• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-point model analysis of SOL plasma in EAST

    2021-08-05 08:29:04JieHUANG黃杰YasuhiroSUZUKI鈴木康浩KunpeiNOJIRI野尻訓(xùn)平NaokoASHIKAWA蘆川直子andEASTTeam
    Plasma Science and Technology 2021年8期
    關(guān)鍵詞:直子

    Jie HUANG(黃杰),Yasuhiro SUZUKI(鈴木康浩),2,Kunpei NOJIRI(野尻訓(xùn)平),Naoko ASHIKAWA (蘆川直子),2 and EAST Team

    1 National Institute for Fusion Science, National Institutes of Natural Sciences, Oroshi-cho, 322-6, Toki 509-5292, Japan

    2 The Graduate University for Advanced Studies, SOKENDAI, Oroshi-cho, 322-6, Toki 509-5292, Japan

    3 Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan

    4 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China

    Abstract A two-point model is used to investigate the characteristics of scrape-off layer (SOL) plasma with the field line tracing method in the experimental advanced superconducting tokamak.The profiles of plasma density, temperature and particle flux on the divertor target calculated by the model are in reasonable agreement with experimental observation.Moreover, the profiles of plasma parameters on the divertor target strongly depend on the SOL magnetic topology or the equilibrium configuration from the modeling.

    Keywords: scrape-off layer, two-point model, field line tracing, tokamak

    1.Introduction

    In magnetic fusion devices the main plasma is confined with nested closed magnetic flux surface.The region radially outboard of the last closed (magnetic)flux surface(LCFS)or separatrix is called as the scrape-off layer (SOL) where flux surfaces are all open and magnetic field line will connect directly to the wall elements [1].In the tokamak operation there are generally two categories SOL, the limiter and divertor.In a divertor configuration the main or confined plasma and the SOL are separated by the magnetic separatrix where the magnetic flux surface passes through the X-point generated by a divertor coil, resulting in principally different magnetic topology.As the divertor SOL can move the solid surface (the divertor target) where the intense plasma-surface interactions occur away from the confined plasma, future tokamaks such as the International Thermonuclear Experimental Reactor (ITER) are relying on divertor to play a crucial part in particle control and power exhaust [2].

    The plasma parameters in the SOL are really important for characterizing both the plasma behavior in confined volume and the plasma-wall interaction.Normally sophisticated two-dimensional or three-dimensional codes like SOLPS [3] or EMC3-EIRENE [4, 5] including time dependence are used to analyze the conditions of plasma boundary in front of the solid wall for magnetic fusion devices.Nevertheless,the reduced analytical models can also be used for rough estimate of the characteristics of plasma boundary, which can give a qualitative physical understanding of transport process in SOL aiming at interpretation and understanding of experiments and save the computation time.One simplest and useful analytical model is the twopoint model[1],which is based upon the assumption that the heat and particle transport are purely parallel to the individual flux tubes or the magnetic field lines, as mainly relevant to a divertor SOL.The two points are referred to the upstream and target,hence the model is also called as the zero-dimensional divertor model.

    Three modes of divertor operation, the sheath-limited,high-recycling and detached regime, have been classified experimentally [6].In the sheath-limited regime, the plasma pressure and temperature are constant along each flux tube and the input heat from the main plasma is little dissipated.As the simple SOL,the physics of sheath-limited divertor can be described by the basic two-point model well.In the highrecycling regime,the plasma pressure remains nearly constant while the plasma temperature significantly drops parallel to the flux tube from the SOL to the divertor target due to the finite heat conductivity, as most of plasma energy is dissipated by collision with recycling neutrals or by radiation before incident on the divertor target.While a steady-state recycle refueling in front of the divertor target balances the plasma pressure.In the detached regime, substantial pressure loss exits near the separatrix and both the plasma density and temperature drop parallel to the flux tube.For the latter two modes of divertor operation,the basic two-point model can be extended with the correction factors for the effects of including power loss and pressure loss processes.

    In this paper, a two-point model is used to analyze the characteristics of divertor SOL plasma in experimental advanced superconducting tokamak (EAST), which is fast and light for computing, and the influence of equilibrium configuration on the divertor plasma is investigated with the modeling and experimental observation.Section 2 presents the experimental setup.Section 3 presents the physical model and numerical method.Compared with the experimental observation,section 4 presents the modeling results of plasma parameters profiles on the divertor target, and the profiles dependence of the equilibrium configuration.A summary is given in section 5.R=1.85 m, minor radiusa=0.45 m, toroidal magnetic fieldBT~3.5 T,plasma currentIp~1 MA,triangularityδ=?0.4 0.7, and elongationκup to 1.9 [7].

