• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation*

    2021-07-30 07:42:36XiaoweiLu陸小微CongyingWang王聰穎XuankeZeng曾選科JiaheLin林家和YiCai蔡懿QinggangLin林慶鋼HuangchengShangguan上官煌城ZhenkuanChen陳振寬ShixiangXu徐世祥andJingzhenLi李景鎮(zhèn)
    Chinese Physics B 2021年7期
    關(guān)鍵詞:選科上官林家

    Xiaowei Lu(陸小微) Congying Wang(王聰穎) Xuanke Zeng(曾選科) Jiahe Lin(林家和)Yi Cai(蔡懿) Qinggang Lin(林慶鋼) Huangcheng Shangguan(上官煌城)Zhenkuan Chen(陳振寬) Shixiang Xu(徐世祥) and Jingzhen Li(李景鎮(zhèn))

    1Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Physics and Optoelectronics Engineering,Shenzhen University,Shenzhen 518060,China

    2Collaborative Innovation Center for Optoelectronic Science and Technology,International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology(Ministry of Education),Institute of Microscale Optoelectronics,Shenzhen University,Shenzhen 518060,China

    Keywords: ultrafast optics,optical rotatory dispersion,spectral polarization-encoding,spectral manipulation

    1. Introduction

    It is well known that ul trashort light pulses have inherent broad spectral bandwidth, which provides us with great convenience to implement spectral manipulation or shaping.Consequently, femtosecond pulse shaping has attracted an increased interest due to its important applications in many fields including ultrahigh speed communications,[1,2]ultrafast optical signal processing and computing,[3]ultrafast nonlinear processes,[4,5]ultrafast optical imaging,[6,7]precise optical metrology,[8,9]quantum coherent control,[10]high efficient terahertz pulse generation,[11]and chirped-pulse amplification(CPA).[12,13]Until now,many methods for femtosecond pulse shaping have been reported. For example, spatial light modulator[14]and fiber Bragg grating[15]were used for ultrahigh speed communications,whereas etalons,[16]wavelengthdependent reflectors,[17]birefringent plates,[18]and acousticoptical programmable dispersive filters[19]were applied in CPA systems to alleviate spectral narrowing effects.

    This paper proposes a novel way to implement femtosecond pulse shaping, which, similar to the spectral timeencoding in CPA, is a kind of spectral polarization-encoding(SPE)for ultrashort light pulses. SPE can be realized simply by allowing a linearly polarized broadband light pulse through some optically active crystals to induce some optically rotatory dispersions(ORD).As a result,all spectral components of the ultrashort pulse are still linearly polarized but their polarization directions can be manipulated by controlling the ORD.This SPE can be decoded by compensating ORD,which is important for some of its applications,e.g.,broadband light pulse amplification,spectral shaping,and so on.

    2. Theory and proof-in-principle experiments

    An ultrashort light pulse has inherently very affluent spectral components. For a transform-limited pulse,when it propagates through a disperser,it becomes a chirped pulse,and its affluent spectrum allows its temporal duration to be stretched.As a result, in different temporal slices, one will “see” different frequencies inside the chirped pulse. This process can be regarded as a spectral time-encoding. Traditionally, these spectral components have an identical polarization. However,polarization is one of the most important freedoms of a light pulse,so it is very interesting to encode the polarization direction of all the spectral components of an ultrashort light pulse,which,fortunately,can be simply realized by inducing ORD.

    As we know,a linearly polarized light beam can be seen as the overlap of left circularly polarized and right circularly polarized components. When the beam goes through an ORD medium,the two components will travel with different velocities. Consequently,the output beam still keeps its linear polarization but rotates its polarization direction by a wavelengthdependent angle with regard to that of the input beam due to ORD. Consequently, we can actualize SPE for a broadband pulse. One of the simple ways to induce ORD is to allow a light pulse through some optically active substances.It is an entirely passive method and very easy to be aligned,meanwhile,unlike the magnetic ORD due to Faraday effect,it works without need of any applied fields.

    When a linearly polarized beam at wavelength ofλpasses through an optically active substance with thickness ofL,the rotating angle can be expressed as

    Hereα(λ)andη(λ)stand for rotating angle and rotation coefficient,respectively. Both of them are wavelength-dependent.One can see that ORD stems fromη(λ)is proportional to the thicknessL. Accordingly, if the input is a linearly polarized pulse with broad bandwidth, after through an ORD crystal,different spectral components of the pulse correspond to different polarizations,i.e., SPE. Obviously, we can manipulate SPE orα(λ)by changingη(λ)or/andLof an optically active crystal.

    The ORD generated by this way is compensable, so our SPE can be decoded,which is important in some applications,e.g.broadband pulse amplification. One way to compensate ORD is to allow the broadband pulses with ORD through another optically active substance which has a rotation coefficient of-η(λ) and an equal thickness of the crystal to generate ORD(Fig.1(a)). Fortunately,this compensation is practicable because some of the optically active substances,e.g.,quartz, have two mirror-symmetrical configurations: the lefthanded and the right-handed, which have opposite values ofη(λ) with each other. We call this decoding method as LR method. Another way to realize ORD compensation is shown in Fig.1(b)including only single crystal puls a mirror,which we call SCM method. There, the ORD is generated from the first pass through a piece of rotatory crystal,and can be compensated automatically to bounce the beam back through the same crystal again with a mirror.

