• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers?

    2021-06-26 03:04:50HangXue薛航ZhirongLin林志榮WenbingJiang江文兵ZhengqiNiu牛錚琦KuangLiu劉匡WeiPeng彭煒andZhenWang王鎮(zhèn)
    Chinese Physics B 2021年6期

    Hang Xue(薛航) Zhirong Lin(林志榮) Wenbing Jiang(江文兵) Zhengqi Niu(牛錚琦)Kuang Liu(劉匡) Wei Peng(彭煒) and Zhen Wang(王鎮(zhèn))

    1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology(SIMIT),Chinese Academy of Sciences,Shanghai 200050,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    4ShanghaiTech University,Shanghai 201210,China

    Keywords: Josephson parametric amplifier,Nb/Al-AlOx/Nb Josephson junctions,lumped-element resonator

    1. Introduction

    Superconducting parametric amplifiers based on Josephson junctions have been widely used in the past decade because of their capabilities to provide amplification with a noise performance near the quantum limit.[1–5]The unique characteristics of Josephson parametric amplifiers enable them to be applied to weak measurement,[6]quantum feedback,[7]squeezed microwave[8]and qubit readout.[9–11]In previous works, two kinds of parametric amplifiers have been developed, one based on individual resonant architecture[12–15]and the other named Josephson traveling wave parametric amplifier (JTWPA) based on Josephson junction transmission line.[16–18]JTWPA has extraordinary bandwidth and saturation power, however its fabrication process is complicated and requires thousands of Josephson junction units.On the other hand, the impedance transformed parametric amplifier (IMPA) based on lumped-element Josephson parametric amplifier (LJPA)[4]has the best performance among resonant-type JPA. LJPA includes much fewer Josephson junctions in the dc superconducting quantum interference device (SQUID), and supplies the profits of broad bandwidth of several hundred MHz and near quantum-limited performance.[19–21]The Josephson junctions were fabricated using standard Al/AlOx/Al tunnel junction with shadow evaporation.[22,23]Sandwich structures of parallel-plate capacitors in LJPA were fabricated independently of junctions.[19,20]The uniformity of the lumped-element LC resonators comprised of parallel-plate capacitors and Al Josephson junctions makes it challenging to prepare Al junction-based JTWPA device that requires thousands of units.

    In addition, Nb-based multilayer process is compatible with the existing commercial semiconductor micro-fabrication platforms. All-refractory Nb/Al-AlOx/Nb Josephson junctions are robust after several thermal cycles. The fabrication technology of Nb/Al-AlOx/Nb junctions is currently wellestablished and is usually used for the fabrication of superconducting devices such as single-flux-quantum (SFQ) logic circuits, programmable Josephson voltage standards, and dc SQUIDs.[24–26]Recently, the reliable and reproducible fabrication process for high quality Nb/Al-AlOx/Nb junctions with small leakage currents was developed.[27]The high uniformity of the properties of the Nb-based junctions has the potential to develop JTWPA.

    In this paper, we report the fabrication and characterization of LJPAs using a multilayer micro-fabrication process.[28]The LJPAs are comprised of Nb/Al-AlOx/Nb junctions and Nb/SiO2/Nb parallel-plate capacitors. The fabrication process is based on dry etching of the Nb/Al-AlOx/Nb trilayer on intrinsic silicon. In Nb trilayer junction process, we typically make a SiO2layer as an electrical isolation layer and a wiring Nb layer on top of the SiO2layer to connect part of top and bottom Nb layers. The parallel-plate capacitors are fabricated at the same time owing to the overlapped layers of the wiring Nb layer, the bottom Nb layer, and the intermediate SiO2layer. We experimentally demonstrated 190 MHz of almost 3 dB smooth bandwidth with a 20 dB gain centered around 6.848 GHz. Within the entire bandwidth of the amplifier,an average 1 dB compression point of?123 dBm with the near-quantum-limited noise performance makes it have the potential to be applied in broadband IMPA and multi-qubit readout.

