• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloning and Expression Analysis on PmPGK1 and PmGPIC Genes in Pinus massoniana

    2021-08-10 02:21:48XIALinchaoWUFanJIKongshu
    熱帶亞熱帶植物學(xué)報 2021年4期
    關(guān)鍵詞:老葉新葉葉綠體

    XIA Lin-chao, WU Fan, JI Kong-shu

    Cloning and Expression Analysis onandGenes in

    XIA Lin-chao*, WU Fan*, JI Kong-shu**

    (Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China)

    To understand the functions of phosphoglycerate kinase 1 (PGK1) and cytosolic glucose phosphate isomerase (CPIC) of, the cDNA ofandwere cloned by RACE, and the bioinformatic and subcellular localization of PmPGK1 and PmGPIC were analyzed, and then their expression patterns were performed by qRT-PCR. The results showed that the full-length cDNA ofandwere 2 106 and 1 848 bp, encoding 507 and 566 amino acids, respectively. PmPGK1 and PmGPIC proteins were located in chloroplast and cytosol, respectively. The expression ofwas in order of new leaf>old leaf> new stem>root>flower, while that ofwas old leaf>flower>new leaf>new stem>root. Under low temperature stress for 24 hours, the expression ofanddecreased at first and then increased, and the expression ofdecreased to a low level after 2 hours. Under high CO2stress for 24 hours, the expression ofwas significantly down-regulated, showing a trend of decrease-increase-decrease, while the down-regulation ofwas not obvious. Therefore, it was suggested that PmPGK1 mainly participated in the Calvin cycle and chloroplast/plast glycolysis, and PmGPIC was mainly involved in cytosolic glycolysis. The activities of PmPGK1 and PmGPIC were inhibited under low temperature stress, and PmPGK1 activity was significantly inhibited under high CO2stress, while PmGPIC activity was less affected.

    ;;; Gene clone; Subcellular localization

    Phosphoglycerate kinase (PGK) is an important, soluble, rate-limited kinase used for basic metabolism in all organisms[1]. In plants, PGK participates in the Calvin cycle and glycolysis by catalyzing the release and transfer of high-energy phosphate groups between 3-phosphoglycerate (PGA) and 1,3-diphosphoglycerate (DPGA) and then catalyzing the reversible conversion of PGA and DPGA[2]. Glucose phosphate isomerase (GPI) is a multifunctional dimer protein in organisms that plays an important role in the carbohydrate meta- bolism cycle[3]. It catalyzes and breaks the molecular ring structure of fructose-6-phosphate (F6P) or glucose- 6-phosphate (G6P) and transfers the intramolecular protonits enzymatic acid-base catalytic mechanism and finally the two hexoses undergo reversible isome- rization[2,4].

    PGK exists in only one form in prokaryotes, while in most eukaryotes, there are 2-3 isozymes with different subcellular localizations[1,5]. PGK in plants is divided into two localization subtypes: cytosolic and chloroplast/plastidial PGK. Cytosol PGK mainly parti- cipates in cytoplasmic matrix glycolysis, while chloro- plastic/plastidial PGK is mainly involved in the dual metabolic pathway of the Calvin cycle and chloro- plastic/plastidial glycolysis[6]. GPI exists as a single form of cytosolic GPI in most animals and microorga- nisms, while there is also a plastidial GPI in plant cells[7]. Cytosolic GPI mainly participates in sucrose synthesis and glycolysis, and plastidial GPI is mainly involved in the metabolism of the oxidative pentose phosphate pathway (OPPP) and starch synthesis[8–9].

    At present, research on PGK and GPI mainly focuses on clinical diagnosis[10–12]. There are relatively few studies on the protein subcellular localization, biological function and gene expression analysis of isoenzymes encoding different subtypes of PGK and GPI in plants, and the researches of the two enzymes in plants are mainly concentrated on annual plants, such asor[13–16]. In this research, we cloned theandgenes of masson pine, which encode phosphoglycerate kinase 1 (PGK1) and cytosolic glucose phosphate isomerase (CPIC), respectively. To explore the function ofPGK1 andGPIC, bioinformatic analysis, sub- cellular localization analysis and quantitative real- time PCR (qRT-PCR) analysis based on tissue-specific expression, low temperature and high CO2stress were performed. The results of this research could advance our understanding of PGK and GPI in Masson pine and other plants.

    1 Materials and methods

    1.1 Test materials

    The plant material used for rapid amplification of cDNA ends (RACE) analysis was derived from germi- nated seeds of masson pine (). The protoplast material used for subcellular localization was obtained from wild-type(Columbia ecotype) at3-4-week-old and not flowered. A laboratory-preserved pJIT166 transient expression vector was used for subcellular localization. Materials for tissue-specific expression were collected from 15- year-old masson pine in the arboreal garden of Nan- jing Forestry University. The annual masson pine seedlings were used for expression analysis under low-temperature and elevated-CO2stress, which were provided by Fujian Baisha Forest Farm and then planted in soil (nutrient soil∶vermiculite∶perlite= 1∶1∶1) in laboratory in September, 2018. The seedlings were grown in a naturally chamber with a cycle of 10 h light/14 h dark, day/night temperature of 30℃/26℃, and a relative humidity of 60%, with a slow seedling stage for about 15 days. Then the seedlings with the same growth state were selected for the following experiment.

    1.2 Total RNA extraction and full-length gene clone

    Total RNA was extracted from masson pine seedlings followed the RNAprep Pure RNA extraction kit (Tiangen, Beijing). The concentration and quality of the RNA were detected by a NanoDrop fluorometer (ThermoFisher, MA, USA) and electrophoresis, respec- tively. First-strand cDNA was synthesized by using TransScript?One-Step gDNA Removal and cDNA Synthesis SuperMix (TransGen, Beijing).

    Theandsequences were screened out after homology comparison between theandgene sequences ofobtained from the NCBI database (https://www. ncbi.nlm.nih.gov/) and the masson pine transcriptome database (NCBI access No.: PRJNA561037). The cloningand amplification of intermediate fragments were carried out using the amplification primers (Table 1). Then, according to the intermediate sequence, the 5?/3? RACE- specific primer was used to amplify the 5?/3? end sequence according to the instructions of the SMA- RTer RACE 5?/3? Kit (TaKaRa, Beijing). The full- length ofandcDNA was obtained after sequence alignment and splicing predicttion, and conserved domains from the NCBI database were used for PmPGK1 and PmGPIC conserved domain analysis.

