanism ofandcould be further explored by comparison with the responses in perennial Masson pine samples.

    In this study, full-lengthandwere cloned, and encoding proteins were belong to the plastidial and cytoplasmic subtypes, respectively.was mainly expressed in leaves, andwas mainly expressed in leaves and flowers. The expression ofandwas inhibited under low-temperature stress, and the inhibitory effect onwas stronger. Elevated-CO2stress signi- fycantly inhibited the expression ofbut had little effect on the expression of. The results of this study provide some references for subsequent studies on PGK and GPI in plants.

    [1] WU D, WU Z D, YU X B. Advance in the research of phospho- glycerate kinase [J]. China Trop Med, 2005, 5(2): 385–387. (in Chinese) doi: 10.3969/j.issn.1009-9727.2005.02.100.

    [2] WANG J Y, ZHU S G, XU C F. Biochemistry [M]. 3rd ed. Beijing: Higher Education Press, 2002: 66–79.

    [3] KUGLER W, LAKOMEK M. Glucose-6-phosphate isomerase deficiency [J]. Best Pract Res Clin Haematol, 2000, 13(1): 89–101. doi: 10.1053/ beha.1999.0059.

    [4] KUNZ H H, ZAMANI-NOUR S, H?USLER R E, et al. Loss of cytosolic phosphoglucose isomerase affects carbohydrate metabolism in leaves and is essential for fertility of[J]. Plant Physiol, 2014, 166(2): 753–765. doi: 10.1104/pp.114.241091.

    [5] SHAH N, BRADBEER J W. The development of the activity of the chloroplastic and cytosolic isoenzymes of phosphoglycerate kinase during barley leaf ontogenesis [J]. Planta, 1991, 185(3): 401–406. doi: 10.1007/BF00201064.

    [6] ANDERSON L E, BRYANT J A, CAROL A A. Both chloroplastic and cytosolic phosphoglycerate kinase isozymes are present in the pea leaf nucleus [J]. Protoplasma, 2004, 223(2/3/4): 103–110. doi: 10.1007/ s00709-004-0041-y.

    [7] NOWITZKI U, FLECHNER A, KELLERMANN J, et al. Eubacterial origin of nuclear genes for chloroplast and cytosolic glucose-6-phosphate isomerase from spinach: Sampling eubacterial gene diversity in eukaryotic chromosomes through symbiosis [J]. Gene, 1998, 214 (1/2): 205–213. doi: 10.1016/S0378-1119(98)00229-7.

    [8] MARTIN W, HERRMANN R G. Gene transfer from organelles to the nucleus: How much, what happens, and Why? [J]. Plant Physiol, 1998, 118(1): 9–17. doi: 10.1104/pp.118.1.9.

    [9] YU T S, LUE W L, WANG S M, et al. Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation [J]. Plant Physiol, 2000, 123(1): 319–326. doi: 10.1104/pp. 123.1.319.

    [10] ZHANG Y Y, FANG Z Q. Effect of PGK1 silencing on the proli- feration of SMMC 7721 hepatoma cells [J]. Chin J Integr Trad West Med Liver Dis, 2017, 27(4): 231–233. (in Chinese) doi: 10.3969/j.issn. 1005-0264.2017.03.013.

    [11] ZHAO Y, ZHENG Y B, YAN X F, et al. Screening crucial genes for glucose metabolism in rheumatoid arthritis [J]. J Shandong Univ (Health Sci), 2016, 54(3): 30–35,40. (in Chinese) doi: 10.6040/j.issn. 1671-7554.0.2015.842.

    [12] WU D, SUN L, LI C H, et al. Significance of antibodies to the citrullinated glucose-6-phosphate isomerase peptides in rheumatoid arthritis [J]. J Peking Univ (Health Sci), 2016, 48(6): 937–941. (in Chinese) doi: 10.3969/j.issn.1671-167X.2016.06.003.

    [13] ROSA-TéLLEZ S, ANOMAN A D, FLORES-TORNERO M, et al. Phosphoglycerate kinases are co-regulated to adjust metabolism and to optimize growth [J]. Plant Physiol, 2018, 176(2): 1182–1198. doi: 10. 1104/pp.17.01227.