    Besides these two ways,we propose another way to compensate ORD, which, as shown in Fig. 1(c), includes double complete same ORD plates plus a broadband half-wave plate(BHW) between the two plates, and we call this decoding as DCW method. It is an all-transmission method which combines the advantages of the two other methods.Here the BHW is firstly aligned so that its fast or slow axis along with the polarization direction of input pulse without the ORD crystal(ORDC)there.Suppose the ORDC will rotate the polarization direction of its incident light pulse with an angle ofα(λ),the light beam will pass though the BHW following the ORDC with a cross angle ofα(λ)between its polarization direction and the fast or slow axis of the BHW.After passing through the BHW, the rotation angle becomes-α(λ) orπ-α(λ), which means that the ORD can be removed by inducing another rotatory angleα(λ),or passing through another complete same ORD crystal as the first one.If the fast axis of BHW is at an arbitrary angleθrelative to the input polarization,after passing through BHW,the polarization direction is 2θ-α(λ),SPE can also be decoded by the second ORDC,except the polarization direction rotates to 2θ.

    Fig.1. The ways to compensate ORD:(a)using another crystal with mirrorsymmetrical configuration(LR),(b)reflecting the light beam back to the substance(SCM),or(c)using two complete same ORD plates plus a broadband half-wave plate (DCW). ORDC: ORD crystal; ORDC+ and ORDC-: two ORD plates with the same ORD value but opposite signs;BHW:broadband half-wave plate;M:mirror;HR:0° high reflective mirror.

    Proof-in-principle experiments are implemented for three decoding methods as shown in Fig.1,using a commercial femtosecond laser oscillator(Mirca-5, Coherent Co.) as the light resource. The oscillator exports 80 MHz, 780 nm, 400 mW pulse chain with a tunable bandwidth from 60 nm to 100 nm.A piece of left-handed quartz with a thickness of 20 mm is used for encoding. The rotation coefficient of quartz at 0.78 μm is about 12 deg/mm,and the rotating angle at 0.78 μm isα(0.78 μm)=241 deg. After encoding, the wavelengthdependent rotating angle of the polarization is shown by the purple line in Fig. 2. When wavelength varies from 0.72 to 0.88 μm, the rotating angle decreases from 285.1 deg to 187.6 deg,close to a linear trend. Another 20-mm quartz with the opposite/same chirality is used for decoding in the configures of LR or DCW,respectively. All the elements,including the mirrors and the wave plate, are using broadband design.By applying a linear polarizer and a spectrograph (HR4000,Ocean Optics,Inc.) at the output side in the three designs respectively,the output spectra(solid lines)and the corresponding transmissions(dotted lines)are shown in Fig.2. The thick gray line stands for the input spectrum. It is obvious that the compensated spectra coincide well with the original one and their transmissions are nearly constant of 1(normalized),which shows that all three designs can operate well for SPE decoding.

    Fig. 2. Experimental ORD compensation results for LR (blue lines), SCM(red lines),and DCW(green lines),solid lines are spectra versus wavelength and dotted lines are transmission versus wavelength.

    3. Applications

    3.1. Spectra shaping

    It is well known the transmission of a linear polarizer is polarization-dependent, so SPE by the aid of a polarizer can work to manipulate wavelength-dependent transmission,thereby realize the spectra shaping of broadband pulses.

    As shown in Fig.3,when a linearly polarized broadband pulse passes through a BHW and an ORDC, each spectral component of the pulse has its own polarization direction due to ORD,thereby has its own transmission. Here the BHW before the ORDC is used to rotate the polarization directions of all input spectral components with an identical angle (-α0),thus the spectral component (λ0) with the maximal transmission can be chosen flexibly.The rotatory angle after the ORDC and BHW is

    Accordingly,the spectral/polarization-dependent transmission of the linear polarizer can be expressed as

    Figure 4(a) shows the transmission curvesT(λ) of the setup in Fig. 3versuswavelength (μm) by using a quartz plate as ORD crystal (black:L=5.0 mm; red:L=10.0 mm; blue:L= 15.0 mm; green:L= 20.0 mm; purple:L= 40 mm)when settingα0atλ=0.75 μm. We can see for a fixedα0,the transmission bandwidth decreases with the thickness of the quartz crystal. Accordingly, if using a wedge pair instead of the quartz plate to make the thickness to be alterable,the setup in Fig. 3 can work as a bandwidth-tunable filter. Figure 4(b)shows the shift of the transmission peaks by simply rotating the BHW at differentα0with a 40-mm-quartz as an encoding ORDC.It can be seen obviously that there are multiple transmission peaks in Fig.4(b),and for normal use of the filter,the adjacent interval should be larger than the pulse width. Applying such a spectra shaper to our laser, wavelength-tunable output can easily be realized. Confirmatory experiments are carried out where an 80-MHz, 2.5-nJ pulse with a tunable bandwidth from 60 nm to 100 nm is used as the input and the results are shown in Fig.4(c), where the experimental output spectra (dots) are consistent well with the calculative results(lines). Although the transmissions have multi-peak structure,however, the “free spectrum range”, or the interval between adjacent peaks,is up to 156 nm,which is much wider than the spectral width(72.1 nm)of the laser we used here. Therefore,output spectra present single-peak structures, and the bandwidth is as broad as about 43 nm.

    Fig. 3. The setup for spectral shaping. BHW: broadband half-wave plate;ORDC:optically rotatory dispersion crystal.

