• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distinguish Fritillaria cirrhosa and non-Fritillaria cirrhosa using laser-induced breakdown spectroscopy

    2021-08-05 08:29:56KaiWEI魏凱XutaiCUI崔旭泰GeerTENG騰格爾MohammadNoumanKHANandQianqianWANG王茜蒨
    Plasma Science and Technology 2021年8期
    關鍵詞:騰格爾

    Kai WEI (魏凱), Xutai CUI (崔旭泰), Geer TENG (騰格爾),Mohammad Nouman KHAN and Qianqian WANG (王茜蒨)

    1 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China

    2 Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology,Beijing Institute of Technology, Beijing 100081, People’s Republic of China

    Abstract As traditional Chinese medicines, Fritillaria from different origins are very similar and it is difficult to distinguish them.In this study,the laser-induced breakdown spectroscopy combined with learning vector quantization (LIBS-LVQ) was proposed to distinguish the powdered samples of Fritillaria cirrhosa and non-Fritillaria cirrhosa.We also studied the performance of linear discriminant analysis,and support vector machine on the same data set.Among these three classifiers, LVQ had the highest correct classification rate of 99.17%.The experimental results demonstrated that the LIBS-LVQ model could be used to differentiate the powdered samples of Fritillaria cirrhosa and non-Fritillaria cirrhosa.

    Keywords: laser-induced breakdown spectroscopy (LIBS), learning vector quantization,chemometric models, robustness of model

    1.Introduction

    Fritillariabelongs to botanical medicine and has great medicinal value, which is used to moisten the lungs, relieve cough, reduce swelling, and remove phlegm [1].The therapeutic effects ofFritillariafrom different origins are different [2].Fritillaria cirrhosa, originated in Sichuan, is the treasure ofFritillariaand often used in clinical applications.Its price is the highest among all types ofFritillaria.Some illegal merchants use non-Fritillaria cirrhosato pretend to beFritillaria cirrhosain the market.The fruits ofFritillaria cirrhosaand non-Fritillaria cirrhosacan be identified using morphological identification methods.However, whenFritillariafruits are grounded into powders for use in medicine,they cannot be identified using morphological methods[3,4].

    Currently, some methods such as random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), DNA barcode, and express sequence tags (ESTs) are commonly used to identify the powdered samples ofFritillaria[5].However,these methods have their limitations.The identification results of different primers are not comparable, hence, it is difficult to standardize using the RAPD technology.The AFLP technique needs to prepare high purity DNA, which is not suitable for large-scale analysis and identification [6].It is difficult to identify related species using the DNA barcode technology [5].Due to the need for reverse transcriptase and cloning technology, EST technology is extremely difficult to operate [6].Moreover,these techniques are often performed under laboratory conditions.To develop a fast,in situmethod used in field, we proposed to use laser-induced breakdown spectroscopy(LIBS) to identify the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosa.

    LIBS has unique advantages such as high speed,in situ,micro-destructiveness, remote sensing capability, and simultaneous multi-element analysis [7], which has also been successfully applied in metals[8–10],plastics[11],glass[12],fingerprints [13], rocks [14, 15], plant tissue [16, 17], biological tissue [18, 19] and so on.

    In the field of traditional Chinese medicine(TCM),some researchers have also done a lot of research on LIBS.Donget al[20] analyzed ten elements including Mg, Al, Si, P, Ca,Ti, Mn, Fe, Co, and C inOriental Water Plantain Rhizomeusing LIBS.Liuet al[21]extracted the feature lines of LIBS spectra of four types of Tibetan medicines, namelyRenqing Mangjue,Renqing Changjue, 25-herb coral pills, and 25-herb pearl pills.When detecting heavy metals in TCM, Liet al[22] detected Pb inCoptis chinensisusing LIBS, and also determined the optimum experimental parameters.Wanget al[23] detected Cu inCoptis chinensis,aconite root, andporia cocosusing LIBS.These above-mentioned studies mainly focused on analyzing the element information of TCM.However, to our knowledge, few studies have been performed to classify the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosausing LIBS technology.

    In this study, LIBS combined with learning vector quantization (LIBS-LVQ) was proposed to distinguish the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosa, and the powders ofFritillaria thunbergiiandFritillaria pallidiflora,originated in Zhejiang and Xinjiang,were selected as samples of non-Fritillaria cirrhosa.As far as we know, LVQ has not been used in LIBS data analysis.LIBS combined with LVQ was used in the classification of TCM for the first time.As a comparison, we compared the classification results between the proposed method and the commonly used classifiers, linear discriminant analysis (LDA),and support vector machine(SVM).The correct classification rate (CCR) was used as an indicator to evaluate the performance of classifiers.