    [14] HUANG S X, SIRIKHACHORNKIT A, FARIS J D, et al. Phylo- genetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses [J]. Plant Mol Biol, 2002, 48 (5/6): 805–820. doi: 10.1023/a:1014868320552.

    [15] TRONCOSO-PONCE M A, RIVOAL J, CEJUDO F J, et al. Cloning, biochemical characterisation, tissue localisation and possible posttrans- lational regulatory mechanism of the cytosolic phosphoglucose isomerase from developing sunflower seeds [J]. Planta, 2010, 232(4): 845–859. doi: 10.2307/23391986.

    [16] TRONCOSO-PONCE M A, KRUGER N J, RATCLIFFE G, et al. Characterization of glycolytic initial metabolites and enzyme activities in developing sunflower (L.) seeds [J]. Phytoche- mistry, 2009, 70(9): 1117–1122. doi: 10.1016/j.phytochem.2009.07.012.

    [17] ZHU P H, MA Y Y, ZHU L Z, et al. Selection of suitable reference genes inLamb. under different abiotic stresses for qPCR normalization [J]. Forests, 2019, 10(8): 632. doi: 10.3390/f1 0080632.

    [18] HUANG X Z, ZHAO Y C. Functional analysis ofgene family in[J]. J Mount Agric Biol, 2017, 36(1): 12–17,35. (in Chinese) doi: 10.15958/j.cnki.sdnyswxb.2017.01.002.

    [19] GUO N, ZHAO J H, GAO T S, et al. Cloning and expression analysis ofgene in[J]. Acta Bot Boreali-Occid Sin, 2014, 34(11): 2188–2193. (in Chinese) doi: 10.7606/j.issn.1000-4025.2014. 11.2188.

    [20] XU Y, CHEN J H, ZHU A G, et al. Research progress on response mechanism of plant under low temperature stress [J]. Plant Fiber Sci China, 2015, 37(1): 40–49. (in Chinese) doi: 10.3969/j.issn.0517-6611. 2016.33.006.

    [21] WANG F, WANG Q, ZHAO X Y. Research progress of phenotype and physiological response mechanism of plants under low temperature stress [J]. Mol Plant Breed, 2019, 17(15): 5144–5153. (in Chinese) doi: 10.13271/j.mpb.017.005144.

    [22] JIANG Z S, SUN X Q, AI X Z, et al. Responses of Rubisco and Rubisco activase in cucumber seedlings to low temperature and weak light [J]. Chin J Appl Ecol, 2010, 21(8): 2045–2050. (in Chinese) doi: 10.13287/j.1001-9332.2010.0300.

    [23] ZENG Y, YU J, CANG J, et al. Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat () at low temperatures [J]. Biosci Biotechnol Biochem, 2011, 75(4): 681–687. doi: 10.1271/bbb.100813.

    [24] CHEN H. Genetic relationships analysis of longan germplasm resources and studies on low temperature resistance of ‘Shixia’ Longan seedlings [D]. Nanning: Guangxi University, 2012: 90–92. (in Chinese)

    [25] VAN HEERDEN P D R, KRüGER G H J, LOVELAND J E, et al. Dark chilling imposes metabolic restrictions on photosynthesis in soybean [J]. Plant Cell Environ, 2003, 26(2): 323–337. doi: 10.1046/ j.1365-3040.2003.00966.x.

    [26] SUN Y M, LIU L J, FENG M F, et al. Research progress of sugar metabolism of plants under cold stress [J]. J NE Agric Univ, 2015, 46(7): 95–102,108. (in Chinese) doi: 10.19720/j.cnki.issn.1005-9369.2015.07.015.

    [27] WU F, SUN X B, ZOU B Z, et al. Transcriptional analysis of Masson pine () under high CO2stress [J]. Genes (Basel), 2019, 10(10): 804. doi: 10.3390/genes10100804.

    [28] DRAKE B G, GONZàLEZ-MELER M A, LONG S P. More efficient plants: A consequence of rising atmospheric CO2[J]. Annu Rev Plant Phys Plant Mol Biol, 1997, 48(1): 609–639. doi: 10.1146/annurev. arplant.48.1.609.