    Fig. 4. (a) The transmission versus wavelength (in unit μm) by using a piece of quartz as ORD crystal (black: L=5.0 mm; red: L=10.0 mm; blue:L=15.0 mm; green: L=20.0 mm; purple: L=40.0 mm) for a fixed α0 =α (0.75 μm); and (b) by using a 40-mm-thick quartz for different α0: α(0.800 μm),α (0.791 μm),α (0.765 μm),α (0.781 μm)or α (0.774 μm);(c)theoretical and experimental results of the spectrum versus wavelength(μm).

    In addition, the ORD profile can be altered by combination of multiple ORD crystals. The black line in Fig. 5 presents the spectral-dependent rotatory angle of a quartz plate with a thickness of 4.5 mm. One can see that from visible to near-infrared(near-IR),as those of many optically active substances, the|α(λ)| of quartz decreases with wavelength.However,this monotonous trend can be changed by using the combination of multiple ORD crystals. For example, if the combination consists of an AgGaS2plate and a quartz plate with a thickness ratio of 1:5.1,the ORD will exhibit paraboliclike profile(the green line in Fig.5). The blue or red line corresponds to a thickness ratio of 1:4.0 or 1:6.0. Obviously,the ORD profile can be altered by changing the thickness ratio.

    Fig.5.The ORD α(λ)of a piece of quartz crystal(black line),a combination consisting of an AgGaS2 and a quartz plate with different thickness ratios of the AgGaS2 to quartz: 1:5.1(green line),1:6.0(red line)or 1:4.0(blue line).

    Fig.6.The transmission versus wavelength(in unit μm)by using a combination of an AgGaS2 plate and a quartz plate for(a)different α0: 0.50(purple),0.94 (red), 3.5 (blue) or 0.0 (dark cyan) with fixed LA: LQ (1:5.1) and LA(2.0 mm), and (b) for different LA: LQ: 1:4.0 (black), 1:4.5 (red) or 1:10.0(blue)when α0=0.0.

    In Fig. 6(a), for a given thickness ratio of the AgGaS2to the quartz plates (LA:LQ=1:5.1), the parabolic ORD profile(black line)can be used to achieve not only a flat(purple line,α0=0.5)or saddle shaped(blue line,α0=3.5),but also upward(dark cyan line,α0=0.0)or downward(red line,α0=0.94)parabolic transmission from 0.6 μm to 1.0 μm by tuningα0. For a givenα0,e.g.α0=0.0 as shown in Fig.6(b),the black, red or blue line corresponds to the different thickness ratio of the AgGaS2to the quartz plates:LA:LQ=1:4.0,1:4.5 or 1:10.0(blue),respectively,which means the transmission can also be altered by changingLA:LQ.

    From the above discussions,one can see SPE allows us to flexibly manipulate spectral shaping by inducing some spectral polarization-dependent loss,which can be realized through choosing a proper combination of multi-ORD crystals, their thicknesses (the thickness ratio), and a broadband half-wave plate.

    3.2. Polarization-encoded chirped pulse amplification

    SPE can also help us to manipulate laser gain spectra by the aid of polarization-dependent gain. As we know, some laser crystals have broad polarization-dependent gain spectra,so SPE can be used to control the output spectrum from some lasers. It motivates us to use SPE to suppress efficiently spectral narrowing which is one of the most important but challenging works for a CPA system. Until now,the most popular laser crystal used to boost ultrashort pulse power is Ti:S whose fluorescence bandwidth is broader than 0.2 μm.[20]Even so,the serious spectral narrowing still occurs for a seed with fewcycle pulse duration. Fortunately, the Ti:S has polarizationdependent gain, which allows us to flexibly control amplified spectrum by SPE.As is known,the gain cross-section of Ti:S crystal for theπ-polarized beam is about 2.4 times as large as that for theσ-polarized. Traditionally,the Ti: S amplifiers are designed to amplify their seed pulses withπ-polarization for maximizing laser gain. In order to avoid the spectral narrowing,efforts are usually made to suppress the laser gain for the spectral components around the central wavelength of the seeded pulses, meanwhile, to increase the gain for those far away from the central wavelength. Correspondingly,by use of a BHW and a block of quartz crystal,we applied our SPE to a Ti:S regenerative amplifier[21]where the seed pulses are amplified withσ-polarization for the spectral components around the central wavelength, and withπ-polarization for those far away from the central wavelength.

    Figure 7(a)presents our calculations according to Eqs.(1)and (2) and Table 1 of Ref. [21] when using an 11-mmthick quartz plate and setting theσ-polarization wavelengthλσ=0.82 μm. As shown by the blue solid-triangle marks,the amplified pulse bandwidth is initially 44.1 THz,and increases to 49.1 THz with the pass numberNup to 30. In spite that it decreases slightly to 48.1 THz whenNrises to 40,the spectral narrowing is efficiently avoided in the regenerative amplification with an output pulse energy of~3.24 mJ. However,σpolarization amplification for the spectral components around the central wavelength implies some sacrifices of amplification efficiency. Consequently,amplification saturation occurs at pass numberN ≈40 as shown by the black marks.