    Table 1 Sequences of primers used in this study

    *: Lowercase letters are the carrier sequence.

    1.3 Bioinformatic analysis

    Blastn and Blastp from the NCBI were used to compare the homologous sequences ofandcDNA and the amino acid sequences of their encoded proteins. Then, MEGA 7.0 was used to con- struct PmPGK1 and PmGPIC phylogenetic trees by the neighbor-joining method. WoLF PSORT (https:// wolfpsort.hgc.jp/) was used to analyze the subcellular localization of PmPGK1 and PmGPIC proteins.

    1.4 Subcellular localization

    pJIT166 plasmid was double digested (restriction enzyme cutting sites:dIII andI). The recom- binant expression vector was constructed according to the ClonExpress II One-Step Cloning Kit (Vazyme Biotech, Nanjing). The recombinant plasmid was extracted according to the instructions of the Plasmid Maxi Kit (QIAGEN, Germany) after transformation intoand culture expansion. According to the manufacturer’s instructions (Real-time Biotech, Beijing), approximately 10 large and plump wild-type(Columbia ecotype) leaves were selected and cut into thin strips with a width of 0.5-1.0 mm to prepare protoplasts, and then, the pJIT166 recom- binant plasmid (>1g/L) was transformed into the prepared protoplast (10L). Finally, the abovesolu- tion was put it in a 22℃-25℃ dark environment for 14-16 h of incubation, and the fluorescence reaction was recorded at 488 and 543 nm by fluorescence microscopy.Protoplasts with empty vector accom- panied by green fluorescent protein (GFP) were used as the control group (CK group).

    1.5 Expression patterns

    For tissue-specific expression analysis, total RNA from 5 tissues, including new leaves (NL), old leaves (OL), new stems (NS), flowers (F) and roots (R), was extracted with three biological replicates for each treatment using a Plant RNA Isolation Kit (Tiangen Biotech, Beijing). Then, first-strand cDNA was syn- thesized with FastKing gDNA Dispelling RT Super- Mix (Tiangen Biotech, Beijing) according to the manufacturer’s instructions. For cold stress, annual seedlings were placed in a refrigerator at 4℃ and the seedling leaves were collected at 0, 2, 4, 8, 12 and 24 h, respectively. For elevated-CO2stress, the seedlings were moved into a growth chamber with 10 h light/14 h dark at 25℃. Air containing approximately 400- 450 mg/m3CO2(approximately two times the ambient CO2concentration) was injected into the growth chamber constantly for at least 24 h. Then, the seedling leaves were sampled after 0, 6, 12 and 24 h of treatment. For qRT-PCR, the mixtures consisted of 10L of 2×ChamQTMUniversal SYBR?qPCR Master Mix (Vazyme Biotech, Nanjing), 0.4L of forward primer and reverse primer, 2L of cDNA, and 7.2L of ddH2O. The qRT-PCR program consisted of three stages: 95℃ for 30 s (preincubation), 95℃ for 10 s, 60℃ for 30 s, and 72℃ for 30 s, cycling 40 times (amplification), and 95℃ for 15 s, 60℃ for 1 min and 95℃ for 15 s (melting curves). QRT-PCR quality was estimated based on the melting curves.(NCBI Accession No.: KM496525.1) was used as the internal control[17]. The gene-specific primers employed are shown in Table 1. Three independent technical replicates were performed for each treatment. Quan- tification was achieved using comparative cycle threshold (Ct) values, and gene expression levels were calculated using the 2–??CTmethod[17].

    2 Results

    2.1 Full-length clone of PmPGK1 and PmGPIC

    The intermediate fragments ofandwere 1 564 and 1 305 bp, respectively. The 5?/3? RACE sequences ofwere 297 and 1 225 bp, respectively, and those ofwere 1 056 and 1 117 bp, respectively. After sequence alignment and splicing, it was found that the full-length ofandwere 1 848 bp (NCBI Acce- ssion No.: MT586614) and 2 106 bp (NCBI Accession No.: MT591683), respectively (Table 2). According to ORF Finder analysis, the 5?/3? cDNA ends ofhad 93 and 324 bp untranslated regions (UTRs), respectively. The open reading frame (ORF) ofcovered 1 524 bp, encoding 507 amino acids. In contrast, the 5?/3? cDNA ends ofhad 146 and 259 bp UTRs, respecttively. The ORF ofcovered 1 701 bp, encoding 566 amino acids. Conserved domain analysis showed thatandwere members of the phosphoglycerate kinase super- family and PLN06249 superfamily, respectively (Fig. 1).

    2.2 Sequence alignment and phylogenetic tree

    The Blastn comparison results showed that the similarity ofbetweenand(the only species reportedsequence from gymnosperms) was 98.53%, and that betweenand angiosperms was 73%-80%. The similarity ofwithinreached 93.66%, and with those in,, andwas 85.60%, 84.23% and 83.64%, respectively.

    The similarity of PGK1 betweenandwas 99.01%. In terms of known angiosperm plants, the similarity with the chloro- plastic PGK of,andwas 87.65%, 85.22% and 84.28%,respectively, and that with the cytosolic PGK of,andwere 87.92%, 87.89% and 83.56%, respecttively. For GPIC, among the known angiosperms, the simila- rities between Masson pine and,andwere higher than those with others, reaching 81.16%, 80.86% and 80.43%, respectively.

    Table 2 Sequence of full-length cDNA of PmPGK1 and PmGPIC

    According to PGK phylogenetic analysis,clustered withfirstly, showing the closest relationship, and then clustered with angio- sperms (Fig. 2: A). For GPIC, masson pine,,andwere clustered initially, with a confidence of 100%, and then sequentially clustered with monocotyledonous or dicotyledonous plants (Fig. 2: B). These results were consistent with the homology comparison results.

    2.3 Subcellular localization

    The localization results showed that the empty vector GFP fluorescence signal was expressed in the cell membrane, cytoplasm and nucleus (Fig. 3: a-d). WoLF PSORT predicted that PmPGK1 was located in the cytosol, which was different from the subcellularlocalization result that it was located in the chloroplast (Fig. 3: e-h). The fluorescence signal of PmGPIC filled the cytoplasmic matrix (Fig. 3: i-l), which was consistent with the prediction of WoLF PSORT.