    To study the influence of equilibrium configuration on the characteristics of divertor plasma, the experiment was performed with the USN configuration in EAST.The upper divertor is equipped with water-cooled W/Cu plasma-facing components[8]and the plasma properties on the divertor can be measured by the Langmuir probe installed on the plate.Three discharges (shots #84816–84818) with different equilibrium configurations were performed in EAST.The main plasma parameters for the three discharges are almost same with toroidal magnetic fieldBT~2.4 T,

    2.Experimental setup

    EAST, as a fully superconducting tokamak with ITER-like configuration which has a flexible selection of upper single null(USN),lower single null,or double null poloidal divertor configurations, is aimed at investigating physical issues of long-pulse high-performance advanced tokamak operation.The design parameters of EAST are major radius plasma currentIp~1 MA,line-averaged plasma density~1.8×1019m?3,and lower hybrid wave heating with a power of ~1 MW in L-mode.A rough structure of EAST vacuum vessel and the USN equilibrium configuration with separatrices are shown in figure 1.The striking point on the upper outer (UO) divertor targets was shifted to the divertor corner from #84816 to #84818 with different equilibrium configurations.

    Figure 1.A rough structure of EAST vacuum vessel and separatrices for EAST shots #84816–84818 at =t 6.1 s.The yellow dots represent the Langmuir probes on the UO divertor plate.L-div in centimeter represents the distance of the point on the UO divertor to the divertor corner.

    3.Physical model and numerical methods

    In this paper we consider the corrections two-point model as discussed in [1], which can be extended to the analysis of high-recycling or detached divertor plasma.The model is based on the following three principal physical processes:the heat conduction, pressure balance and power balance.

    (1) Heat conduction equation:

    whereTuandTtare the plasma temperature of upstream and target point, respectively.HereTe=Ti=Tis assumed,whereTeandTiare the electron and ion temperature,respectively.Lis the flux tube length or the field line connection length between upstream and target.quis the heat flux density entering into the upstream point.κ0eis electron parallel conductivity coefficient, which is set as constant withκ0e≈2000in the calculation.Here the ion heat conductivity is neglected as comparatively small and assume ions and electrons are thermally coupled.The conduction factorfcondis introduced for the parallel heat convection effects on heat transport,which will reduce the temperature gradient.

    (2) Pressure balance equation:

    wherenuandntare the plasma densities of upstream and target point, respectively.fmomis the momentum loss factor as the plasma flow toward the target point may lose momentum due to viscous forces,frictional collisions with neutrals and volume recombination.For the sheath-limited or the high-recycling regimes, the pressure keeps almost constant, givingfmom=1.

    (3) Power balance equation:

    whereqtis the heat flux density entering into the target point,γ is the sheath heat transmission coefficientγ≈7.cstis the ion sound speed,is the power loss factor for the volumetric power losses including radiation and charge exchange loss.

    In equations(1)–(3),L,γ andκ0eare specified constants.Settingnu,qu,fcond,fmom,fpoweras specified control parameters, i.e.the independent variables, the remaining three unknowns,nt,Tt,Tucan be solved by the classical method with the assumption ofTu72?Tt72[1]:

    and the particle flux density:

    Here the units:L(m),q(W m?2),T(eV),n(m?3)andeis the electronic charge,miis the ion mass.

    In this paper we directly solve the equations (1)–(3) by numerical method without any approximation.Combining equations (2) and (3) to obtain:

    SettingTuasx1andTtasx2,the problem turns to solve the following two-dimensional nonlinear equations:

    Equations (9) and (10) can be easily solved by Newton–Raphson method[9]with the initial guess for the roots which can be given by equations(4)and(5).FollowingntandΓtcan be easily deduced whenTuandTtare already known.

    To obtain precise connection length,the field line tracing method is used forLcalculation.In the cylindrical coordinate(φRZ, , ), the field line equation can be expressed as:

    whereBR,Bφ,BZare the magnetic field components in the cylindrical coordinate.

    With the magnetic field information given by EFIT[10],the field line trajectory can be traced by integrating the first order equations(11)–(13).Here the fourth order Runge–Kutta method is used for theLintegration.

    To extend the 0-dimensional two-point model to the main SOL region, a series of the upstream points as shown in figure 2 are set on the midplane from separatrix to the wall and the reciprocal target points are searched by the field line tracing method.Given the appropriate density and power decay length and other control parameters, the profiles of plasma density, temperature and particle flux density on the divertor target can be calculated by the model.