    Furthermore,if a combination consisting of a quartz plate and an AgGaS2plate is used instead of a single quartz plate as the optically rotatory disperser, the ORD profile can become parabolic,so we can set two wavelengths on the opposite sides relative to the wavelength withπ-polarization and the spectral components around the central wavelengths to be amplified away fromπ-polarization. In Fig.7(b),we make numerical simulation basing on the layout in Fig. 1(a) of Ref. [21]with the same equations and initial specifications of Fig.7(a).The thicknesses of the used AgGaS2plate and quartz plate are 8 mm and 47 mm respectively, and the twoπ-polarized wavelengths are set at 0.69 μm and 0.95 μm by rotating the BHW.Figure 7(b)shows the amplifier can still boost the output pulses up to 3.28 mJ without spectral narrowing, butNreduces to 30 for amplification saturation, which means the amplification efficiency has been greatly improved compared with that of Fig.7(a).

    Fig. 7. The evolutions of the amplified bandwidth and pulse energy versus pass number N of the seed through Ti:S regenerative amplifier shown in Fig.1 of Ref.[18]with(a)an 11 mm-thick quartz plate and λσ =0.82 μm,and with(b) an 8 mm AgGaS2 plate plus a 47 mm quartz plate and λπ1 =0.69 μm,λπ2=0.95 μm.

    In a Ti:S multi-pass amplifier, we have also set twoπpolarized wavelengths (λπ1andλπ2) by using a block of quartz plate to induce ORD,[22]where theπ-polarized wavelengthλπ1for the odd-numbered amplification is different fromλπ2that for the even-numbered amplification, andλπ1andλπ2are on the opposite sides relative to the wavelength with maximal gain.Calculations show our design can also amplify a 0.8-μm,10-fs seed pulse from sub-nJ to more than 3 mJ without spectral narrowing.What is more,proper ORD allows the setup to output its spectrum to be as broad as 0.149 μm.

    The validity of our SPE to manipulate laser gain spectra was experimentally confirmed in a multi-pass[23]and a regenerative[24]amplification systems, where nearly 90-nm broadband amplification was achieved. According to the results described above,our SPE may open a promising way to few-cycle PW-class laser system.

    3.3. Application in tunable mid-IR lasers

    Obviously, SPE, which can be used to manipulate laser gain/loss,can be also applied for laser tunning.In recent years,3 μm-5 μm mid-IR lasers begin to draw considerable attention due to a variety of important applications in biomedical, material processing, remote sensing, target detection, and other fields. However, compared with those in near-IR and visible regions,the components,e.g.,grating and prism in mid-IR region are much more immature and expensive which are dragging the development of mid-IR tunable laser. Fortunately,SPE allows us to realize the wavelength tunability for a mid-IR laser by just a piece of ORD with good transmission in mid-IR region.

    Fig.8. (a)The transmission of quartz and AgGaS2 in 0 μm-5 μm;[25,26] (b)The transmission versus 1/wavelength(1/μm)by using a 15-cm AgGaS2 as ORD crystal.

    According to the data from Terahertzlabs,Inc.,[25,26]figure 8(a)presents the transmittance of quartz and AgGaS2with a thickness of 2 mm. We can see the transmittance curve of AgGaS2almost kept a constant of~97%ranging from 3 μm to 5 μm without consideration of Fresnel loss. By contrast,the transmittance of the quartz begins to decrease, and drops to 50%at 4.0 μm.

    Similar to the calculations in Fig. 4, figure 8(b) shows the polarization-dependent transmission of a setup according to Fig. 3 with a 15-cm AgGaS2as the ORDC for different maximal transmission wavelengths: 3.6,3.7,3.8,3.9,4.0,and 4.1 μm, which can be tuned by adjusting the angle of halfwave plate as mentioned above. From Fig. 8, AgGaS2is expected to be a promising candidate for wavelength tunning in mid-IR laser.

    4. Conclusions

    In this paper, a kind of spectral polarization-encoding,or SPE, is proposed for ultrashort light pulses by inducing ORD from some optically active crystals. SPE encodes all the spectral components of a linearly polarized ultrashort pulse with different polarization directions, and can decoded by compensating the corresponding ORD, which is easily realized not only by using a double-pass design, two optically rotatory dispersers with mirror-symmetrical configurations,but also by a combination of another same optically rotatory disperser plus a broadband half-wave plate. By using some ORD crystals plus a linear polarizer, SPE can work to manipulate polarization-dependent transmission for central wavelength or bandwidth-tunable filtering through inducing spectral polarization-dependent loss. SPE can also induce polarization-dependent gain by the aid of some broad polarization-dependent laser media. Applying our SPE to a Ti:S amplifier,we can boost a 0.8-μm nJ-pulse up to mJ level with a bandwidth to support few-cycle pulse duration. This SPE is entirely passive thus very simple to design and align,so it can be used to realize flexibly mid-IR tunable laser beyond 3 μm by using an ORD crystal with a good transmission,e.g.AgGaS2,where the tunning devices are rather under developed compared with those in visible and near-infrared region.

