• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-point model analysis of SOL plasma in EAST

    2021-08-05 08:29:04JieHUANG黃杰YasuhiroSUZUKI鈴木康浩KunpeiNOJIRI野尻訓(xùn)平NaokoASHIKAWA蘆川直子andEASTTeam
    Plasma Science and Technology 2021年8期
    關(guān)鍵詞:直子

    Jie HUANG(黃杰),Yasuhiro SUZUKI(鈴木康浩),2,Kunpei NOJIRI(野尻訓(xùn)平),Naoko ASHIKAWA (蘆川直子),2 and EAST Team

    1 National Institute for Fusion Science, National Institutes of Natural Sciences, Oroshi-cho, 322-6, Toki 509-5292, Japan

    2 The Graduate University for Advanced Studies, SOKENDAI, Oroshi-cho, 322-6, Toki 509-5292, Japan

    3 Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan

    4 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China

    Abstract A two-point model is used to investigate the characteristics of scrape-off layer (SOL) plasma with the field line tracing method in the experimental advanced superconducting tokamak.The profiles of plasma density, temperature and particle flux on the divertor target calculated by the model are in reasonable agreement with experimental observation.Moreover, the profiles of plasma parameters on the divertor target strongly depend on the SOL magnetic topology or the equilibrium configuration from the modeling.

    Keywords: scrape-off layer, two-point model, field line tracing, tokamak

    1.Introduction

    In magnetic fusion devices the main plasma is confined with nested closed magnetic flux surface.The region radially outboard of the last closed (magnetic)flux surface(LCFS)or separatrix is called as the scrape-off layer (SOL) where flux surfaces are all open and magnetic field line will connect directly to the wall elements [1].In the tokamak operation there are generally two categories SOL, the limiter and divertor.In a divertor configuration the main or confined plasma and the SOL are separated by the magnetic separatrix where the magnetic flux surface passes through the X-point generated by a divertor coil, resulting in principally different magnetic topology.As the divertor SOL can move the solid surface (the divertor target) where the intense plasma-surface interactions occur away from the confined plasma, future tokamaks such as the International Thermonuclear Experimental Reactor (ITER) are relying on divertor to play a crucial part in particle control and power exhaust [2].

    The plasma parameters in the SOL are really important for characterizing both the plasma behavior in confined volume and the plasma-wall interaction.Normally sophisticated two-dimensional or three-dimensional codes like SOLPS [3] or EMC3-EIRENE [4, 5] including time dependence are used to analyze the conditions of plasma boundary in front of the solid wall for magnetic fusion devices.Nevertheless,the reduced analytical models can also be used for rough estimate of the characteristics of plasma boundary, which can give a qualitative physical understanding of transport process in SOL aiming at interpretation and understanding of experiments and save the computation time.One simplest and useful analytical model is the twopoint model[1],which is based upon the assumption that the heat and particle transport are purely parallel to the individual flux tubes or the magnetic field lines, as mainly relevant to a divertor SOL.The two points are referred to the upstream and target,hence the model is also called as the zero-dimensional divertor model.

    Three modes of divertor operation, the sheath-limited,high-recycling and detached regime, have been classified experimentally [6].In the sheath-limited regime, the plasma pressure and temperature are constant along each flux tube and the input heat from the main plasma is little dissipated.As the simple SOL,the physics of sheath-limited divertor can be described by the basic two-point model well.In the highrecycling regime,the plasma pressure remains nearly constant while the plasma temperature significantly drops parallel to the flux tube from the SOL to the divertor target due to the finite heat conductivity, as most of plasma energy is dissipated by collision with recycling neutrals or by radiation before incident on the divertor target.While a steady-state recycle refueling in front of the divertor target balances the plasma pressure.In the detached regime, substantial pressure loss exits near the separatrix and both the plasma density and temperature drop parallel to the flux tube.For the latter two modes of divertor operation,the basic two-point model can be extended with the correction factors for the effects of including power loss and pressure loss processes.

    In this paper, a two-point model is used to analyze the characteristics of divertor SOL plasma in experimental advanced superconducting tokamak (EAST), which is fast and light for computing, and the influence of equilibrium configuration on the divertor plasma is investigated with the modeling and experimental observation.Section 2 presents the experimental setup.Section 3 presents the physical model and numerical method.Compared with the experimental observation,section 4 presents the modeling results of plasma parameters profiles on the divertor target, and the profiles dependence of the equilibrium configuration.A summary is given in section 5.R=1.85 m, minor radiusa=0.45 m, toroidal magnetic fieldBT~3.5 T,plasma currentIp~1 MA,triangularityδ=?0.4 0.7, and elongationκup to 1.9 [7].