    The control parameters for EAST shots #84816–84818 are set as follows: the conduction factor is set asfcond=1 neglecting the influence of convection as comparatively small in the parallel conduction dominating heat transport.The momentum loss factor is set asfmom=1according to [11]since the temperature of target points is larger than 10 eV from experimental observation.Or the SOL plasma is characterized by high-recycling regime.To balance the modeling result with experiment, the power loss factor for the two points of upstream on separatrix/LCFS and striking/target point on divertor target is set asfpower,LCFS=0.5.Here we assume the loss of power is purely dissipated by impurity radiation given by [12]:

    whereczis the impurity concentration,Lzis the radiation

    coefficient.With the value offpower,LCFS,the value ofcz Lzcan be deduced and the profile of power loss factor for the series of the two points can be obtained by equation (14).

    The plasma density at LCFS is set asnLCFS=/3,whereis the line-averaged plasma density.Assuming the plasma density of upstream points located at the midplanenu(r) is exponential, thennu(r) can be estimated by [1]:

    Figure 2.A series of the two points with the target located at the Langmuir probes for the analysis of SOL plasma in EAST(left)and 3D view of the magnetic field line between upstream point located at separatrix and reciprocal target point (right) for EAST shot #84817.Here the upstream points are set on the midplane from separatrix to the wall along R direction.

    Figure 3.The connection length L between the series of upstream points and reciprocal target points for EAST shots #84816–84818.Here one dot represents a pair of two points in the modeling.

    The heat flux density entering the upstream point located at LCFS is estimated asqLCFS=50 MW m?2.Similarly,assuming the heat flux density of upstream points located at the midplanequ(r)is exponential,thenqu(r)can be estimated by:

    Here the radial power decay length and density decay length are assumed asλq= 0.75 cm andλn= 2×λqin the calculation according to the empirical value in EAST.

    4.Modeling result

    4.1.Equilibrium configuration dependence of connection length

    Figure 3 shows the connection lengthLbetween upstream points on the midplane and reciprocal target points on the UO divertor plate calculated by the field line tracing method for EAST shots #84816–84818 at =t6.1 s.The maximumLis located at the striking point position,which is the connection length between the upstream point on separatrix and target point, andLdecreases with increase of distance to UO divertor corner or moving the upstream point from separatrix to the wall alongRdirection.The difference of connection length profiles on divertor plate for the three shots is due to the different magnetic topologies, or different equilibrium configurations.

    4.2.Equilibrium configuration dependence of SOL plasma

    Compared with experimental observation, the profiles of plasma density, temperature and particle flux density on the UO divertor plate calculated by the two-point model for EAST shots #84816–84818 at =t6.1 s are shown in figure 4.Here the experimental data is measured by the Langmuir probe on the divertor plate.Overall, the profiles of plasma density,temperature and particle flux density on the divertor target are roughly similar to the experimental observation for the three shots.With equilibrium configuration change from#84816 to#84818, the peak positions of the profiles together with striking point move to the divertor corner for the modeling result,as the two-point model based on the magnetic topology of SOL and the constantLstrongly depends on the equilibrium configuration.The peak positions of the profiles of #84817 agree well with the experiment while the peak positions of other two shots have a little gap with experimental measurement.There are several possible reasons such as the influence of finite radius of ion gyro motion and the incidence angle of magnetic field line to the probe.The modeling target temperature where the distance to UO divertor larger than 15 cm is a little higher than the measurement, which may due to the neglect of charge exchange power loss effects.More details will be discussed in summary.

    Figure 4.Profiles of (a) particle flux, (b) plasma density and (c)plasma temperature at the UO divertor for EAST shots#84816–84818 with different equilibrium configurations.The symbols with dotted line are experimental data measured by Langmuir probe,and the solid curves are the 2-point modeling results.Here the temperature for the experimental data is electron temperature.

    5.Summary

    In this paper,we used a fast and light two-point model based on the field line tracing method to investigate the influence of equilibrium configuration on the characteristics of SOL plasma in EAST.The profiles of plasma density,temperature and particle flux density on the divertor target calculated by the model are in reasonable agreement with the experimental observation.With the equilibrium configuration change, the magnetic topology in SOL region will change leading to the change of connection length and striking point shift,resulting in different profiles of plasma parameters on divertor plate.The two-point model can catch the main information of magnetic topology effects, which is helpful to give a qualitative insight into physics of transport process in SOL plasma and interpret the experiments.Furthermore, the model could be used for the real-time analysis as it only needs a very few computing resources and could be combined with other equilibrium code such as HINT [13] to improve the equilibrium calculation in the open field line region.