    2. Design and device fabrication

    The design of the LJPAs we fabricated is similar to the ones reported by Mutuset al.[19]As shown in the schematic circuit and optical micrograph in Figs. 1(a) and 1(b), the oscillating system includes of a SQUID with flux-dependence nonlinear inductance shunted by a parallel plate capacitor.The parametric amplifier resonator whose resonant frequency can be tuned in the 4–8 GHz range by adjusting the static magnetic flux threading the SQUID loop is directly coupled to a single input–output signal line. An on-chip pump line, which is realized by a 50 ? transmission line, provides an ac flux and energy of parametric amplification.[29]These amplifiers have an unbiased nonlinear junction inductanceLJ=54.9 pH, a geometric inductanceLg=13.39 pH,a capacitance ofC=5.68 pF,producing a resonant frequencyf0=1/2π((LJ+Lg)C)1/2=8.08 GHz. The coupled quality factor (Q) of the LJPA is expressed asQ=2πZ f0C=14.4,whereZis 50 ? of the environmental impedance.[19]

    The LJPAs based on Nb/Al–AlOx/Nb Josephson tunnel junctions were fabricated with multilayer processes in the Superconducting Electronics Facility (SELF) at Shanghai Institute of Microsystem and Information Technology. In the first step, Nb/Al–AlOx/Nb trilayer was deposited on an intrinsic silicon substratein-situin a combination equipment with separate chambers for dc magnetron sputtering of Nb, Al, and for AlOxformation by static oxidation. Nb base and counter electrodes were both 150 nm-thick and the Al film was 10 nmthick. The thickness of the AlOxbarrier which determines the critical current density of the Josephson junction can be controlled with the oxygen exposure. Appropriate oxygen pressure and exposure time for oxidation were adjusted to obtain the Josephson critical current density of about 100 A/cm2. In the second step,a layer of photoresist AZ703 was spin-coated above HMDS and baked. We used a Canon FPA-3030 i5+stepper with 350 nm imaging resolution for photolithography of all layers. The Nb/Al-AlOx/Nb Josephson junctions we used were designed as circular-shaped and defined by etching the top Nb layer. After that, lithography and wet etching were performed to define the AlOxbarrier whose area must be larger than junction’s so that the barrier between the Nb base and counter electrode was not damaged during the process. The Nb layer was etched via a process using inductively coupled plasma (ICP), then the AlOxbarrier was wet etched using developer. In the third step, the transmission line and Nb base electrode were defined by reactive ion etching(RIE)the bottom Nb layer. In the fourth step, a 250 nm-thick SiO2film was deposited using a plasma enhanced chemical vapor deposition(PECVD)process and etched using CHF3to form an electrical isolation layer between the bottom Nb electrode,the transmission line,and the wiring layer. The dielectric layers used for capacitors and contact holes for vias through the SiO2layer were also made. In the fifth step, a 300 nm-thick Nb film was deposited and etched to form the top electrodes of the shunt capacitors and the crossovers on the signal and pump lines. This layer was also used to form the shunt connections between the Josephson junctions and parallel plate capacitors,meanwhile, the electrical connections between the junctions and the ground.

    Fig. 1. (a) Circuit diagram of LJPA. The input signal is amplified and reflected from the resonant circuit through a circulator, which is used to separate the input signal and output signal. An external magnetic flux φdc provided by a superconducting coil and an ac magnetic flux φrf supplied by pump line tunes the resonant frequency. (b) The optical micrograph of the device. The center square indicates the parallel plate capacitor. The 50 ? coplanar waveguides in the left and right indicate the signal and pump lines, respectively. (c) Schematic of the cross-section of LJPA. A structure of 10 nm thick Al–AlOx sandwiched between two Nb layers forms a Josephson junction. A wiring layer on the top is isolated from the bottom Nb by a silicon oxide, and a parallel plate capacitor is formed as shown in the right side of the graph. The schematic diagram is not displayed to scale.(d)Cross-sectional TEM micrograph of our LJPA as shown in(c). The top layer is the protective layer used in TEM sample preparation.

    Figures 1(c) and 1(d) show a schematic of cross-section and the corresponding transmission electron microscopy(TEM) micrograph of a Nb-based junction and a part of parallel plate capacitor on a silicon substrate. These integrated LC resonators were mass fabricated using wafer-scale process, which produced hundreds of devices at the same time and could be further used to make IMPA and JTWPA.