    2.Learning vector quantization

    The LVQ network proposed on the basis of competitive network structure is a supervised self-organizing neural network [24, 25].In the process of network learning, the supervised signals are added as the classification information to fine-tune the weights, and the output neurons are pre-specified.The LVQ neural network realizes the effective combination of competitive learning and supervised learning,which can achieve good results in classification problems [26].

    The structure diagram of the LVQ network is shown in figure 1,which consists of three layers of neurons,namely the input layer, the hidden layer (competition layer), and the output layer [27].The input and hidden layers are fully connected, while the hidden and output layers are partially connected.Each hidden layer neuron is only connected to one output layer neuron, and the connection weight is fixed at 1;and each output layer neuron is connected to multiple hidden layer neurons.

    When a vector is input, the weights of the winning neuron are fine-tuned.In the repeated competition learning,the weights corresponding to the hidden layer neurons are gradually adjusted to the cluster centers of the input sample space.When a hidden layer neuron is activated, its output state is 1, whereas the other hidden layer neurons have the output state of 0.Therefore, the state of the output layer neuron connected to the activated hidden layer neuron is 1,and the state of the remaining output layer neurons is 0.The output layer neurons (y1,y2, ···,yn) correspond to different types, thus achieving pattern recognition.

    The steps of the LVQ network learning algorithm are as follows:

    Step 1.Inputting the sample vector

    The vectorx=[x1, ···,xm]Tis input to the input layer.

    Step 2.Network initialization

    Learning rate η (η > 0) and the maximum number of iterations are set.The weightswijbetween the input and hidden layers are initialized to the midpoint of the input vectors.

    Step 3.Looking for winning neuron

    The distance between the input vector and the hidden layer neuron weight vector is calculated as follows:

    wherewijrepresents the weight between theithinput layer neuron and thejthhidden layer neuron.The hidden layer neuron with the smallest distance is selected as the winning neuron, which is denoted ashj*.

    Step 4.Updating connection weights

    The weights of the winning neuron are adjusted according to different rules.When the network classification result is consistent with the expected classification result, the formula of adjusting the weight is as follows:

    when the network classification result is inconsistent with the expected classification result, the formula of adjusting the weight is as follows:

    the weights of other non-winning neurons remain unchanged.

    Step 5.Judging the number of iterations

    The iterative process ends when the pre-set maximum number of iterations is reached;otherwise,it returns to step 3 to enter the next round of learning.

    3.Experimental setup and materials

    Figure 1.Structure diagram of LVQ network.

    Figure 2.Schematic diagram of the experimental setup.

    Fritillaria cirrhosa,Fritillaria thunbergii,andFritillaria pallidiflora, bought from the Bozhou TCM trading center,were used as samples in the experiment.FiftyFritillariafruits were purchased for each sample.The samples were grounded into powders using a TCM pulverizer (model: 800Y).Next,the powdered samples were glued to glass slides using double-sided tapes, as shown in figure 3.140 spectra were collected for each sample, each on a fresh position.100 spectra were used to build the model, and 40 spectra were used to test the model.

    4.Results and discussion

    4.1.LIBS spectra

    The typical LIBS spectra of each type of sample and doublesided tape are shown in figure 4.It can be seen from figure 4 that the intensities of some metal elemental lines are different from these three kinds ofFritillaria.For example, the intensity of Ca 422 nm in the spectrum ofFritillaria thunbergiiis greater than those in the spectra ofFritillaria cirrhosaandFritillaria pallidiflora.The intensities of Na 588 nm and Na 589 nm in the spectra ofFritillaria cirrhosaandFritillaria thunbergiiare greater than those in the spectrum ofFritillaria pallidiflora.The intensities of K 766 nm and K 769 nm in the spectra ofFritillaria thunbergiiandFritillaria pallidifloraare greater than those in the spectrum ofFritillaria cirrhosa.These macro metal elements inFritillariaare derived from the soil.The content and proportion of metal elements in soil from different regions are different.So, the content of macro metal elements inFritillariafrom different origins is also different.The corresponding wavelengths and the energy levels of these metal elements are listed in table 1.

    The LIBS spectra ofFritillariacontain elemental lines of Ca, Na, K, as well as molecular bands of CN and C2.The LIBS spectrum of the double-sided tape contains CN and C2molecular bands.In order to avoid interference from the LIBS spectrum of the double-sided tape, CN and C2molecular bands were not used forFritillariaclassification.We selected seven spectral lines with an intensity greater than 1000 for classification.

    The integral intensities of these seven spectral lines were calculated as the inputs of the classification models.In order to eliminate the fluctuation of spectra between each laser shot,we chose the maximum intensity line, K I 766.49 nm, to normalize the LIBS data.