    [29] MOORE B D, CHENG S H, SIMS D, et al. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2[J]. Plant Cell Environ, 1999, 22(6): 567–582. doi: 10.1046/j. 1365-3040.1999.00432.x.

    [30] TURNBULL M H, TISSUE D T, GRIFFIN K L, et al. Photosynthetic acclimation to long-term exposure to elevated CO2concentration inD. Don. is related to age of needles [J]. Plant Cell Environ, 1998, 21(10): 1019–1028. doi: 10.1046/j.1365-3040.1998.00374.x.

    馬尾松和基因的克隆和表達分析

    夏林超*, 吳帆*, 季孔庶**

    (南京林業(yè)大學(xué)林木遺傳與生物技術(shù)教育部重點實驗室,南方現(xiàn)代林業(yè)協(xié)同創(chuàng)新中心,南京 210037)

    為了解馬尾松()磷酸甘油酸激酶1 (PGK1)與胞質(zhì)溶膠葡萄糖磷酸異構(gòu)酶(GPIC)的功能,采用RACE技術(shù)克隆了和基因,并進行了生物信息學(xué)分析與亞細胞定位,采用實時熒光定量PCR技術(shù)分析和的表達特性。結(jié)果表明,和全長為2 106和1 848 bp,分別編碼507和566個氨基酸。PmPGK1和PmGPIC分別定位于葉綠體和胞質(zhì)溶膠。表達量為新葉>老葉>新莖>根>花;而為老葉>花>新葉>新莖>根。低溫脅迫24 h,和的表達量均隨時間延長先降低后升高,且的表達量在處理2 h后即降至較低水平;高濃度CO2脅迫24 h,的表達量隨時間延長呈降低-升高-再降低的變化趨勢,的表達下調(diào)但變化較不顯著。因此,推測PmPGK1主要參與卡爾文循環(huán)及葉綠體/質(zhì)體糖酵解,PmGPIC主要參與細胞質(zhì)基質(zhì)糖酵解;PmPGK1、PmGPIC活性在低溫脅迫下均受抑制;PmPGK1活性在CO2脅迫下受到顯著抑制,而PmGPIC活性的影響不大。

    馬尾松;;;基因克??;亞細胞定位

    10.11926/jtsb.4315

    2020–09–29

    2020–11–16

    This work was supported by the “Thirteenth-five” National Key Research and Development Program of China (Grant No. 2017YFD0600304), and the Program for Priority Academy Development of Jiangsu Higher Education Institutions (PAPD).