    3. Measurements and results

    In LJPA characterization measurements,the sample is anchored to the sample stage of a dilution refrigerator with a base temperature around 17 mK. This paper includes two devices,labeled A and B, whose designs are identical. They were simultaneously fabricated on one substrate. Before operating the device as a parametric amplifier,we first characterized the resonator’s reflectance with a signal tone. A superconducting coil is used to supply the dc flux bias and tune the resonant frequency of LJPA by adjusting the magnetic flux penetrating the SQUID loop. Figures 2(a)and 2(b)show the resonant frequency as a function of the flux bias for the LJPA we made.The solid red line is the theoretical prediction from the designed parameters. Resonant frequency of the LJPA can be tuned from 4 GHz to 8 GHz by adjusting the bias current in the superconducting coil.The modulation curve of device A is experimentally discontinuous,but the period of flux modulation can still be observed.This phenomenon also exists in other devices fabricated at the same time. We apply the magnetic field with the external coils in the sample holder. The phenomenon we observed is that the frequency is kindly “l(fā)atched” when we change the dc current in small range of the external coils.Then it jumps to next frequency suddenly. We speculate that it is due to magnetic flux crosstalk caused by a larger loop where the SQUID loop is included. Also, this phenomenon may be caused by poor contacts between crossovers and the bottom Nb layers which are due to the inhomogeneity of etching of SiO2in the fabrication process. Poor contact leads to unequal grounding on two sides of the central conductor, resulting in parasitic modes. Furthermore, there is no grounding meshes near the SQUID. The flux trapping may also cause discontinuities. In subsequent design,we try to improve the magnetic flux jump by increasing the area of the loops around SQUIDs and placing proper crossovers. By fitting theoretical formula to the experimental modulation curve of the LJPA, the zerofield Josephson critical currentIcand shunt capacitance can be obtained. The extractedIcis about 3μA which is close to theI–Vcurve measurement result at 4.2 K.The extractedCis about 5.78 pF, which is close to the design value. The quality factor obtained by fittingS21curve under zero flux bias is approximately equal to 11,which is close to the design value.

    The LJPA we fabricated can be operated in either a threewave mixing mode or a four-wave mixing mode. We characterized our devices as a three-wave mixing amplifier by driving RF flux via the SQUID loop with the inductively coupled pump line.[4]The appropriate pump frequency and pump power are optimized to realize large gain at different dc flux biases. The data in Figs.3(a)and 3(b)display bandwidths of devices A and B with a 20 dB gain at three flux biases. In device A,a gain of 20 dB in the bandwidth of 190 MHz(centered around 6.848 GHz)was observed,as shown in Fig.3(a). The pump frequency is around 13.696 GHz. The pump power is around?25.8 dBm at the pump port. The flux bias is around 0.276φ0, whereφ0is the flux quantum. The large bandwidth in the LJPA is expected to be further improved by engineering the impedance transformer.

    Fig. 2. DC flux modulation. Experimental data of resonant frequency vs. flux bias is plotted by fitting the measured phase of the reflected microwave. The theoretical line is plotted by fitting the experimental data.(a)Modulation curve of device A.The modulation curve is discontinuous,but the resonant frequency of the LJPA can still be tuned from 4 GHz to 8 GHz. (b)Modulation curve of device B.The resonant frequency of device B changes continuously when adjusting the flux bias. The calculated line fits well with the experimental data. The extracted critical current of the Josephson junction is about 3μA,the extracted capacitance of the parallel-plate capacitor is about 5.78 pF,and the quality factor measured by fitting S21 curve under zero flux bias is about 11. These data are close to the designed values.

    At each working point, we also measured the saturation power and noise temperature of our LJPA. When the signal power is high enough, the gain of the amplifier will decrease under the same pump condition. The saturation power is generally described by 1 dB compression point, which refers to the signal power when the gain decreases by 1 dB.The 1 dB compression power is characterized by recording the change of the nondegenerate signal gain with signal input power for a range of pump power[see Fig.4(a)].

    Fig.3.Signal gain of device A(a)and device B(b)as a function of the signal frequency,for different flux biases and working frequencies. The maximum gain at each working frequency is adjusted to 20 dB. The arrow symbols indicate the positions of the resonant frequency in the absence of parametric pumping.

    The noise temperature of LJPA[Fig.4(b)]was then estimated by comparing the variation of the noise powers when turning on and off the LJPA without the input signal. We have calibrated every amplification and attenuation, such as,HEMT, room temperature amplifier, the circulators, various kinds of filters,and the cable loss between the microwave devices. We infer a lower limit of the noise temperature,around 215.7 mK,from the 9.3 dB increase of the noise power when turning on the LJPA with a 20 dB gain.The noise performance was near quantum-limited, i.e., with a noise temperature ofTN=hfR/2kB≈164 mK,in the full 190 MHz band.[1,30]The bottom panel of Fig. 4(b) shows that the 1 dB compression point has an average value of about?123 dBm for the whole band.