    We first used the principal component analysis(PCA)to analyze the LIBS spectra of powderedFritillariasamples and observe the distribution of data.PCA is an unsupervised clustering method that has been applied in many fields[28–35].The scores of the first three principal components(PCs) of 100 spectra of each type of sample (300 spectra in total)are shown in figure 5.The accumulated variance of the first three PCs is 96.021%(PC1 44.536%;PC2 36.077%;PC3 15.407%).Figure 5 shows a significant overlap among these three types of data.The powdered samples ofFritillaria cirrhosa,Fritillaria thunbergii,andFritillaria pallidifloraare difficult to be distinguished using PCA.It can also be seen from figure 4 that the LIBS spectra ofFritillaria cirrhosaand non-Fritillaria cirrhosaare very similar.

    Figure 3.Powdered samples of(a)Fritillaria cirrhosa,(b)Fritillaria thunbergii, and (c) Fritillaria pallidiflora.

    4.2.Identification of Fritillaria cirrhosa and non-Fritillaria cirrhosa

    The powders ofFritillaria cirrhosaand non-Fritillaria cirrhosacould not be distinguished by the unsupervised method PCA.We tried to use some supervised methods including LVQ, LDA, and SVM to identify the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosa.

    The CCR was used as an indicator to evaluate the performance of classifiers which was calculated using the following formula:

    This was my third year selling fireworks for the Chaparral High School Band Booster Club, and I took pride in my knowledge of these treats for the eyes and ears. Thanks to my son, I know what every one of these does or at least what it was designed to do.

    in a classification process, the output has only two possibilities: positive (P) or negative (N).In our case, P corresponded toFritillaria cirrhosa, andNcorresponded to non-Fritillaria cirrhosa.There were four possible results for the binary classifier.A true positive (TP) or a false positive (FP)was observed if the predicted output wasFritillaria cirrhosaand the actual input wasFritillaria cirrhosaor non-Fritillaria cirrhosa, respectively.Conversely, a true negative (TN) or a false negative (FN) was observed if the predicted output was non-Fritillaria cirrhosaand the actual input was non-Fritillaria cirrhosaorFritillaria cirrhosa, respectively [36].

    Seven normalized characteristic spectral lines were used as inputs of the model,and two types of output corresponded to two different species.100 spectra ofFritillaria cirrhosaand 200 spectra of non-Fritillaria cirrhosa(100 spectra ofFritillaria thunbergiiand 100 spectra ofFritillaria pallidiflora) were used to build the model.40 spectra ofFritillaria cirrhosaand 80 spectra of non-Fritillaria cirrhosa(40 ofFritillaria thunbergiiand 40 ofFritillaria pallidiflora) were used to test the model.

    Figure 4.Typical LIBS spectra of (a) Fritillaria cirrhosa, (b)Fritillaria thunbergii, (c) Fritillaria pallidiflora and (d) doublesided tape.

    Table 1.Selected elements of LIBS spectra.

    We used the control variable method to optimize the number of the hidden layer neurons,the learning rate and the number of iterations of LVQ model.The particle swarm optimization algorithm was used to find the optimalcandgof SVM model.The LDA model has no parameters to be optimized.These classification models were used to classify the powdered samples and the optimal parameters, test time, and CCRs of these models are listed in table 2.

    LDA is a linear classifier.The CCR of LDA model was 97.5%.SVM can achieve linear and nonlinear classification by changing the kernel functions.When we used the nonlinear kernel function-radial basis kernel function,the CCR of SVM was 98.33%.In our case, this was a nonlinear case,which was suitable to be solved by a nonlinear method.LVQ is a nonlinear classifier that uses supervised learning to train competitive networks.Among these three classifiers,although the test time of LVQ was longer than those of SVM and LDA,the CCR of LVQ was the highest of 99.17%, and the identification result was the best.It indicated that LVQ was the most suitable classifier for our experimental data.

    4.3.Test for LVQ robustness

    To test the robustness of LVQ model to cope with the unknown samples not included in the training set [37],Fritillaria thunbergiiandFritillaria pallidiflorawere used as non-Fritillaria cirrhosarespectively to establish two models.100 spectra ofFritillaria cirrhosaand 100 spectra ofFritillaria thunbergiiwere used to build model I.100 spectra ofFritillaria cirrhosaand 100 spectra ofFritillaria pallidiflorawere selected to build model II.40 spectra ofFritillaria cirrhosa, 40 ofFritillaria thunbergii,and 40 ofFritillaria pallidiflorawere selected as the test set for model I and model II.The optimal model parameters and test results are shown in table 3.

    In table 3, for modeling withFritillaria cirrhosaandFritillaria thunbergii,the optimal model parameters were the hidden layer neurons of 5, learning rate of 0.01, and number of iterations of 500.The classification result was 99.17%.For modeling withFritillaria cirrhosaandFritillaria pallidiflora,the optimal model parameters were obtained as follows: the hidden layer neurons of 5, learning rate of 0.09, and number of iterations of 800.Using the optimal model, the identification result was also 99.17%.

