• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology*

    2021-07-30 07:42:52ShuangSun孫爽JianHuanWang王建桓BaoTongZhang張寶通XiaoKangLi李小康QiFengCai蔡其峰XiaAn安霞XiaoYanXu許曉燕JianJunZhang張建軍andMingLi黎明
    Chinese Physics B 2021年7期
    關(guān)鍵詞:張建軍黎明小康

    Shuang Sun(孫爽) Jian-Huan Wang(王建桓) Bao-Tong Zhang(張寶通) Xiao-Kang Li(李小康)Qi-Feng Cai(蔡其峰) Xia An(安霞) Xiao-Yan Xu(許曉燕) Jian-Jun Zhang(張建軍) and Ming Li(黎明)

    1Department of Micro-Nanoelectronics,Peking University,Beijing 100871,China

    2Beijing Laboratory of Future IC Technology and Science,Peking University,Beijing 100871,China

    3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: sub-10 nm fin,molecular beam epitaxy,defects,mobility

    1. Introduction

    As the IC technology node approaches 3 nm and below,surface roughness scattering of the channel greatly limits the carrier mobility and seriously affects the on-state current of FinFETs.[1-8]However, traditional plasma dry etching methods inevitably introduce a large number of random defects on the top and sidewalls of the fin channel, which consequently degrades the carrier mobility. As an alternative to top-down fin technology,the bottom-up process enables the atoms to be arranged according to the principle of minimum system energy and thus to form an almost perfect lattice structure close to its intrinsic properties. However, the traditional catalytic growth suffers from metal contaminations and imprecise positioning, so it is not suitable for large-scale integration.[9-16]Other researchers have also studied the molecular beam epitaxy(MBE)growth of nanowires on a non-patterned substrate,but the control of size and position is quite difficult.[17-28]Recently, some experiments on MBE growth have been conducted on 30-nm scale patterned Si templates.[29,30]However,there is scant research on the vertical MBE growth with sub-10 nm patterns,which is required for future nanoscale FinFET technology.

    In this work, we successfully fabricated uniform sub-10 nm Si fin arrays as the template and studied the MBE behavior dependent on the fin pattern width and orientations.The lattice quality of the MBE grown Si fin was statistically investigated by high resolution transmission electron microscope (TEM) and compared to the dry etched Si fin patterns.The kinetic mechanism of sub-10 nm patterned MBE was also proposed.

    2. Experiments and results

    The fin-type Si template was firstly patterned by standard e-beam lithography using hydrogen silesquioxane(HSQ)photoresist on(100)oriented 4-inch bulk silicon wafers.The vertical fin arrays were then formed by reactive ion etching with an etching depth of 70 nm. The fin widths varied from 10 nm to 50 nm and there were two fin orientations of〈100〉and〈110〉.The in-line critical dimension scanning electron microscope(CD SEM)picture and TEM cross-sectional view of the sub-10 nm fin are shown in Figs.1(a)and 1(b). The top width of the fin is 12 nm and the middle width is only 7.4 nm. The lattice structure after etching is also shown in Fig. 1(c) by high resolution TEM(HRTEM).On the sidewall,an amorphous defective region was observed. With the fast Fourier transform in Fig. 1(d), the crystalline structure of the ultra-thin fin was damaged.

    After fin formation,we used diluted HF acid(HF:H2O=1:20)to remove the HSQ photo-resist and natural oxide layer on the surface of the Si fins. Within a short queue time,the sample was loaded into the MBE chamber to avoid reoxidation in the atmosphere. The base vacuum of the chamber was set to be 10-9torr. Then H2O(g)and CO2/N2were desorbed from the surface of the sample at 200°C and 400°C,respectively. After that, we turned on the silicon source, and deposited a 20 nm silicon buffer layer to suppress initial defects and a 30nm silicon epitaxial layer at a substrate temperature of 350°C and 400°C,separately.