    Fig.4. The saturation power and noise temperature as a function of signal frequency at the working point of Fig.3(a) with a 0.276φ0 flux bias of device A.(a)Signal gain as a function of the input signal power indicates the saturation at the different pumping powers.(b)The noise temperature of our LJPA and the 1 dB compression point within the 190 MHz bandwidth range.

    4. Conclusion and perspectives

    In summary, we have designed, fabricated, and characterized the LJPA based on Nb/Al-AlOx/Nb Josephson tunnel junctions. The fabrication process of Nb-based trilayer junctions we developed yields the parallel-plate capacitors while making the Josephson junctions,which has an ease of use for scalability. We have demonstrated a paramp with a flat gain of 20 dB in the bandwidth of 190 MHz, a saturation power greater than?123 dBm,and near quantum limited noise performance. Our devices fabricated with Nb trilayer process have center frequency tunability and could be used for various superconducting quantum information experiments.In our process, the wiring layers of the devices could be etched and connected with the bottom layers to form crossovers which can be designed to transform the environmental impedance.[19]The process we developed can be further used to fabricate JTWPA that requires thousands of Josephson junctions.

    Acknowledgments

    The authors would like to thank Liliang Ying, Maezawa Masaaki and all staff at the SELF for the help during the fabrications. The authors appreciate the Chinese medical staff for keeping us away from COVID-19 to write this paper.