    Due to relative simplicity of the two-point model, the complicated physical process in the SOL plasma such as the vertical transport, the plasma wall interaction cannot be simulated and the modeling result cannot be fully consistent with experimental observation.There is a little gap for the peak positions of plasma parameters profiles on divertor plate between the modeling and experimental observation.Neglecting the measuring error and the spatial resolution of probes,the finite radius of ion gyro motion and the incidence angle of magnetic field line to the probe could make the peak position of saturated ion flux measured by Langmuir probe not the same with modeling result.The gap between the peak heat flux position and the striking point will be counted with experimental database in the future work to correct the model.Moreover, the control parameters such as conduction factor,momentum and power loss factor can be automatically set by experience-based learning in the future analysis.

    Acknowledgments

    This work was performed on JSPS-CAS Bilateral Joint Research Projects, ‘Control of wall recycling on metallic plasma facing materials in fusion reactor’.This work was supported by the NIFS Collaboration Research Program(Nos.NIFS18KNST130 and NIFS20KNST171).Also, this work was partially supported by ‘PLADyS’, JSPS Core-to-Core Program, A.Advanced Research Networks.

    猜你喜歡
    直子
    聲音的森林
    爸爸是個理發(fā)師
    挪威的森林第十二章 告別之夜(二-2)
    挪威的森林第07章 魔力(13)
    挪威的森林第06章 綠茵藏艷(38)
    挪威的森林第06章 綠茵藏艷(15)
    挪威的森林第06章 綠茵藏艷(16)
    《挪威的森林》中的女性
    挪威的森林第06章 綠茵藏艷(10)
    挪威的森林第03章 黑暗中的裸體(2)
