• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes?

    2021-06-26 03:04:42YingYingYang楊瑩瑩PeiGong龔裴WanDuoMa馬婉鐸RuiHao郝銳andXiaoYongFang房曉勇
    Chinese Physics B 2021年6期

    Ying-Ying Yang(楊瑩瑩), Pei Gong(龔裴), Wan-Duo Ma(馬婉鐸),Rui Hao(郝銳), and Xiao-Yong Fang(房曉勇)

    Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    Keywords: silicon carbide nanotubes,group-V doped,optical properties,first-principles theory

    1. Introduction

    The silicon carbide (SiC) nanomaterials have excellent mechanical, thermal, electrical, and optical properties,[1–4]and they have been widely used in electronic devices, optical devices, and other fields.[5–7]Therefore, they have attracted much attention of many scholars.[8–12]SiCNT is an important low-dimensional material, which not only has the excellent characteristics of SiC crystal, but also shows some unique characteristics of nanotubes.[13–17]The unique optical characteristics of semiconductor SiCNT provide the possibility for its applications in optoelectronic devices.[18–20]Therefore,since SiCNT was synthesized experimentally,[21,22]it has been widely used as a nano-optoelectronic device material with broad application prospects, and has been widely concerned by the researchers.[23,24]

    As an important method to adjust material properties,the dopant effects on electronic and optical properties of semiconductors have been studied.[25–28]For SiCNTs, group-V elements are the donor dopants, so studying the optical properties of group-V elements-doped SiCNTs is of great significance in the applications of SiC nano-optoelectronic devices.In recent years, there have been many reports on the influence of dopants on the properties of SiCNTs. For example, In 2009, Baoet al.studied the effects of N-doping on the optical properties of zigzag SiCNTs. The studies showed that N-doping reduces the value of absorption peak and produces many new absorption peaks.[29]In 2014, Behzadet al. studied the effects of Ga-doping on the optical properties of zigzag SiCNTs. The optical studies based on dielectric function indicated that new transition peaks and a blue shift are observed after Ga-doping.[30]Khodadadet al.investigated the structural and electronic properties of Li-doped SiCNTs.The calculations demonstrated that the doping of Li atom changes some physical properties of pure bundled NT.Owing to charges transferring from Li to SiCNTs, the most significant effect of Li intercalation on the electronic band structure is the shift of Fermi energy.[31]In 2018, Gonget al. studied the effect of group-III doping on the optical properties of SiCNTs. The study results showed that group-III element doping increases the minimum dielectric constant value, thereby increasing the transmittance;at the same time,it also introduces weaker absorption and dispersion in the near-mid-infrared region, and as the diameter of the doped atoms increases, the response peak is blue shifted.[32]In 2001,Huuet al.used the shape memory synthesis method,and achieved the first reproducible synthesis of SiCNTs of different internal and external diameters.[33]In 2002, one-dimensional silicon carbon nanotubes and nanowires of various shapes and structures were synthesized via the reaction of silicon(produced by disproportionation reaction of SiO)with multiwalled carbon nanotubes(as templates) at different temperatures.[21]In 2013, Romainet al.fabricated SiCNTs by carburization in silicon nanowires.It was found that the TO peak and LO peak of SiCNTs are at 796 cm?1and 972 cm?1respectively, and the peak of LO is higher than that of TO peak, indicating that the sp2and sp3bonding configurations exist in SiCNTs.[22]

    So far, most of the researches on the SiCNTs doped by group-III elements and group-V elements have focused on structural stabilities, electrical, magnetic or optical aspects.However, most of these studies focus mainly on monatomic doping, and there are few reports on systematically studying the effect of a group of doping elements on the optical properties of SiCNTs. In this paper,the optical properties of SiCNTs doped by group-V elements(N,P,As,and Sb)are systematically studied by using the first-principles, and the optical differences and their effects caused by different substitutions are elaborated theoretically. These studies are of important significance in developing SiCNT nanodevices and putting them into practical applications.