    We used different training sets to train model I and model II and the same test set to test the data.In model I,one LIBS spectrum ofFritillaria thunbergiiwas erroneously classified asFritillaria cirrhosa,and so was model II.Although part of the test set was not included in the training set, the CCRs of LVQ model were the same as those of the LVQ model established with these kinds of samples as a training set.The experimental results showed that LVQ had good robustness.

    Figure 5.Scores of the first three principal components of Fritillaria cirrhosa, Fritillaria thunbergii, and Fritillaria pallidiflora.

    Table 2.The optimal parameters, test time, CCRs of Fritillaria cirrhosa and non-Fritillaria cirrhosa discrimination models.

    5.Conclusions

    This research mainly focused on the feasibility of LIBS technology to distinguishFritillaria cirrhosaand non-Fritillaria cirrhosa.The obvious LIBS emission lines of Ca,Na,K as well as the molecular bands of CN and C2could be observed from the LIBS spectra ofFritillariapowder samples.This indicated that the LIBS technology could well characterize the elemental composition ofFritillaria cirrhosaand non-Fritillaria cirrhosapowder samples.

    LIBS combined LVQ was proposed to distinguish the LIBS spectra of the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosa.Compared with the performance of LDA, and SVM models, LVQ had the best classificationresult of 99.17%.Moreover, the LVQ model showed good robustness,when part of the test data was not included in the training set,and the CCR was still 99.17%.The experimental results demonstrated that the proposed method could be used in identifying the powdered samples ofFritillaria cirrhosaand non-Fritillaria cirrhosaand had great application potential in medical drug identification.

    Table 3.Test for LVQ robustness and identification results of Fritillaria cirrhosa (FC) and non-Fritillaria cirrhosa (NFC) (non-Fritillaria cirrhosa includes Fritillaria thunbergii (FT) and Fritillaria pallidiflora (FP)).

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (No.62075011)and Graduate Technological Innovation Project of Beijing Institute of Technology (No.2019CX20026).