    To study the influence of equilibrium configuration on the characteristics of divertor plasma, the experiment was performed with the USN configuration in EAST.The upper divertor is equipped with water-cooled W/Cu plasma-facing components[8]and the plasma properties on the divertor can be measured by the Langmuir probe installed on the plate.Three discharges (shots #84816–84818) with different equilibrium configurations were performed in EAST.The main plasma parameters for the three discharges are almost same with toroidal magnetic fieldBT~2.4 T,

    2.Experimental setup

    EAST, as a fully superconducting tokamak with ITER-like configuration which has a flexible selection of upper single null(USN),lower single null,or double null poloidal divertor configurations, is aimed at investigating physical issues of long-pulse high-performance advanced tokamak operation.The design parameters of EAST are major radius plasma currentIp~1 MA,line-averaged plasma density~1.8×1019m?3,and lower hybrid wave heating with a power of ~1 MW in L-mode.A rough structure of EAST vacuum vessel and the USN equilibrium configuration with separatrices are shown in figure 1.The striking point on the upper outer (UO) divertor targets was shifted to the divertor corner from #84816 to #84818 with different equilibrium configurations.

    Figure 1.A rough structure of EAST vacuum vessel and separatrices for EAST shots #84816–84818 at =t 6.1 s.The yellow dots represent the Langmuir probes on the UO divertor plate.L-div in centimeter represents the distance of the point on the UO divertor to the divertor corner.

    3.Physical model and numerical methods

    In this paper we consider the corrections two-point model as discussed in [1], which can be extended to the analysis of high-recycling or detached divertor plasma.The model is based on the following three principal physical processes:the heat conduction, pressure balance and power balance.

    (1) Heat conduction equation:

    whereTuandTtare the plasma temperature of upstream and target point, respectively.HereTe=Ti=Tis assumed,whereTeandTiare the electron and ion temperature,respectively.Lis the flux tube length or the field line connection length between upstream and target.quis the heat flux density entering into the upstream point.κ0eis electron parallel conductivity coefficient, which is set as constant withκ0e≈2000in the calculation.Here the ion heat conductivity is neglected as comparatively small and assume ions and electrons are thermally coupled.The conduction factorfcondis introduced for the parallel heat convection effects on heat transport,which will reduce the temperature gradient.

    (2) Pressure balance equation:

    wherenuandntare the plasma densities of upstream and target point, respectively.fmomis the momentum loss factor as the plasma flow toward the target point may lose momentum due to viscous forces,frictional collisions with neutrals and volume recombination.For the sheath-limited or the high-recycling regimes, the pressure keeps almost constant, givingfmom=1.

    (3) Power balance equation:

    whereqtis the heat flux density entering into the target point,γ is the sheath heat transmission coefficientγ≈7.cstis the ion sound speed,is the power loss factor for the volumetric power losses including radiation and charge exchange loss.

    In equations(1)–(3),L,γ andκ0eare specified constants.Settingnu,qu,fcond,fmom,fpoweras specified control parameters, i.e.the independent variables, the remaining three unknowns,nt,Tt,Tucan be solved by the classical method with the assumption ofTu72?Tt72[1]:

    and the particle flux density:

    Here the units:L(m),q(W m?2),T(eV),n(m?3)andeis the electronic charge,miis the ion mass.

    In this paper we directly solve the equations (1)–(3) by numerical method without any approximation.Combining equations (2) and (3) to obtain:

    SettingTuasx1andTtasx2,the problem turns to solve the following two-dimensional nonlinear equations:

    Equations (9) and (10) can be easily solved by Newton–Raphson method[9]with the initial guess for the roots which can be given by equations(4)and(5).FollowingntandΓtcan be easily deduced whenTuandTtare already known.

    To obtain precise connection length,the field line tracing method is used forLcalculation.In the cylindrical coordinate(φRZ, , ), the field line equation can be expressed as:

    whereBR,Bφ,BZare the magnetic field components in the cylindrical coordinate.

    With the magnetic field information given by EFIT[10],the field line trajectory can be traced by integrating the first order equations(11)–(13).Here the fourth order Runge–Kutta method is used for theLintegration.

    To extend the 0-dimensional two-point model to the main SOL region, a series of the upstream points as shown in figure 2 are set on the midplane from separatrix to the wall and the reciprocal target points are searched by the field line tracing method.Given the appropriate density and power decay length and other control parameters, the profiles of plasma density, temperature and particle flux density on the divertor target can be calculated by the model.

