• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-point model analysis of SOL plasma in EAST

    2021-08-05 08:29:04JieHUANG黃杰YasuhiroSUZUKI鈴木康浩KunpeiNOJIRI野尻訓(xùn)平NaokoASHIKAWA蘆川直子andEASTTeam
    Plasma Science and Technology 2021年8期
    關(guān)鍵詞:直子

    Jie HUANG(黃杰),Yasuhiro SUZUKI(鈴木康浩),2,Kunpei NOJIRI(野尻訓(xùn)平),Naoko ASHIKAWA (蘆川直子),2 and EAST Team

    1 National Institute for Fusion Science, National Institutes of Natural Sciences, Oroshi-cho, 322-6, Toki 509-5292, Japan

    2 The Graduate University for Advanced Studies, SOKENDAI, Oroshi-cho, 322-6, Toki 509-5292, Japan

    3 Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan

    4 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China

    Abstract A two-point model is used to investigate the characteristics of scrape-off layer (SOL) plasma with the field line tracing method in the experimental advanced superconducting tokamak.The profiles of plasma density, temperature and particle flux on the divertor target calculated by the model are in reasonable agreement with experimental observation.Moreover, the profiles of plasma parameters on the divertor target strongly depend on the SOL magnetic topology or the equilibrium configuration from the modeling.

    Keywords: scrape-off layer, two-point model, field line tracing, tokamak

    1.Introduction

    In magnetic fusion devices the main plasma is confined with nested closed magnetic flux surface.The region radially outboard of the last closed (magnetic)flux surface(LCFS)or separatrix is called as the scrape-off layer (SOL) where flux surfaces are all open and magnetic field line will connect directly to the wall elements [1].In the tokamak operation there are generally two categories SOL, the limiter and divertor.In a divertor configuration the main or confined plasma and the SOL are separated by the magnetic separatrix where the magnetic flux surface passes through the X-point generated by a divertor coil, resulting in principally different magnetic topology.As the divertor SOL can move the solid surface (the divertor target) where the intense plasma-surface interactions occur away from the confined plasma, future tokamaks such as the International Thermonuclear Experimental Reactor (ITER) are relying on divertor to play a crucial part in particle control and power exhaust [2].

    The plasma parameters in the SOL are really important for characterizing both the plasma behavior in confined volume and the plasma-wall interaction.Normally sophisticated two-dimensional or three-dimensional codes like SOLPS [3] or EMC3-EIRENE [4, 5] including time dependence are used to analyze the conditions of plasma boundary in front of the solid wall for magnetic fusion devices.Nevertheless,the reduced analytical models can also be used for rough estimate of the characteristics of plasma boundary, which can give a qualitative physical understanding of transport process in SOL aiming at interpretation and understanding of experiments and save the computation time.One simplest and useful analytical model is the twopoint model[1],which is based upon the assumption that the heat and particle transport are purely parallel to the individual flux tubes or the magnetic field lines, as mainly relevant to a divertor SOL.The two points are referred to the upstream and target,hence the model is also called as the zero-dimensional divertor model.

    Three modes of divertor operation, the sheath-limited,high-recycling and detached regime, have been classified experimentally [6].In the sheath-limited regime, the plasma pressure and temperature are constant along each flux tube and the input heat from the main plasma is little dissipated.As the simple SOL,the physics of sheath-limited divertor can be described by the basic two-point model well.In the highrecycling regime,the plasma pressure remains nearly constant while the plasma temperature significantly drops parallel to the flux tube from the SOL to the divertor target due to the finite heat conductivity, as most of plasma energy is dissipated by collision with recycling neutrals or by radiation before incident on the divertor target.While a steady-state recycle refueling in front of the divertor target balances the plasma pressure.In the detached regime, substantial pressure loss exits near the separatrix and both the plasma density and temperature drop parallel to the flux tube.For the latter two modes of divertor operation,the basic two-point model can be extended with the correction factors for the effects of including power loss and pressure loss processes.

    In this paper, a two-point model is used to analyze the characteristics of divertor SOL plasma in experimental advanced superconducting tokamak (EAST), which is fast and light for computing, and the influence of equilibrium configuration on the divertor plasma is investigated with the modeling and experimental observation.Section 2 presents the experimental setup.Section 3 presents the physical model and numerical method.Compared with the experimental observation,section 4 presents the modeling results of plasma parameters profiles on the divertor target, and the profiles dependence of the equilibrium configuration.A summary is given in section 5.R=1.85 m, minor radiusa=0.45 m, toroidal magnetic fieldBT~3.5 T,plasma currentIp~1 MA,triangularityδ=?0.4 0.7, and elongationκup to 1.9 [7].