    XIA Lin-chao (Born in 1998), Male, Undergraduate. E-mail: x18963629259@126.com

    *Co-first author

    . E-mail: ksji@njfu.edu.cn

    猜你喜歡
    老葉新葉葉綠體
    老周
    金山(2020年9期)2020-11-10 07:15:08
    陳硯章
    美麗的新葉古村
    老 葉
    南方紅豆杉葉綠體非編碼序列PCR體系優(yōu)化及引物篩選
    新葉之夜
    牡丹(2015年3期)2015-05-30 10:48:04
    黨的十八屆三中全會
    大江南北(2014年3期)2014-11-23 06:16:21
    亭語
    音樂生活(2014年3期)2014-04-25 01:00:14
    茶樹葉綠體DNA的PCR-RFLP反應(yīng)體系優(yōu)化
    煙草葉綠體密碼子的偏好性及聚類分析
    久久人妻av系列| 日本与韩国留学比较| 色综合亚洲欧美另类图片| 亚洲狠狠婷婷综合久久图片| 亚洲人与动物交配视频| 久久人妻av系列| 在线观看66精品国产| 五月伊人婷婷丁香| 综合色av麻豆| 国产成人aa在线观看| 天堂网av新在线| 亚洲精品一卡2卡三卡4卡5卡| 啦啦啦免费观看视频1| 18禁在线播放成人免费| 国产日本99.免费观看| 可以在线观看毛片的网站| 动漫黄色视频在线观看| 精品国产美女av久久久久小说| 超碰av人人做人人爽久久 | 国产综合懂色| 欧美最新免费一区二区三区 | 欧美黑人欧美精品刺激| 成人无遮挡网站| 国产成人啪精品午夜网站| 伊人久久精品亚洲午夜| 一a级毛片在线观看| 欧美性猛交黑人性爽| 国产精华一区二区三区| 成年女人毛片免费观看观看9| 美女 人体艺术 gogo| 午夜免费成人在线视频| 亚洲乱码一区二区免费版| 久久这里只有精品中国| 国产三级黄色录像| 18禁裸乳无遮挡免费网站照片| 狂野欧美激情性xxxx| 亚洲在线观看片| 亚洲人与动物交配视频| 亚洲性夜色夜夜综合| 亚洲精品日韩av片在线观看 | 亚洲专区中文字幕在线| 一进一出抽搐gif免费好疼| 午夜福利在线观看免费完整高清在 | 琪琪午夜伦伦电影理论片6080| 亚洲av日韩精品久久久久久密| 国产精品精品国产色婷婷| 一个人免费在线观看电影| 麻豆国产av国片精品| 制服人妻中文乱码| 亚洲成人久久性| 深夜精品福利| 久99久视频精品免费| 啦啦啦观看免费观看视频高清| 中文亚洲av片在线观看爽| 国产免费av片在线观看野外av| 色播亚洲综合网| 中出人妻视频一区二区| 老司机在亚洲福利影院| 色吧在线观看| 亚洲欧美日韩高清专用| 麻豆一二三区av精品| 欧美一区二区精品小视频在线| www.999成人在线观看| 成人无遮挡网站| 亚洲男人的天堂狠狠| 少妇熟女aⅴ在线视频| 欧美日本亚洲视频在线播放| 我要搜黄色片| 免费在线观看成人毛片| 在线国产一区二区在线| 美女大奶头视频| 香蕉丝袜av| 国产97色在线日韩免费| 成人国产综合亚洲| 一进一出好大好爽视频| 欧美乱妇无乱码| 日韩大尺度精品在线看网址| 精品一区二区三区视频在线观看免费| 欧美黄色片欧美黄色片| av女优亚洲男人天堂| 精品国内亚洲2022精品成人| 欧美日韩国产亚洲二区| 99热这里只有精品一区| 国产精品香港三级国产av潘金莲| 国产av在哪里看| 日韩 欧美 亚洲 中文字幕| 成人av一区二区三区在线看| ponron亚洲| 老熟妇乱子伦视频在线观看| 欧美不卡视频在线免费观看| 精品一区二区三区视频在线观看免费| 一进一出抽搐gif免费好疼| 久久国产乱子伦精品免费另类| 国产主播在线观看一区二区| 97超视频在线观看视频| 