    The control parameters for EAST shots #84816–84818 are set as follows: the conduction factor is set asfcond=1 neglecting the influence of convection as comparatively small in the parallel conduction dominating heat transport.The momentum loss factor is set asfmom=1according to [11]since the temperature of target points is larger than 10 eV from experimental observation.Or the SOL plasma is characterized by high-recycling regime.To balance the modeling result with experiment, the power loss factor for the two points of upstream on separatrix/LCFS and striking/target point on divertor target is set asfpower,LCFS=0.5.Here we assume the loss of power is purely dissipated by impurity radiation given by [12]:

    whereczis the impurity concentration,Lzis the radiation

    coefficient.With the value offpower,LCFS,the value ofcz Lzcan be deduced and the profile of power loss factor for the series of the two points can be obtained by equation (14).

    The plasma density at LCFS is set asnLCFS=/3,whereis the line-averaged plasma density.Assuming the plasma density of upstream points located at the midplanenu(r) is exponential, thennu(r) can be estimated by [1]:

    Figure 2.A series of the two points with the target located at the Langmuir probes for the analysis of SOL plasma in EAST(left)and 3D view of the magnetic field line between upstream point located at separatrix and reciprocal target point (right) for EAST shot #84817.Here the upstream points are set on the midplane from separatrix to the wall along R direction.

    Figure 3.The connection length L between the series of upstream points and reciprocal target points for EAST shots #84816–84818.Here one dot represents a pair of two points in the modeling.

    The heat flux density entering the upstream point located at LCFS is estimated asqLCFS=50 MW m?2.Similarly,assuming the heat flux density of upstream points located at the midplanequ(r)is exponential,thenqu(r)can be estimated by:

    Here the radial power decay length and density decay length are assumed asλq= 0.75 cm andλn= 2×λqin the calculation according to the empirical value in EAST.

    4.Modeling result

    4.1.Equilibrium configuration dependence of connection length

    Figure 3 shows the connection lengthLbetween upstream points on the midplane and reciprocal target points on the UO divertor plate calculated by the field line tracing method for EAST shots #84816–84818 at =t6.1 s.The maximumLis located at the striking point position,which is the connection length between the upstream point on separatrix and target point, andLdecreases with increase of distance to UO divertor corner or moving the upstream point from separatrix to the wall alongRdirection.The difference of connection length profiles on divertor plate for the three shots is due to the different magnetic topologies, or different equilibrium configurations.

    4.2.Equilibrium configuration dependence of SOL plasma

    Compared with experimental observation, the profiles of plasma density, temperature and particle flux density on the UO divertor plate calculated by the two-point model for EAST shots #84816–84818 at =t6.1 s are shown in figure 4.Here the experimental data is measured by the Langmuir probe on the divertor plate.Overall, the profiles of plasma density,temperature and particle flux density on the divertor target are roughly similar to the experimental observation for the three shots.With equilibrium configuration change from#84816 to#84818, the peak positions of the profiles together with striking point move to the divertor corner for the modeling result,as the two-point model based on the magnetic topology of SOL and the constantLstrongly depends on the equilibrium configuration.The peak positions of the profiles of #84817 agree well with the experiment while the peak positions of other two shots have a little gap with experimental measurement.There are several possible reasons such as the influence of finite radius of ion gyro motion and the incidence angle of magnetic field line to the probe.The modeling target temperature where the distance to UO divertor larger than 15 cm is a little higher than the measurement, which may due to the neglect of charge exchange power loss effects.More details will be discussed in summary.

    Figure 4.Profiles of (a) particle flux, (b) plasma density and (c)plasma temperature at the UO divertor for EAST shots#84816–84818 with different equilibrium configurations.The symbols with dotted line are experimental data measured by Langmuir probe,and the solid curves are the 2-point modeling results.Here the temperature for the experimental data is electron temperature.

    5.Summary

    In this paper,we used a fast and light two-point model based on the field line tracing method to investigate the influence of equilibrium configuration on the characteristics of SOL plasma in EAST.The profiles of plasma density,temperature and particle flux density on the divertor target calculated by the model are in reasonable agreement with the experimental observation.With the equilibrium configuration change, the magnetic topology in SOL region will change leading to the change of connection length and striking point shift,resulting in different profiles of plasma parameters on divertor plate.The two-point model can catch the main information of magnetic topology effects, which is helpful to give a qualitative insight into physics of transport process in SOL plasma and interpret the experiments.Furthermore, the model could be used for the real-time analysis as it only needs a very few computing resources and could be combined with other equilibrium code such as HINT [13] to improve the equilibrium calculation in the open field line region.