    2. Methods and models

    Optimization of SiCNTs using CASTEP code was based on first-principles of density functional theory, and the optimization parameters were selected to be the same as those in Ref. [34]. The exchange correlation effect of the interaction between electrons were described by the Perdew–Burke–Ernzerhof(PBE)functional under the generalized gradient approximation(GGA),the plane wave cut-off energy was set to be 330 eV.[35]All the geometries were optimized by using the ultrasoft pseudopotentials until the force on each atom was less than 0.03 eV/?A.All atomic geometry optimizations were performed in the first Brillouin zone,kgrid points were 1×1×6.

    The supercell was constructed with twice the minimum unit of the armchair-type(6,6)SiCNTs. In order to reduce the influence of other SiCNTs, a vacuum layer thicker than 10 ?A was added outside the supercell, and the optimized model is shown in Fig.1(a).

    Based on this model, the C atoms (marked as NC-, PC-,AsC-, and SbC-SiCNTs) and Si atoms (marked as NSi-, PSi-,AsSi-,and SbSi-SiCNTs)at the same site of SiCNTs were replaced with group-V elements(N,P,As,Sb). Their optimized models are shown in Figs.1(b)and 1(c).

    Fig. 1. SiCNTs and their doped SiCNTs structure models, showing (a)undoped SiCNTs, and [(b), (c)] SiCNTs where C atoms and Si atoms are replaced with group-V elements, with X representing group-V elements(X =N, P, As, and Sb), dC denoting diameter between the C atoms, and dSia referring to diameter between the Si atoms all in unit of ?A.

    3. Results and discussion

    3.1. Structural stability

    The optimized results are shown in Tables 1 and 2,wheredSianddCare the diameters of Si tube and C tube respectively, and the difference between their values is denoted by?d=dC?dSias shown in Fig. 1. It can be seen that in the optimized SiCNTs,Si atoms are on the inside and C atoms are on the outside, and the tube wall thickness of SiCNT is not equal to zero(The wall thickness is about 0.1 ?A).Obviously,unlike CNTs,in addition to sp2bonding configuration,SiCNT also has an sp3bonding configuration. In this paper,although the SiCNT model is sp2bonding configuration during modeling,there are both sp2bonding configuration and sp3bonding configuration after optimization, which is consistent with the experimental results.[22]

    Table 1. Optimized structural parameters of SiCNTs with group-V atoms substituting for C atoms.

    Table 2. Optimized structural parameters of SiCNTs with group-V atoms substituting for Si atoms.

    The stability of doped SiCNT structure can be evaluated by the binding energy (or cohesive energy),[36]which is expressed as

    whereETrepresents the total energy of doped SiCNT,NSi,NC,NXdenote the atom numbers of Si, C, and dopant (N, P, As,and Sb), andμSi,μC,μXrefer to the chemical potentials of Si, C, and doping atoms, where the values ofμSiandμCare?101.52 (Si),?145.84 (C), respectively. When C (or Si) in SiCNT is replaced,the formation energy can be expressed as

    3.2. Optical absorption and photo-induced carriers

    Figures 2(a)and 2(b)show the absorption spectra of SiCNTs in the band range of 60 nm–1500 nm after group-V atoms have replaced C and Si atoms, respectively. showing obviously that the differences among effects on optical absorption of SiCNTs in the band range of 60 nm–600 nm by doping different elements are almost negligible. In the frequency band between 600 nm and 1500 nm, there are obvious differences among the optical absorptions of the SiCNTs doped by different elements. From Figs.2(c)and 2(d),the absorption coefficient of NC-, PC-, AsC-, and SbC-SiCNT increase slowly, on the contrary,the absorption coefficient of NSi-,PSi-,AsSi-,and SbSi-SiCNT decrease.Especially for N-and P-doped SiCNTs,the absorption coefficient of NSi-SiCNT is about 5000 cm?1,larger than that of NC-SiCNT.

    Fig. 2. Optical absorption spectra of SiCNTs where (a) C atom and (b) Si atom are replaced with group-V elements, and [(c), (d)] part of them in a range of 500 nm–1500 nm are magnified.