国产一区二区亚洲精品在线观看| 欧美成人一区二区免费高清观看| 99国产精品一区二区蜜桃av| 国产亚洲精品久久久com| 法律面前人人平等表现在哪些方面| 日韩精品中文字幕看吧| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 亚洲欧美日韩高清在线视频| 久久久久久人人人人人| 叶爱在线成人免费视频播放| 亚洲国产精品久久男人天堂| 亚洲av二区三区四区| 亚洲自拍偷在线| 亚洲欧美一区二区三区黑人| 精品久久久久久成人av| 不卡一级毛片| 18禁在线播放成人免费| 99久久成人亚洲精品观看| 国产老妇女一区| 国产欧美日韩一区二区三| 午夜免费激情av| 看免费av毛片| 少妇人妻一区二区三区视频| 老鸭窝网址在线观看| 亚洲国产精品久久男人天堂| 久久久久久人人人人人| 日日干狠狠操夜夜爽| 欧美中文综合在线视频| 国产一区二区三区视频了| 亚洲内射少妇av| 少妇人妻精品综合一区二区 | av专区在线播放| 波多野结衣高清无吗| 久久久久久久午夜电影| 久久精品国产99精品国产亚洲性色| 亚洲欧美日韩东京热| 在线观看一区二区三区| 免费看十八禁软件| 麻豆一二三区av精品| 2021天堂中文幕一二区在线观| 观看美女的网站| 99热这里只有精品一区| ponron亚洲| 欧美性感艳星| 午夜久久久久精精品| 亚洲一区二区三区色噜噜| 国产三级黄色录像| 又爽又黄无遮挡网站| 老熟妇乱子伦视频在线观看| 十八禁网站免费在线| 丝袜美腿在线中文| 国产精品亚洲av一区麻豆| 欧美日本视频| 三级国产精品欧美在线观看| 免费大片18禁| 真实男女啪啪啪动态图| 又粗又爽又猛毛片免费看| 偷拍熟女少妇极品色| 色综合欧美亚洲国产小说| 在线观看免费视频日本深夜| 听说在线观看完整版免费高清| 久久精品国产99精品国产亚洲性色| 国产精品99久久99久久久不卡| 日本精品一区二区三区蜜桃| www国产在线视频色| 黄色日韩在线| 欧美黄色片欧美黄色片| 69av精品久久久久久| 欧美三级亚洲精品| 一个人看的www免费观看视频| 国内精品一区二区在线观看| 国产乱人伦免费视频| 每晚都被弄得嗷嗷叫到高潮| 精品人妻1区二区| 精品久久久久久,| 男女下面进入的视频免费午夜| 亚洲国产欧美人成| 日韩欧美精品免费久久 | 久久久久九九精品影院| 欧美中文日本在线观看视频| 脱女人内裤的视频| 免费无遮挡裸体视频| 国产成人系列免费观看| 性色av乱码一区二区三区2| 国产亚洲欧美98| 成人精品一区二区免费| 亚洲中文字幕日韩| 久久久精品欧美日韩精品| 国产精品 欧美亚洲| 一区二区三区高清视频在线| 免费看美女性在线毛片视频| 亚洲av成人精品一区久久| 亚洲精品在线观看二区| 午夜老司机福利剧场| 国产精品电影一区二区三区| 日韩欧美一区二区三区在线观看| av女优亚洲男人天堂| 成人高潮视频无遮挡免费网站| 18禁国产床啪视频网站| 国产日本99.免费观看| 一级黄色大片毛片| 亚洲欧美一区二区三区黑人| 一级毛片高清免费大全| 日韩欧美三级三区| 欧美黄色淫秽网站| 深夜精品福利| 美女cb高潮喷水在线观看| 亚洲精品乱码久久久v下载方式 | 日本一二三区视频观看| 天天一区二区日本电影三级| 亚洲av日韩精品久久久久久密| 日韩欧美在线二视频| 亚洲电影在线观看av| 国产精品女同一区二区软件 | 亚洲av不卡在线观看| 国产免费一级a男人的天堂| 在线观看美女被高潮喷水网站 | 免费一级毛片在线播放高清视频| 高清日韩中文字幕在线| 欧美另类亚洲清纯唯美| ponron亚洲| 啪啪无遮挡十八禁网站| 国产亚洲精品一区二区www| 美女黄网站色视频| 亚洲久久久久久中文字幕| 国产爱豆传媒在线观看| 亚洲精品影视一区二区三区av| 麻豆一二三区av精品| 久久99热这里只有精品18| 