    To study the influence of equilibrium configuration on the characteristics of divertor plasma, the experiment was performed with the USN configuration in EAST.The upper divertor is equipped with water-cooled W/Cu plasma-facing components[8]and the plasma properties on the divertor can be measured by the Langmuir probe installed on the plate.Three discharges (shots #84816–84818) with different equilibrium configurations were performed in EAST.The main plasma parameters for the three discharges are almost same with toroidal magnetic fieldBT~2.4 T,

    2.Experimental setup

    EAST, as a fully superconducting tokamak with ITER-like configuration which has a flexible selection of upper single null(USN),lower single null,or double null poloidal divertor configurations, is aimed at investigating physical issues of long-pulse high-performance advanced tokamak operation.The design parameters of EAST are major radius plasma currentIp~1 MA,line-averaged plasma density~1.8×1019m?3,and lower hybrid wave heating with a power of ~1 MW in L-mode.A rough structure of EAST vacuum vessel and the USN equilibrium configuration with separatrices are shown in figure 1.The striking point on the upper outer (UO) divertor targets was shifted to the divertor corner from #84816 to #84818 with different equilibrium configurations.

    Figure 1.A rough structure of EAST vacuum vessel and separatrices for EAST shots #84816–84818 at =t 6.1 s.The yellow dots represent the Langmuir probes on the UO divertor plate.L-div in centimeter represents the distance of the point on the UO divertor to the divertor corner.

    3.Physical model and numerical methods

    In this paper we consider the corrections two-point model as discussed in [1], which can be extended to the analysis of high-recycling or detached divertor plasma.The model is based on the following three principal physical processes:the heat conduction, pressure balance and power balance.

    (1) Heat conduction equation:

    whereTuandTtare the plasma temperature of upstream and target point, respectively.HereTe=Ti=Tis assumed,whereTeandTiare the electron and ion temperature,respectively.Lis the flux tube length or the field line connection length between upstream and target.quis the heat flux density entering into the upstream point.κ0eis electron parallel conductivity coefficient, which is set as constant withκ0e≈2000in the calculation.Here the ion heat conductivity is neglected as comparatively small and assume ions and electrons are thermally coupled.The conduction factorfcondis introduced for the parallel heat convection effects on heat transport,which will reduce the temperature gradient.

    (2) Pressure balance equation:

    wherenuandntare the plasma densities of upstream and target point, respectively.fmomis the momentum loss factor as the plasma flow toward the target point may lose momentum due to viscous forces,frictional collisions with neutrals and volume recombination.For the sheath-limited or the high-recycling regimes, the pressure keeps almost constant, givingfmom=1.

    (3) Power balance equation:

    whereqtis the heat flux density entering into the target point,γ is the sheath heat transmission coefficientγ≈7.cstis the ion sound speed,is the power loss factor for the volumetric power losses including radiation and charge exchange loss.

    In equations(1)–(3),L,γ andκ0eare specified constants.Settingnu,qu,fcond,fmom,fpoweras specified control parameters, i.e.the independent variables, the remaining three unknowns,nt,Tt,Tucan be solved by the classical method with the assumption ofTu72?Tt72[1]:

    and the particle flux density:

    Here the units:L(m),q(W m?2),T(eV),n(m?3)andeis the electronic charge,miis the ion mass.

    In this paper we directly solve the equations (1)–(3) by numerical method without any approximation.Combining equations (2) and (3) to obtain:

    SettingTuasx1andTtasx2,the problem turns to solve the following two-dimensional nonlinear equations:

    Equations (9) and (10) can be easily solved by Newton–Raphson method[9]with the initial guess for the roots which can be given by equations(4)and(5).FollowingntandΓtcan be easily deduced whenTuandTtare already known.

    To obtain precise connection length,the field line tracing method is used forLcalculation.In the cylindrical coordinate(φRZ, , ), the field line equation can be expressed as:

    whereBR,Bφ,BZare the magnetic field components in the cylindrical coordinate.

    With the magnetic field information given by EFIT[10],the field line trajectory can be traced by integrating the first order equations(11)–(13).Here the fourth order Runge–Kutta method is used for theLintegration.

    To extend the 0-dimensional two-point model to the main SOL region, a series of the upstream points as shown in figure 2 are set on the midplane from separatrix to the wall and the reciprocal target points are searched by the field line tracing method.Given the appropriate density and power decay length and other control parameters, the profiles of plasma density, temperature and particle flux density on the divertor target can be calculated by the model.