    The MBE grown fin arrays were then inspected by topview SEM as shown in Figs. 2 and 3. It can be seen that the fins became wider because of the lateral growth. For the original 10 nm fins,the grown planes closed as a ridge line on the top surface to indicate saturated epitaxy from both sidewalls.For the original 30 nm and 50 nm fins,however,plateaus were formed on the top surface due to insufficient epitaxy. Compared to the〈110〉-oriented fin,the lateral growth of the〈100〉-oriented fin was relatively larger. With careful examination of the surface morphology,no threading dislocation or stack fault induced pits or line defects are observed in Figs. 2 and 3. It can then be inferred that few defects transfer from the etched fin to epitaxial layer.

    Fig.1. CD SEM(a),cross-sectional TEM(b),zoom-in HRTEM(c)and FFT images (d) of the sub-10 nm fin fabricated by e-beam lithography with an exposure dose of 24 C/cm2 and reactive ion etching.

    Fig.2. SEM images of fin patterns along〈100〉direction after MBE growth with initial widths of 10 nm(a),30 nm(b)and 50 nm(c).

    Fig.3. SEM images of fin patterns along〈110〉direction after MBE epitaxy with the initial widths of(a)10 nm,(b)30 nm and(c)50 nm.

    To further confirm the amount and quality of MBE growth, cross-sectional TEM images were taken and are shown in Figs.4 and 5. It was found that the vertical growth by MBE was obtained on the〈100〉fin patterns with the minimum width of 27 nm and height of 70 nm. The difference between the〈100〉and〈110〉fins was the lateral grown facet.On the sidewall is there still(001)plane grown,indicating vertical growth with a little lateral expansion,which may be due to a non-ideally perpendicular molecular beam to the wafer plane and atom diffusion on the sidewalls. For〈110〉fins,the saturated (111) and (311) facets were observed on the sidewalls. Such orientation-dependent facet formation is similar to the process of metal-organic chemical vapor deposition(MOCVD).[31,32]The epitaxy growth fully closed on the original 10 nm fins to form a ridge line on the top surface in Fig.3(a). From the viewpoint of electron mobility,the grown fins on〈100〉patterns can contribute more benefits.

    It is worth noting that no matter where the fin orients,the MBE growth can be divided into two parts, with one starting from the trench bottom and the other starting from the top surface. Such growth behavior can prevent the grown fins from being affected by the plasma damage on the original fin patterns. In fact, we did not observe any dislocation or faults inside the grown layer as shown in the HRTEM images of Figs.4(d)-4(f)and 5(d)-5(f). Combined with the fast Fourier transform,(200)crystal lattice with 2.6 ?A lattice constant for〈100〉-oriented fin patterns and (111) crystal lattice with 3.15 ?A lattice constant for〈110〉-oriented fin patterns were confirmed, both of which correspond to the observed facet configurations in the TEM images.

    Fig.4. Cross-sectional TEM images(a)-(c), zoom-in HRTEM images(d)-(f)and FFT images(g)-(i)of〈100〉-oriented fins after vertical MBE growth with the original widths of 10 nm(a)(d)(g),30 nm(b)(e)(h)and 50 nm(c)(f)(i).

    Fig.5. Cross-sectional TEM images(a)-(c), zoom-in HRTEM images(d)-(f)and FFT images(g)-(i)of〈110〉-oriented fins after vertical MBE growth with the original widths of 10 nm(a)(d)(g),30 nm(b)(e)(h)and 50 nm(c)(f)(i).

    In order to further confirm the defect distribution in the MBE grown silicon fin, cross-sectional TEM, HRTEM and FFT were employed to analyze the〈110〉epitaxial fin with initial 50 nm width at left,center and right positions along the longitudinal direction. As shown in Fig. 6, it was found that the defects were confined at the buffer layer/substrate and top layer/buffer layer interfaces. All the confined defects are away from the surface of the top layer and thus impact little on the mobility of the field-effect transistor. In the region close to the surface of the top layer,HRTEM and FFT were performed to confirm the perfect single crystalline lattice quality.

    Fig.6. Cross-sectional TEM(a)-(c),zoom-in HRTEM(d)-(f)and FFT images(g)-(i)of〈110〉-oriented fin at left(a)(d)(g),center(b)(e)(h)and right(c)(f)(i)positions along the longitudinal direction.