    Due to relative simplicity of the two-point model, the complicated physical process in the SOL plasma such as the vertical transport, the plasma wall interaction cannot be simulated and the modeling result cannot be fully consistent with experimental observation.There is a little gap for the peak positions of plasma parameters profiles on divertor plate between the modeling and experimental observation.Neglecting the measuring error and the spatial resolution of probes,the finite radius of ion gyro motion and the incidence angle of magnetic field line to the probe could make the peak position of saturated ion flux measured by Langmuir probe not the same with modeling result.The gap between the peak heat flux position and the striking point will be counted with experimental database in the future work to correct the model.Moreover, the control parameters such as conduction factor,momentum and power loss factor can be automatically set by experience-based learning in the future analysis.

    Acknowledgments

    This work was performed on JSPS-CAS Bilateral Joint Research Projects, ‘Control of wall recycling on metallic plasma facing materials in fusion reactor’.This work was supported by the NIFS Collaboration Research Program(Nos.NIFS18KNST130 and NIFS20KNST171).Also, this work was partially supported by ‘PLADyS’, JSPS Core-to-Core Program, A.Advanced Research Networks.

    猜你喜歡
    直子
    聲音的森林
    爸爸是個理發(fā)師
    挪威的森林第十二章 告別之夜(二-2)
    挪威的森林第07章 魔力(13)
    挪威的森林第06章 綠茵藏艷(38)
    挪威的森林第06章 綠茵藏艷(15)
    挪威的森林第06章 綠茵藏艷(16)
    《挪威的森林》中的女性
    挪威的森林第06章 綠茵藏艷(10)
    挪威的森林第03章 黑暗中的裸體(2)
    久久狼人影院| 亚洲精品国产一区二区精华液| 国产精品av久久久久免费| 少妇被粗大的猛进出69影院| 国产亚洲av片在线观看秒播厂| 日韩一区二区三区影片| 亚洲国产最新在线播放| 高清av免费在线| 亚洲色图 男人天堂 中文字幕| 两性夫妻黄色片| 日韩不卡一区二区三区视频在线| 亚洲av成人精品一二三区| 99香蕉大伊视频| 一级,二级,三级黄色视频| 亚洲精品久久久久久婷婷小说| 少妇人妻 视频| 精品久久蜜臀av无| 国产激情久久老熟女| 91老司机精品| 婷婷色综合www| 国产精品 欧美亚洲| 亚洲av国产av综合av卡| 国产精品秋霞免费鲁丝片| 