    The control parameters for EAST shots #84816–84818 are set as follows: the conduction factor is set asfcond=1 neglecting the influence of convection as comparatively small in the parallel conduction dominating heat transport.The momentum loss factor is set asfmom=1according to [11]since the temperature of target points is larger than 10 eV from experimental observation.Or the SOL plasma is characterized by high-recycling regime.To balance the modeling result with experiment, the power loss factor for the two points of upstream on separatrix/LCFS and striking/target point on divertor target is set asfpower,LCFS=0.5.Here we assume the loss of power is purely dissipated by impurity radiation given by [12]:

    whereczis the impurity concentration,Lzis the radiation

    coefficient.With the value offpower,LCFS,the value ofcz Lzcan be deduced and the profile of power loss factor for the series of the two points can be obtained by equation (14).

    The plasma density at LCFS is set asnLCFS=/3,whereis the line-averaged plasma density.Assuming the plasma density of upstream points located at the midplanenu(r) is exponential, thennu(r) can be estimated by [1]:

    Figure 2.A series of the two points with the target located at the Langmuir probes for the analysis of SOL plasma in EAST(left)and 3D view of the magnetic field line between upstream point located at separatrix and reciprocal target point (right) for EAST shot #84817.Here the upstream points are set on the midplane from separatrix to the wall along R direction.

    Figure 3.The connection length L between the series of upstream points and reciprocal target points for EAST shots #84816–84818.Here one dot represents a pair of two points in the modeling.

    The heat flux density entering the upstream point located at LCFS is estimated asqLCFS=50 MW m?2.Similarly,assuming the heat flux density of upstream points located at the midplanequ(r)is exponential,thenqu(r)can be estimated by:

    Here the radial power decay length and density decay length are assumed asλq= 0.75 cm andλn= 2×λqin the calculation according to the empirical value in EAST.

    4.Modeling result

    4.1.Equilibrium configuration dependence of connection length

    Figure 3 shows the connection lengthLbetween upstream points on the midplane and reciprocal target points on the UO divertor plate calculated by the field line tracing method for EAST shots #84816–84818 at =t6.1 s.The maximumLis located at the striking point position,which is the connection length between the upstream point on separatrix and target point, andLdecreases with increase of distance to UO divertor corner or moving the upstream point from separatrix to the wall alongRdirection.The difference of connection length profiles on divertor plate for the three shots is due to the different magnetic topologies, or different equilibrium configurations.

    4.2.Equilibrium configuration dependence of SOL plasma

    Compared with experimental observation, the profiles of plasma density, temperature and particle flux density on the UO divertor plate calculated by the two-point model for EAST shots #84816–84818 at =t6.1 s are shown in figure 4.Here the experimental data is measured by the Langmuir probe on the divertor plate.Overall, the profiles of plasma density,temperature and particle flux density on the divertor target are roughly similar to the experimental observation for the three shots.With equilibrium configuration change from#84816 to#84818, the peak positions of the profiles together with striking point move to the divertor corner for the modeling result,as the two-point model based on the magnetic topology of SOL and the constantLstrongly depends on the equilibrium configuration.The peak positions of the profiles of #84817 agree well with the experiment while the peak positions of other two shots have a little gap with experimental measurement.There are several possible reasons such as the influence of finite radius of ion gyro motion and the incidence angle of magnetic field line to the probe.The modeling target temperature where the distance to UO divertor larger than 15 cm is a little higher than the measurement, which may due to the neglect of charge exchange power loss effects.More details will be discussed in summary.

    Figure 4.Profiles of (a) particle flux, (b) plasma density and (c)plasma temperature at the UO divertor for EAST shots#84816–84818 with different equilibrium configurations.The symbols with dotted line are experimental data measured by Langmuir probe,and the solid curves are the 2-point modeling results.Here the temperature for the experimental data is electron temperature.

    5.Summary

    In this paper,we used a fast and light two-point model based on the field line tracing method to investigate the influence of equilibrium configuration on the characteristics of SOL plasma in EAST.The profiles of plasma density,temperature and particle flux density on the divertor target calculated by the model are in reasonable agreement with the experimental observation.With the equilibrium configuration change, the magnetic topology in SOL region will change leading to the change of connection length and striking point shift,resulting in different profiles of plasma parameters on divertor plate.The two-point model can catch the main information of magnetic topology effects, which is helpful to give a qualitative insight into physics of transport process in SOL plasma and interpret the experiments.Furthermore, the model could be used for the real-time analysis as it only needs a very few computing resources and could be combined with other equilibrium code such as HINT [13] to improve the equilibrium calculation in the open field line region.