    猜你喜歡
    選科上官林家
    林家陽作品
    上官米良藝術(shù)簡介
    價值工程(2023年6期)2023-03-13 12:10:18
    長春外國語學(xué)校新高考選科走班先行先試探索成功
    上官文露 行走的名著
    海峽姐妹(2020年2期)2020-03-03 13:36:34
    上官蓮花 珠寶因用心而珍貴
    海峽姐妹(2019年8期)2019-09-03 01:00:48
    新高考綜合改革下選科走班的思考
    新高考改革選科制下功利取向分析
    活力(2019年22期)2019-03-16 12:46:44
    嘗試課前隨機提問,應(yīng)對生物選科重壓
    林家琪、李鴻禹作品
    Development of novel microsatellite markers for Holothurian scabra (Holothuriidae), Apostichopus japonicas(Stichopodidae) and cross-species testing in other sea cucumbers*
    一级毛片久久久久久久久女| 麻豆久久精品国产亚洲av| 精品熟女少妇av免费看| 麻豆久久精品国产亚洲av| 成人亚洲欧美一区二区av| 国产麻豆成人av免费视频| 久久久国产成人精品二区| 中出人妻视频一区二区| 欧美另类亚洲清纯唯美| 久久精品国产亚洲网站| 美女高潮的动态| 如何舔出高潮| 最近最新中文字幕大全电影3| 国产高清三级在线| 成人欧美大片| 成人永久免费在线观看视频| 岛国毛片在线播放| 国产精品一区二区三区四区免费观看| 一级黄色大片毛片| 成人毛片60女人毛片免费| 久久欧美精品欧美久久欧美| av在线观看视频网站免费| 日韩中字成人| 亚洲av成人av| 国产黄色小视频在线观看| 日本一二三区视频观看| 日韩视频在线欧美| 大型黄色视频在线免费观看| 亚洲18禁久久av| 国产黄片视频在线免费观看| 日本欧美国产在线视频| 久久久精品大字幕| 免费av不卡在线播放| 欧美又色又爽又黄视频| 校园春色视频在线观看| 一夜夜www| 一区二区三区四区激情视频 | 91久久精品国产一区二区成人| 国模一区二区三区四区视频| 精品人妻熟女av久视频| 亚洲人成网站在线播| 欧洲精品卡2卡3卡4卡5卡区| 欧美人与善性xxx| 三级男女做爰猛烈吃奶摸视频| 日韩av不卡免费在线播放| av在线观看视频网站免费| 国产成人91sexporn| 久久亚洲精品不卡| 哪个播放器可以免费观看大片| 色噜噜av男人的天堂激情| 国内揄拍国产精品人妻在线| 亚洲精品粉嫩美女一区| 亚洲av第一区精品v没综合| 97热精品久久久久久| 人妻少妇偷人精品九色| 十八禁国产超污无遮挡网站| 国产成人精品久久久久久| 国产蜜桃级精品一区二区三区| 一夜夜www| 晚上一个人看的免费电影| 国产精品乱码一区二三区的特点| 婷婷六月久久综合丁香| 六月丁香七月| 国产大屁股一区二区在线视频| .国产精品久久| 丰满的人妻完整版| 老司机影院成人| 日韩大尺度精品在线看网址| 三级经典国产精品| 国产精品1区2区在线观看.| 给我免费播放毛片高清在线观看| 国产一区二区在线av高清观看| 久久久久久久久大av| 国产精品三级大全| 最近中文字幕高清免费大全6| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久电影中文字幕| 天堂中文最新版在线下载 | 能在线免费观看的黄片| 亚洲,欧美,日韩| 五月伊人婷婷丁香| 一本久久精品| 国产精品野战在线观看| 欧美又色又爽又黄视频| 欧美性感艳星| 欧美成人免费av一区二区三区| 黄色配什么色好看| 色吧在线观看| 国产老妇伦熟女老妇高清| 久久久久性生活片| 人妻制服诱惑在线中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 女人十人毛片免费观看3o分钟| 亚洲真实伦在线观看| 长腿黑丝高跟| 久99久视频精品免费| 精品久久久久久久人妻蜜臀av| 亚洲av中文av极速乱| 黄色视频,在线免费观看| 午夜激情福利司机影院| 天天一区二区日本电影三级| 国产成人91sexporn| 午夜福利视频1000在线观看| 久久久欧美国产精品| 只有这里有精品99| 日日干狠狠操夜夜爽| 成人亚洲精品av一区二区| 久久久久久久久久久免费av| 国产精品一区二区三区四区久久| 人妻系列 视频| 欧美人与善性xxx| avwww免费| 好男人视频免费观看在线| av黄色大香蕉| 两个人的视频大全免费| 天美传媒精品一区二区| 国产大屁股一区二区在线视频| 国产一级毛片七仙女欲春2| 国产国拍精品亚洲av在线观看| 久99久视频精品免费| 中国美白少妇内射xxxbb| 