免费在线观看亚洲国产| 一区二区三区高清视频在线| 母亲3免费完整高清在线观看| 国产伦精品一区二区三区四那| 在线观看一区二区三区| 国产69精品久久久久777片| 在线天堂最新版资源| 俄罗斯特黄特色一大片| 国产精品野战在线观看| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 国产一区在线观看成人免费| 国产精品嫩草影院av在线观看 | 一进一出抽搐动态| 在线观看免费视频日本深夜| 欧美在线一区亚洲| 搞女人的毛片| 国产精品三级大全| 国产高清三级在线| 久久久成人免费电影| 很黄的视频免费| 亚洲精品在线美女| 亚洲精华国产精华精| 国产亚洲精品av在线| 日本精品一区二区三区蜜桃| svipshipincom国产片| 人人妻人人澡欧美一区二区| 黄色片一级片一级黄色片| 老熟妇乱子伦视频在线观看| 一夜夜www| 国产激情欧美一区二区| 丰满的人妻完整版| 午夜福利成人在线免费观看| 男女午夜视频在线观看| 一级作爱视频免费观看| 欧美区成人在线视频| 亚洲七黄色美女视频| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品电影| 一级黄片播放器| 日本成人三级电影网站| 亚洲欧美日韩卡通动漫| 欧美+日韩+精品| 女生性感内裤真人,穿戴方法视频| 国产精品久久电影中文字幕| 日本与韩国留学比较| 麻豆成人午夜福利视频| 国产精品亚洲一级av第二区| 母亲3免费完整高清在线观看| 亚洲午夜理论影院| 亚洲精品国产精品久久久不卡| 制服人妻中文乱码| 他把我摸到了高潮在线观看| 国产精品久久电影中文字幕| eeuss影院久久| 中文字幕精品亚洲无线码一区| 亚洲成人免费电影在线观看| 亚洲精品久久国产高清桃花| 欧美最新免费一区二区三区 | 免费搜索国产男女视频| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 在线播放国产精品三级| 一区福利在线观看| 少妇的丰满在线观看| 好男人电影高清在线观看| 午夜免费激情av| 老司机在亚洲福利影院| 欧美在线一区亚洲| 婷婷亚洲欧美| 欧美在线一区亚洲| 99久久九九国产精品国产免费| 深爱激情五月婷婷| 国产亚洲精品综合一区在线观看| 亚洲精品国产精品久久久不卡| 久久人妻av系列| 久久精品国产亚洲av香蕉五月| 亚洲人成伊人成综合网2020| 国产精品久久久久久亚洲av鲁大| 久99久视频精品免费| 精品一区二区三区视频在线观看免费| 国产精华一区二区三区| 动漫黄色视频在线观看| 国产亚洲精品久久久com| 免费av不卡在线播放| 最近最新中文字幕大全免费视频| 一级毛片高清免费大全| 日韩免费av在线播放| 色吧在线观看| 黄片大片在线免费观看| 无人区码免费观看不卡| 欧美另类亚洲清纯唯美| 日本熟妇午夜| 久久这里只有精品中国| 美女 人体艺术 gogo| 真人做人爱边吃奶动态| 日韩免费av在线播放| 精品久久久久久久毛片微露脸| 桃色一区二区三区在线观看| 又黄又爽又免费观看的视频| 无遮挡黄片免费观看| 亚洲国产色片| 非洲黑人性xxxx精品又粗又长| 国产69精品久久久久777片| 亚洲成av人片在线播放无| 久久久久久久午夜电影| 国产v大片淫在线免费观看| 在线观看免费视频日本深夜| 亚洲内射少妇av| 欧美乱妇无乱码| 国内毛片毛片毛片毛片毛片| 亚洲精品粉嫩美女一区| 中文字幕精品亚洲无线码一区| 天堂网av新在线| 国内少妇人妻偷人精品xxx网站| 日韩成人在线观看一区二区三区| 久久久久久国产a免费观看| 可以在线观看的亚洲视频| 色综合婷婷激情| 亚洲美女视频黄频| 久99久视频精品免费| 色老头精品视频在线观看| 国产欧美日韩精品亚洲av| 亚洲欧美精品综合久久99| 老熟妇仑乱视频hdxx| 欧美zozozo另类| 看免费av毛片| 中文字幕人成人乱码亚洲影| 好男人在线观看高清免费视频| 日本熟妇午夜| 亚洲精品美女久久久久99蜜臀| 亚洲一区高清亚洲精品| 一级黄色大片毛片| 我要搜黄色片| 脱女人内裤的视频| 男女做爰动态图高潮gif福利片| 三级毛片av免费| 国产亚洲精品久久久久久毛片| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| 国内揄拍国产精品人妻在线| 熟女少妇亚洲综合色aaa.