    Due to relative simplicity of the two-point model, the complicated physical process in the SOL plasma such as the vertical transport, the plasma wall interaction cannot be simulated and the modeling result cannot be fully consistent with experimental observation.There is a little gap for the peak positions of plasma parameters profiles on divertor plate between the modeling and experimental observation.Neglecting the measuring error and the spatial resolution of probes,the finite radius of ion gyro motion and the incidence angle of magnetic field line to the probe could make the peak position of saturated ion flux measured by Langmuir probe not the same with modeling result.The gap between the peak heat flux position and the striking point will be counted with experimental database in the future work to correct the model.Moreover, the control parameters such as conduction factor,momentum and power loss factor can be automatically set by experience-based learning in the future analysis.

    Acknowledgments

    This work was performed on JSPS-CAS Bilateral Joint Research Projects, ‘Control of wall recycling on metallic plasma facing materials in fusion reactor’.This work was supported by the NIFS Collaboration Research Program(Nos.NIFS18KNST130 and NIFS20KNST171).Also, this work was partially supported by ‘PLADyS’, JSPS Core-to-Core Program, A.Advanced Research Networks.

    猜你喜歡
    直子
    聲音的森林
    爸爸是個理發(fā)師
    挪威的森林第十二章 告別之夜(二-2)
    挪威的森林第07章 魔力(13)
    挪威的森林第06章 綠茵藏艷(38)
    挪威的森林第06章 綠茵藏艷(15)
    挪威的森林第06章 綠茵藏艷(16)
    《挪威的森林》中的女性
    挪威的森林第06章 綠茵藏艷(10)
    挪威的森林第03章 黑暗中的裸體(2)