    永久免费av网站大全| 亚洲怡红院男人天堂| 亚洲精品国产成人久久av| 高清欧美精品videossex| 狠狠精品人妻久久久久久综合| 国产精品不卡视频一区二区| 精品少妇黑人巨大在线播放| 在线免费观看不下载黄p国产| 日本午夜av视频| 国产精品无大码| 亚洲精品久久久久久婷婷小说| 精品人妻偷拍中文字幕| 精品人妻偷拍中文字幕| 亚洲成人精品中文字幕电影| 亚洲国产欧美在线一区| 一级毛片久久久久久久久女| 成人无遮挡网站| 日本黄色片子视频| 99久久人妻综合| 国产精品伦人一区二区| 蜜桃久久精品国产亚洲av| 又黄又爽又刺激的免费视频.| 尾随美女入室| 国产av码专区亚洲av| 成人黄色视频免费在线看| 日本wwww免费看| 亚洲精品国产色婷婷电影| 69人妻影院| 下体分泌物呈黄色| a级毛色黄片| 色视频www国产| 欧美成人一区二区免费高清观看| 一区二区三区免费毛片| 精品久久久久久久末码| 色播亚洲综合网| 国产精品熟女久久久久浪| 久久精品国产鲁丝片午夜精品| 国产精品.久久久| 精华霜和精华液先用哪个| 91久久精品国产一区二区三区| 最近手机中文字幕大全| 成人亚洲精品av一区二区| 一个人看视频在线观看www免费| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产色婷婷电影| 最近的中文字幕免费完整| 精品视频人人做人人爽| 91久久精品电影网| 亚洲内射少妇av| 国产成人a∨麻豆精品| 在线亚洲精品国产二区图片欧美 | 国产高潮美女av| 高清日韩中文字幕在线| 欧美xxxx黑人xx丫x性爽| 九九爱精品视频在线观看| 欧美激情久久久久久爽电影| 亚洲欧美成人综合另类久久久| 亚洲精品久久午夜乱码| 又爽又黄无遮挡网站| 人人妻人人爽人人添夜夜欢视频 | 人人妻人人看人人澡| 午夜福利网站1000一区二区三区| 精品午夜福利在线看| 在线 av 中文字幕| 成人一区二区视频在线观看| 日产精品乱码卡一卡2卡三| 久久ye,这里只有精品| 免费黄色在线免费观看| 中国美白少妇内射xxxbb| 亚洲精品久久久久久婷婷小说| 听说在线观看完整版免费高清| 麻豆精品久久久久久蜜桃| 国产精品不卡视频一区二区| 日韩精品有码人妻一区| 成人无遮挡网站| 丝袜喷水一区| 婷婷色麻豆天堂久久| 日韩强制内射视频| 成人鲁丝片一二三区免费| 欧美人与善性xxx| 国产真实伦视频高清在线观看| 嫩草影院新地址| 女的被弄到高潮叫床怎么办| 久久女婷五月综合色啪小说 | 国产精品一二三区在线看| 欧美老熟妇乱子伦牲交| 久久国产乱子免费精品| 一二三四中文在线观看免费高清| 久久精品国产自在天天线| 日本熟妇午夜| 成年版毛片免费区| 亚洲精品日韩av片在线观看| 又大又黄又爽视频免费| 99久久精品热视频| 国产高清有码在线观看视频| 国产老妇伦熟女老妇高清| 精品亚洲乱码少妇综合久久| 成人高潮视频无遮挡免费网站| 91午夜精品亚洲一区二区三区| 99热网站在线观看| 搡老乐熟女国产| 天美传媒精品一区二区| 婷婷色av中文字幕| 日韩欧美一区视频在线观看 | 自拍欧美九色日韩亚洲蝌蚪91 | 在线观看美女被高潮喷水网站| 欧美3d第一页| 大陆偷拍与自拍| 国产欧美另类精品又又久久亚洲欧美| 日本欧美国产在线视频| 91精品国产九色| 99热这里只有精品一区| 国国产精品蜜臀av免费| 久久ye,这里只有精品| 69人妻影院| 国产欧美日韩一区二区三区在线 | 久久久久久久久久人人人人人人| 汤姆久久久久久久影院中文字幕| 有码 亚洲区| 下体分泌物呈黄色| 男女无遮挡免费网站观看| 亚洲成人av在线免费| av免费观看日本| 97在线视频观看| 久久国内精品自在自线图片| 蜜桃亚洲精品一区二区三区| 欧美+日韩+精品| 国产精品偷伦视频观看了| 搡老乐熟女国产| 韩国av在线不卡| 国产色爽女视频免费观看| 亚洲色图av天堂| 天堂中文最新版在线下载 | 亚洲最大成人手机在线| 精品久久久噜噜| 国产有黄有色有爽视频| 美女国产视频在线观看| a级毛片免费高清观看在线播放| 在线观看免费高清a一片| 亚洲精品成人av观看孕妇| 国产 一区 欧美 日韩| 免费大片黄手机在线观看| 亚洲精品亚洲一区二区| 国产男人的电影天堂91| 精品久久久精品久久久| 在线亚洲精品国产二区图片欧美 | 蜜臀久久99精品久久宅男| 大片电影免费在线观看免费| 禁无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 国产精品爽爽va在线观看网站| 国产亚洲一区二区精品| 美女脱内裤让男人舔精品视频| 少妇的逼好多水| 超碰97精品在线观看| 亚洲av二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91 | 丝袜脚勾引网站| 亚洲无线观看免费| 亚洲欧洲国产日韩| 国产淫片久久久久久久久| 中文资源天堂在线| www.