    Fig. 1 Conserved domain of amino acids of PmPGK1(A) andPmGPIC(B)

    2.4 Gene expression pattern

    Tissue-specific expression analysis revealed that the expression ofin new leaf (NL) was the highest, followed by new stem (NS) and old leaf (OL). The expression difference among three tissues was relatively small. The lowest expression was observed in flower (F), which had significant difference from that in other tissues (<0.05) (Fig. 4: A). For, the expression was the highest in old leaf and nearly zero in the roots (R). There were significant differences among all tissues except new leaf and flower (Fig. 4: A).

    Under low-temperature stress within 12 h, the expression ofanddecreased with the time, and the decrease inwas more obvious than that in. The expression level ofdecreased to the lowest level after 12 h stress, showing a significant difference from that in other groups (Fig. 4: B). On the other hand, along the time, there was no significant difference in expression ofamong the experimental groups (Fig. 4: B). Under elevated-CO2stress,showed signi- ficant differences among different time and showing a trend of decreasing-increasing-decreasing (Fig. 4: C). The expression ofdid not change signify- cantly under high-CO2stress and within 24 h (Fig. 4: C).

    3 Conclusion and discussion

    Both of PGK and GPI have two localization sub- types in plant cells, i.e. cytoplasmic and plastidial. Isoenzymes of different localization types perform different functions in cell metabolism[1,7]. According to the subcellular localization, it was found that PmPGK1 was located in the chloroplast, belonging to chloroplastic/plastidial subtype, mainly involved in Calvin cycle and chloroplast/plastid glycolytic meta- bolism and catalyzes the reversible reaction between PGA and DPGA[6,13–14]. This result is the same as AtPGK1 inby Rosa-Téllez et al.[13], but contrary to that of Huang et al.[18], who proved that PGK1 was localized in the cytosol. PmGPIC was located in the cytosol, which proved that it was mainly involved in sucrose synthesis and glycolytic metabolism in the cell matrix and catalyzed the reversible isomerization between F6P and G6P. Currently, there are no reports on the subcellular localization of plant GPI isoenzymes.

    Fig. 2 Phylogenetic treeof PGK1 (A) and GPIC (B).Pra: Prunus avium; Prp: P. persica; Ql: Quercus lobata; Qs: Q. suber; Ad: Arachis duranensis; Ai: A. ipaensis; Hb: Hevea brasiliensis; Rc: Ricinus communis; Poa: Populus alba; Pot: P. trichocarpa; Ns: Nicotiana sylvestris; Nt: N. tabacum; Cma: Cucurbita maxima; Cmo: C. moschata; Cs: C. sativus; Cm: C. melo; Gh: Gossypium hirsutum; Gr: G. raimondii; Ao: Asparagus officinalis; Pp: Pinus pinaster; Pm: P. massoniana; In: Ipomoea nil; It: I. triloba; Nn: Nelumbo nucifera; Ac: Ananas comosus; Eg: Elaeis guineensis; Pd: Phoenix dactylifera; At: Amborella trichopoda; As: Apostasia shenzhenica; Cj: Cryptomeria japonica; Cl: Cedrus libani.

    The expression ofin leaf was higher than that in other tissues, which was consistent with the results in[13]and[19]. On the other hand,was also expressed in root, new stem and flower, suggesting that it is involved in glycolytic metabolism in these organs. Compared with,in[13,18]and[19]showed the highest expression in flower. This discre- pancy may be caused by some metabolic differences between perennial trees and annual herbs.was mainly expressed in leaves and flowers, and the expression level was highest in old leaves. Therefore, it is speculated that the transformation reaction between F6P and G6P catalyzed byGPIC in old leaves was stronger than that in new leaves and flowers. This result was consistent with that of Troncoso-Ponce et al.[16].

    Fig. 3 Subcellular localization of PmPGK1 and PmGPIC proteins in protoplast of Arabidopsis thaliana.A: pJIT166-GFP; B: pJIT166-PmPGK1-GFP; C: pJIT166-PmGPIC-GFP; a, e, f: Chloroplast autofluorescence field; b, f, j: GFP field; c, g, k: Bright field; d, h, l: Merged pictures.

    Fig. 4 Expression of PmPGK1 and PmGPIC in different tissues (A), under low-temperature stress (B) and high-CO2 stress (C). NL: New leaf; OL: Old leaf; NS: New stem; F: Flower; R: Root. Different letters upon column indicate significant differences at 0.05 level by Duncan test.

    Previous studies have proven that low tempera- ture could reduce the stability of chlorophyll, the solubility of CO2in cells and the affinity of Rubisco to CO2, directly affecting the integrity and activity of the photosynthetic system[20–21]. As important regulating enzymes in the Calvin cycle, RuBP carboxylase (Ru- BPCase), phosphoribulose kinase (PRK) and 1,6- fructose bisphosphatase (FBP) all showed a decreasing trend of expression under low temperature stress[22–25]. The reaction product of RuBPCase and PRK was the reaction substrate of PmPGK1; therefore, the influence of low temperature on both led to a decrease in the activity of PmPGK1 and gene expression. Mean- while, the respiration metabolism of plants under low temperature stress was dominated by the tricarboxylic acid cycle (TCA), at which time the glycolysis pathwaywas inhibited[26]. In addition, FBP activity was reduced under low temperature, resulting in a decrease in the catalytic substrate of PmGPIC[23,25]. Based on the above factors, the expression ofwas more downregulated after low temperature treatment than that of, showing a sharp decline.

    Previous studies[27]have shown that the expre- ssion of all genes in the Calvin cycle, except GAPDH, decrease under a high CO2concentration in masson pine; therefore, it was speculated that the photo- synthetic acclimation of masson pine could be com- pleted within 6 h. In addition, it was found that an increased CO2concentration leads to a significant increase in hexokinase (HK) activity[27], while HK strongly inhibits the activity of Rubisco and Rubisco small subunit (RbcS)[28–29], in turn decreasing the content of PGA (the direct catalytic substrate for the transformation of RuBP to PGK, resulting in a signi- ficant decrease in the expression of). According to the changes in the expression levels of the two genes, PmGPIC was less affected by CO2stress than PmPGK1. The transcriptome sequencing results in a previous study[27]showed that the expression levels ofwere higher after treatment than those at 0 h, which was different from the finding in this experi- ment, but the overall trends of change were consistent. Invertase (INV) phosphorylates glucose and fructose to form the catalytic substrate of GPIC[2]. Under elevated CO2conditions, the expression levels of INV and HK in Masson pine were significantly increased[27], so the expression level ofwas slightly increased after 6 h. The decrease inafter 12 h might have been caused by gradual decreases in the accumulation of photosynthetic products and the glucose metabolic rate. In addition, since photosyn- thetic adaptation is more obvious in annual needles than in that mature needles under elevated-CO2stress[30], more detection could be used before photosynthetic adaptation, and the response mechanism ofandcould be further explored by comparison with the responses in perennial Masson pine samples.