    最近的中文字幕免费完整| av.在线天堂| 三级毛片av免费| 欧美成人a在线观看| 国产精品国产高清国产av| 国产高清不卡午夜福利| 久久精品国产亚洲网站| 国产蜜桃级精品一区二区三区| 特级一级黄色大片| 国产aⅴ精品一区二区三区波| 国产成人aa在线观看| 国产精品免费一区二区三区在线| 99国产极品粉嫩在线观看| 99热这里只有是精品50| 禁无遮挡网站| videossex国产| 菩萨蛮人人尽说江南好唐韦庄 | 精品人妻视频免费看| 看非洲黑人一级黄片| 色吧在线观看| 色综合站精品国产| 国产精品久久久久久av不卡| 男人狂女人下面高潮的视频| 大香蕉久久网| 丰满的人妻完整版| 99久国产av精品国产电影| 国产av一区在线观看免费| 久久久久国产网址| 美女免费视频网站| 性插视频无遮挡在线免费观看| 欧美成人免费av一区二区三区| 欧美+日韩+精品| 成年版毛片免费区| 日本 av在线| 综合色av麻豆| 午夜福利在线观看吧| 欧美3d第一页| 国产探花在线观看一区二区| 变态另类成人亚洲欧美熟女| 日韩精品青青久久久久久| 亚洲av.av天堂| 中文字幕熟女人妻在线| 欧美一区二区国产精品久久精品| 国产高清有码在线观看视频| 一边摸一边抽搐一进一小说| 最新在线观看一区二区三区| 中文在线观看免费www的网站| 亚洲精品一卡2卡三卡4卡5卡| 男人舔女人下体高潮全视频| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品国产精品| 亚洲精品一卡2卡三卡4卡5卡| 男女做爰动态图高潮gif福利片| 日日摸夜夜添夜夜爱| 成人亚洲精品av一区二区| 成人高潮视频无遮挡免费网站| 国产一区二区三区av在线 | 亚洲最大成人手机在线| 免费一级毛片在线播放高清视频| 日本与韩国留学比较| 舔av片在线| 最近在线观看免费完整版| 国内精品久久久久精免费| 色哟哟哟哟哟哟| 国产国拍精品亚洲av在线观看| 好男人在线观看高清免费视频| 精品久久久久久久久久免费视频| 色哟哟哟哟哟哟| 亚洲精品粉嫩美女一区| 麻豆精品久久久久久蜜桃| 亚洲成av人片在线播放无| 久久久午夜欧美精品| 亚洲性夜色夜夜综合| 一边摸一边抽搐一进一小说| 99在线视频只有这里精品首页| 欧美成人一区二区免费高清观看| 乱系列少妇在线播放| 色尼玛亚洲综合影院| 亚洲第一电影网av| 搞女人的毛片| 日韩欧美 国产精品| 国产成人91sexporn| 国产精品日韩av在线免费观看| 搡老妇女老女人老熟妇| 亚洲aⅴ乱码一区二区在线播放| 美女cb高潮喷水在线观看| 欧美成人精品欧美一级黄| 国产激情偷乱视频一区二区| 女同久久另类99精品国产91| 婷婷色综合大香蕉| 丰满的人妻完整版| 久久人人爽人人爽人人片va| 偷拍熟女少妇极品色| 中国美女看黄片| 麻豆精品久久久久久蜜桃| 国内精品久久久久精免费| 久久亚洲国产成人精品v| 国产伦在线观看视频一区| 成人特级黄色片久久久久久久| 日韩一本色道免费dvd| 一进一出抽搐gif免费好疼| 久久久午夜欧美精品| 国产 一区精品| 久久久久久久久久黄片| 国产精品久久视频播放| 国产av麻豆久久久久久久| 日日啪夜夜撸| 亚洲精品影视一区二区三区av| 国产乱人偷精品视频| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲精华国产精华液的使用体验 | 丰满乱子伦码专区| 成年av动漫网址| 在线观看66精品国产| 晚上一个人看的免费电影| 国产精品国产高清国产av| 久久久久久伊人网av| 国产亚洲av嫩草精品影院| 黄色欧美视频在线观看| 国产精品久久久久久亚洲av鲁大| 91在线精品国自产拍蜜月| 给我免费播放毛片高清在线观看| 免费在线观看影片大全网站| 亚洲成人久久性| 又粗又爽又猛毛片免费看| 一a级毛片在线观看| 国产国拍精品亚洲av在线观看| 午夜福利在线观看吧| 晚上一个人看的免费电影| 日韩成人伦理影院| 久久热精品热| 国产精品一区二区三区四区久久| 18禁在线无遮挡免费观看视频 | 三级国产精品欧美在线观看| 免费av毛片视频| 日本色播在线视频| 国产精品久久久久久亚洲av鲁大| 亚洲中文日韩欧美视频| 亚洲中文字幕一区二区三区有码在线看| 天天躁夜夜躁狠狠久久av| 九九久久精品国产亚洲av麻豆| 九九热线精品视视频播放| 日本一二三区视频观看| 亚洲av电影不卡..