    欧美日韩精品网址| cao死你这个sao货| x7x7x7水蜜桃| 天堂网av新在线| 欧美绝顶高潮抽搐喷水| 伊人久久大香线蕉亚洲五| 欧美黑人欧美精品刺激| 色精品久久人妻99蜜桃| 色尼玛亚洲综合影院| 国产熟女xx| 国产精品1区2区在线观看.| 国产精品国产高清国产av| 中文字幕久久专区| 国产亚洲欧美98| 欧美3d第一页| 欧洲精品卡2卡3卡4卡5卡区| 欧美乱妇无乱码| 精品久久久久久久末码| 亚洲av第一区精品v没综合| 久久精品国产清高在天天线| 神马国产精品三级电影在线观看| h日本视频在线播放| 久久欧美精品欧美久久欧美| 亚洲狠狠婷婷综合久久图片| 狂野欧美白嫩少妇大欣赏| 淫妇啪啪啪对白视频| 久久国产精品影院| 黄色女人牲交| 十八禁人妻一区二区| 色综合欧美亚洲国产小说| 久久久久免费精品人妻一区二区| 国产av在哪里看| 视频区欧美日本亚洲| 别揉我奶头~嗯~啊~动态视频| 亚洲av电影不卡..在线观看| tocl精华| 中文字幕熟女人妻在线| 变态另类丝袜制服| 在线观看一区二区三区| 婷婷精品国产亚洲av在线| 91av网一区二区| 亚洲无线在线观看| 欧美黄色淫秽网站| 中文资源天堂在线| 亚洲美女黄片视频| 日韩av在线大香蕉| 国产精品永久免费网站| 国产精品久久久久久久电影 | 亚洲国产欧美人成| 狂野欧美白嫩少妇大欣赏| 国产精品野战在线观看| 久久久久亚洲av毛片大全| 视频区欧美日本亚洲| 黄色片一级片一级黄色片| 成人一区二区视频在线观看| 久久欧美精品欧美久久欧美| 一夜夜www| 欧美黄色淫秽网站| 国产成人一区二区三区免费视频网站| 日日摸夜夜添夜夜添小说| 人妻夜夜爽99麻豆av| 亚洲,欧美精品.| 一边摸一边抽搐一进一小说| 国产在线精品亚洲第一网站| 精品国产亚洲在线| 亚洲精品粉嫩美女一区| 久9热在线精品视频| 高潮久久久久久久久久久不卡| 国产午夜福利久久久久久| 天堂动漫精品| 午夜激情福利司机影院| 特级一级黄色大片| 久久精品aⅴ一区二区三区四区| 免费人成视频x8x8入口观看| 真实男女啪啪啪动态图| 国产爱豆传媒在线观看| 欧美日韩乱码在线| 午夜成年电影在线免费观看| 午夜福利在线观看免费完整高清在 | 真实男女啪啪啪动态图| 日韩国内少妇激情av| 国产av一区在线观看免费| 国产高清有码在线观看视频| 久久精品影院6| 久久国产乱子伦精品免费另类| 全区人妻精品视频| 国产精品一区二区精品视频观看| 久久午夜综合久久蜜桃| 久久国产精品人妻蜜桃| 99国产精品99久久久久| 亚洲av成人一区二区三| netflix在线观看网站| 韩国av一区二区三区四区| av福利片在线观看| 日本五十路高清| 丰满人妻一区二区三区视频av | 亚洲精品美女久久久久99蜜臀| 国产精品av久久久久免费| 最近最新免费中文字幕在线| 欧美成狂野欧美在线观看| 一本一本综合久久| 女警被强在线播放| av片东京热男人的天堂| 成人av在线播放网站| 日韩高清综合在线| 久久久久国内视频| 女警被强在线播放| 在线播放国产精品三级| 少妇的逼水好多| 日本在线视频免费播放| 亚洲av电影不卡..在线观看| 久久人妻av系列| 99精品在免费线老司机午夜| 激情在线观看视频在线高清| 国产高清视频在线播放一区| 免费无遮挡裸体视频| 亚洲成人免费电影在线观看| 男女下面进入的视频免费午夜| 18美女黄网站色大片免费观看| 日本一本二区三区精品| 大型黄色视频在线免费观看| 淫秽高清视频在线观看| 1024手机看黄色片| 一本一本综合久久| 午夜免费激情av| 亚洲国产色片| 高清在线国产一区| 国产激情偷乱视频一区二区| 熟妇人妻久久中文字幕3abv| av福利片在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲自偷自拍图片 自拍| 久久久久久久久中文| 岛国在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 欧美日本视频| 日韩国内少妇激情av| www日本在线高清视频| 欧美精品啪啪一区二区三区| 国产亚洲av高清不卡| 99国产极品粉嫩在线观看| 日本免费一区二区三区高清不卡| 国产真人三级小视频在线观看| 最新中文字幕久久久久 | 国产黄a三级三级三级人| а√天堂www在线а√下载| 亚洲人成电影免费在线| 国产成人aa在线观看| 免费观看的影片在线观看| 精品欧美国产一区二区三| 又爽又黄无遮挡网站| 久久久国产成人精品二区| 成年女人毛片免费观看观看9| 亚洲第一欧美日韩一区二区三区| 午夜福利成人在线免费观看| 国产 一区 欧美 日韩| 看免费av毛片| 国产激情欧美一区二区| 国产亚洲精品一区二区www| 熟女电影av网| 国产精品av久久久久免费| 校园春色视频在线观看| 欧美+亚洲+日韩+国产| 日本免费a在线| 日本在线视频免费播放| 国产精品久久电影中文字幕| 国产免费男女视频| www.999成人在线观看| 日本黄色片子视频| 