    The lateral expansion amount almost linearly depends on the original pattern width as shown in Fig. 7. It can be seen that the average unilateral growth on〈110〉patterns is less than that on〈100〉patterns due to the saturated facet growth on the sidewalls. As the original pattern width increases, the unilateral growth decreases for both〈110〉and〈100〉orientations.

    Fig.7. Unilateral growth thickness dependent on the original fin width after MBE growth.

    The lateral broadening will become a concern on the short channel effect of FinFET.In order to reduce the lateral broadening of epitaxial fins,one method is to add the tightly neighboring fins as dummies to screen the beam incidence onto the sidewall of the target fins so as to avoid the atom piling up. In the meantime,decreasing the process temperature can also result in enhanced vertical growth and reduced density of threading dislocations according to the reference.[33]Therefore, we can combine the layout design and process optimization to reduce the broadening effect.

    On other hand,the uniformity of vertical MBE growth is another concern for future VLSI manufacturing. Actually,the uniformity is related not only to the epitaxial growth,but also the lithography and dry etching processes for the fin pattern preparation. The non-uniformity of the unilateral broadening amount was investigated within vertical grown fin arrays with different widths and orientations. For〈110〉fins with initial widths of 10 nm, 30 nm, and 50 nm, the non-uniformities are 4.8%, 4.6% and 2.9%, respectively. For〈100〉fins with the same initial widths, the non-uniformities are 4.4%, 3.4%and 4.7%, respectively. The results are quite reasonable and acceptable for the VLSI manufacturing. With the restricted layout design,the growth uniformity would be expected to be further improved as well as the reduced broadening effect.

    3. Discussion

    Fundamentally,the MBE growth process can be regarded as the result of atom deposition and diffusion.

    As shown in Fig.8,at stage 1 of growth,the silicon atoms were deposited on the surface by molecular beam. Accompanied by atom deposition,some of them diffuse on the surface to seek the energy minimum points to form a stable facet. The silicon atom diffusion on the(110)plane is slower than that on the (100) plane as a result of higher areal atom density. The atom diffusion from the top surface to the sidewall in〈110〉patterns was then reduced so that the unilateral growth thickness was less than that in〈100〉patterns.

    Fig. 8. The three stages of growth kinetics of MBE on (a) 〈100〉 and (b)〈110〉-oriented fnis.

    At stage 2,more atoms diffuse and accumulate at the pattern edge to form vertical growth. At the same time, some facets start to get into shape. For〈100〉patterns, the top surface and sidewalls are the orthogonal(100)planes so that some high-Miller-index facet(0xy)is formed, rather than the(111)facet. For〈110〉patterns,however,(111)facets can be stably formed between the orthogonal(100)plane of the top surface and the(110)plane of sidewalls.

    Once the facet is formed, the growth gets into stage 3

    where the vertical growth starts and the facets get into a closed ridge line at the top of the fins. Compared to the (0xy) facet,the atom diffusion on the(111)facet is slower so that the facet saturation on〈110〉patterns is reached earlier.Before the facet closing,more atoms will diffuse on the plateaus on the top for wider fins,so that the unilateral growth is less than that in narrower fins.

    4. Conclusion

    In this study, high quality Si layer growth on sub-10 nm fins by MBE was proposed to fabricate defect-free channels for future integrated technology beyond the 3 nm node. Due to the balance of vertical deposition and lateral diffusion of silicon atoms,fully vertical growth can be obtained on〈100〉patterns on a(100)wafer without dislocation and sidewall damages. Finally,27 nm width and 70 nm height vertical fins were fabricated by patterned MBE at a temperature of 400°C.

    Acknowledgment

    The authors are grateful for support by the Frontiers Science Center for Nano-optoelectronics, Peking University,100871,Beijing,China.