色视频.com| 下体分泌物呈黄色| 少妇高潮的动态图| 亚洲综合色惰| 少妇猛男粗大的猛烈进出视频 | 中文精品一卡2卡3卡4更新| 男女边吃奶边做爰视频| 大片免费播放器 马上看| 91精品国产九色| av在线亚洲专区| 男人舔奶头视频| 国产av不卡久久| 男男h啪啪无遮挡| 秋霞在线观看毛片| 在线免费观看不下载黄p国产| 国产日韩欧美亚洲二区| 新久久久久国产一级毛片| 不卡视频在线观看欧美| 22中文网久久字幕| 一区二区三区四区激情视频| 欧美潮喷喷水| 99久久精品热视频| 精品一区二区三区视频在线| 国产精品.久久久| 2018国产大陆天天弄谢| 国产91av在线免费观看| 亚洲激情五月婷婷啪啪| 久久午夜福利片| 精品久久久久久久人妻蜜臀av| 免费播放大片免费观看视频在线观看| 久久久久国产精品人妻一区二区| 最近中文字幕2019免费版| 男女边吃奶边做爰视频| 亚洲国产精品国产精品| 国产精品偷伦视频观看了| 性色avwww在线观看| 国产精品不卡视频一区二区| 久久人人爽人人爽人人片va| 亚洲成人一二三区av| 全区人妻精品视频| 色视频在线一区二区三区| 久久久a久久爽久久v久久| 国产有黄有色有爽视频| 国产一区二区亚洲精品在线观看| 极品少妇高潮喷水抽搐| 婷婷色麻豆天堂久久| 国产免费一区二区三区四区乱码| 色5月婷婷丁香| 我的女老师完整版在线观看| 美女视频免费永久观看网站| 美女脱内裤让男人舔精品视频| 激情 狠狠 欧美| 直男gayav资源| 久久精品人妻少妇| 亚洲欧美清纯卡通| 免费看光身美女| av又黄又爽大尺度在线免费看| 美女高潮的动态| 在线天堂最新版资源| 免费大片18禁| 国产在线男女| 日韩精品有码人妻一区| 国产视频内射| 成年女人看的毛片在线观看| av在线播放精品| 中文字幕久久专区| www.色视频.com| 国产视频内射| 日韩人妻高清精品专区| 午夜老司机福利剧场| kizo精华| 一边亲一边摸免费视频| 国产91av在线免费观看| 2021天堂中文幕一二区在线观| 99久久精品国产国产毛片| 国产成人一区二区在线| 亚洲国产欧美人成| 国产大屁股一区二区在线视频| 2021天堂中文幕一二区在线观| 日本欧美国产在线视频| 夫妻性生交免费视频一级片| 亚洲欧美日韩卡通动漫| 亚洲精华国产精华液的使用体验| 一本色道久久久久久精品综合| 99热这里只有是精品在线观看| 国产av码专区亚洲av| 天美传媒精品一区二区| 日韩欧美一区视频在线观看 | 制服丝袜香蕉在线| 一个人观看的视频www高清免费观看| 波多野结衣巨乳人妻| 一级毛片 在线播放| 亚洲精品456在线播放app| 我的老师免费观看完整版| 国产免费视频播放在线视频| 免费看不卡的av| 大码成人一级视频| 99久久人妻综合| 2021天堂中文幕一二区在线观| 色婷婷久久久亚洲欧美| 人人妻人人澡人人爽人人夜夜| 国产精品精品国产色婷婷| 国产免费又黄又爽又色| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情福利司机影院| 国产免费一级a男人的天堂| 六月丁香七月| 白带黄色成豆腐渣| 超碰av人人做人人爽久久| tube8黄色片| 日韩伦理黄色片| 一级毛片我不卡| 国产成人午夜福利电影在线观看| 男女边吃奶边做爰视频| av在线app专区| 91午夜精品亚洲一区二区三区| 嫩草影院入口| av在线播放精品| 国产午夜精品久久久久久一区二区三区| 亚洲自偷自拍三级| 午夜爱爱视频在线播放| 久久久欧美国产精品| 久久国产乱子免费精品| 王馨瑶露胸无遮挡在线观看| 成年女人在线观看亚洲视频 | 97热精品久久久久久| 精品视频人人做人人爽| 国产精品国产三级专区第一集| 久久精品久久精品一区二区三区| 免费黄频网站在线观看国产| 亚洲精品视频女| 亚洲精品久久午夜乱码| 国产高清三级在线| 边亲边吃奶的免费视频| 国产高清国产精品国产三级 | 久久精品国产a三级三级三级| 国产免费一级a男人的天堂| 国产精品精品国产色婷婷| 日本三级黄在线观看| 