    In this study, full-lengthandwere cloned, and encoding proteins were belong to the plastidial and cytoplasmic subtypes, respectively.was mainly expressed in leaves, andwas mainly expressed in leaves and flowers. The expression ofandwas inhibited under low-temperature stress, and the inhibitory effect onwas stronger. Elevated-CO2stress signi- fycantly inhibited the expression ofbut had little effect on the expression of. The results of this study provide some references for subsequent studies on PGK and GPI in plants.

    [1] WU D, WU Z D, YU X B. Advance in the research of phospho- glycerate kinase [J]. China Trop Med, 2005, 5(2): 385–387. (in Chinese) doi: 10.3969/j.issn.1009-9727.2005.02.100.

    [2] WANG J Y, ZHU S G, XU C F. Biochemistry [M]. 3rd ed. Beijing: Higher Education Press, 2002: 66–79.

    [3] KUGLER W, LAKOMEK M. Glucose-6-phosphate isomerase deficiency [J]. Best Pract Res Clin Haematol, 2000, 13(1): 89–101. doi: 10.1053/ beha.1999.0059.

    [4] KUNZ H H, ZAMANI-NOUR S, H?USLER R E, et al. Loss of cytosolic phosphoglucose isomerase affects carbohydrate metabolism in leaves and is essential for fertility of[J]. Plant Physiol, 2014, 166(2): 753–765. doi: 10.1104/pp.114.241091.

    [5] SHAH N, BRADBEER J W. The development of the activity of the chloroplastic and cytosolic isoenzymes of phosphoglycerate kinase during barley leaf ontogenesis [J]. Planta, 1991, 185(3): 401–406. doi: 10.1007/BF00201064.

    [6] ANDERSON L E, BRYANT J A, CAROL A A. Both chloroplastic and cytosolic phosphoglycerate kinase isozymes are present in the pea leaf nucleus [J]. Protoplasma, 2004, 223(2/3/4): 103–110. doi: 10.1007/ s00709-004-0041-y.

    [7] NOWITZKI U, FLECHNER A, KELLERMANN J, et al. Eubacterial origin of nuclear genes for chloroplast and cytosolic glucose-6-phosphate isomerase from spinach: Sampling eubacterial gene diversity in eukaryotic chromosomes through symbiosis [J]. Gene, 1998, 214 (1/2): 205–213. doi: 10.1016/S0378-1119(98)00229-7.

    [8] MARTIN W, HERRMANN R G. Gene transfer from organelles to the nucleus: How much, what happens, and Why? [J]. Plant Physiol, 1998, 118(1): 9–17. doi: 10.1104/pp.118.1.9.

    [9] YU T S, LUE W L, WANG S M, et al. Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation [J]. Plant Physiol, 2000, 123(1): 319–326. doi: 10.1104/pp. 123.1.319.

    [10] ZHANG Y Y, FANG Z Q. Effect of PGK1 silencing on the proli- feration of SMMC 7721 hepatoma cells [J]. Chin J Integr Trad West Med Liver Dis, 2017, 27(4): 231–233. (in Chinese) doi: 10.3969/j.issn. 1005-0264.2017.03.013.

    [11] ZHAO Y, ZHENG Y B, YAN X F, et al. Screening crucial genes for glucose metabolism in rheumatoid arthritis [J]. J Shandong Univ (Health Sci), 2016, 54(3): 30–35,40. (in Chinese) doi: 10.6040/j.issn. 1671-7554.0.2015.842.

    [12] WU D, SUN L, LI C H, et al. Significance of antibodies to the citrullinated glucose-6-phosphate isomerase peptides in rheumatoid arthritis [J]. J Peking Univ (Health Sci), 2016, 48(6): 937–941. (in Chinese) doi: 10.3969/j.issn.1671-167X.2016.06.003.

    [13] ROSA-TéLLEZ S, ANOMAN A D, FLORES-TORNERO M, et al. Phosphoglycerate kinases are co-regulated to adjust metabolism and to optimize growth [J]. Plant Physiol, 2018, 176(2): 1182–1198. doi: 10. 1104/pp.17.01227.

    [14] HUANG S X, SIRIKHACHORNKIT A, FARIS J D, et al. Phylo- genetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses [J]. Plant Mol Biol, 2002, 48 (5/6): 805–820. doi: 10.1023/a:1014868320552.

    [15] TRONCOSO-PONCE M A, RIVOAL J, CEJUDO F J, et al. Cloning, biochemical characterisation, tissue localisation and possible posttrans- lational regulatory mechanism of the cytosolic phosphoglucose isomerase from developing sunflower seeds [J]. Planta, 2010, 232(4): 845–859. doi: 10.2307/23391986.

    [16] TRONCOSO-PONCE M A, KRUGER N J, RATCLIFFE G, et al. Characterization of glycolytic initial metabolites and enzyme activities in developing sunflower (L.) seeds [J]. Phytoche- mistry, 2009, 70(9): 1117–1122. doi: 10.1016/j.phytochem.2009.07.012.

    [17] ZHU P H, MA Y Y, ZHU L Z, et al. Selection of suitable reference genes inLamb. under different abiotic stresses for qPCR normalization [J]. Forests, 2019, 10(8): 632. doi: 10.3390/f1 0080632.

    [18] HUANG X Z, ZHAO Y C. Functional analysis ofgene family in[J]. J Mount Agric Biol, 2017, 36(1): 12–17,35. (in Chinese) doi: 10.15958/j.cnki.sdnyswxb.2017.01.002.

    [19] GUO N, ZHAO J H, GAO T S, et al. Cloning and expression analysis ofgene in[J]. Acta Bot Boreali-Occid Sin, 2014, 34(11): 2188–2193. (in Chinese) doi: 10.7606/j.issn.1000-4025.2014. 11.2188.

    [20] XU Y, CHEN J H, ZHU A G, et al. Research progress on response mechanism of plant under low temperature stress [J]. Plant Fiber Sci China, 2015, 37(1): 40–49. (in Chinese) doi: 10.3969/j.issn.0517-6611. 2016.33.006.

    [21] WANG F, WANG Q, ZHAO X Y. Research progress of phenotype and physiological response mechanism of plants under low temperature stress [J]. Mol Plant Breed, 2019, 17(15): 5144–5153. (in Chinese) doi: 10.13271/j.mpb.017.005144.