    猜你喜歡
    張建軍黎明小康
    我家的小康
    黃河之聲(2022年6期)2022-08-26 06:46:12
    Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity*
    黎明之光
    我家的小康
    心聲歌刊(2021年6期)2021-02-16 01:12:34
    頸椎病患者使用X線平片和CT影像診斷的臨床準確率比照觀察
    以非常之功,赴小康之路
    金橋(2020年9期)2020-10-27 02:00:02
    美若黎明
    青年歌聲(2019年9期)2019-09-17 09:02:54
    小康之路
    金橋(2019年10期)2019-08-13 07:15:26
    A NOTE ON MALMQUIST-YOSIDA TYPE THEOREM OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS?
    巧用反例在概率論教學中的作用
    夜夜夜夜夜久久久久| 少妇高潮的动态图| 久久久久免费精品人妻一区二区| 亚洲三级黄色毛片| 两性午夜刺激爽爽歪歪视频在线观看| 成人综合一区亚洲| 欧美高清成人免费视频www| 成年av动漫网址| 精品久久久久久久久久久久久| 99久久人妻综合| 亚洲自偷自拍三级| av国产免费在线观看| 成人毛片a级毛片在线播放| 天堂中文最新版在线下载 | 亚洲av免费高清在线观看| 国产中年淑女户外野战色| 人妻系列 视频| 日韩 亚洲 欧美在线| 亚洲成a人片在线一区二区| 极品教师在线视频| 亚洲不卡免费看| 亚洲人成网站在线观看播放| 国产亚洲精品av在线| 久久这里有精品视频免费| 国产毛片a区久久久久| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av二区三区四区| 免费高清在线观看日韩| 婷婷色麻豆天堂久久| 少妇被粗大猛烈的视频| 美女国产视频在线观看| 久久久精品94久久精品| 精品卡一卡二卡四卡免费| 黄色视频在线播放观看不卡| 久久久久久久大尺度免费视频| 91成人精品电影| 婷婷色综合www| 久久久国产欧美日韩av| 午夜激情久久久久久久| 26uuu在线亚洲综合色| 国产精品人妻久久久久久| 久久久a久久爽久久v久久| 亚洲四区av| 免费观看av网站的网址| 日本黄色日本黄色录像| 中文乱码字字幕精品一区二区三区| 日韩中文字幕视频在线看片| 一级毛片 在线播放| 搡女人真爽免费视频火全软件| 有码 亚洲区| 嫩草影院入口| 嘟嘟电影网在线观看| 久久精品熟女亚洲av麻豆精品| 又黄又爽又刺激的免费视频.| 国产午夜精品一二区理论片| 国产成人精品福利久久| 欧美精品一区二区大全| 精品久久久久久久久亚洲| 国产一区亚洲一区在线观看| 黄片播放在线免费| 热99国产精品久久久久久7| 亚洲av不卡在线观看| 亚洲av成人精品一区久久| 精品酒店卫生间| 国产永久视频网站| 七月丁香在线播放| 国产精品三级大全| 91精品伊人久久大香线蕉| 国产亚洲一区二区精品| 国产欧美日韩一区二区三区在线 | 有码 亚洲区| 精品少妇内射三级| 午夜激情福利司机影院| 晚上一个人看的免费电影| 欧美97在线视频| 亚洲国产精品999| 人妻夜夜爽99麻豆av| 精品国产一区二区久久| 亚洲欧洲日产国产| 亚洲欧美日韩卡通动漫| 国产亚洲精品久久久com| 欧美3d第一页| 99久久精品一区二区三区| 成人亚洲欧美一区二区av| 欧美亚洲 丝袜 人妻 在线| 亚洲美女视频黄频| 精品久久久久久久久av| 视频区图区小说| 国产成人91sexporn| 国产av国产精品国产| 国产成人av激情在线播放 | 男人添女人高潮全过程视频| 久久久欧美国产精品| 日韩,欧美,国产一区二区三区| 中文天堂在线官网| 最黄视频免费看| 国产 一区精品| 夫妻午夜视频| 一本大道久久a久久精品| 国产精品久久久久久精品电影小说| 九九爱精品视频在线观看| 国产不卡av网站在线观看| 日本黄大片高清| 亚洲精品自拍成人| 一级片'在线观看视频| 美女内射精品一级片tv| a级毛色黄片| av专区在线播放| 色网站视频免费| av网站免费在线观看视频| 亚洲综合色惰| 亚洲精品久久午夜乱码| 最近2019中文字幕mv第一页| 亚洲三级黄色毛片| 精品国产一区二区三区久久久樱花| 69精品国产乱码久久久| 久久午夜综合久久蜜桃| 国产精品久久久久成人av| 蜜桃国产av成人99| 考比视频在线观看| 中文字幕人妻丝袜制服| 国产极品粉嫩免费观看在线 | 久久精品国产鲁丝片午夜精品| 伦精品一区二区三区| 满18在线观看网站| 亚洲av成人精品一二三区| 国产高清国产精品国产三级| 亚洲国产最新在线播放| 狠狠精品人妻久久久久久综合| 精品人妻熟女毛片av久久网站| 天堂中文最新版在线下载| 亚洲国产av影院在线观看| 精品视频人人做人人爽| 欧美日韩视频精品一区| 亚洲欧美精品自产自拍| 欧美精品一区二区大全| 这个男人来自地球电影免费观看 | 日本色播在线视频| 国产片内射在线| 99九九在线精品视频| 久热久热在线精品观看| 日本欧美视频一区| 欧美最新免费一区二区三区| 一区在线观看完整版| 99九九线精品视频在线观看视频| a级毛片黄视频| 久久精品国产鲁丝片午夜精品| 欧美+日韩+精品| 国产精品 国内视频| 亚洲国产欧美在线一区| 日日摸夜夜添夜夜爱| 婷婷色av中文字幕| 国产不卡av网站在线观看| 91久久精品电影网| 久久久久久伊人网av| 日本爱情动作片www.在线观看| 狂野欧美白嫩少妇大欣赏| 久久狼人影院| 午夜福利网站1000一区二区三区| 亚洲伊人久久精品综合| 久久精品久久精品一区二区三区| 国产亚洲一区二区精品| 97超碰精品成人国产| 久久免费观看电影| 桃花免费在线播放| 18禁在线无遮挡免费观看视频| 成年av动漫网址| 亚洲在久久综合| 国产成人精品无人区| 精品午夜福利在线看| av电影中文网址| 久久久久久人妻| 一个人看视频在线观看www免费| 欧美精品一区二区免费开放| 久久影院123| 国产老妇伦熟女老妇高清| 老女人水多毛片| 波野结衣二区三区在线| 欧美人与性动交α欧美精品济南到 | 青春草亚洲视频在线观看| a 毛片基地| 久久婷婷青草| 国产女主播在线喷水免费视频网站| 亚洲国产av新网站| 高清不卡的av网站| 超碰97精品在线观看| 久久av网站| 久久久亚洲精品成人影院| 大码成人一级视频| 亚洲综合精品二区| 久久精品国产a三级三级三级| 中文天堂在线官网| 又大又黄又爽视频免费| 在线观看免费日韩欧美大片 | 欧美人与性动交α欧美精品济南到 | 久久国产亚洲av麻豆专区| 老司机亚洲免费影院| 老女人水多毛片| 色网站视频免费| 亚洲av.av天堂| 好男人视频免费观看在线| 伊人久久国产一区二区| 国产精品一区二区三区四区免费观看| 夫妻性生交免费视频一级片| 成人国产麻豆网| xxxhd国产人妻xxx| 中文字幕亚洲精品专区| 国产精品一区二区三区四区免费观看| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 国产精品久久久久久久久免| 国产精品99久久久久久久久| 91aial.com中文字幕在线观看| 人人澡人人妻人| 久久精品国产亚洲网站| 成人午夜精彩视频在线观看| 久久热精品热| 一级片'在线观看视频| 亚洲国产色片| 午夜免费观看性视频| 久久国产精品大桥未久av| 99九九在线精品视频| 