    According to the Tauc equation,the optical absorptionαof SiCNT and its energy band structure satisfy the following relationship:[39]

    whereAis a constant andhνis the photon energy. For a direct band gap semiconductor,r=0.5;for indirect band gap,r=2.Since group-V element-doped SiCNT is still of indirect band gap,r=2. The impurity concentration of doped SiCNT is denoted byNd,and the values for different SiCNTs are shown in Tables 1 and 2. The volume of SiCNT changes little for different doping elements and their displacements, so the impurity concentration does not change much, of them, the impurity concentration of AsC-SiCNTs is the lowest.Figure 2(a)shows that AsC-SiCNT has a minimum absorption peak, which is caused by the lowest impurity concentration of AsC-SiCNT.According to Fig. 2 and Eq. (3), Tauc fitting was performed for the doped SiCNT photoelectron energy level transition,the process and results are shown in Fig.3 and Table 3.

    Figure 4 shows the band structure of doped SiCNTs,calculated based on the first-principles, whereEcis the conduction band bottom,EV1andEV2are the top and bottom of the upper valence band, respectively,EV3is the top of the lower valence band, andED1,ED2, andED3are the impurity levels.Their data are shown in Table 3.

    Fig. 3. Tauc fitting of doped SiCNTs, with [(a), (b), (c), and (d)] N, P, As, and Sb substituting for C atoms, and [(e), (f), (g), and (h)] N, P, As and Sb substituting for Si atoms.

    Table 3. Electronic(characteristic)parameters of the doped SiCNTs.

    Fig.4. Energy band structure of SiCNTs with C atoms replaced by(a)N,(b)P,(c)As,and(d)Sb,and Si atoms replaced by(e)N,(f)P,(g)As,and(h)Sb substituting for Si atoms,respectively,and the Fermi level EF=0.

    As can be seen from Fig. 4 and Table 3, when group-V element replaces a C atom, two impurity levels appear in the band-gap of SiCNT: the impurity near the bottom of the conduction band has smaller ionization energy,which belongs to the donor level, and the impurity is easy to form ionized donors; the other impurity level is near the Fermi level, because the ionization energy is larger, the number of electrons provided for the conduction band are much smaller than for the donor level. Most of the unionized impurities are in deep impurity level,and they can be regarded as a recombination center(or trap). When group-V element replaces a Si atom,only one impurity level appears near the Fermi level,the ionization energy is large,and it can also be regarded as a recombination center.

    Fig. 5. Photoconductivity spectra of (a) N-, (b) P-, (c) As-, and (d) Sb-SiCNTs,respectively,with dotted line representing substitution of group-V element for C atom,and solid line denoting substitution of group-V element for Si atom.

    Figure 5 shows the photoelectric spectra of SiCNTs after C and Si atoms have been replaced by group-V elements,which are mainly composed of three spectral regions A, B,and C. Among them, in the frequency band between 248 nm and 620 nm (B region), doped SiCNTs show a greater photoconductivity. This is because the valence band electrons absorb photons with energy greater thanEg(frequencyv >Eg/h)and then transfer to the conduction band, thereby generating photo-generated electrons and holes(non-equilibrium carriers). For group-V element-doped SiCNT, the lifetime of photo-generated carriers is on the order of ns, which is much longer than the photon period (corresponding to a frequency of about 1014Hz). Therefore, the photoconductivity generated by the intrinsic excitation of doped SiCNT presents a spectrum width corresponding to a frequency of about 2×1014Hz. In the case where group-V element substitutes for C atom, the conductivity of AsC-SiCNT is the smallest because of its lowest impurity concentration and smallest carrier concentration.[36]Similarly, in the case where group-V element replaces Si atom,because the carrier concentration is the lowest,the conductivity of NSi-SiCNT is also the smallest.

    It can be seen from Fig.4 that the valence band of SiCNT is composed of high part and low part, and the band gap between the two valence bands is about 3 eV.[40]According to the energy band fitting in Fig. 3, it can be judged that the photoconductivity of the 155 nm–248 nm band (C region) is derived from the electronic transition of SiCNTs in the high valence band and the low valence band. When Si atom is replaced, the group-V atom has little effect on the SiCNT valence band. Therefore, the photoconductivity in the C region is almost unchanged; while when C atom is replaced, the pelectron effect of P, As, Sb are enhanced,[36]resulting in a closer relationship between the B spectral band and C spectral band.