爱豆传媒免费全集在线观看| 欧美另类一区| 丰满少妇做爰视频| 免费看av在线观看网站| 精品国产超薄肉色丝袜足j| 中文字幕制服av| 日本欧美国产在线视频| 七月丁香在线播放| av线在线观看网站| 色网站视频免费| 少妇被粗大的猛进出69影院| 亚洲欧美色中文字幕在线| 亚洲精品中文字幕在线视频| 狂野欧美激情性bbbbbb| 青草久久国产| 久久久国产一区二区| 男女之事视频高清在线观看 | 久久综合国产亚洲精品| 成年人午夜在线观看视频| 999精品在线视频| 欧美精品高潮呻吟av久久| 欧美黄色片欧美黄色片| 欧美激情 高清一区二区三区| 丝袜在线中文字幕| 在线观看一区二区三区激情| 九草在线视频观看| 视频在线观看一区二区三区| 国产一区亚洲一区在线观看| 毛片一级片免费看久久久久| 无限看片的www在线观看| 国产亚洲一区二区精品| 亚洲美女搞黄在线观看| 欧美黑人精品巨大| 亚洲男人天堂网一区| 一边摸一边抽搐一进一出视频| 欧美精品av麻豆av| 亚洲三区欧美一区| 日日摸夜夜添夜夜爱| 2021少妇久久久久久久久久久| 亚洲婷婷狠狠爱综合网| 丰满饥渴人妻一区二区三| 亚洲精品一区蜜桃| 99re6热这里在线精品视频| 99国产综合亚洲精品| a级毛片在线看网站| 在线看a的网站| 国产精品久久久久久人妻精品电影 | 一区福利在线观看| 国产高清不卡午夜福利| 一区二区三区精品91| 午夜老司机福利片| 一本色道久久久久久精品综合| 51午夜福利影视在线观看| 亚洲人成网站在线观看播放| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩福利视频一区二区| 青草久久国产| 欧美人与性动交α欧美精品济南到| 国产97色在线日韩免费| www.熟女人妻精品国产| 精品卡一卡二卡四卡免费| 97人妻天天添夜夜摸| av国产久精品久网站免费入址| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说| 777米奇影视久久| 国产精品一国产av| 夫妻午夜视频| 水蜜桃什么品种好| 免费黄网站久久成人精品| 成人午夜精彩视频在线观看| 男女免费视频国产| 亚洲伊人久久精品综合| 亚洲 欧美一区二区三区| 天天躁日日躁夜夜躁夜夜| 欧美精品一区二区免费开放| 国产一卡二卡三卡精品 | 亚洲,欧美,日韩| 老司机靠b影院| 啦啦啦视频在线资源免费观看| 男女边吃奶边做爰视频| 日韩电影二区| 一边摸一边做爽爽视频免费| 欧美日韩国产mv在线观看视频| 少妇人妻 视频| 男女边摸边吃奶| 精品国产乱码久久久久久男人| 亚洲成色77777| 国产精品久久久人人做人人爽| 熟妇人妻不卡中文字幕| 最近最新中文字幕免费大全7| 午夜福利免费观看在线| 国产不卡av网站在线观看| 日韩视频在线欧美| 精品一品国产午夜福利视频| 亚洲精品中文字幕在线视频| 毛片一级片免费看久久久久| 国产日韩一区二区三区精品不卡| 亚洲国产av影院在线观看| 亚洲精品日韩在线中文字幕| 国产又爽黄色视频| bbb黄色大片| 亚洲精品美女久久av网站| 1024香蕉在线观看| 免费黄频网站在线观看国产| 一边摸一边抽搐一进一出视频| 中国国产av一级| 成人影院久久| 亚洲国产av影院在线观看| 亚洲精品aⅴ在线观看| 国产一卡二卡三卡精品 | 极品少妇高潮喷水抽搐| 最近的中文字幕免费完整| 在线 av 中文字幕| 9191精品国产免费久久| 欧美少妇被猛烈插入视频| 欧美精品一区二区免费开放| 免费高清在线观看视频在线观看| 亚洲精品,欧美精品| 最近最新中文字幕大全免费视频 | 免费黄频网站在线观看国产| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品成人久久小说| 99香蕉大伊视频| 国产精品 国内视频| 久久精品人人爽人人爽视色| 在线亚洲精品国产二区图片欧美| 亚洲,一卡二卡三卡| 国产99久久九九免费精品| 亚洲av电影在线观看一区二区三区| 夫妻性生交免费视频一级片| 亚洲av电影在线进入| 亚洲美女搞黄在线观看| 亚洲欧美中文字幕日韩二区| 亚洲精品美女久久av网站| 九九爱精品视频在线观看| 久久影院123| 国产av码专区亚洲av| 99re6热这里在线精品视频| 亚洲精品中文字幕在线视频| 美女扒开内裤让男人捅视频| 国产麻豆69| 亚洲美女视频黄频| 国产日韩欧美视频二区| 