    [22] JIANG Z S, SUN X Q, AI X Z, et al. Responses of Rubisco and Rubisco activase in cucumber seedlings to low temperature and weak light [J]. Chin J Appl Ecol, 2010, 21(8): 2045–2050. (in Chinese) doi: 10.13287/j.1001-9332.2010.0300.

    [23] ZENG Y, YU J, CANG J, et al. Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat () at low temperatures [J]. Biosci Biotechnol Biochem, 2011, 75(4): 681–687. doi: 10.1271/bbb.100813.

    [24] CHEN H. Genetic relationships analysis of longan germplasm resources and studies on low temperature resistance of ‘Shixia’ Longan seedlings [D]. Nanning: Guangxi University, 2012: 90–92. (in Chinese)

    [25] VAN HEERDEN P D R, KRüGER G H J, LOVELAND J E, et al. Dark chilling imposes metabolic restrictions on photosynthesis in soybean [J]. Plant Cell Environ, 2003, 26(2): 323–337. doi: 10.1046/ j.1365-3040.2003.00966.x.

    [26] SUN Y M, LIU L J, FENG M F, et al. Research progress of sugar metabolism of plants under cold stress [J]. J NE Agric Univ, 2015, 46(7): 95–102,108. (in Chinese) doi: 10.19720/j.cnki.issn.1005-9369.2015.07.015.

    [27] WU F, SUN X B, ZOU B Z, et al. Transcriptional analysis of Masson pine () under high CO2stress [J]. Genes (Basel), 2019, 10(10): 804. doi: 10.3390/genes10100804.

    [28] DRAKE B G, GONZàLEZ-MELER M A, LONG S P. More efficient plants: A consequence of rising atmospheric CO2[J]. Annu Rev Plant Phys Plant Mol Biol, 1997, 48(1): 609–639. doi: 10.1146/annurev. arplant.48.1.609.

    [29] MOORE B D, CHENG S H, SIMS D, et al. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2[J]. Plant Cell Environ, 1999, 22(6): 567–582. doi: 10.1046/j. 1365-3040.1999.00432.x.

    [30] TURNBULL M H, TISSUE D T, GRIFFIN K L, et al. Photosynthetic acclimation to long-term exposure to elevated CO2concentration inD. Don. is related to age of needles [J]. Plant Cell Environ, 1998, 21(10): 1019–1028. doi: 10.1046/j.1365-3040.1998.00374.x.

    馬尾松和基因的克隆和表達分析

    夏林超*, 吳帆*, 季孔庶**

    (南京林業(yè)大學(xué)林木遺傳與生物技術(shù)教育部重點實驗室,南方現(xiàn)代林業(yè)協(xié)同創(chuàng)新中心,南京 210037)

    為了解馬尾松()磷酸甘油酸激酶1 (PGK1)與胞質(zhì)溶膠葡萄糖磷酸異構(gòu)酶(GPIC)的功能,采用RACE技術(shù)克隆了和基因,并進行了生物信息學(xué)分析與亞細胞定位,采用實時熒光定量PCR技術(shù)分析和的表達特性。結(jié)果表明,和全長為2 106和1 848 bp,分別編碼507和566個氨基酸。PmPGK1和PmGPIC分別定位于葉綠體和胞質(zhì)溶膠。表達量為新葉>老葉>新莖>根>花;而為老葉>花>新葉>新莖>根。低溫脅迫24 h,和的表達量均隨時間延長先降低后升高,且的表達量在處理2 h后即降至較低水平;高濃度CO2脅迫24 h,的表達量隨時間延長呈降低-升高-再降低的變化趨勢,的表達下調(diào)但變化較不顯著。因此,推測PmPGK1主要參與卡爾文循環(huán)及葉綠體/質(zhì)體糖酵解,PmGPIC主要參與細胞質(zhì)基質(zhì)糖酵解;PmPGK1、PmGPIC活性在低溫脅迫下均受抑制;PmPGK1活性在CO2脅迫下受到顯著抑制,而PmGPIC活性的影響不大。

    馬尾松;;;基因克??;亞細胞定位

    10.11926/jtsb.4315

    2020–09–29

    2020–11–16

    This work was supported by the “Thirteenth-five” National Key Research and Development Program of China (Grant No. 2017YFD0600304), and the Program for Priority Academy Development of Jiangsu Higher Education Institutions (PAPD).