    The differences among photoconductivities caused by different elements are mainly reflected within the wavelength band above 620 nm (A region), and their spectra are derived from electronic transitions in the conduction band of the impurity level. Among them,the electrons in the shallow impurity level will present the photogenerated carriers in the midinfrared region of 6.8μm–16.2μm. Therefore,the photoconductivity of the A region in Fig. 5 comes from the electrons in the impurity level at the Fermi level. Because the impurity level when C atom is replaced is split into deep part and shallow part, the electron concentration on the impurity level at the Fermi level is less than that in the substitution for Si atom, resulting in a slightly larger conductivity of NSi- and PSi-SiCNTs as shown in Figs. 5(a) and 5(b). In addition, because the ionization energy of Sb atom replacing Si atom is much larger than that of Sb atom replacing C atom, the conductivity of SbC-SiCNT is larger than that of SbSi-SiCNTs as shown in Fig.5(d).

    3.3. Optical refractive index and electron displacement polarization

    Figure 6 shows the dielectric spectra of SiCNTs doped with different elements. It can be seen that when the group-V element replaces C atom,the real peak and imaginary peak of the dielectric function of AsC-SiCNTs are the smallest.Within the band less than 600 nm, the dielectric function value of AsC-SiCNT is the smallest, and none of the dielectric functions of NC-,PC-,and SbC-SiCNTs are significantly different.Within the band above 600 nm, the imaginary part of the dielectric function increases with the doped atomic number increasing, and the real part of the dielectric function increases with the doped atomic number increasing except for the smallest AsC-SiCNT.When group-V element replaces Si atom,the peak value of the dielectric function real part increases with the the number of doped atoms increasing,and the peak shows a significant red-shift phenomenon.The peak value of the NSi-SiCNTs dielectric function imaginary part is the smallest,and the values of other doping conditions are similar. In a frequency band of 500 nm–870 nm,the real part of the dielectric function gradually increases as the doped atomic number increases,while when it is above 870 nm,the real part of the dielectric function gradually decreases with the atomic number increasing. Within the frequency band greater than 550 nm,the value of the dielectric function imaginary part decreases with atomic number increasing. When group-V element replaces Si atom the dielectric function has more obvious change than when group-V element replaces C atom, and the difference is manifested mainly in a frequency band greater than 500 nm.

    Fig.6. Dielectric spectra of doped SiCNTs,showing(a)real part and(b)imaginary part for group-V elements replacing C atoms,(c)real part and(d)imaginary part for group-V elements replacing Si atoms.

    Fig.7. Refractive properties of doped SiCNTs,showing(a)refractive index and(b)extinction coefficient for group-V replacing C atoms,(c)refractive index and(d)extinction coefficient for group-V replacing Si atoms,respectively.

    The dielectric spectrum of semiconductor follows the Lorentz model,and for the doped SiCNT containing multiple spectral peaks can be expressed as[41]

    whereNandm?are the electron concentration and the equivalent mass, respectively. The spectrum dielectric behavior of SiCNT is derived from free-electron plasma oscillation,τdenotes the relaxation time, and relates to the damping of the electron plasma oscillation. The oscillation frequencyωjdepends on the electron transitions between different bands. The refractive index of the semiconductor is determined by the electron displacement polarization. According to the electron polarization ratio model, the electron displacement polarization ratio of SiCNT can be expressed as[42]

    whereMijdenotes the dipole transition matrix elements betweeniandjstates,andNrepresents the number of electrons in the transition.

    According to the analysis of Fig. 2, Table 3, and Fig. 5,it can be seen that the two spectral peaks near 200 nm and 400 nm are derived from the transition between the valence band and the conduction band of SiCNT, respectively. Since there are few empty states in the valence band while many empty states in the conduction band,and the energy level difference in the valence band is greater than in the band gap,the dielectric constant and refractive index at 200 nm are much smaller than the values around 400 nm. Similarly,the number of free electrons of doped atoms is much smaller than the valence electrons of SiCNT,resulting in relatively low dielectric constant and low refractive index in the above 500-nm band.In particular,the differences among refractive indexes of SiCNTs,caused by different doping elements are reflected mainly in this frequency band, and their variation law is closely related to the concentration of free electrons in the donor ionization,which is consistent with the dielectric spectrum of Fig.6.As can be seen from Fig.7,the refractive index and extinction coefficient of AsC-SiCNT are the lowest because of its lowest impurity concentration.