99热这里只有是精品在线观看| 久久久久久人妻| 成人亚洲欧美一区二区av| 最新中文字幕久久久久| 啦啦啦视频在线资源免费观看| 久久久久久人妻| 全区人妻精品视频| 精品午夜福利在线看| 最近2019中文字幕mv第一页| 少妇的逼水好多| a级毛片在线看网站| 免费久久久久久久精品成人欧美视频 | 午夜日本视频在线| 黑人欧美特级aaaaaa片| 麻豆精品久久久久久蜜桃| 日本黄色日本黄色录像| 亚洲综合色惰| 好男人视频免费观看在线| 国产爽快片一区二区三区| 久久女婷五月综合色啪小说| 七月丁香在线播放| 精品一区二区三区视频在线| 国产精品国产av在线观看| 成人黄色视频免费在线看| 国产成人a∨麻豆精品| 亚洲人成网站在线播| 最近中文字幕2019免费版| 日韩制服骚丝袜av| av电影中文网址| 97超碰精品成人国产| 国产一区二区三区av在线| 91在线精品国自产拍蜜月| 高清毛片免费看| 最近中文字幕2019免费版| 大片电影免费在线观看免费| 99热全是精品| 欧美+日韩+精品| 免费观看a级毛片全部| 日本爱情动作片www.在线观看| 中文字幕免费在线视频6| 欧美最新免费一区二区三区| 中国三级夫妇交换| 日韩 亚洲 欧美在线| 91精品一卡2卡3卡4卡| 最新的欧美精品一区二区| 黄色怎么调成土黄色| 久久久久久久久久久丰满| 天堂中文最新版在线下载| 国国产精品蜜臀av免费| 精品人妻熟女av久视频| 91精品三级在线观看| 日本色播在线视频| 观看美女的网站| 蜜桃久久精品国产亚洲av| 你懂的网址亚洲精品在线观看| 一级毛片电影观看| 免费看av在线观看网站| 亚洲国产日韩一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品电影小说| 成人午夜精彩视频在线观看| 国产精品无大码| 国语对白做爰xxxⅹ性视频网站| 国产在线一区二区三区精| 制服丝袜香蕉在线| 日韩强制内射视频| 国产成人精品无人区| 美女福利国产在线| 精品亚洲成国产av| 欧美日韩一区二区视频在线观看视频在线| 18禁裸乳无遮挡动漫免费视频| 五月天丁香电影| 蜜桃在线观看..| 一区二区av电影网| 日韩欧美精品免费久久| 国产免费又黄又爽又色| 久久热精品热| 一级二级三级毛片免费看| 内地一区二区视频在线| 国产精品久久久久久久电影| 一级毛片电影观看| 成人二区视频| 老司机影院毛片| 在线观看三级黄色| 狂野欧美白嫩少妇大欣赏| 99久久精品一区二区三区| 91aial.com中文字幕在线观看| 高清不卡的av网站| 十八禁高潮呻吟视频| 91久久精品电影网| 国产视频首页在线观看| 纯流量卡能插随身wifi吗| 22中文网久久字幕| 亚洲精品久久午夜乱码| 国产日韩欧美在线精品| 2022亚洲国产成人精品| 少妇猛男粗大的猛烈进出视频| 日本91视频免费播放| 一级,二级,三级黄色视频| 男男h啪啪无遮挡| 丝袜喷水一区| 成人毛片60女人毛片免费| 黑人欧美特级aaaaaa片| 日日啪夜夜爽| 亚洲精品亚洲一区二区| 亚洲国产最新在线播放| 国产免费又黄又爽又色| 国产 一区精品| 夜夜骑夜夜射夜夜干| 欧美人与善性xxx| 国产一区亚洲一区在线观看| 人妻系列 视频| 亚洲人成77777在线视频| 伦理电影免费视频| 国产乱人偷精品视频| 国产女主播在线喷水免费视频网站| 黑人欧美特级aaaaaa片| 国产高清三级在线| 一级,二级,三级黄色视频| 久久韩国三级中文字幕| 久久婷婷青草| 免费播放大片免费观看视频在线观看| 国产精品熟女久久久久浪| 热99久久久久精品小说推荐| 欧美日韩精品成人综合77777| 在线 av 中文字幕| 黄色配什么色好看| 久久久国产一区二区| 飞空精品影院首页| 天堂中文最新版在线下载| 