    猜你喜歡
    騰格爾
    Laser-induced breakdown spectroscopy for the classification of wood materials using machine learning methods combined with feature selection
    騰格爾: 希望養(yǎng)生版《卡路里》聽完 能讓你有健身的“沖動”
    祝您健康(2020年11期)2020-11-13 03:44:00
    騰格爾, 從老炮兒到萌叔
    “萌叔”騰格爾:唱好歌,種好樹
    騰格爾攜歌曲《馬蘭花》重新回歸樂壇
    青年歌聲(2018年2期)2018-10-20 02:03:12
    騰格爾:有人陪我立黃昏
    北廣人物(2018年29期)2018-07-30 02:47:00
    為守護媽媽心中的天堂 騰格爾用生命演繹《敕勒川》
    北廣人物(2018年11期)2018-06-21 02:33:44
    騰格爾:生活才是最偉大的導演
    潤·文摘(2016年9期)2016-08-04 04:57:08
    騰格爾:草原就是我的天堂
    用音樂創(chuàng)造奇跡
    人民周刊(2011年1期)2011-01-09 03:08:52
    国产在视频线精品| 成人手机av| 老司机影院毛片| 亚洲中文av在线| 捣出白浆h1v1| 日本精品一区二区三区蜜桃| 亚洲精品一二三| 18禁国产床啪视频网站| 久久精品熟女亚洲av麻豆精品| 国产一区有黄有色的免费视频| 久久久精品区二区三区| 亚洲熟女毛片儿| 欧美不卡视频在线免费观看 | 男女午夜视频在线观看| 免费在线观看影片大全网站| 久久国产精品影院| 成年人午夜在线观看视频| 九色亚洲精品在线播放| 欧美乱码精品一区二区三区| 最近最新中文字幕大全电影3 | 大香蕉久久网| 天堂动漫精品| 亚洲精品美女久久久久99蜜臀| 精品乱码久久久久久99久播| 国产xxxxx性猛交| av在线播放免费不卡| 精品视频人人做人人爽| 午夜福利欧美成人| 国产又爽黄色视频| 精品一区二区三卡| 国产高清激情床上av| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久,| 亚洲成人免费av在线播放| 久久国产精品男人的天堂亚洲| 巨乳人妻的诱惑在线观看| 国产一区在线观看成人免费| 国产在线一区二区三区精| av天堂在线播放| 男女午夜视频在线观看| 欧美在线黄色| 国产免费av片在线观看野外av| 久热这里只有精品99| 宅男免费午夜| 欧美黑人欧美精品刺激| 18禁国产床啪视频网站| 欧美黑人欧美精品刺激| 99国产精品免费福利视频| 久久精品国产亚洲av香蕉五月 | 免费在线观看亚洲国产| 精品久久久久久电影网| 久久精品亚洲av国产电影网| 这个男人来自地球电影免费观看| 亚洲国产欧美一区二区综合| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品一区二区三区在线| 国产蜜桃级精品一区二区三区 | 欧洲精品卡2卡3卡4卡5卡区| 丰满人妻熟妇乱又伦精品不卡| 最近最新中文字幕大全电影3 | 操美女的视频在线观看| av网站免费在线观看视频| 青草久久国产| 久久久精品国产亚洲av高清涩受| 老司机午夜福利在线观看视频| 亚洲精品国产一区二区精华液| 精品欧美一区二区三区在线| 法律面前人人平等表现在哪些方面| √禁漫天堂资源中文www| 久久热在线av| 亚洲中文日韩欧美视频| 亚洲自偷自拍图片 自拍| 午夜激情av网站| 国产无遮挡羞羞视频在线观看| 丝袜在线中文字幕| 涩涩av久久男人的天堂| 久久精品熟女亚洲av麻豆精品| 欧美黄色片欧美黄色片| 午夜福利免费观看在线| 一级片免费观看大全| 成年人黄色毛片网站| 精品久久久久久电影网| www.精华液| 国产人伦9x9x在线观看| 国精品久久久久久国模美| 亚洲av成人一区二区三| 曰老女人黄片| 动漫黄色视频在线观看| 在线观看www视频免费| 亚洲少妇的诱惑av| 国产亚洲精品第一综合不卡| 精品亚洲成国产av| 热99久久久久精品小说推荐| 天天添夜夜摸| 国产成人精品无人区| 一区在线观看完整版| 99久久综合精品五月天人人| xxx96com| 人妻丰满熟妇av一区二区三区 | 老司机深夜福利视频在线观看| 欧美不卡视频在线免费观看 | 欧美色视频一区免费| 中国美女看黄片| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久人妻精品电影| 交换朋友夫妻互换小说| 嫁个100分男人电影在线观看| 亚洲五月天丁香| 国产极品粉嫩免费观看在线| 欧美中文综合在线视频| 国产精品免费大片| 9191精品国产免费久久| 欧美最黄视频在线播放免费 | 男女之事视频高清在线观看| 久久香蕉激情| 两人在一起打扑克的视频| 久久久久视频综合| 国产精品一区二区免费欧美| 