日本欧美国产在线视频| 黑人欧美特级aaaaaa片| 国产亚洲欧美精品永久| 777米奇影视久久| 午夜老司机福利片| 99香蕉大伊视频| 日本av免费视频播放| 十八禁人妻一区二区| 国产高清不卡午夜福利| 国产成人精品福利久久| 亚洲精品成人av观看孕妇| 亚洲情色 制服丝袜| 一本—道久久a久久精品蜜桃钙片| 久久毛片免费看一区二区三区| 国产一区有黄有色的免费视频| 狂野欧美激情性bbbbbb| 不卡av一区二区三区| 久久影院123| 校园人妻丝袜中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 久久久国产一区二区| 日韩大片免费观看网站| 成人黄色视频免费在线看| 永久免费av网站大全| 丝瓜视频免费看黄片| 美国免费a级毛片| 卡戴珊不雅视频在线播放| 精品福利永久在线观看| av.在线天堂| 51午夜福利影视在线观看| 日韩av在线免费看完整版不卡| 一级毛片我不卡| 少妇的丰满在线观看| 美女大奶头黄色视频| 中文乱码字字幕精品一区二区三区| 成人国产麻豆网| 国产欧美日韩一区二区三区在线| 高清不卡的av网站| 欧美日韩成人在线一区二区| 午夜福利,免费看| 超碰97精品在线观看| 久久久久视频综合| 欧美精品一区二区大全| 免费少妇av软件| svipshipincom国产片| 亚洲美女黄色视频免费看| 亚洲国产精品一区二区三区在线| 亚洲精华国产精华液的使用体验| 久久久久久免费高清国产稀缺| 欧美另类一区| 爱豆传媒免费全集在线观看| 又大又爽又粗| 纵有疾风起免费观看全集完整版| av视频免费观看在线观看| 午夜激情av网站| 中文字幕高清在线视频| 操出白浆在线播放| 欧美日韩一级在线毛片| 男女免费视频国产| 美女中出高潮动态图| 蜜桃国产av成人99| 99久久99久久久精品蜜桃| 激情五月婷婷亚洲| bbb黄色大片| 日韩av不卡免费在线播放| 久久鲁丝午夜福利片| 一区福利在线观看| 国产精品麻豆人妻色哟哟久久| 曰老女人黄片| 天美传媒精品一区二区| 国产一区二区在线观看av| 在线观看免费日韩欧美大片| 国产成人精品在线电影| 在线观看免费视频网站a站| 极品少妇高潮喷水抽搐| 婷婷色av中文字幕| 九色亚洲精品在线播放| 可以免费在线观看a视频的电影网站 | 欧美乱码精品一区二区三区| 国产精品一区二区在线不卡| 菩萨蛮人人尽说江南好唐韦庄| 母亲3免费完整高清在线观看| 黄色视频不卡| 久久精品熟女亚洲av麻豆精品| 老司机靠b影院| 亚洲国产精品成人久久小说| 美女福利国产在线| 久久久久精品国产欧美久久久 | 久久精品亚洲av国产电影网| 久久精品亚洲av国产电影网| 最黄视频免费看| 女人精品久久久久毛片| 国产精品亚洲av一区麻豆 | 精品亚洲成a人片在线观看| 久久精品熟女亚洲av麻豆精品| 超碰成人久久| 亚洲一区中文字幕在线| 国产 精品1| 女人被躁到高潮嗷嗷叫费观| 国产亚洲av片在线观看秒播厂| 美女中出高潮动态图| 人妻 亚洲 视频| 日韩欧美一区视频在线观看| 亚洲在久久综合| 久久久国产精品麻豆| 成年人免费黄色播放视频| 亚洲精华国产精华液的使用体验| 日韩欧美一区视频在线观看| 久久久国产精品麻豆| 成人亚洲欧美一区二区av| 久久99一区二区三区| 免费观看av网站的网址| 黄频高清免费视频| 人成视频在线观看免费观看| av在线观看视频网站免费| 免费观看a级毛片全部| 一级毛片 在线播放| 日日撸夜夜添| 成人三级做爰电影| 激情五月婷婷亚洲| 91精品国产国语对白视频| 久久热在线av| www.精华液| 啦啦啦中文免费视频观看日本| 国产成人91sexporn| 婷婷色综合大香蕉| 日韩精品有码人妻一区| 久久久久国产一级毛片高清牌| 国产精品免费大片| 午夜久久久在线观看| 国产精品熟女久久久久浪| 日韩一区二区三区影片| 韩国av在线不卡| 麻豆乱淫一区二区| 久久久久久久大尺度免费视频| 99久久人妻综合| 极品少妇高潮喷水抽搐| 欧美av亚洲av综合av国产av | 成人毛片60女人毛片免费| 久久性视频一级片| 亚洲精品乱久久久久久| 观看美女的网站| 国产免费一区二区三区四区乱码| 99久久99久久久精品蜜桃| 久久久久网色| 国产精品一二三区在线看| 99久久人妻综合| 人人妻人人爽人人添夜夜欢视频| 一区二区三区精品91| 国产高清国产精品国产三级| 九色亚洲精品在线播放| 久久久精品免费免费高清| 