日本av手机在线免费观看| 丝袜喷水一区| 日本午夜av视频| 午夜激情福利司机影院| 久久久欧美国产精品| 日本vs欧美在线观看视频| 久久精品久久久久久久性| 成人亚洲欧美一区二区av| 国产精品一区二区在线不卡| av黄色大香蕉| 蜜臀久久99精品久久宅男| 久久午夜福利片| 亚洲性久久影院| 国产男女内射视频| 99久久人妻综合| 91aial.com中文字幕在线观看| 国产精品一区www在线观看| 看十八女毛片水多多多| 有码 亚洲区| 国产在线一区二区三区精| 亚洲精品亚洲一区二区| 国模一区二区三区四区视频| 亚洲精华国产精华液的使用体验| 亚洲av男天堂| 成人二区视频| 大话2 男鬼变身卡| 黄色怎么调成土黄色| 国产成人精品一,二区| 日本与韩国留学比较| 大香蕉97超碰在线| 国产在线视频一区二区| 国产国拍精品亚洲av在线观看| 超碰97精品在线观看| 亚洲欧美精品自产自拍| 亚洲成人手机| 99国产精品免费福利视频| 午夜久久久在线观看| 午夜精品国产一区二区电影| 两个人的视频大全免费| 中文字幕av电影在线播放| 亚洲欧美成人精品一区二区| 少妇人妻久久综合中文| 99热全是精品| 男女免费视频国产| 亚洲,一卡二卡三卡| 人妻 亚洲 视频| 观看av在线不卡| 亚洲人与动物交配视频| 国产男女超爽视频在线观看| 黄色怎么调成土黄色| 精品久久久噜噜| 制服诱惑二区| 春色校园在线视频观看| 久久鲁丝午夜福利片| 黄片播放在线免费| 精品亚洲成国产av| 午夜日本视频在线| 丰满少妇做爰视频| 岛国毛片在线播放| 中文字幕最新亚洲高清| 久久狼人影院| 日本wwww免费看| 成人二区视频| 久久热精品热| 精品99又大又爽又粗少妇毛片| 黑丝袜美女国产一区| 丰满迷人的少妇在线观看| 大又大粗又爽又黄少妇毛片口| 国产一区二区在线观看av| 欧美日韩亚洲高清精品| 18在线观看网站| 夜夜骑夜夜射夜夜干| 成人免费观看视频高清| 久久久久人妻精品一区果冻| 国产视频内射| 午夜福利网站1000一区二区三区| 国产成人av激情在线播放 | 国产伦理片在线播放av一区| 有码 亚洲区| 午夜福利视频在线观看免费| 69精品国产乱码久久久| 在线观看www视频免费| 国产女主播在线喷水免费视频网站| 亚洲婷婷狠狠爱综合网| 成年人免费黄色播放视频| av天堂久久9| 久久狼人影院| 精品久久久久久电影网| 欧美成人精品欧美一级黄| 日产精品乱码卡一卡2卡三| 一本一本综合久久| 女人久久www免费人成看片| 色视频在线一区二区三区| 国产精品不卡视频一区二区| 亚洲综合色网址| 99久久人妻综合| 人人妻人人澡人人看| 嘟嘟电影网在线观看| 欧美日韩成人在线一区二区| 97精品久久久久久久久久精品| 大话2 男鬼变身卡| 能在线免费看毛片的网站| 欧美激情极品国产一区二区三区 | 精品卡一卡二卡四卡免费| 99国产精品免费福利视频| 国产高清国产精品国产三级| 日韩精品免费视频一区二区三区 | h视频一区二区三区| 黑丝袜美女国产一区| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 日日撸夜夜添| 超碰97精品在线观看| 蜜臀久久99精品久久宅男| 中文乱码字字幕精品一区二区三区| .国产精品久久| 在线观看免费高清a一片| 伦精品一区二区三区| 一边亲一边摸免费视频| 亚洲av在线观看美女高潮| 69精品国产乱码久久久| 天堂俺去俺来也www色官网| 91久久精品电影网| 亚洲精品国产av成人精品| 久久女婷五月综合色啪小说| 综合色丁香网| 少妇被粗大的猛进出69影院 | 亚洲国产毛片av蜜桃av| .