精品高清国产在线一区| a级毛片黄视频| 久久久精品区二区三区| 日韩成人在线观看一区二区三区| 亚洲少妇的诱惑av| 国产主播在线观看一区二区| 国产蜜桃级精品一区二区三区 | 国产亚洲欧美精品永久| 国产片内射在线| 人人澡人人妻人| 99国产精品99久久久久| 成人永久免费在线观看视频| 欧美精品亚洲一区二区| 久久久久国产精品人妻aⅴ院 | 51午夜福利影视在线观看| 黄片大片在线免费观看| 久久午夜亚洲精品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 狂野欧美激情性xxxx| 怎么达到女性高潮| 高清欧美精品videossex| 丰满饥渴人妻一区二区三| 精品久久久久久,| 在线免费观看的www视频| 99精品在免费线老司机午夜| 精品久久久久久,| 大型黄色视频在线免费观看| 亚洲一码二码三码区别大吗| 一进一出好大好爽视频| 国产又色又爽无遮挡免费看| 国产精品久久久人人做人人爽| 99国产精品免费福利视频| videosex国产| 国产精品国产av在线观看| 国产欧美日韩精品亚洲av| 成在线人永久免费视频| 人妻一区二区av| 国产精品av久久久久免费| 国产亚洲av高清不卡| 亚洲精品在线美女| 亚洲精品久久成人aⅴ小说| 久久香蕉国产精品| 69av精品久久久久久| 男人的好看免费观看在线视频 | 日韩欧美一区视频在线观看| 成年人免费黄色播放视频| av网站免费在线观看视频| 性少妇av在线| av天堂久久9| 一边摸一边抽搐一进一出视频| 久久久久久久国产电影| 一区福利在线观看| 亚洲av电影在线进入| 国产精华一区二区三区| 中文字幕色久视频| 怎么达到女性高潮| 亚洲国产精品合色在线| 午夜视频精品福利| 日本欧美视频一区| 久久香蕉国产精品| 中亚洲国语对白在线视频| 男人操女人黄网站| svipshipincom国产片| 亚洲午夜理论影院| 亚洲熟女毛片儿| 搡老岳熟女国产| 久久久久精品人妻al黑| 国产成人精品久久二区二区91| 一区在线观看完整版| 成人影院久久| 超碰成人久久| 国产99白浆流出| 亚洲国产看品久久| 亚洲av日韩精品久久久久久密| 黄片大片在线免费观看| 国产成人一区二区三区免费视频网站| 国产精品欧美亚洲77777| 女人爽到高潮嗷嗷叫在线视频| 国产高清视频在线播放一区| 精品一区二区三卡| 久久精品国产亚洲av高清一级| 亚洲人成电影免费在线| av天堂久久9| av不卡在线播放| 久久精品国产a三级三级三级| 天堂√8在线中文| 国产色视频综合| 久久影院123| 757午夜福利合集在线观看| 国产精品综合久久久久久久免费 | 午夜精品在线福利| 黄片播放在线免费| 精品少妇一区二区三区视频日本电影| 嫩草影视91久久| 1024香蕉在线观看| 亚洲熟妇熟女久久| 久久久国产精品麻豆| 欧美日韩亚洲综合一区二区三区_| 在线观看日韩欧美| 免费不卡黄色视频| 午夜91福利影院| 黑人巨大精品欧美一区二区蜜桃| 99精品欧美一区二区三区四区| 国产精品久久视频播放| 成熟少妇高潮喷水视频| 精品久久久精品久久久| 午夜精品国产一区二区电影| 91麻豆精品激情在线观看国产 | 狠狠婷婷综合久久久久久88av| 操美女的视频在线观看| 久久 成人 亚洲| 美女国产高潮福利片在线看| 亚洲欧美色中文字幕在线| 91av网站免费观看| 精品一区二区三区四区五区乱码| 黄片播放在线免费| 久久久久久免费高清国产稀缺| 久久亚洲精品不卡| 啪啪无遮挡十八禁网站| 欧美中文综合在线视频| 亚洲精品一卡2卡三卡4卡5卡| 久久精品熟女亚洲av麻豆精品| 亚洲七黄色美女视频| 精品久久蜜臀av无| 免费日韩欧美在线观看| 日韩成人在线观看一区二区三区| 精品国产一区二区三区久久久樱花| 在线观看免费午夜福利视频| 精品国内亚洲2022精品成人 | 人人妻人人爽人人添夜夜欢视频| 香蕉国产在线看| 啦啦啦在线免费观看视频4| 久久久久久人人人人人| 19禁男女啪啪无遮挡网站| 国产精品成人在线| 高清av免费在线| 岛国在线观看网站| avwww免费| 亚洲av欧美aⅴ国产| 国产亚洲欧美精品永久| 女性被躁到高潮视频| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美一区二区综合| 夫妻午夜视频| 香蕉久久夜色| 国产野战对白在线观看| 叶爱在线成人免费视频播放| 操美女的视频在线观看| 午夜福利影视在线免费观看| 国产野战对白在线观看| 欧美日韩乱码在线| 欧美黄色淫秽网站| 国产免费男女视频| 色在线成人网| 国产高清视频在线播放一区| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| av国产精品久久久久影院| 国产无遮挡羞羞视频在线观看| 美女高潮喷水抽搐中文字幕| 男人的好看免费观看在线视频 | 这个男人来自地球电影免费观看| 黑人猛操日本美女一级片| 亚洲色图av天堂| 80岁老熟妇乱子伦牲交| 久久精品成人免费网站| 丰满人妻熟妇乱又伦精品不卡| 变态另类成人亚洲欧美熟女 | 热re99久久国产66热| 精品电影一区二区在线| 视频区欧美日本亚洲| 亚洲一区高清亚洲精品| www日本在线高清视频| 精品国产一区二区三区四区第35| 一夜夜www| www.