交换朋友夫妻互换小说| 久久久国产一区二区| 在线 av 中文字幕| 丝袜喷水一区| 叶爱在线成人免费视频播放| 精品一区二区免费观看| 久久久久久久久免费视频了| 黄色毛片三级朝国网站| 久久精品国产综合久久久| 一边摸一边抽搐一进一出视频| 黑人巨大精品欧美一区二区蜜桃| 国产午夜精品一二区理论片| 叶爱在线成人免费视频播放| 精品国产一区二区久久| 青春草亚洲视频在线观看| 精品久久久精品久久久| 亚洲精品第二区| 男女无遮挡免费网站观看| 叶爱在线成人免费视频播放| 操美女的视频在线观看| 国产成人av激情在线播放| 午夜激情av网站| 男人添女人高潮全过程视频| 久久久久久久久久久免费av| 男的添女的下面高潮视频| 69精品国产乱码久久久| 黑人猛操日本美女一级片| 99久国产av精品国产电影| 婷婷色av中文字幕| 天天影视国产精品| 亚洲,欧美,日韩| 制服丝袜香蕉在线| 成人手机av| av又黄又爽大尺度在线免费看| 人人妻人人添人人爽欧美一区卜| 天天躁日日躁夜夜躁夜夜| 日韩中文字幕欧美一区二区 | 精品一区二区三区av网在线观看 | 赤兔流量卡办理| 欧美最新免费一区二区三区| 国产成人精品无人区| 视频在线观看一区二区三区| 午夜老司机福利片| 自拍欧美九色日韩亚洲蝌蚪91| 日日摸夜夜添夜夜爱| 老司机影院成人| 啦啦啦啦在线视频资源| 女人高潮潮喷娇喘18禁视频| 麻豆av在线久日| av网站在线播放免费| av不卡在线播放| 国产精品麻豆人妻色哟哟久久| 亚洲av国产av综合av卡| 毛片一级片免费看久久久久| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 精品少妇久久久久久888优播| 亚洲成人一二三区av| 美女高潮到喷水免费观看| av免费观看日本| 91精品国产国语对白视频| 伊人久久国产一区二区| 中文字幕人妻丝袜制服| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 午夜福利乱码中文字幕| 亚洲激情五月婷婷啪啪| 日韩欧美精品免费久久| 亚洲国产看品久久| 日韩av在线免费看完整版不卡| 最近中文字幕高清免费大全6| 伊人久久大香线蕉亚洲五| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| 亚洲国产精品国产精品| 久久天躁狠狠躁夜夜2o2o | 亚洲精品乱久久久久久| 秋霞在线观看毛片| 捣出白浆h1v1| 日韩大片免费观看网站| 欧美精品亚洲一区二区| 日韩一区二区视频免费看| 国产极品天堂在线| av国产精品久久久久影院| 亚洲精品一区蜜桃| av网站免费在线观看视频| 久久影院123| 欧美成人精品欧美一级黄| 欧美最新免费一区二区三区| 国产男人的电影天堂91| 天堂俺去俺来也www色官网| 欧美日本中文国产一区发布| 人人妻人人澡人人看| 国产亚洲最大av| 国产精品久久久久久久久免| 成人毛片60女人毛片免费| 丰满迷人的少妇在线观看| 极品少妇高潮喷水抽搐| 制服丝袜香蕉在线| 欧美少妇被猛烈插入视频| 婷婷成人精品国产| 国产男女超爽视频在线观看| 国产成人啪精品午夜网站| 国产精品国产三级国产专区5o| 亚洲久久久国产精品| 日韩中文字幕视频在线看片| 国产无遮挡羞羞视频在线观看| 丝袜美腿诱惑在线| 一级毛片电影观看| 亚洲专区中文字幕在线 | 亚洲欧洲日产国产| 三上悠亚av全集在线观看| 国产一区二区激情短视频 | 在线亚洲精品国产二区图片欧美| 欧美日韩一区二区视频在线观看视频在线| 青春草视频在线免费观看| 国产熟女欧美一区二区| www.精华液| 亚洲国产成人一精品久久久| 亚洲欧美一区二区三区黑人| 久久久久久久久免费视频了| 午夜影院在线不卡| 国产精品成人在线| 一本久久精品| 国产伦理片在线播放av一区| 最新在线观看一区二区三区 | 爱豆传媒免费全集在线观看| 日韩一区二区三区影片| 99精国产麻豆久久婷婷| 久久综合国产亚洲精品| 国产一区有黄有色的免费视频| 日本av免费视频播放| 免费日韩欧美在线观看| 久久精品国产亚洲av涩爱| 国产男女内射视频| 中文字幕亚洲精品专区| 男的添女的下面高潮视频| 啦啦啦在线免费观看视频4| 在线观看免费视频网站a站| 日韩精品有码人妻一区| 老司机在亚洲福利影院| 成人亚洲精品一区在线观看| 亚洲免费av在线视频| 99热全是精品| 免费女性裸体啪啪无遮挡网站| 