| 亚洲乱码一区二区免费版| 国产69精品久久久久777片| 久久人人精品亚洲av| 99久久精品国产亚洲精品| 亚洲精品一区av在线观看| 99久久精品国产亚洲精品| 最好的美女福利视频网| 成年女人毛片免费观看观看9| 成人三级黄色视频| 亚洲人成网站在线播| 欧美bdsm另类| 成人18禁在线播放| 欧美午夜高清在线| 国产又黄又爽又无遮挡在线| 天堂√8在线中文| 国产探花在线观看一区二区| 久久精品综合一区二区三区| 亚洲午夜理论影院| 欧美性感艳星| 国产精品一区二区三区四区免费观看 | 在线免费观看不下载黄p国产 | 午夜福利在线观看免费完整高清在 | 久久伊人香网站| 色精品久久人妻99蜜桃| 精品日产1卡2卡| 99riav亚洲国产免费| 国产精品嫩草影院av在线观看 | 欧美大码av| 老熟妇乱子伦视频在线观看| 亚洲人成网站在线播| 观看免费一级毛片| 午夜视频国产福利| 亚洲av成人不卡在线观看播放网| 国产午夜精品久久久久久一区二区三区 | 精品久久久久久久毛片微露脸| 首页视频小说图片口味搜索| 全区人妻精品视频| 黄色视频,在线免费观看| 久久国产精品人妻蜜桃| www日本黄色视频网| 国产麻豆成人av免费视频| 亚洲人成网站在线播放欧美日韩| а√天堂www在线а√下载| 看片在线看免费视频| 色吧在线观看| 熟女少妇亚洲综合色aaa.| 女人高潮潮喷娇喘18禁视频| 给我免费播放毛片高清在线观看| 无限看片的www在线观看| 有码 亚洲区| 欧美大码av| 国产高清视频在线播放一区| 久久性视频一级片| 97碰自拍视频| 精品午夜福利视频在线观看一区| 国产不卡一卡二| 在线播放国产精品三级| 变态另类丝袜制服| 91在线观看av| 夜夜爽天天搞| 亚洲精品在线美女| 在线免费观看不下载黄p国产 | 成人国产一区最新在线观看| 国产97色在线日韩免费| 亚洲美女视频黄频| 怎么达到女性高潮| 亚洲狠狠婷婷综合久久图片| 国产精品国产高清国产av| 日韩欧美精品免费久久 | 成年女人永久免费观看视频| 一本综合久久免费| 夜夜爽天天搞| 1000部很黄的大片| 亚洲一区高清亚洲精品| 国产免费av片在线观看野外av| xxx96com| 中文字幕熟女人妻在线| 欧美精品啪啪一区二区三区| 一本久久中文字幕| 亚洲 欧美 日韩 在线 免费| 久久性视频一级片| 国产精品影院久久| 亚洲久久久久久中文字幕| 国产精品免费一区二区三区在线| 亚洲av中文字字幕乱码综合| 免费观看人在逋| 黄色日韩在线| 一级作爱视频免费观看| 国产真实伦视频高清在线观看 | 久久草成人影院| 国产高清激情床上av| 国产在视频线在精品| 少妇的逼好多水| 午夜日韩欧美国产| 免费搜索国产男女视频| 精品一区二区三区人妻视频| 亚洲成a人片在线一区二区| 99视频精品全部免费 在线| 国产欧美日韩一区二区精品| 亚洲自拍偷在线| 丰满人妻熟妇乱又伦精品不卡| 99精品欧美一区二区三区四区| 亚洲中文日韩欧美视频| 亚洲国产精品成人综合色| 午夜两性在线视频| 免费在线观看亚洲国产| 婷婷六月久久综合丁香| 丁香六月欧美| 亚洲aⅴ乱码一区二区在线播放| 九九在线视频观看精品| x7x7x7水蜜桃| 久久这里只有精品中国| av专区在线播放| 一夜夜www| 亚洲中文字幕日韩| 99久久精品国产亚洲精品| 