精华液| 国产精品99久久99久久久不卡| 国产精品免费一区二区三区在线 | 一级毛片女人18水好多| 中文字幕制服av| 久久中文字幕人妻熟女| 自拍欧美九色日韩亚洲蝌蚪91| www日本在线高清视频| 一区福利在线观看| 超色免费av| 亚洲欧美日韩高清在线视频| 自线自在国产av| 亚洲国产精品一区二区三区在线| 日韩欧美在线二视频 | 中国美女看黄片| 人妻丰满熟妇av一区二区三区 | 日韩视频一区二区在线观看| 国产精品亚洲av一区麻豆| 色婷婷久久久亚洲欧美| 黄色女人牲交| 91国产中文字幕| 亚洲av片天天在线观看| av天堂在线播放| 大型av网站在线播放| 亚洲欧洲精品一区二区精品久久久| 在线观看免费视频日本深夜| 精品乱码久久久久久99久播| 极品人妻少妇av视频| 高清欧美精品videossex| 精品国产一区二区三区四区第35| 超色免费av| 脱女人内裤的视频| 女人高潮潮喷娇喘18禁视频| 久久人妻熟女aⅴ| 国产高清videossex| 建设人人有责人人尽责人人享有的| 精品人妻在线不人妻| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 亚洲专区中文字幕在线| 国产有黄有色有爽视频| 老司机福利观看| 日本黄色视频三级网站网址 | 国产精品一区二区在线不卡| 精品国产超薄肉色丝袜足j| 99在线人妻在线中文字幕 | 国产亚洲一区二区精品| 久久久水蜜桃国产精品网| 国产精品亚洲av一区麻豆| 777久久人妻少妇嫩草av网站| 黄片小视频在线播放| 免费观看a级毛片全部| 黑人操中国人逼视频| 免费少妇av软件| 国产色视频综合| 亚洲av片天天在线观看| 亚洲第一av免费看| 久久精品成人免费网站| xxxhd国产人妻xxx| 国产一区有黄有色的免费视频| 久久久久国内视频| 免费一级毛片在线播放高清视频 | 99久久综合精品五月天人人| 久热爱精品视频在线9| 91麻豆精品激情在线观看国产 | 美女 人体艺术 gogo| 亚洲va日本ⅴa欧美va伊人久久| 国产91精品成人一区二区三区| 日本vs欧美在线观看视频| www日本在线高清视频| 欧美老熟妇乱子伦牲交| 人人妻人人澡人人看| 欧美激情久久久久久爽电影 | 真人做人爱边吃奶动态| 无遮挡黄片免费观看| 久久精品91无色码中文字幕| 精品少妇久久久久久888优播| av中文乱码字幕在线| 视频在线观看一区二区三区| 一区二区三区国产精品乱码| 亚洲精品久久成人aⅴ小说| 国产精品偷伦视频观看了| 中文字幕最新亚洲高清| 757午夜福利合集在线观看| 宅男免费午夜| 人人妻人人澡人人看| 亚洲色图av天堂| 99国产精品免费福利视频| 夜夜夜夜夜久久久久| 建设人人有责人人尽责人人享有的| 天天添夜夜摸| 搡老乐熟女国产| 久久国产亚洲av麻豆专区| 新久久久久国产一级毛片| 亚洲av欧美aⅴ国产| 国产精品电影一区二区三区 | 日本一区二区免费在线视频| 午夜激情av网站| 亚洲人成77777在线视频| 色尼玛亚洲综合影院| 自线自在国产av| 在线观看午夜福利视频| 在线观看舔阴道视频| 99re6热这里在线精品视频| 在线av久久热| 999久久久精品免费观看国产| 在线看a的网站| 黑人操中国人逼视频| 欧美老熟妇乱子伦牲交| 国产单亲对白刺激| 亚洲精品中文字幕在线视频| 男女下面插进去视频免费观看| 亚洲欧美日韩高清在线视频| 国产又色又爽无遮挡免费看| 欧美人与性动交α欧美精品济南到| 成年人午夜在线观看视频| 日韩熟女老妇一区二区性免费视频| 黑人猛操日本美女一级片| 午夜免费成人在线视频| 欧美亚洲 丝袜 人妻 在线| 国产精品乱码一区二三区的特点 | 757午夜福利合集在线观看| 国产一区二区三区综合在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕制服av| 亚洲精品自拍成人| 欧美乱色亚洲激情| 日本黄色日本黄色录像| www.精华液| 极品少妇高潮喷水抽搐| 欧美精品一区二区免费开放| av不卡在线播放| 国产欧美亚洲国产| 正在播放国产对白刺激| 国产在线观看jvid| av福利片在线| 国产野战对白在线观看| 久久人妻福利社区极品人妻图片| 国产aⅴ精品一区二区三区波| 欧美精品高潮呻吟av久久| 黄色片一级片一级黄色片| 久久久精品区二区三区| 精品免费久久久久久久清纯 | 国产精品一区二区在线观看99| 最近最新中文字幕大全电影3 | 精品国产美女av久久久久小说| 可以免费在线观看a视频的电影网站| 亚洲全国av大片| 91国产中文字幕| 九色亚洲精品在线播放| 99精国产麻豆久久婷婷| 精品一区二区三区av网在线观看| 80岁老熟妇乱子伦牲交| 人妻久久中文字幕网| 嫩草影视91久久| 黄片大片在线免费观看| 