国产精品久久| 日日摸夜夜添夜夜爱| 久久久精品免费免费高清| 一级片'在线观看视频| 国产一区有黄有色的免费视频| 久久精品久久久久久噜噜老黄| 啦啦啦啦在线视频资源| 成人手机av| 熟女人妻精品中文字幕| 满18在线观看网站| 久久午夜福利片| 国产精品一区二区在线观看99| 久久精品久久精品一区二区三区| 国产成人午夜福利电影在线观看| 国产精品三级大全| 午夜免费观看性视频| 国产男人的电影天堂91| 久久久久久人妻| 精品国产一区二区久久| 另类精品久久| 最新的欧美精品一区二区| 国产精品一二三区在线看| 欧美三级亚洲精品| 国产在视频线精品| 大陆偷拍与自拍| 99九九在线精品视频| 亚洲av二区三区四区| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 免费大片18禁| 亚洲精华国产精华液的使用体验| 欧美少妇被猛烈插入视频| h视频一区二区三区| 精品久久国产蜜桃| 国产免费又黄又爽又色| 亚洲精品色激情综合| 新久久久久国产一级毛片| 99热网站在线观看| 极品少妇高潮喷水抽搐| 亚洲伊人久久精品综合| 亚洲av不卡在线观看| 国产一区二区三区av在线| 久久久精品区二区三区| 欧美日韩成人在线一区二区| 秋霞在线观看毛片| 国产黄色免费在线视频| 韩国av在线不卡| 国产极品天堂在线| 51国产日韩欧美| 欧美精品人与动牲交sv欧美| 少妇人妻精品综合一区二区| 亚洲精品日韩在线中文字幕| 少妇 在线观看| 这个男人来自地球电影免费观看 | 日韩欧美一区视频在线观看| a级毛片免费高清观看在线播放| 80岁老熟妇乱子伦牲交| av一本久久久久| 18+在线观看网站| 中文字幕最新亚洲高清| 97超碰精品成人国产| 搡老乐熟女国产| 不卡视频在线观看欧美| xxxhd国产人妻xxx| 免费大片黄手机在线观看| 亚洲美女黄色视频免费看| 久久久久国产精品人妻一区二区| 午夜福利网站1000一区二区三区| 国产精品嫩草影院av在线观看| 母亲3免费完整高清在线观看 | 大陆偷拍与自拍| 插阴视频在线观看视频| 最近中文字幕2019免费版| 国产在视频线精品| 你懂的网址亚洲精品在线观看| 精品国产国语对白av| 免费看不卡的av| 国产精品一区二区在线不卡| 国产精品99久久久久久久久| 久久国产亚洲av麻豆专区| 亚洲成人av在线免费| 一区二区三区免费毛片| 九草在线视频观看| 午夜老司机福利剧场| 狠狠婷婷综合久久久久久88av| 春色校园在线视频观看| 国产女主播在线喷水免费视频网站| 亚洲国产精品成人久久小说| 欧美精品人与动牲交sv欧美| 日韩一区二区三区影片| 午夜av观看不卡| 亚洲人成网站在线播| 亚洲怡红院男人天堂| 免费黄网站久久成人精品| 国产成人91sexporn| 大又大粗又爽又黄少妇毛片口| 男女高潮啪啪啪动态图| 国产不卡av网站在线观看| 综合色丁香网| 老司机影院毛片| 精品一区二区三区视频在线| 视频在线观看一区二区三区| 免费看av在线观看网站| 国产国语露脸激情在线看| 伊人久久国产一区二区| 九色成人免费人妻av| 日韩成人伦理影院| 热re99久久国产66热| 免费观看在线日韩| 美女国产高潮福利片在线看| 亚洲一区二区三区欧美精品| 天堂俺去俺来也www色官网| 精品久久久久久久久亚洲| 国产在线一区二区三区精| 日韩三级伦理在线观看| 午夜免费观看性视频| 亚洲精品久久午夜乱码| 免费av不卡在线播放| 在现免费观看毛片| 91午夜精品亚洲一区二区三区| 久久精品久久久久久久性| 精品国产一区二区久久| 一级爰片在线观看| 精品一区在线观看国产| 免费大片黄手机在线观看| 亚洲婷婷狠狠爱综合网| 我的老师免费观看完整版| 一边摸一边做爽爽视频免费| 69精品国产乱码久久久| 伊人久久国产一区二区| √禁漫天堂资源中文www| 中国美白少妇内射xxxbb| 久久 成人 亚洲| 日本黄大片高清| 三级国产精品片|