亚洲片人在线观看| 丁香六月欧美| 亚洲aⅴ乱码一区二区在线播放| 国产午夜福利久久久久久| 日本撒尿小便嘘嘘汇集6| 国产高清激情床上av| 脱女人内裤的视频| 日日干狠狠操夜夜爽| 动漫黄色视频在线观看| 国产69精品久久久久777片| 国产精品久久久久久精品电影| 国产精品野战在线观看| 丝袜美腿在线中文| 欧美一区二区精品小视频在线| 中出人妻视频一区二区| 日本精品一区二区三区蜜桃| 特级一级黄色大片| 十八禁人妻一区二区| 久久欧美精品欧美久久欧美| 国内久久婷婷六月综合欲色啪| 国产成人福利小说| 岛国在线观看网站| 麻豆国产av国片精品| 美女大奶头视频| 男女那种视频在线观看| 国产精品精品国产色婷婷| 在线a可以看的网站| 精品熟女少妇八av免费久了| 少妇丰满av| 国产成人av激情在线播放| 超碰av人人做人人爽久久 | 欧美zozozo另类| 色哟哟哟哟哟哟| 又爽又黄无遮挡网站| 99热只有精品国产| 熟妇人妻久久中文字幕3abv| 一本久久中文字幕| 国产午夜精品久久久久久一区二区三区 | 欧美日韩综合久久久久久 | 亚洲性夜色夜夜综合| 一级黄色大片毛片| 久久久久性生活片| 国产精品免费一区二区三区在线| 香蕉久久夜色| 亚洲成av人片免费观看| 一级a爱片免费观看的视频| 午夜精品一区二区三区免费看| 一夜夜www| 我的老师免费观看完整版| 亚洲第一欧美日韩一区二区三区| 一二三四社区在线视频社区8| 日韩国内少妇激情av| a在线观看视频网站| 最好的美女福利视频网| 日本一本二区三区精品| 一夜夜www| 免费在线观看影片大全网站| 人妻久久中文字幕网| 麻豆国产97在线/欧美| 岛国在线观看网站| 国产精品美女特级片免费视频播放器| 久久这里只有精品中国| 亚洲午夜理论影院| 久久性视频一级片| av国产免费在线观看| 国产精品电影一区二区三区| 男女视频在线观看网站免费| 97碰自拍视频| 观看免费一级毛片| а√天堂www在线а√下载| 成人av一区二区三区在线看| 国产成人啪精品午夜网站| 九九热线精品视视频播放| 日本成人三级电影网站| 国产69精品久久久久777片| 欧美黑人欧美精品刺激| 日韩精品中文字幕看吧| 少妇人妻精品综合一区二区 | 听说在线观看完整版免费高清| 国产精品久久久久久久电影 | 欧美午夜高清在线| 国产成+人综合+亚洲专区| 欧美乱妇无乱码| 色噜噜av男人的天堂激情| 少妇的逼水好多| 99riav亚洲国产免费| 日韩成人在线观看一区二区三区| 看免费av毛片| 亚洲精品影视一区二区三区av| 午夜免费成人在线视频| 精品一区二区三区av网在线观看| 99国产精品一区二区蜜桃av| 日韩欧美国产一区二区入口| xxx96com| 91久久精品国产一区二区成人 | 精品一区二区三区视频在线 | 可以在线观看毛片的网站| 亚洲精华国产精华精| 2021天堂中文幕一二区在线观| 天堂网av新在线| 99久久无色码亚洲精品果冻| 日韩免费av在线播放| 成年女人毛片免费观看观看9| 精品国产美女av久久久久小说| 脱女人内裤的视频| 深爱激情五月婷婷| 国语自产精品视频在线第100页| 国模一区二区三区四区视频| 亚洲一区二区三区色噜噜| x7x7x7水蜜桃| 精品国产三级普通话版| 看免费av毛片| 91在线精品国自产拍蜜月 | 啪啪无遮挡十八禁网站| 婷婷丁香在线五月| 亚洲av中文字字幕乱码综合| 黄片小视频在线播放| 免费人成在线观看视频色| 久久精品影院6| 精品一区二区三区av网在线观看| 久久精品影院6| 亚洲无线观看免费| av福利片在线观看| 亚洲五月天丁香| 免费在线观看影片大全网站| 老司机午夜十八禁免费视频| 少妇丰满av| 亚洲在线自拍视频| 99国产综合亚洲精品| 国语自产精品视频在线第100页| 最近在线观看免费完整版| 亚洲乱码一区二区免费版|