    XIA Lin-chao (Born in 1998), Male, Undergraduate. E-mail: x18963629259@126.com

    *Co-first author

    . E-mail: ksji@njfu.edu.cn

    猜你喜歡
    老葉新葉葉綠體
    老周
    金山(2020年9期)2020-11-10 07:15:08
    陳硯章
    美麗的新葉古村
    老 葉
    南方紅豆杉葉綠體非編碼序列PCR體系優(yōu)化及引物篩選
    新葉之夜
    牡丹(2015年3期)2015-05-30 10:48:04
    黨的十八屆三中全會
    大江南北(2014年3期)2014-11-23 06:16:21
    亭語
    音樂生活(2014年3期)2014-04-25 01:00:14
    茶樹葉綠體DNA的PCR-RFLP反應(yīng)體系優(yōu)化
    煙草葉綠體密碼子的偏好性及聚類分析
    757午夜福利合集在线观看| 亚洲精品国产精品久久久不卡| 国产精品爽爽va在线观看网站 | 亚洲精品成人av观看孕妇| 大型黄色视频在线免费观看| 1024香蕉在线观看| cao死你这个sao货| 在线观看日韩欧美| 国产高清videossex| 中文字幕精品免费在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 在线永久观看黄色视频| 亚洲七黄色美女视频| 三级毛片av免费| 99国产精品99久久久久| 天堂俺去俺来也www色官网| 欧美黑人精品巨大| 最近最新中文字幕大全免费视频| 99久久精品国产亚洲精品| 窝窝影院91人妻| 欧美日韩黄片免| 另类亚洲欧美激情| 久久亚洲真实| 欧美日韩亚洲国产一区二区在线观看| 欧美乱码精品一区二区三区| 欧美+亚洲+日韩+国产| 男女床上黄色一级片免费看| 高清毛片免费观看视频网站 | 纯流量卡能插随身wifi吗| 精品乱码久久久久久99久播| 麻豆av在线久日| 亚洲男人的天堂狠狠| 亚洲国产精品合色在线| 成人三级黄色视频| 丝袜美腿诱惑在线| 色婷婷av一区二区三区视频| 亚洲中文日韩欧美视频| 亚洲 国产 在线| 国产黄a三级三级三级人| 欧美成狂野欧美在线观看| 久久热在线av| 日本黄色视频三级网站网址| 1024香蕉在线观看| 桃红色精品国产亚洲av| 12—13女人毛片做爰片一| 80岁老熟妇乱子伦牲交| 夜夜爽天天搞| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| 国产xxxxx性猛交| а√天堂www在线а√下载| 成人国语在线视频| 国产成+人综合+亚洲专区| av天堂在线播放| 亚洲精品国产精品久久久不卡| 18禁裸乳无遮挡免费网站照片 | 亚洲一码二码三码区别大吗| 精品欧美一区二区三区在线| 午夜福利影视在线免费观看| 91字幕亚洲| 国产一区二区激情短视频| 欧美日韩一级在线毛片| 啦啦啦在线免费观看视频4| av免费在线观看网站| 国产成人系列免费观看| 一级黄色大片毛片| 久久热在线av| 久久国产精品人妻蜜桃| 国产aⅴ精品一区二区三区波| 性欧美人与动物交配| 国产亚洲欧美精品永久| 在线播放国产精品三级| 欧洲精品卡2卡3卡4卡5卡区| www.精华液| 精品久久久久久成人av| 久久影院123| 夫妻午夜视频| 久久人人爽av亚洲精品天堂| av国产精品久久久久影院| 国产伦一二天堂av在线观看| 9热在线视频观看99| 九色亚洲精品在线播放| 12—13女人毛片做爰片一| 黄色女人牲交| 亚洲一码二码三码区别大吗| 国产成人一区二区三区免费视频网站| 丝袜美足系列| 欧美日本亚洲视频在线播放| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产99精品国产亚洲性色 | 亚洲av美国av| 香蕉国产在线看| 国产高清videossex| 在线观看免费视频日本深夜| 99精品欧美一区二区三区四区| 成年人黄色毛片网站| 精品国内亚洲2022精品成人| 国产精品综合久久久久久久免费 | 国产亚洲精品久久久久5区| 成人国语在线视频| 色婷婷久久久亚洲欧美| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区91| 精品日产1卡2卡| 成年版毛片免费区| 亚洲精品一二三| 制服诱惑二区| 看片在线看免费视频| 亚洲伊人色综图| 91av网站免费观看| 欧美日韩亚洲国产一区二区在线观看| 女同久久另类99精品国产91| 久久精品影院6| 久99久视频精品免费| 黄色毛片三级朝国网站| 国产精品影院久久| 免费女性裸体啪啪无遮挡网站| 精品日产1卡2卡| 久久国产精品影院| 国产精品二区激情视频| 久久午夜亚洲精品久久| 男男h啪啪无遮挡| 91成人精品电影| 久久人妻熟女aⅴ| 亚洲国产中文字幕在线视频| 国产亚洲av高清不卡| 国产精品一区二区三区四区久久 | 欧美黑人欧美精品刺激| 国产成人av教育| 国产亚洲精品综合一区在线观看 | 国产亚洲欧美98| 久久久久久久精品吃奶| 人妻久久中文字幕网| 国产精品1区2区在线观看.| 午夜免费观看网址| 午夜精品在线福利| 午夜日韩欧美国产| 最好的美女福利视频网| 亚洲七黄色美女视频| 级片在线观看| 三上悠亚av全集在线观看| 亚洲狠狠婷婷综合久久图片| 91麻豆av在线| 亚洲中文字幕日韩| 久久香蕉国产精品| 亚洲成国产人片在线观看| 9热在线视频观看99| 人人妻人人爽人人添夜夜欢视频| 国产国语露脸激情在线看| 免费在线观看视频国产中文字幕亚洲| 亚洲激情在线av| 如日韩欧美国产精品一区二区三区| 看片在线看免费视频| 亚洲国产精品sss在线观看 | 无限看片的www在线观看| 久热这里只有精品99| tocl精华| 一本综合久久免费| 他把我摸到了高潮在线观看| 别揉我奶头~嗯~啊~动态视频| 好看av亚洲va欧美ⅴa在| av在线播放免费不卡| 中文欧美无线码| 9191精品国产免费久久| 99re在线观看精品视频| 香蕉国产在线看| av电影中文网址| 一区二区日韩欧美中文字幕| 国产欧美日韩一区二区精品| av电影中文网址| 欧美午夜高清在线| 操出白浆在线播放| 欧美国产精品va在线观看不卡| 国产一卡二卡三卡精品| 免费在线观看黄色视频的| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区| 国产国语露脸激情在线看| 