国产一区二区三区视频了| 99国产综合亚洲精品| 午夜成年电影在线免费观看| 日本五十路高清| 嫩草影院入口| 欧美国产日韩亚洲一区| 在线十欧美十亚洲十日本专区| 欧美不卡视频在线免费观看| 国产精品野战在线观看| 韩国av一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看 | 国产三级中文精品| 日本五十路高清| av国产免费在线观看| 在线视频色国产色| 午夜影院日韩av| 国产成年人精品一区二区| 国产高清视频在线观看网站| 国产精品女同一区二区软件 | 亚洲九九香蕉| 两个人视频免费观看高清| 久久天躁狠狠躁夜夜2o2o| 久久人妻av系列| 午夜免费成人在线视频| 久久性视频一级片| 亚洲av五月六月丁香网| 露出奶头的视频| 日韩欧美在线二视频| 国产高清视频在线播放一区| 欧美成人一区二区免费高清观看 | 我要搜黄色片| 日日摸夜夜添夜夜添小说| 国产又色又爽无遮挡免费看| 久久久国产成人免费| 国产精品99久久久久久久久| 哪里可以看免费的av片| 亚洲第一电影网av| 91字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久中文| 在线永久观看黄色视频| 狂野欧美白嫩少妇大欣赏| 国产精品国产高清国产av| 国产免费av片在线观看野外av| 偷拍熟女少妇极品色| 国产精品精品国产色婷婷| 久久中文字幕人妻熟女| 国产精品 国内视频| 成人av在线播放网站| 亚洲第一电影网av| 国产午夜精品论理片| 看黄色毛片网站| tocl精华| 夜夜夜夜夜久久久久| 亚洲人成网站高清观看| 啦啦啦韩国在线观看视频| 欧美精品啪啪一区二区三区| 在线观看免费视频日本深夜| 美女午夜性视频免费| 视频区欧美日本亚洲| 欧美色视频一区免费| 久久伊人香网站| 欧美日本视频| 国产亚洲精品久久久久久毛片| 日韩 欧美 亚洲 中文字幕| 亚洲熟妇中文字幕五十中出| 欧美色视频一区免费| 淫妇啪啪啪对白视频| 99久久久亚洲精品蜜臀av| 欧美黑人欧美精品刺激| 久久99热这里只有精品18| 免费看美女性在线毛片视频| 性欧美人与动物交配| 国产伦在线观看视频一区| 国内精品美女久久久久久| 国产av不卡久久| 午夜精品久久久久久毛片777| 级片在线观看| 狂野欧美白嫩少妇大欣赏| 成人精品一区二区免费| 日韩免费av在线播放| 国产高清视频在线观看网站| 麻豆国产97在线/欧美| 亚洲国产高清在线一区二区三| 精品久久久久久,| 亚洲精品美女久久av网站| 真人一进一出gif抽搐免费| 亚洲欧洲精品一区二区精品久久久| 日日摸夜夜添夜夜添小说| 亚洲精品在线美女| 国产不卡一卡二| 色综合站精品国产| aaaaa片日本免费| 好看av亚洲va欧美ⅴa在| 午夜福利在线在线| 久久香蕉国产精品| 操出白浆在线播放| 久久精品综合一区二区三区| 久久精品91无色码中文字幕| 精品日产1卡2卡| 一本综合久久免费| 亚洲美女黄片视频| 亚洲国产精品成人综合色| 国产单亲对白刺激| 精品一区二区三区视频在线观看免费| 欧美性猛交黑人性爽| 真人一进一出gif抽搐免费| 99久久精品热视频| 黄频高清免费视频| 精品一区二区三区视频在线 | 国产亚洲精品一区二区www| 免费在线观看视频国产中文字幕亚洲| 999久久久精品免费观看国产| 久久中文看片网| 欧美乱妇无乱码| 国产激情欧美一区二区| 好男人电影高清在线观看| 亚洲无线在线观看| 精品日产1卡2卡| 悠悠久久av| 天天躁日日操中文字幕| 亚洲色图av天堂| 女生性感内裤真人,穿戴方法视频| 成年免费大片在线观看| 激情在线观看视频在线高清| 丰满人妻一区二区三区视频av | 91麻豆精品激情在线观看国产| 国产美女午夜福利| 老熟妇乱子伦视频在线观看| 国产三级黄色录像| 国产久久久一区二区三区| 欧美一区二区精品小视频在线| 搡老妇女老女人老熟妇| 国产探花在线观看一区二区| 我的老师免费观看完整版| 露出奶头的视频| 亚洲av电影不卡..在线观看| 每晚都被弄得嗷嗷叫到高潮| 叶爱在线成人免费视频播放| 精品久久久久久久久久久久久| 日韩免费av在线播放| 亚洲性夜色夜夜综合| 国内精品久久久久久久电影| 老司机深夜福利视频在线观看| 亚洲,欧美精品.