国产爱豆传媒在线观看| 日本av手机在线免费观看| 国产综合懂色| 日日撸夜夜添| 伊人久久国产一区二区| 日本午夜av视频| 99热6这里只有精品| 人体艺术视频欧美日本| 一区二区三区四区激情视频| 看免费成人av毛片| 99九九线精品视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 久久久精品欧美日韩精品| 男人添女人高潮全过程视频| 成人黄色视频免费在线看| 免费观看的影片在线观看| 赤兔流量卡办理| 久久久久久久久久人人人人人人| 小蜜桃在线观看免费完整版高清| 免费观看av网站的网址| 高清av免费在线| 麻豆乱淫一区二区| 黄色一级大片看看| 99热网站在线观看| 精品人妻熟女av久视频| 日本熟妇午夜| 九九久久精品国产亚洲av麻豆| 国内精品宾馆在线| 另类亚洲欧美激情| 少妇丰满av| 高清欧美精品videossex| 亚洲三级黄色毛片| 亚洲真实伦在线观看| 一区二区三区免费毛片| 99久久精品一区二区三区| 国产成人免费观看mmmm| 日日啪夜夜爽| 亚洲综合色惰| 国产精品麻豆人妻色哟哟久久| 日日撸夜夜添| 国产成人a区在线观看| 亚洲综合色惰| 又黄又爽又刺激的免费视频.| 99久久精品热视频| 国产大屁股一区二区在线视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲不卡免费看| 少妇被粗大猛烈的视频| 九九爱精品视频在线观看| 日韩伦理黄色片| 中文字幕制服av| 黄片wwwwww| 久久久久久久大尺度免费视频| 深夜a级毛片| a级毛色黄片| 一区二区三区精品91| a级毛色黄片| 久久99精品国语久久久| 久久精品久久久久久久性| 亚洲精品,欧美精品| 三级国产精品片| 免费看a级黄色片| 天堂俺去俺来也www色官网| 久久久午夜欧美精品| 免费看日本二区| 成人黄色视频免费在线看| 亚洲精品456在线播放app| 97人妻精品一区二区三区麻豆| 免费看av在线观看网站| 国产真实伦视频高清在线观看| 婷婷色av中文字幕| 少妇丰满av| 熟妇人妻不卡中文字幕| 日韩制服骚丝袜av| 免费黄频网站在线观看国产| 国产av不卡久久| 秋霞伦理黄片| av在线天堂中文字幕| 日韩成人伦理影院| 国精品久久久久久国模美| 亚洲国产日韩一区二区| 精品久久久久久久末码| 国产午夜福利久久久久久| 国产亚洲av嫩草精品影院| 国产成人精品久久久久久| 国产淫片久久久久久久久| 久久久久久九九精品二区国产| 久久久久精品性色| 亚洲精品视频女| 久久99热6这里只有精品| 久久99精品国语久久久| 亚洲成人一二三区av| 亚洲精品成人久久久久久| 欧美极品一区二区三区四区| 亚洲av男天堂| 黄色欧美视频在线观看| 91久久精品国产一区二区三区| 91精品一卡2卡3卡4卡| 久久人人爽av亚洲精品天堂 | 大陆偷拍与自拍| 一本久久精品| 国产免费一级a男人的天堂| 亚洲成人久久爱视频| 日韩av不卡免费在线播放| 97精品久久久久久久久久精品| 午夜日本视频在线| 国产精品久久久久久久久免| 搡女人真爽免费视频火全软件| 欧美成人午夜免费资源| 成人国产av品久久久| 各种免费的搞黄视频| 国产成人精品一,二区| 国产成人精品婷婷| 国产又色又爽无遮挡免| 69人妻影院| 一个人看的www免费观看视频| 一级毛片我不卡| 日本黄大片高清| 人妻少妇偷人精品九色| 国产精品福利在线免费观看| 蜜桃久久精品国产亚洲av| 七月丁香在线播放| 99久久精品一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲最大成人中文| 国语对白做爰xxxⅹ性视频网站| 肉色欧美久久久久久久蜜桃 | 在线观看av片永久免费下载| 国产精品国产三级国产专区5o| 欧美亚洲 丝袜 人妻 在线| 最近的中文字幕免费完整| 街头女战士在线观看网站| 国产v大片淫在线免费观看| 草草在线视频免费看| 最近最新中文字幕大全电影3| 日韩大片免费观看网站| 成人欧美大片| 黄色怎么调成土黄色| 日韩,欧美,国产一区二区三区| 王馨瑶露胸无遮挡在线观看| 永久免费av网站大全| 久久精品夜色国产| 少妇被粗大猛烈的视频| 中文在线观看免费www的网站| 一边亲一边摸免费视频| 麻豆成人av视频| 一个人观看的视频www高清免费观看| 九草在线视频观看| 嫩草影院新地址| 高清视频免费观看一区二区| 亚洲天堂av无毛| 日韩中字成人| 免费观看的影片在线观看| 少妇高潮的动态图| 国产综合精华液| 久久鲁丝午夜福利片| 丰满少妇做爰视频| av网站免费在线观看视频| 日本黄色片子视频| www.