亚洲一区中文字幕在线| 亚洲熟妇熟女久久| 精品欧美一区二区三区在线| 亚洲三区欧美一区| 久久久久久久午夜电影 | 国产三级在线视频| 国产有黄有色有爽视频| 精品久久久久久电影网| 成人精品一区二区免费| 亚洲精品在线美女| 亚洲国产毛片av蜜桃av| 一二三四社区在线视频社区8| 亚洲人成77777在线视频| 免费看十八禁软件| 亚洲欧美精品综合久久99| 国产亚洲精品综合一区在线观看 | 欧美黑人精品巨大| 黑丝袜美女国产一区| 欧美乱妇无乱码| 高清在线国产一区| 99国产精品一区二区三区| 好男人电影高清在线观看| 久久狼人影院| 少妇裸体淫交视频免费看高清 | 国产熟女xx| 免费少妇av软件| 午夜免费激情av| 在线国产一区二区在线| 免费少妇av软件| 男人的好看免费观看在线视频 | 麻豆av在线久日| 丁香六月欧美| 国产精品香港三级国产av潘金莲| 国产色视频综合| 香蕉久久夜色| 亚洲久久久国产精品| 国产亚洲欧美98| 亚洲 欧美 日韩 在线 免费| 欧美日韩亚洲综合一区二区三区_| 黑人猛操日本美女一级片| 大型黄色视频在线免费观看| 人成视频在线观看免费观看| 免费观看精品视频网站| 欧美在线黄色| 久9热在线精品视频| 欧美乱码精品一区二区三区| 亚洲av美国av| 狂野欧美激情性xxxx| 亚洲成人免费电影在线观看| 天堂中文最新版在线下载| 国产精品一区二区免费欧美| 久久久国产欧美日韩av| 久久精品亚洲av国产电影网| 老司机深夜福利视频在线观看| 精品乱码久久久久久99久播| 少妇的丰满在线观看| 一边摸一边做爽爽视频免费| 日韩欧美免费精品| 国产精品一区二区免费欧美| 免费少妇av软件| 国产极品粉嫩免费观看在线| 亚洲国产精品合色在线| 国产黄a三级三级三级人| 亚洲精品国产一区二区精华液| 老司机靠b影院| 亚洲黑人精品在线| 丁香六月欧美| 少妇被粗大的猛进出69影院| 免费不卡黄色视频| 不卡一级毛片| 电影成人av| 午夜日韩欧美国产| 1024香蕉在线观看| 久久久国产一区二区| 欧美一区二区精品小视频在线| 欧美成人性av电影在线观看| 亚洲色图综合在线观看| 国产真人三级小视频在线观看| 国产精品美女特级片免费视频播放器 | av电影中文网址| 国产精品免费一区二区三区在线| 性少妇av在线| 久久婷婷成人综合色麻豆| 亚洲av熟女| 亚洲av成人一区二区三| 国产成年人精品一区二区 | 91麻豆精品激情在线观看国产 | 91麻豆精品激情在线观看国产 | 黄片小视频在线播放| 中出人妻视频一区二区| 男人舔女人的私密视频| 国产成人影院久久av| 国产精品久久久久成人av| 免费在线观看完整版高清| 成人国语在线视频| 成人国产一区最新在线观看| 午夜免费激情av| 欧美激情久久久久久爽电影 | 99在线视频只有这里精品首页| 女人爽到高潮嗷嗷叫在线视频| 在线免费观看的www视频| 久久久久国产一级毛片高清牌| 亚洲全国av大片| 午夜福利在线观看吧| 午夜福利影视在线免费观看| 美女高潮到喷水免费观看| 国产av一区在线观看免费| 午夜免费成人在线视频| 欧美色视频一区免费| 老熟妇乱子伦视频在线观看| 欧美日韩亚洲综合一区二区三区_| 精品国产乱子伦一区二区三区| 亚洲精品久久成人aⅴ小说| 夜夜夜夜夜久久久久| 老司机靠b影院| 午夜福利在线观看吧| 老司机亚洲免费影院| 欧美日韩中文字幕国产精品一区二区三区 | 日韩一卡2卡3卡4卡2021年| 久久精品91蜜桃| 国产成人精品无人区| 午夜91福利影院| 亚洲精品美女久久久久99蜜臀| 久久久久国产一级毛片高清牌| 亚洲伊人色综图| 男人操女人黄网站| 一边摸一边做爽爽视频免费| 男女下面插进去视频免费观看| 一级毛片高清免费大全| 在线天堂中文资源库| 黑人猛操日本美女一级片| 亚洲国产精品999在线| 国产麻豆69| 国产一区二区三区视频了| 久久久久国内视频| 9热在线视频观看99| 久久人妻熟女aⅴ| 亚洲av片天天在线观看| 91精品三级在线观看| 伦理电影免费视频| 国产一区在线观看成人免费| 国产精品亚洲av一区麻豆| 欧美一区二区精品小视频在线| 高清毛片免费观看视频网站 | 51午夜福利影视在线观看| 男男h啪啪无遮挡| 国产欧美日韩精品亚洲av| 久久影院123| 亚洲精品久久成人aⅴ小说| 久久精品国产99精品国产亚洲性色 | 亚洲三区欧美一区| 中亚洲国语对白在线视频| 老司机深夜福利视频在线观看| 成在线人永久免费视频| 99国产精品99久久久久| 美女高潮到喷水免费观看| 国产成人av激情在线播放| 免费av毛片视频| 午夜久久久在线观看| 村上凉子中文字幕在线| 免费不卡黄色视频| 久久欧美精品欧美久久欧美| 视频区图区小说| 身体一侧抽搐| 亚洲人成电影观看| 一级黄色大片毛片| 国产精品 国内视频| 久久精品亚洲精品国产色婷小说| 精品久久久久久久毛片微露脸| 看免费av毛片| 中文字幕人妻丝袜一区二区| 婷婷丁香在线五月| 黄网站色视频无遮挡免费观看| 亚洲狠狠婷婷综合久久图片| 免费不卡黄色视频| 日韩精品中文字幕看吧| 精品人妻在线不人妻| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲 欧美 日韩 在线 免费| 日本黄色日本黄色录像| 色婷婷av一区二区三区视频| 国产av一区在线观看免费| 欧美日韩亚洲高清精品| 亚洲精品国产精品久久久不卡| 老司机午夜福利在线观看视频| 在线观看www视频免费| 免费高清在线观看日韩| 大码成人一级视频| 无限看片的www在线观看| 一进一出好大好爽视频| 国产黄色免费在线视频| 色综合婷婷激情| 男女午夜视频在线观看| 叶爱在线成人免费视频播放| 久久久久精品国产欧美久久久| 国产高清视频在线播放一区| 亚洲国产精品一区二区三区在线| 中文字幕av电影在线播放| 亚洲精品美女久久久久99蜜臀| 夜夜躁狠狠躁天天躁| 亚洲第一青青草原| 久久人妻av系列| 亚洲男人天堂网一区| 搡老乐熟女国产| 亚洲,欧美精品.