国产av国产精品国产| 午夜免费观看性视频| 少妇人妻 视频| 成年人午夜在线观看视频| av有码第一页| 久久影院123| 女人高潮潮喷娇喘18禁视频| 18在线观看网站| 欧美 亚洲 国产 日韩一| 黄色视频不卡| 男女国产视频网站| 亚洲精品一区蜜桃| 中文欧美无线码| 国产精品嫩草影院av在线观看| 不卡视频在线观看欧美| 久久久久视频综合| 自线自在国产av| 在线观看免费日韩欧美大片| 又黄又粗又硬又大视频| 欧美激情极品国产一区二区三区| 一级毛片电影观看| 一个人免费看片子| 国产 一区精品| 下体分泌物呈黄色| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 精品一品国产午夜福利视频| 国产国语露脸激情在线看| 韩国av在线不卡| 男女免费视频国产| 国产成人a∨麻豆精品| 黄片小视频在线播放| 母亲3免费完整高清在线观看| 王馨瑶露胸无遮挡在线观看| 99国产精品免费福利视频| 一边亲一边摸免费视频| 如何舔出高潮| 麻豆av在线久日| 国产精品熟女久久久久浪| 五月开心婷婷网| 国产视频首页在线观看| 少妇精品久久久久久久| 操出白浆在线播放| 亚洲欧美一区二区三区国产| 国产熟女欧美一区二区| 久久韩国三级中文字幕| 中文字幕人妻丝袜一区二区 | 亚洲精品国产av蜜桃| 丝袜人妻中文字幕| 免费日韩欧美在线观看| 色94色欧美一区二区| 日韩成人av中文字幕在线观看| 日韩欧美一区视频在线观看| 少妇的丰满在线观看| 老熟女久久久| 欧美人与性动交α欧美精品济南到| 久久久久国产精品人妻一区二区| 亚洲第一区二区三区不卡| 久久 成人 亚洲| 热99久久久久精品小说推荐| 久久久久国产一级毛片高清牌| 人人妻,人人澡人人爽秒播 | avwww免费| 中国三级夫妇交换| 国产乱人偷精品视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品视频女| netflix在线观看网站| 国产成人精品福利久久| 91老司机精品| 久热这里只有精品99| 亚洲av福利一区| 国产野战对白在线观看| 国产一区二区三区av在线| 亚洲欧美精品综合一区二区三区| 国产免费福利视频在线观看| 丰满少妇做爰视频| 夫妻性生交免费视频一级片| 校园人妻丝袜中文字幕| 国产午夜精品一二区理论片| 亚洲精品国产一区二区精华液| 国产成人系列免费观看| 色吧在线观看| 国产爽快片一区二区三区| 波多野结衣一区麻豆| 老汉色∧v一级毛片| 伊人亚洲综合成人网| 亚洲国产精品成人久久小说| 男的添女的下面高潮视频| 人妻人人澡人人爽人人| 岛国毛片在线播放| 人人澡人人妻人| 国产又色又爽无遮挡免| 精品一区二区三区四区五区乱码 | 日韩精品有码人妻一区| 欧美 日韩 精品 国产| 国产精品成人在线| 免费看av在线观看网站| 国产黄频视频在线观看| 国产亚洲一区二区精品| 国产黄频视频在线观看| 日韩中文字幕欧美一区二区 | 欧美在线一区亚洲| 国产精品久久久久久精品电影小说| 成年美女黄网站色视频大全免费| 日韩免费高清中文字幕av| 叶爱在线成人免费视频播放| 嫩草影院入口| videosex国产| 精品少妇内射三级| 日韩熟女老妇一区二区性免费视频| av在线播放精品| 国产一区二区三区综合在线观看| 天美传媒精品一区二区| 精品人妻熟女毛片av久久网站| 欧美亚洲 丝袜 人妻 在线| 99久国产av精品国产电影| 免费女性裸体啪啪无遮挡网站| 丰满少妇做爰视频| 99国产综合亚洲精品| 亚洲婷婷狠狠爱综合网| 精品国产一区二区三区久久久樱花| 丰满少妇做爰视频| av.在线天堂| 中文字幕精品免费在线观看视频| 欧美日韩亚洲综合一区二区三区_| 亚洲成人手机| 精品国产一区二区三区久久久樱花| av电影中文网址| 国产成人精品久久久久久| 不卡av一区二区三区| 满18在线观看网站| 午夜激情av网站| 亚洲精品久久久久久婷婷小说| 性色av一级| 国产熟女午夜一区二区三区| 三上悠亚av全集在线观看| 国产欧美日韩综合在线一区二区| 丝瓜视频免费看黄片| 女人精品久久久久毛片| 精品亚洲成a人片在线观看| 各种免费的搞黄视频| 精品亚洲成a人片在线观看| 少妇的丰满在线观看| 亚洲国产看品久久| av一本久久久久| 国产成人一区二区在线| 亚洲精品av麻豆狂野| 成年人免费黄色播放视频| 久久 成人 亚洲| 成人亚洲欧美一区二区av|