在线观看| 91在线观看av| 久久精品91蜜桃| 国产三级在线视频| 亚洲熟妇中文字幕五十中出| 91久久精品国产一区二区成人| 毛片一级片免费看久久久久| 成人无遮挡网站| 日韩av在线大香蕉| 亚洲av熟女| 色视频www国产| av专区在线播放| 大香蕉久久网| 亚洲激情五月婷婷啪啪| 九色成人免费人妻av| 国产高清有码在线观看视频| 亚洲va在线va天堂va国产| 91精品国产九色| 伦精品一区二区三区| 村上凉子中文字幕在线| 99热只有精品国产| 天美传媒精品一区二区| 99热6这里只有精品| 午夜精品一区二区三区免费看| 三级男女做爰猛烈吃奶摸视频| 色吧在线观看| 亚洲最大成人手机在线| av在线老鸭窝| 成人三级黄色视频| 一区二区三区免费毛片| 久久久久精品国产欧美久久久| 成年版毛片免费区| 午夜a级毛片| 男女视频在线观看网站免费| 成熟少妇高潮喷水视频| 亚洲成av人片在线播放无| 嫩草影视91久久| 亚洲精品色激情综合| 最近中文字幕高清免费大全6| 毛片女人毛片| 丝袜喷水一区| 国产精品国产高清国产av| 老熟妇仑乱视频hdxx| 哪里可以看免费的av片| 亚洲精品影视一区二区三区av| 干丝袜人妻中文字幕| 亚洲精华国产精华液的使用体验 | 男女啪啪激烈高潮av片| 日日撸夜夜添| 丰满乱子伦码专区| 国产片特级美女逼逼视频| 一级毛片aaaaaa免费看小| 熟女电影av网| 丰满的人妻完整版| 中国美女看黄片| 亚洲天堂国产精品一区在线| 九九在线视频观看精品| 久久久久久伊人网av| 非洲黑人性xxxx精品又粗又长| 国产白丝娇喘喷水9色精品| 久久精品影院6| 中出人妻视频一区二区| 国产爱豆传媒在线观看| 一本久久中文字幕| 久久精品国产亚洲av涩爱 | 男人和女人高潮做爰伦理| 久久精品国产亚洲av涩爱 | av女优亚洲男人天堂| 黄色一级大片看看| 99九九线精品视频在线观看视频| 黄色欧美视频在线观看| 久久精品国产亚洲av香蕉五月| 三级毛片av免费| av天堂中文字幕网| 狠狠狠狠99中文字幕| 国产色婷婷99| 久久久成人免费电影| 三级毛片av免费| 欧美最新免费一区二区三区| 听说在线观看完整版免费高清| 国产又黄又爽又无遮挡在线| 精品国产三级普通话版| 国产精品伦人一区二区| 日韩人妻高清精品专区| 最近手机中文字幕大全| 又黄又爽又免费观看的视频| av在线天堂中文字幕| 丝袜喷水一区| 少妇被粗大猛烈的视频| 久久99热6这里只有精品| 免费观看在线日韩| 综合色丁香网| 麻豆精品久久久久久蜜桃| 91在线观看av| 亚洲成人精品中文字幕电影| 嫩草影院精品99| 久久国内精品自在自线图片| 一本精品99久久精品77| 无遮挡黄片免费观看| 免费大片18禁| 可以在线观看的亚洲视频| 天堂影院成人在线观看| 国产视频一区二区在线看| 久久精品国产亚洲av香蕉五月| 69av精品久久久久久| 久久精品国产亚洲av天美| 三级经典国产精品| 日韩欧美一区二区三区在线观看| 日韩欧美精品免费久久| 免费黄网站久久成人精品| 亚洲成人av在线免费| 久久久久久久久久黄片| 欧美成人a在线观看| 蜜桃久久精品国产亚洲av| av福利片在线观看| 国产不卡一卡二| 欧美xxxx黑人xx丫x性爽| 男女那种视频在线观看| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 特大巨黑吊av在线直播| 一级黄色大片毛片| 亚洲熟妇中文字幕五十中出| 99国产精品一区二区蜜桃av| 91久久精品电影网| 女生性感内裤真人,穿戴方法视频| 午夜激情福利司机影院| 亚洲国产精品合色在线| 在线免费观看的www视频| 可以在线观看的亚洲视频| 中文在线观看免费www的网站| 久久欧美精品欧美久久欧美| 91久久精品国产一区二区成人| 亚洲av中文字字幕乱码综合| 看非洲黑人一级黄片| 成人无遮挡网站| 亚洲欧美日韩高清在线视频| 国产视频一区二区在线看| 久久中文看片网| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| av在线蜜桃| 久久综合国产亚洲精品| 中文字幕免费在线视频6| 中文亚洲av片在线观看爽| 亚洲av.av天堂| 国产欧美日韩一区二区精品| 国产精品野战在线观看| 亚洲av中文av极速乱| 日韩欧美免费精品| 国产视频内射| 中文字幕人妻熟人妻熟丝袜美| 精品不卡国产一区二区三区| 亚洲精品色激情综合| 精品一区二区三区视频在线| 日韩一区二区视频免费看| 日本色播在线视频| 男女视频在线观看网站免费| 国产色爽女视频免费观看| 成人av一区二区三区在线看| 国产精品爽爽va在线观看网站| 成熟少妇高潮喷水视频| 欧美三级亚洲精品| 国产精品女同一区二区软件| 成年av动漫网址| 成人毛片a级毛片在线播放| 日韩欧美三级三区| 久久久久性生活片| 在线国产一区二区在线| 热99在线观看视频| 欧美成人a在线观看| 亚洲国产精品国产精品| 亚洲av中文av极速乱| 久久久久久大精品| 久久精品国产亚洲网站| 大香蕉久久网| 国产国拍精品亚洲av在线观看| 毛片女人毛片| 久久久久免费精品人妻一区二区| 久久国产乱子免费精品| 日本爱情动作片www.