日本五十路高清| 少妇裸体淫交视频免费看高清| 国产v大片淫在线免费观看| 人人妻人人澡人人爽人人夜夜 | av福利片在线观看| 欧美一区二区国产精品久久精品| 精品日产1卡2卡| 黄色日韩在线| 久久精品影院6| 韩国av在线不卡| 不卡视频在线观看欧美| 久久久成人免费电影| 日韩高清综合在线| 九九爱精品视频在线观看| 亚洲av成人精品一区久久| 免费看美女性在线毛片视频| 欧美激情在线99| 能在线免费观看的黄片| 精品久久久久久久久久久久久| 婷婷亚洲欧美| 97人妻精品一区二区三区麻豆| 国产精品女同一区二区软件| 久久久久性生活片| 午夜视频国产福利| 亚洲欧美精品自产自拍| 久久精品国产亚洲av香蕉五月| 我要看日韩黄色一级片| 国产老妇伦熟女老妇高清| 久久久久网色| 久99久视频精品免费| 中文字幕免费在线视频6| 久久精品国产亚洲av涩爱 | 亚洲精品久久国产高清桃花| 婷婷色av中文字幕| 久久久欧美国产精品| 男人舔奶头视频| 久久精品综合一区二区三区| 好男人在线观看高清免费视频| 99热这里只有是精品在线观看| 成年免费大片在线观看| 夜夜夜夜夜久久久久| 秋霞在线观看毛片| 久久人人爽人人片av| 99久久成人亚洲精品观看| 三级经典国产精品| 黄片wwwwww| 日韩成人av中文字幕在线观看| 好男人在线观看高清免费视频| 欧美一级a爱片免费观看看| 夜夜看夜夜爽夜夜摸| 五月伊人婷婷丁香| 久久久久久国产a免费观看| 久久婷婷人人爽人人干人人爱| 亚洲人成网站在线播放欧美日韩| 亚洲人成网站高清观看| 国产麻豆成人av免费视频| 超碰av人人做人人爽久久| 少妇人妻一区二区三区视频| 国产探花极品一区二区| 免费黄网站久久成人精品| 性插视频无遮挡在线免费观看| 黄片wwwwww| 欧美区成人在线视频| 久久久久久久亚洲中文字幕| 男人和女人高潮做爰伦理| 哪里可以看免费的av片| 日韩av不卡免费在线播放| 国产午夜精品论理片| 国产一级毛片在线| 夜夜爽天天搞| 色吧在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲成av人片在线播放无| 婷婷色av中文字幕| 亚洲五月天丁香| 亚州av有码| 国内少妇人妻偷人精品xxx网站| 观看免费一级毛片| 狂野欧美白嫩少妇大欣赏| 深爱激情五月婷婷| 久久精品久久久久久噜噜老黄 | 日韩欧美在线乱码| 国产亚洲精品久久久久久毛片| 欧美+日韩+精品| 国产久久久一区二区三区| 国产亚洲av嫩草精品影院| 少妇的逼好多水| 亚洲国产精品sss在线观看| 亚洲av二区三区四区| 精品久久久久久久久久免费视频| 简卡轻食公司| 青青草视频在线视频观看| 男女下面进入的视频免费午夜| 在线天堂最新版资源| 国产伦精品一区二区三区四那| 麻豆乱淫一区二区| av卡一久久| 深夜精品福利| 2021天堂中文幕一二区在线观| 老熟妇乱子伦视频在线观看| 国产又黄又爽又无遮挡在线| 亚洲欧美中文字幕日韩二区| 一个人免费在线观看电影| 国产精品久久久久久精品电影| 99久久久亚洲精品蜜臀av| 99久久精品一区二区三区| 欧美成人精品欧美一级黄| 99久久精品国产国产毛片| 99在线人妻在线中文字幕| 亚洲自拍偷在线| 日本黄色视频三级网站网址| 亚洲欧美成人精品一区二区| 99热这里只有精品一区| 国产精品嫩草影院av在线观看| 久久综合国产亚洲精品| 国产精品久久久久久精品电影| 精品人妻偷拍中文字幕| 18+在线观看网站| 女的被弄到高潮叫床怎么办| 久久久久久国产a免费观看| 草草在线视频免费看| 国产精品久久久久久亚洲av鲁大| 国产精品.久久久| 日韩一区二区视频免费看| 一卡2卡三卡四卡精品乱码亚洲| 1024手机看黄色片| 丝袜美腿在线中文| 色综合站精品国产| 91麻豆精品激情在线观看国产| 国产av在哪里看| 成年女人看的毛片在线观看| 麻豆成人av视频| 国产日韩欧美在线精品| 成熟少妇高潮喷水视频| 熟女人妻精品中文字幕| 亚洲高清免费不卡视频| 成人漫画全彩无遮挡| 亚洲精品色激情综合| 97人妻精品一区二区三区麻豆| 99久久久亚洲精品蜜臀av| 国语自产精品视频在线第100页| 成人午夜精彩视频在线观看| 精品久久久久久成人av| 韩国av在线不卡| 好男人在线观看高清免费视频| 亚洲国产精品成人综合色| 久久久久久大精品| 变态另类丝袜制服| 国产亚洲欧美98| 老熟妇乱子伦视频在线观看| 国产精品久久久久久亚洲av鲁大| 精品一区二区免费观看| 激情 狠狠 欧美| 能在线免费看毛片的网站| 夜夜夜夜夜久久久久| 黄色一级大片看看| 国产午夜精品久久久久久一区二区三区| 国产精品综合久久久久久久免费| 永久网站在线| 国产高清不卡午夜福利| 亚洲天堂国产精品一区在线| 久久6这里有精品| 欧美日韩在线观看h| 99久久精品一区二区三区| 禁无遮挡网站| 