黄色成人免费大全| 国产伦人伦偷精品视频| 国产成人免费无遮挡视频| 1024香蕉在线观看| 黑人猛操日本美女一级片| 国产又爽黄色视频| 日本撒尿小便嘘嘘汇集6| 欧美日韩亚洲高清精品| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 国产精品自产拍在线观看55亚洲 | 19禁男女啪啪无遮挡网站| 久久久久久久久免费视频了| 午夜福利一区二区在线看| 色综合欧美亚洲国产小说| 免费看a级黄色片| 别揉我奶头~嗯~啊~动态视频| 手机成人av网站| 一个人免费在线观看的高清视频| 精品少妇久久久久久888优播| 国产一卡二卡三卡精品| 欧美日韩亚洲国产一区二区在线观看 | 亚洲色图综合在线观看| 1024香蕉在线观看| 黑人猛操日本美女一级片| 免费少妇av软件| 99热网站在线观看| 91字幕亚洲| 欧美日韩一级在线毛片| a级毛片黄视频| 中文字幕人妻丝袜制服| 色播在线永久视频| 大香蕉久久网| 精品一区二区三区av网在线观看| 日韩欧美一区二区三区在线观看 | 国产亚洲精品一区二区www | 一级毛片女人18水好多| 国产精品免费一区二区三区在线 | 国产精品1区2区在线观看. | 丰满人妻熟妇乱又伦精品不卡| 免费少妇av软件| 色婷婷av一区二区三区视频| 一进一出抽搐gif免费好疼 | 99热网站在线观看| 好男人电影高清在线观看| 成人黄色视频免费在线看| 建设人人有责人人尽责人人享有的| 亚洲av欧美aⅴ国产| 欧美日韩瑟瑟在线播放| 久久中文字幕一级| 亚洲av成人一区二区三| 久久精品人人爽人人爽视色| 国产1区2区3区精品| 亚洲中文av在线| 一级毛片高清免费大全| www.999成人在线观看| 久久国产精品人妻蜜桃| 日韩欧美一区二区三区在线观看 | 激情视频va一区二区三区| 99riav亚洲国产免费| 亚洲午夜精品一区,二区,三区| 一夜夜www| 亚洲专区字幕在线| 黑丝袜美女国产一区| 亚洲欧美一区二区三区久久| 午夜福利在线免费观看网站| 久久 成人 亚洲| videosex国产| 99久久99久久久精品蜜桃| 成人亚洲精品一区在线观看| 日日爽夜夜爽网站| 女人久久www免费人成看片| 亚洲国产中文字幕在线视频| 国产精品香港三级国产av潘金莲| 欧美一级毛片孕妇| 91成人精品电影| 日韩有码中文字幕| 天天躁夜夜躁狠狠躁躁| 黄色片一级片一级黄色片| 亚洲 国产 在线| 热99re8久久精品国产| 99国产极品粉嫩在线观看| 黄色片一级片一级黄色片| av线在线观看网站| 国产区一区二久久| 午夜福利视频在线观看免费| 久久久久国产一级毛片高清牌| 丁香欧美五月| av网站在线播放免费| 80岁老熟妇乱子伦牲交| 国产片内射在线| 精品人妻在线不人妻| 成人18禁高潮啪啪吃奶动态图| 亚洲,欧美精品.| 国产成人av激情在线播放| 99精品欧美一区二区三区四区| 午夜免费鲁丝| 女人久久www免费人成看片| 久久 成人 亚洲| 中文字幕另类日韩欧美亚洲嫩草| 高清欧美精品videossex| 在线看a的网站| 水蜜桃什么品种好| 又大又爽又粗| 精品国产亚洲在线| 欧美色视频一区免费| 飞空精品影院首页| 三级毛片av免费| 午夜福利视频在线观看免费| 成年女人毛片免费观看观看9 | 一夜夜www| 免费日韩欧美在线观看| 高清黄色对白视频在线免费看| 成年版毛片免费区| 18在线观看网站| 精品一区二区三区视频在线观看免费 | 欧美日韩亚洲高清精品| 国产精品美女特级片免费视频播放器 | 日韩欧美国产一区二区入口| 操美女的视频在线观看| 国产精品久久久av美女十八| 久久精品国产99精品国产亚洲性色 | 少妇被粗大的猛进出69影院| 久久人妻av系列| 18禁国产床啪视频网站| 免费在线观看日本一区| 在线免费观看的www视频| 一级片'在线观看视频| 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| 午夜福利,免费看| 啦啦啦视频在线资源免费观看| 国产精品自产拍在线观看55亚洲 | 俄罗斯特黄特色一大片| 国产在视频线精品| 高清黄色对白视频在线免费看| 一二三四在线观看免费中文在| 母亲3免费完整高清在线观看| 欧美成人午夜精品| 十八禁人妻一区二区| 亚洲精品在线美女| 成人黄色视频免费在线看| 国产深夜福利视频在线观看| 国产单亲对白刺激| 午夜福利一区二区在线看| 久久人人爽av亚洲精品天堂| 岛国毛片在线播放| 91九色精品人成在线观看| 在线看a的网站| 国产精品98久久久久久宅男小说| 久久精品亚洲av国产电影网| 一进一出抽搐gif免费好疼 | 亚洲第一欧美日韩一区二区三区| 久热这里只有精品99| 高潮久久久久久久久久久不卡| 亚洲精品国产精品久久久不卡| 亚洲av片天天在线观看| 五月开心婷婷网| 亚洲一区二区三区不卡视频| 亚洲aⅴ乱码一区二区在线播放 | 一级片免费观看大全| 日本黄色视频三级网站网址 | 精品电影一区二区在线| 国产成人欧美在线观看 | 久久久国产成人精品二区 |