| 99久久综合精品五月天人人| 不卡一级毛片| 欧美日韩中文字幕国产精品一区二区三区| 在线看三级毛片| 国产黄片美女视频| 琪琪午夜伦伦电影理论片6080| 亚洲在线自拍视频| 男女床上黄色一级片免费看| 高潮久久久久久久久久久不卡| 免费电影在线观看免费观看| 国产综合懂色| 亚洲,欧美精品.| 丰满人妻熟妇乱又伦精品不卡| 国产真人三级小视频在线观看| 精品一区二区三区四区五区乱码| 免费av不卡在线播放| 十八禁网站免费在线| 久久这里只有精品19| 亚洲国产欧美网| 国产爱豆传媒在线观看| 亚洲激情在线av| 国产三级黄色录像| 一本一本综合久久| 麻豆一二三区av精品| 午夜福利在线在线| 午夜福利免费观看在线| 午夜精品在线福利| 99久久精品一区二区三区| 国产三级在线视频| 国产亚洲欧美98| 亚洲精品在线观看二区| 两人在一起打扑克的视频| 日韩欧美 国产精品| 黄片大片在线免费观看| 成人特级黄色片久久久久久久| 在线观看午夜福利视频| 黄色日韩在线| 久久久久久久精品吃奶| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人性av电影在线观看| 岛国在线观看网站| 日日干狠狠操夜夜爽| 熟妇人妻久久中文字幕3abv| 最近最新中文字幕大全免费视频| 亚洲va日本ⅴa欧美va伊人久久| 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 国产午夜精品久久久久久| 国产激情欧美一区二区| a级毛片a级免费在线| 丁香六月欧美| 欧美性猛交黑人性爽| 99国产精品99久久久久| 国产精品爽爽va在线观看网站| 一级毛片高清免费大全| 国产欧美日韩精品亚洲av| 日韩欧美国产在线观看| 久久亚洲精品不卡| 国内久久婷婷六月综合欲色啪| 最新中文字幕久久久久 | 久久香蕉精品热| 国产精品久久久久久人妻精品电影| 亚洲最大成人中文| a级毛片在线看网站| 亚洲色图av天堂| 国产精品 国内视频| 一二三四在线观看免费中文在| 夜夜爽天天搞| 夜夜看夜夜爽夜夜摸| 国产成人影院久久av| 日韩中文字幕欧美一区二区| 给我免费播放毛片高清在线观看| 老熟妇仑乱视频hdxx| 麻豆国产av国片精品| 手机成人av网站| 听说在线观看完整版免费高清| 熟女少妇亚洲综合色aaa.| 国语自产精品视频在线第100页| 国产主播在线观看一区二区| 国产淫片久久久久久久久 | 欧美激情久久久久久爽电影| 亚洲国产精品999在线| 后天国语完整版免费观看| 黑人操中国人逼视频| av欧美777| 一进一出抽搐动态| 99视频精品全部免费 在线 | 岛国在线观看网站| 久久精品91无色码中文字幕| 午夜福利在线观看免费完整高清在 | 婷婷六月久久综合丁香| 国产又黄又爽又无遮挡在线| 十八禁网站免费在线| 一级毛片精品| 免费大片18禁| 国内精品一区二区在线观看| www.www免费av| 亚洲中文字幕一区二区三区有码在线看 | 成人国产综合亚洲| 99riav亚洲国产免费| 不卡一级毛片| 免费在线观看成人毛片| 五月伊人婷婷丁香| 99久久成人亚洲精品观看| 国产私拍福利视频在线观看| 国产精品电影一区二区三区| 叶爱在线成人免费视频播放| 亚洲色图av天堂| 又大又爽又粗| 麻豆久久精品国产亚洲av| 午夜精品久久久久久毛片777| 国产三级中文精品| 欧美一级毛片孕妇| 久久久成人免费电影| 九色国产91popny在线| 亚洲精品美女久久av网站| 色综合婷婷激情| 国产黄色小视频在线观看| 国产精品国产高清国产av| 国产成人精品久久二区二区91| 韩国av一区二区三区四区| 国产精品久久久久久精品电影| 日韩欧美在线乱码| 一a级毛片在线观看| 99久久无色码亚洲精品果冻| 窝窝影院91人妻| 日韩人妻高清精品专区| 99国产精品一区二区蜜桃av| 久久国产精品人妻蜜桃| 亚洲精品在线观看二区| 毛片女人毛片| 亚洲精品一卡2卡三卡4卡5卡| 成人特级av手机在线观看| 观看免费一级毛片| 一区福利在线观看| 99riav亚洲国产免费| 精品国产乱子伦一区二区三区| 人人妻人人澡欧美一区二区| 听说在线观看完整版免费高清| 国产精品久久久久久久电影 | 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 99在线视频只有这里精品首页| h日本视频在线播放| 男人的好看免费观看在线视频| 一进一出抽搐gif免费好疼| 