高清日韩中文字幕在线| 九草在线视频观看| 又爽又黄无遮挡网站| 成人特级av手机在线观看| 亚洲精品久久久久久婷婷小说 | 午夜视频国产福利| 尤物成人国产欧美一区二区三区| 久久99热6这里只有精品| 日本欧美国产在线视频| 一个人观看的视频www高清免费观看| a级毛片a级免费在线| 国产高清视频在线观看网站| 日日干狠狠操夜夜爽| 日日干狠狠操夜夜爽| 69人妻影院| 精品免费久久久久久久清纯| 中文字幕熟女人妻在线| 丰满乱子伦码专区| 一边亲一边摸免费视频| 波多野结衣高清作品| 免费电影在线观看免费观看| 搡女人真爽免费视频火全软件| 3wmmmm亚洲av在线观看| av在线观看视频网站免费| 日日啪夜夜撸| 神马国产精品三级电影在线观看| 国产高潮美女av| 人妻夜夜爽99麻豆av| 亚洲欧美精品自产自拍| 国产一级毛片七仙女欲春2| 你懂的网址亚洲精品在线观看 | 成人综合一区亚洲| 久久久久久久亚洲中文字幕| 最近最新中文字幕大全电影3| 一本精品99久久精品77| 嫩草影院入口| 男女视频在线观看网站免费| av在线播放精品| 亚洲av第一区精品v没综合| 日本av手机在线免费观看| 欧美日韩乱码在线| 校园人妻丝袜中文字幕| 精品免费久久久久久久清纯| 国产黄色小视频在线观看| 日本av手机在线免费观看| а√天堂www在线а√下载| 日日干狠狠操夜夜爽| 亚洲aⅴ乱码一区二区在线播放| 女人十人毛片免费观看3o分钟| 岛国在线免费视频观看| 成人午夜高清在线视频| 亚洲av熟女| 午夜福利在线观看吧| 欧美成人一区二区免费高清观看| 欧美成人一区二区免费高清观看| 99riav亚洲国产免费| 亚洲最大成人手机在线| 国产精品嫩草影院av在线观看| 午夜爱爱视频在线播放| 韩国av在线不卡| 国产一级毛片在线| 免费黄网站久久成人精品| 精品久久久久久久久久久久久| 亚洲美女搞黄在线观看| 又爽又黄a免费视频| 久久久精品大字幕| 少妇的逼水好多| 欧美激情国产日韩精品一区| 欧美激情久久久久久爽电影| 不卡视频在线观看欧美| 一个人看的www免费观看视频| 在线天堂最新版资源| 国产女主播在线喷水免费视频网站 | 草草在线视频免费看| 丰满人妻一区二区三区视频av| 国产蜜桃级精品一区二区三区| 99热只有精品国产| 久久精品综合一区二区三区| 亚洲av一区综合| 一区二区三区免费毛片| 国内精品宾馆在线| 麻豆乱淫一区二区| 亚洲av电影不卡..在线观看| 国产乱人偷精品视频| 国产探花在线观看一区二区| 亚洲欧美成人精品一区二区| 看免费成人av毛片| av.在线天堂| 国产极品天堂在线| 男人舔女人下体高潮全视频| 国产精品国产三级国产av玫瑰| 九色成人免费人妻av| 免费观看人在逋| 能在线免费看毛片的网站| 在线免费十八禁| 晚上一个人看的免费电影| 久久久a久久爽久久v久久| 人人妻人人看人人澡| 少妇熟女aⅴ在线视频| 成年女人看的毛片在线观看| 日产精品乱码卡一卡2卡三| 91狼人影院| 成人高潮视频无遮挡免费网站| 夜夜看夜夜爽夜夜摸| 亚洲精品久久久久久婷婷小说 | 中文字幕人妻熟人妻熟丝袜美| 国产伦精品一区二区三区四那| 亚洲最大成人中文| 亚洲一区二区三区色噜噜| 亚洲乱码一区二区免费版| 久久久久久久久大av| 淫秽高清视频在线观看| 18禁在线无遮挡免费观看视频| 国产淫片久久久久久久久| 中出人妻视频一区二区| 国产日韩欧美在线精品| 日韩国内少妇激情av| 亚洲一区二区三区色噜噜| 美女大奶头视频| 变态另类丝袜制服| 丝袜美腿在线中文| 亚洲一区高清亚洲精品| 亚洲国产精品合色在线| a级毛片免费高清观看在线播放| 国产亚洲欧美98| 欧美激情久久久久久爽电影| 欧美日韩精品成人综合77777| 免费人成视频x8x8入口观看| 别揉我奶头 嗯啊视频| 一级黄色大片毛片| 国产精品av视频在线免费观看| 噜噜噜噜噜久久久久久91| 亚洲最大成人手机在线| 国产精品久久电影中文字幕| 国产在线男女| 一个人看的www免费观看视频| 久久久久久久午夜电影| 国产又黄又爽又无遮挡在线| 寂寞人妻少妇视频99o| av在线老鸭窝| 亚洲国产精品成人久久小说 | 欧美高清成人免费视频www| 级片在线观看| 高清毛片免费看| 亚洲欧美精品综合久久99| 蜜桃亚洲精品一区二区三区| 干丝袜人妻中文字幕| 成年免费大片在线观看| 99热6这里只有精品| 中文在线观看免费www的网站| 国产老妇女一区| 精品免费久久久久久久清纯| 波多野结衣巨乳人妻| 国产中年淑女户外野战色| 韩国av在线不卡| 欧美最黄视频在线播放免费| 亚洲欧美日韩东京热| 日本五十路高清| 久久久精品94久久精品| 国产亚洲精品久久久com| 国产久久久一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品人妻少妇| 天堂√8在线中文| 