在线观看 | 国产探花极品一区二区| 搡老岳熟女国产| 成人午夜高清在线视频| 一卡2卡三卡四卡精品乱码亚洲| 国产白丝娇喘喷水9色精品| 18禁黄网站禁片免费观看直播| 一区二区三区四区激情视频 | 在线国产一区二区在线| 日韩中字成人| 最近手机中文字幕大全| 免费人成在线观看视频色| 18禁黄网站禁片免费观看直播| 久久久精品94久久精品| 亚洲一区高清亚洲精品| 内射极品少妇av片p| 色噜噜av男人的天堂激情| 一本一本综合久久| 亚洲无线观看免费| 97人妻精品一区二区三区麻豆| 黄色视频,在线免费观看| 99热这里只有精品一区| 国产视频一区二区在线看| 国产国拍精品亚洲av在线观看| 日本撒尿小便嘘嘘汇集6| 国产毛片a区久久久久| 波多野结衣高清作品| 亚洲成人久久爱视频| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品av在线| 亚洲熟妇中文字幕五十中出| 国产亚洲精品久久久com| 观看免费一级毛片| 国产精品1区2区在线观看.| 久久久午夜欧美精品| 亚洲av第一区精品v没综合| 国产色爽女视频免费观看| 国内精品美女久久久久久| 久久久久久伊人网av| 99久国产av精品国产电影| 亚洲欧美日韩高清在线视频| 22中文网久久字幕| 久久久久久大精品| 国产久久久一区二区三区| 久久久久久久久久成人| 91午夜精品亚洲一区二区三区| 欧美一区二区亚洲| 国产乱人偷精品视频| 12—13女人毛片做爰片一| 少妇的逼好多水| 色视频www国产| 国产免费一级a男人的天堂| 搡老妇女老女人老熟妇| 国产精品电影一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 女生性感内裤真人,穿戴方法视频| 能在线免费观看的黄片| 日韩国内少妇激情av| 少妇丰满av| 久久人人爽人人片av| 国产精品不卡视频一区二区| 日产精品乱码卡一卡2卡三| 18禁在线播放成人免费| 国产又黄又爽又无遮挡在线| 欧美一区二区精品小视频在线| 偷拍熟女少妇极品色| 夜夜夜夜夜久久久久| 伦理电影大哥的女人| 国产精品一及| 亚洲欧美清纯卡通| 欧美国产日韩亚洲一区| 亚洲色图av天堂| 国产精品人妻久久久影院| 少妇熟女欧美另类| 亚洲人成网站在线观看播放| 人人妻,人人澡人人爽秒播| 一区二区三区四区激情视频 | 欧美极品一区二区三区四区| 99久久久亚洲精品蜜臀av| 亚洲国产精品成人综合色| 观看免费一级毛片| 精华霜和精华液先用哪个| 给我免费播放毛片高清在线观看| 人妻制服诱惑在线中文字幕| 久久亚洲精品不卡| 嫩草影院入口| 亚洲第一电影网av| 亚洲欧美日韩东京热| 欧美+亚洲+日韩+国产| 精品久久国产蜜桃| 18禁裸乳无遮挡免费网站照片| 伦精品一区二区三区| 激情 狠狠 欧美| 成人美女网站在线观看视频| 精华霜和精华液先用哪个| 精品一区二区三区视频在线| 国产老妇女一区| av在线播放精品| 精品一区二区三区av网在线观看| avwww免费| 99久国产av精品国产电影| 国产伦在线观看视频一区| 国产欧美日韩精品亚洲av| 午夜福利成人在线免费观看| 男女啪啪激烈高潮av片| 久久九九热精品免费| 黄色日韩在线| 一夜夜www| 久久久欧美国产精品| 十八禁网站免费在线| 十八禁国产超污无遮挡网站| 亚洲成人中文字幕在线播放| av黄色大香蕉| 国产国拍精品亚洲av在线观看| 午夜日韩欧美国产| 99国产精品一区二区蜜桃av| 全区人妻精品视频| 日韩 亚洲 欧美在线| 亚洲美女黄片视频| 在线播放国产精品三级| 亚洲熟妇熟女久久| 国产伦在线观看视频一区| 少妇猛男粗大的猛烈进出视频 | 日本-黄色视频高清免费观看| 2021天堂中文幕一二区在线观| 亚洲av熟女| 成人精品一区二区免费| 五月玫瑰六月丁香| 女人被狂操c到高潮| 欧美三级亚洲精品| 亚洲七黄色美女视频| 可以在线观看毛片的网站| 男女下面进入的视频免费午夜| 麻豆乱淫一区二区| 亚洲一区二区三区色噜噜| 久久天躁狠狠躁夜夜2o2o| 精品少妇黑人巨大在线播放 | av天堂中文字幕网| 99国产精品一区二区蜜桃av| 欧美+日韩+精品| 国产一区二区三区在线臀色熟女| 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| 联通29元200g的流量卡| 国产精品一及| 国产精品永久免费网站| 久久国产乱子免费精品| 在线免费观看不下载黄p国产| 精品熟女少妇av免费看| videossex国产| 老熟妇乱子伦视频在线观看| 亚洲av成人av| 国产精品久久电影中文字幕| 日韩精品青青久久久久久| 能在线免费观看的黄片| 99久久久亚洲精品蜜臀av| 久久九九热精品免费| 小说图片视频综合网站| 亚洲五月天丁香| h日本视频在线播放| 毛片一级片免费看久久久久| 国产精品国产高清国产av| 两个人视频免费观看高清| 人妻制服诱惑在线中文字幕| 身体一侧抽搐| 国产成人a∨麻豆精品| 99久久精品一区二区三区| 欧美精品国产亚洲| 久久久久精品国产欧美久久久| 久久婷婷人人爽人人干人人爱| 国产视频内射| 国产精品福利在线免费观看| 女人被狂操c到高潮| 精华霜和精华液先用哪个| 精品久久久久久成人av| 亚洲av.av天堂| 国产高清三级在线| 日本精品一区二区三区蜜桃| 国产精品一区二区免费欧美| 深夜精品福利| 97超碰精品成人国产| 久久久久久久久久黄片| 人妻久久中文字幕网| 男人舔女人下体高潮全视频| 高清毛片免费看| 亚洲综合色惰| 啦啦啦韩国在线观看视频| 色哟哟·www| 97超碰精品成人国产| 我要搜黄色片| 欧美人与善性xxx| 69av精品久久久久久| 黄色配什么色好看| 两个人视频免费观看高清| 欧美不卡视频在线免费观看| 成年女人永久免费观看视频| 别揉我奶头 嗯啊视频| 男人舔女人下体高潮全视频| 中出人妻视频一区二区| 人人妻人人澡欧美一区二区| 免费看av在线观看网站| 搡老岳熟女国产| 老司机福利观看| 婷婷六月久久综合丁香| 天堂影院成人在线观看| 亚洲av美国av| 国产色婷婷99| 色哟哟·www| 在线播放无遮挡| 搡老妇女老女人老熟妇| 日韩国内少妇激情av| 狠狠狠狠99中文字幕| 婷婷亚洲欧美| 国产成人影院久久av| 国产成人精品久久久久久| 久久九九热精品免费| 国产高潮美女av| 热99re8久久精品国产| 日本与韩国留学比较| 老司机午夜福利在线观看视频| 男人舔女人下体高潮全视频| 精品久久久久久久久久久久久| 亚洲一级一片aⅴ在线观看| 丝袜喷水一区| 变态另类丝袜制服| 午夜视频国产福利| 狂野欧美激情性xxxx在线观看| 亚洲无线观看免费| 亚洲av第一区精品v没综合| 欧美不卡视频在线免费观看| 成人午夜高清在线视频| 亚洲成人av在线免费| 日韩亚洲欧美综合| 亚洲国产高清在线一区二区三| 性色avwww在线观看| 精品一区二区三区视频在线观看免费| 久久久色成人| 免费在线观看影片大全网站| 国产麻豆成人av免费视频| ponron亚洲| 国产片特级美女逼逼视频| 国内精品美女久久久久久| 在线免费十八禁| 天天躁夜夜躁狠狠久久av| 久久人人爽人人片av| 亚洲成人精品中文字幕电影| 97超级碰碰碰精品色视频在线观看| 亚洲成人精品中文字幕电影| 亚洲人成网站在线播| 国产成人91sexporn| 国产成人a区在线观看| 国产男人的电影天堂91| 亚洲av成人精品一区久久| 国产男人的电影天堂91| 99热精品在线国产| 狂野欧美激情性xxxx在线观看| 日日摸夜夜添夜夜添av毛片| 一夜夜www| 小说图片视频综合网站| 亚洲精品影视一区二区三区av| 国产熟女欧美一区二区| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看| 免费在线观看成人毛片| 少妇被粗大猛烈的视频| 国产色爽女视频免费观看| 亚洲无线在线观看| 精品福利观看| 毛片女人毛片| 一级a爱片免费观看的视频| 久久久久久久亚洲中文字幕| 亚洲国产精品成人综合色| 日本五十路高清| 午夜精品一区二区三区免费看| 91久久精品国产一区二区成人| 亚洲激情五月婷婷啪啪| 真实男女啪啪啪动态图| 国产精品女同一区二区软件| 成年女人看的毛片在线观看| 欧美3d第一页| 国产一区二区在线av高清观看| 少妇高潮的动态图| 麻豆乱淫一区二区| 国产精品,欧美在线| 大香蕉久久网| 国产麻豆成人av免费视频| 97超视频在线观看视频|