| 国产日韩一区二区三区精品不卡| 99精品欧美一区二区三区四区| 国产精品一区二区免费欧美| 国产一区二区三区综合在线观看| 亚洲色图综合在线观看| 五月开心婷婷网| 精品高清国产在线一区| 久久精品人人爽人人爽视色| 91九色精品人成在线观看| 日韩视频一区二区在线观看| 高清欧美精品videossex| 久久中文字幕一级| 欧美日韩瑟瑟在线播放| 人成视频在线观看免费观看| av免费在线观看网站| 在线观看午夜福利视频| 久久香蕉精品热| 久久九九热精品免费| 国产亚洲av高清不卡| 青草久久国产| 免费在线观看影片大全网站| 无人区码免费观看不卡| 国产男靠女视频免费网站| 成人国语在线视频| 美女午夜性视频免费| 精品久久久久久成人av| 在线永久观看黄色视频| 黄色a级毛片大全视频| 国产精品国产av在线观看| 久久久久精品国产欧美久久久| 久久中文看片网| 黑人欧美特级aaaaaa片| 啦啦啦 在线观看视频| 中文字幕av电影在线播放| 国产精品爽爽va在线观看网站 | 成人国语在线视频| 国产又色又爽无遮挡免费看| svipshipincom国产片| 国产免费av片在线观看野外av| 国产日韩一区二区三区精品不卡| 一二三四社区在线视频社区8| 久久国产亚洲av麻豆专区| 午夜福利在线免费观看网站| 国产精品乱码一区二三区的特点 | 免费av中文字幕在线| 他把我摸到了高潮在线观看| 91老司机精品| 女性生殖器流出的白浆| 日韩免费高清中文字幕av| 99国产精品一区二区蜜桃av| 国产精品99久久99久久久不卡| 桃红色精品国产亚洲av| 少妇粗大呻吟视频| 国产97色在线日韩免费| 国产又色又爽无遮挡免费看| 丰满迷人的少妇在线观看| 国产精品二区激情视频| 9191精品国产免费久久| 美女高潮喷水抽搐中文字幕| 中文字幕av电影在线播放| 久久久久久久午夜电影 | 丝袜人妻中文字幕| 亚洲一区二区三区色噜噜 | 在线观看www视频免费| 99riav亚洲国产免费| 欧美日韩瑟瑟在线播放| 精品久久久久久,| 性色av乱码一区二区三区2| 午夜成年电影在线免费观看| 国产成人欧美| 母亲3免费完整高清在线观看| 人妻丰满熟妇av一区二区三区| 美女大奶头视频| 制服诱惑二区| 日韩精品中文字幕看吧| 午夜福利免费观看在线| 成熟少妇高潮喷水视频| 男女午夜视频在线观看| 男人的好看免费观看在线视频 | 亚洲五月婷婷丁香| 成人国产一区最新在线观看| av网站在线播放免费| 国产精品久久久人人做人人爽| 人人澡人人妻人| 欧美激情极品国产一区二区三区| 免费在线观看视频国产中文字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 精品国产超薄肉色丝袜足j| 欧美日韩福利视频一区二区| 男女午夜视频在线观看| 国产精品 欧美亚洲| 亚洲精品美女久久久久99蜜臀| 国产成人精品久久二区二区免费| cao死你这个sao货| 国产一区二区三区视频了| 免费不卡黄色视频| 婷婷六月久久综合丁香| 啦啦啦在线免费观看视频4| 99国产综合亚洲精品| av免费在线观看网站| 香蕉国产在线看| 亚洲少妇的诱惑av| 多毛熟女@视频| 日韩三级视频一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 国产精品 国内视频| 欧美亚洲日本最大视频资源| 久久精品国产99精品国产亚洲性色 | 婷婷精品国产亚洲av在线| 老司机福利观看| 岛国视频午夜一区免费看| 看黄色毛片网站| 亚洲一码二码三码区别大吗| 精品国产亚洲在线| 亚洲免费av在线视频| 欧美黑人精品巨大| 黄色毛片三级朝国网站| 满18在线观看网站| 不卡一级毛片| 首页视频小说图片口味搜索| 在线免费观看的www视频| netflix在线观看网站| 亚洲黑人精品在线| 三上悠亚av全集在线观看| 老司机午夜福利在线观看视频| 日韩欧美三级三区| 在线国产一区二区在线| 18美女黄网站色大片免费观看| 一进一出抽搐gif免费好疼 | 国产一区二区三区综合在线观看| 高清欧美精品videossex| www.www免费av| 韩国精品一区二区三区| 一级片'在线观看视频| 天堂√8在线中文| 又黄又粗又硬又大视频| 国产成人影院久久av| 97碰自拍视频| 久久久久精品国产欧美久久久| 国产三级黄色录像| 国产精品99久久99久久久不卡| 久久久国产成人免费| 日本欧美视频一区| 亚洲欧美日韩高清在线视频| 午夜亚洲福利在线播放| 精品国产亚洲在线| 精品久久蜜臀av无| 天堂动漫精品| 免费日韩欧美在线观看| av福利片在线| 男女下面进入的视频免费午夜 | 国产精品秋霞免费鲁丝片| 精品一品国产午夜福利视频| 窝窝影院91人妻| 人成视频在线观看免费观看| 午夜视频精品福利| 国产精品久久电影中文字幕| 宅男免费午夜| 精品一区二区三区av网在线观看| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看| 99国产精品免费福利视频| 男男h啪啪无遮挡| 国产伦人伦偷精品视频| 欧美日韩瑟瑟在线播放| 亚洲黑人精品在线| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人性av电影在线观看| av电影中文网址| 国产精品自产拍在线观看55亚洲| 精品久久久精品久久久| 一个人观看的视频www高清免费观看 | 欧美亚洲日本最大视频资源| 老司机午夜十八禁免费视频| 国产在线观看jvid| 午夜久久久在线观看| 国产成年人精品一区二区 | 欧美黑人精品巨大| 黑人猛操日本美女一级片| 两个人免费观看高清视频| 久久人人爽av亚洲精品天堂| 十八禁网站免费在线| 91在线观看av| 黄频高清免费视频| 欧美不卡视频在线免费观看 | xxxhd国产人妻xxx| 午夜福利免费观看在线| 欧美激情久久久久久爽电影 | 少妇裸体淫交视频免费看高清 | 最近最新中文字幕大全免费视频| 亚洲成人久久性| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利免费观看在线| 777久久人妻少妇嫩草av网站| 国产成人av教育| 久久中文看片网| 高清欧美精品videossex| 别揉我奶头~嗯~啊~动态视频| 国产精品香港三级国产av潘金莲| 热re99久久国产66热| 十八禁人妻一区二区| 无遮挡黄片免费观看| 国产激情欧美一区二区| 亚洲黑人精品在线| 女人高潮潮喷娇喘18禁视频| 精品第一国产精品| 99国产精品一区二区蜜桃av| 国产精品影院久久| 精品第一国产精品| 亚洲aⅴ乱码一区二区在线播放 | 欧洲精品卡2卡3卡4卡5卡区| 91成年电影在线观看| 亚洲欧美激情在线| 成人三级做爰电影| 国产免费现黄频在线看| 午夜两性在线视频| 女人被狂操c到高潮| 亚洲精品美女久久av网站| 国产精品免费视频内射| 国产97色在线日韩免费| 啦啦啦 在线观看视频| 亚洲精品成人av观看孕妇| 性欧美人与动物交配| 天堂√8在线中文| 国产乱人伦免费视频| 国产区一区二久久| 亚洲精品粉嫩美女一区| 侵犯人妻中文字幕一二三四区| 少妇的丰满在线观看| 国产一区二区激情短视频| 亚洲熟女毛片儿|