色视频.com| 高清毛片免费看| 22中文网久久字幕| 欧美成人精品欧美一级黄| 亚洲av男天堂| 一级毛片aaaaaa免费看小| 久久ye,这里只有精品| 黄色配什么色好看| 免费观看无遮挡的男女| www.av在线官网国产| av在线播放精品| 国产熟女欧美一区二区| 少妇人妻精品综合一区二区| 日韩中字成人| 国产色婷婷99| 国产精品女同一区二区软件| 大陆偷拍与自拍| 精品人妻熟女av久视频| 国产一区二区在线观看日韩| 天堂网av新在线| 狂野欧美激情性xxxx在线观看| 黄色配什么色好看| 在线 av 中文字幕| 亚洲欧美一区二区三区黑人 | 九九久久精品国产亚洲av麻豆| 久久国内精品自在自线图片| 夫妻性生交免费视频一级片| 天美传媒精品一区二区| 欧美高清成人免费视频www| 最新中文字幕久久久久| 熟女人妻精品中文字幕| 国产高潮美女av| 丝袜美腿在线中文| 精品一区二区三卡| 国产精品人妻久久久影院| 亚洲av成人精品一区久久| 亚洲精品色激情综合| 99热这里只有是精品50| 精品午夜福利在线看| 精品久久久噜噜| 亚州av有码| 乱码一卡2卡4卡精品| av免费在线看不卡| 国产高清三级在线| 中国三级夫妇交换| 日韩在线高清观看一区二区三区| 国产免费一区二区三区四区乱码| 交换朋友夫妻互换小说| 久久久久久久大尺度免费视频| 大码成人一级视频| 日韩国内少妇激情av| 毛片女人毛片| 欧美日韩在线观看h| 极品少妇高潮喷水抽搐| 亚洲精品国产色婷婷电影| 亚洲色图av天堂| 黄色视频在线播放观看不卡| eeuss影院久久| 天堂网av新在线| 亚洲精品久久午夜乱码| 国产免费一级a男人的天堂| 国产一级毛片在线| 国产亚洲91精品色在线| av在线亚洲专区| 最近手机中文字幕大全| 日韩欧美精品v在线| 又黄又爽又刺激的免费视频.| 偷拍熟女少妇极品色| 一级毛片黄色毛片免费观看视频| 性色av一级| 日日撸夜夜添| 国产伦在线观看视频一区| 午夜福利视频1000在线观看| 2021天堂中文幕一二区在线观| 观看免费一级毛片| 色视频在线一区二区三区| 午夜福利在线观看免费完整高清在| 美女高潮的动态| 亚洲自偷自拍三级| 日韩,欧美,国产一区二区三区| 色婷婷久久久亚洲欧美| 26uuu在线亚洲综合色| 午夜免费观看性视频| 搡女人真爽免费视频火全软件| 国产探花在线观看一区二区| 69av精品久久久久久| 精品人妻偷拍中文字幕| 亚洲图色成人| 久久ye,这里只有精品| 人体艺术视频欧美日本| 又爽又黄无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91 | 小蜜桃在线观看免费完整版高清| 大片免费播放器 马上看| 男人舔奶头视频| 新久久久久国产一级毛片| 一级二级三级毛片免费看| 熟女电影av网| 嘟嘟电影网在线观看| 黑人高潮一二区| 人妻制服诱惑在线中文字幕| 一区二区三区乱码不卡18| 婷婷色麻豆天堂久久| 国产乱人偷精品视频| 搡老乐熟女国产| 九九在线视频观看精品| 亚洲成人一二三区av| 大码成人一级视频| 日韩,欧美,国产一区二区三区| 国产亚洲av嫩草精品影院| 亚洲av中文av极速乱| 成人二区视频| 国产成人福利小说| 国产黄片美女视频| 成年免费大片在线观看| 国产精品人妻久久久影院| 大香蕉久久网| 免费在线观看成人毛片| 各种免费的搞黄视频| 人妻制服诱惑在线中文字幕| 51国产日韩欧美| 99热网站在线观看| 不卡视频在线观看欧美| 亚洲欧美中文字幕日韩二区| 精品一区二区免费观看| 麻豆成人av视频| 亚洲国产色片| 国产成人91sexporn| 99re6热这里在线精品视频| 丝袜脚勾引网站| 免费av毛片视频| 十八禁网站网址无遮挡 | 国产在视频线精品| 亚洲欧美日韩无卡精品| 成人欧美大片| 国语对白做爰xxxⅹ性视频网站| 成人黄色视频免费在线看| 99久久精品一区二区三区| 亚洲va在线va天堂va国产| 亚洲欧美日韩无卡精品| 亚洲av中文字字幕乱码综合| 最后的刺客免费高清国语| 五月伊人婷婷丁香| 免费看不卡的av| 在现免费观看毛片| 99久久精品热视频| 日韩国内少妇激情av| 狂野欧美激情性bbbbbb| 亚洲av.av天堂| 一个人看视频在线观看www免费| 国产成人aa在线观看| 各种免费的搞黄视频| 三级经典国产精品| 久久精品久久久久久久性|