久久国内精品自在自线图片| 国产久久久一区二区三区| 国产毛片a区久久久久| 久久国产乱子免费精品| 嫩草影院精品99| 熟女人妻精品中文字幕| 联通29元200g的流量卡| 永久网站在线| 五月玫瑰六月丁香| 欧美成人a在线观看| 国产精品久久电影中文字幕| 色5月婷婷丁香| 欧美一区二区精品小视频在线| 国产一区亚洲一区在线观看| 日韩欧美精品免费久久| 亚洲久久久久久中文字幕| 国产成人一区二区在线| 国产精品久久久久久亚洲av鲁大| 久久人人爽人人爽人人片va| or卡值多少钱| 一级黄片播放器| 亚洲欧美精品综合久久99| 免费在线观看成人毛片| 亚洲丝袜综合中文字幕| 人妻夜夜爽99麻豆av| 又粗又硬又长又爽又黄的视频 | 麻豆国产av国片精品| 成人美女网站在线观看视频| 成年女人看的毛片在线观看| 亚洲一级一片aⅴ在线观看| 午夜免费激情av| 成人美女网站在线观看视频| 国产成人精品久久久久久| 国产一区亚洲一区在线观看| 免费观看的影片在线观看| 久久久精品大字幕| 悠悠久久av| 成人特级av手机在线观看| 久久精品国产亚洲网站| 国产午夜精品论理片| 亚洲国产精品sss在线观看| 最近中文字幕高清免费大全6| 女的被弄到高潮叫床怎么办| 少妇高潮的动态图| 国产伦精品一区二区三区视频9| 免费搜索国产男女视频| 尤物成人国产欧美一区二区三区| 99视频精品全部免费 在线| 亚洲av免费在线观看| 精品一区二区三区视频在线| 99久久精品一区二区三区| 日日啪夜夜撸| 日本av手机在线免费观看| 蜜桃久久精品国产亚洲av| 在线观看免费视频日本深夜| 日韩三级伦理在线观看| 简卡轻食公司| 91狼人影院| 日韩精品有码人妻一区| 成人无遮挡网站| 欧美一级a爱片免费观看看| 中文字幕av成人在线电影| 九九热线精品视视频播放| 99热全是精品| 欧美激情久久久久久爽电影| 美女国产视频在线观看| 久久国内精品自在自线图片| 久久这里有精品视频免费| 国产亚洲5aaaaa淫片| 最近中文字幕高清免费大全6| 亚洲第一电影网av| 人妻夜夜爽99麻豆av| 听说在线观看完整版免费高清| 老司机福利观看| 亚洲电影在线观看av| 91久久精品国产一区二区三区| 中出人妻视频一区二区| 成人亚洲欧美一区二区av| 亚洲内射少妇av| 婷婷色av中文字幕| 日本成人三级电影网站| 天堂√8在线中文| 性欧美人与动物交配| 女同久久另类99精品国产91| 国产一区二区激情短视频| 性欧美人与动物交配| 女同久久另类99精品国产91| 国产精品日韩av在线免费观看| 干丝袜人妻中文字幕| 在线观看免费视频日本深夜| 成年女人永久免费观看视频| 如何舔出高潮| 国产女主播在线喷水免费视频网站 | 国内精品一区二区在线观看| 免费观看人在逋| 看黄色毛片网站| 噜噜噜噜噜久久久久久91| 国产亚洲精品av在线| 乱人视频在线观看| 日本熟妇午夜| 97在线视频观看| 内地一区二区视频在线| ponron亚洲| 丝袜美腿在线中文| 可以在线观看毛片的网站| 久久精品久久久久久噜噜老黄 | 色综合站精品国产| 国产精品久久电影中文字幕| 久久热精品热| 欧美成人a在线观看| 中文字幕av在线有码专区| 久久99热这里只有精品18| 久久人人爽人人片av| 插逼视频在线观看| 少妇裸体淫交视频免费看高清| 又黄又爽又刺激的免费视频.| 亚洲成人精品中文字幕电影| 国内精品宾馆在线| 你懂的网址亚洲精品在线观看 | 1024手机看黄色片| 国产极品精品免费视频能看的| videossex国产| 亚洲色图av天堂| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产亚洲二区| or卡值多少钱| 国产成人午夜福利电影在线观看| 日韩精品有码人妻一区| 日韩一区二区三区影片| 国产黄片美女视频| 超碰av人人做人人爽久久| 成人一区二区视频在线观看| 亚洲欧洲国产日韩| 麻豆av噜噜一区二区三区| 久久久久久九九精品二区国产| 97热精品久久久久久| 国产精品乱码一区二三区的特点| 久久精品综合一区二区三区| av在线老鸭窝| 国产高清激情床上av| 一级av片app| 午夜视频国产福利| 久久99热这里只有精品18| 乱码一卡2卡4卡精品| 国产国拍精品亚洲av在线观看| av专区在线播放| 少妇裸体淫交视频免费看高清| 特级一级黄色大片| 久久6这里有精品| 亚洲色图av天堂| 欧美成人一区二区免费高清观看| 欧美日韩综合久久久久久| 插阴视频在线观看视频| 九九在线视频观看精品| 成人性生交大片免费视频hd| 成人美女网站在线观看视频| 国产国拍精品亚洲av在线观看| 成人午夜精彩视频在线观看| 欧美性猛交╳xxx乱大交人| 伊人久久精品亚洲午夜| 亚洲精品国产av成人精品| 久久欧美精品欧美久久欧美| 简卡轻食公司| ponron亚洲| 能在线免费观看的黄片|