99久久精品国产亚洲精品| 亚洲成人中文字幕在线播放| 久久人妻av系列| 亚洲国产欧美人成| www日本在线高清视频| 十八禁人妻一区二区| 午夜福利高清视频| 亚洲第一欧美日韩一区二区三区| 国产精品免费一区二区三区在线| 国产伦精品一区二区三区四那| 在线观看美女被高潮喷水网站 | 午夜久久久久精精品| 亚洲av成人av| 熟妇人妻久久中文字幕3abv| 一本久久中文字幕| 波多野结衣高清无吗| 欧美一级毛片孕妇| 男女床上黄色一级片免费看| 国产在线精品亚洲第一网站| 97超视频在线观看视频| 国产主播在线观看一区二区| 久久久色成人| 黄色日韩在线| 最近最新中文字幕大全免费视频| 国产精品野战在线观看| 1024香蕉在线观看| 老司机午夜福利在线观看视频| 伊人久久大香线蕉亚洲五| 欧美色视频一区免费| 一区二区三区激情视频| 久久精品91无色码中文字幕| 老司机深夜福利视频在线观看| 亚洲,欧美精品.| 午夜成年电影在线免费观看| 亚洲国产精品999在线| x7x7x7水蜜桃| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 色哟哟哟哟哟哟| 国产亚洲欧美98| 免费av毛片视频| 丁香六月欧美| 一个人观看的视频www高清免费观看 | 此物有八面人人有两片| 精品久久久久久成人av| 国产欧美日韩精品亚洲av| 国产免费男女视频| 欧美乱妇无乱码| 精品久久久久久,| 久久国产精品人妻蜜桃| 叶爱在线成人免费视频播放| 亚洲成人免费电影在线观看| 在线看三级毛片| 色综合亚洲欧美另类图片| 少妇的逼水好多| 国产精品久久久久久人妻精品电影| 黄色 视频免费看| 成人性生交大片免费视频hd| 欧美三级亚洲精品| 久久久久国内视频| 老司机深夜福利视频在线观看| 日韩三级视频一区二区三区| 亚洲国产中文字幕在线视频| 精品国产三级普通话版| 国产成人av教育| av在线蜜桃| 亚洲成av人片免费观看| 国内精品美女久久久久久| a在线观看视频网站| 97碰自拍视频| av黄色大香蕉| 亚洲九九香蕉| 日本黄色视频三级网站网址| 欧美中文日本在线观看视频| 亚洲熟妇中文字幕五十中出| 岛国在线观看网站| 熟女人妻精品中文字幕| 草草在线视频免费看| 一级毛片女人18水好多| 亚洲精品中文字幕一二三四区| 身体一侧抽搐| 亚洲欧美精品综合久久99| 久久精品影院6| 国产亚洲精品一区二区www| 亚洲av熟女| 曰老女人黄片| 欧美性猛交╳xxx乱大交人| 亚洲午夜理论影院| 亚洲中文av在线| 成人欧美大片| 亚洲av成人av| 可以在线观看毛片的网站| 露出奶头的视频| 99国产精品一区二区三区| 亚洲国产欧美一区二区综合| 三级男女做爰猛烈吃奶摸视频| 国产精品 国内视频| 老司机深夜福利视频在线观看| 综合色av麻豆| 99热精品在线国产| 国产欧美日韩精品亚洲av| 欧美高清成人免费视频www| 日本免费a在线| 免费在线观看视频国产中文字幕亚洲| 91久久精品国产一区二区成人 | 婷婷丁香在线五月| 少妇人妻一区二区三区视频| 久久久国产成人精品二区| 国产一区二区在线观看日韩 | 99精品久久久久人妻精品| 欧美又色又爽又黄视频| www国产在线视频色| 亚洲成人中文字幕在线播放| 性欧美人与动物交配| 巨乳人妻的诱惑在线观看| 色视频www国产| 亚洲欧美日韩无卡精品| 人妻久久中文字幕网| 丰满的人妻完整版| 日日摸夜夜添夜夜添小说| 国产精品 国内视频| 人人妻人人澡欧美一区二区| 久久久精品大字幕| 免费搜索国产男女视频| 亚洲真实伦在线观看| 天堂网av新在线| 99久久无色码亚洲精品果冻| 午夜免费成人在线视频| 淫妇啪啪啪对白视频| 免费搜索国产男女视频| 精品人妻1区二区| 亚洲av成人精品一区久久| 国产成人精品无人区| 亚洲 国产 在线| 国产又黄又爽又无遮挡在线| 两个人视频免费观看高清| 亚洲av成人不卡在线观看播放网| 制服人妻中文乱码| 两个人视频免费观看高清| 日韩精品青青久久久久久| 观看免费一级毛片| 欧美zozozo另类| 嫩草影视91久久| 国产综合懂色| 欧美zozozo另类| 亚洲真实伦在线观看| 免费在线观看日本一区| 中国美女看黄片| 搡老岳熟女国产| 人人妻人人看人人澡| 午夜精品在线福利| 九九久久精品国产亚洲av麻豆 | 久久久久久久午夜电影| 亚洲电影在线观看av| 99热这里只有精品一区 |