    3.4. Optical dispersion and loss

    Dispersion and loss are important parameters to measure the optical properties of material. The dispersion coefficient can be expressed as[32]

    whereλis the wavelength,cis the propagation speed of the electromagnetic wave in vacuum, andn(λ) is the refractive index of SiCNT. The dispersion spectra of SiCNTs doped by different elements are shown in Fig.8.

    Figure 9 shows the reflectivity and loss factor of SiCNT doped with different elements. The loss factor is also called the loss tangent,which can be expressed as

    whereε'andε''are the real part and imaginary part of the dielectric constant,δeis called the electrical loss angle.

    It can be seen from Fig. 9 that except for the band near 300 nm, the reflectance of group-V element-doped SiCNT is less than 10%(10 dB),so it does not reflect visible light;NCSiCNTs has the largest refractive index when group-V element replaces C atom, followed by AsC-, PC-, and SbC-SiCNTs.When the group-V element replaces Si atom,the refractive index increases with the increase of the number of doping atoms in the band range of 400 nm–750 nm,and the situation is opposite in the band above 750 nm. Regardless of whether C or Si atom is replaced,the refractive index of SbC-SiCNT is the smallest.

    Fig.8. Dispersion spectra of SiCNTs doped with(a)N,(b)P,(c)As,and(d)Sb respectively. It can be seen from Fig.8 that when group-V element replaces C atom,the dispersion coefficients of NC-and PC-SiCNTs are slightly larger than that of AsC-and SbC-SiCNTs,respectively,among them,AsC-SiCNT’s impurity concentration is the smallest and dispersion coefficient is the smallest. When group-V element replaces Si atom,there is no significant difference in the dispersion coefficient for doped SiCNT.When group-V element substitutes for Si atom,the dispersion coefficient is larger than that when C atom is replaced,but there is no big difference in the dispersion coefficient when N atom replaces C atom or Si atom.

    Fig.9. Reflectance and loss factorfor N,P,As,and Sb replacing[(a),(b)]C atom and[(c),(d)]Si atom.

    Under optical frequencyε''=σ/ω, the loss comes mainly from the electronic conductance. When C atom is replaced, the loss of NC-SiCNT is the largest, and SbC-, PC-,and AsC-SiCNTs decrease in sequence;in the substitution for Si,the loss of NSi-SiCNT is the smallest,and SbSi-,AsSi-,and PSi-SiCNTs increase in sequence,which is similar to the trend of photoconductivity in Fig. 5. Whether C or Si atom is replaced, AsC-SiCNT has the least loss. By comparing Fig. 8 with Fig.9,it is clear that group-V element-doped SiCNT has a large loss around 300 nm,however,it generates a higher reflection due to the lowest dispersion coefficient in this band.

    4. Conclusions

    In this work, we have studied the effect on the optical properties of SiCNT where C atom or Si atom is replaced by the group-V element. The results are shown below. In the frequency band between 600 nm and 1500 nm, there are obvious differences among the optical absorptions of different elements doped SiCNTs. Especially for N-and P-SiCNTs,the absorption coefficient of NSi-SiCNT is about 5000 cm?1larger than that of NC-SiCNT. In the range of 248 nm–620 nm, the doped SiCNT has a greater photoconductivity, and the photoconductivity generated by the intrinsic excitation of doped SiCNT is exhibited within a spectral width corresponding to nearly 2×1014Hz. In the band greater than 620 nm, there are differences in photoconductivity when group-V element replaces C atom or Si atom. When the group-V element replaces Si atom, the dielectric function and refractive index change significantly compared with when C atom is replaced,and the difference is manifested mainly in the frequency band above 500 nm.Regardless of whether C or Si atom is replaced,SbC-SiCNT has the smallest refractive index.

    日韩一区二区三区影片| 亚洲人成网站高清观看| 亚洲人与动物交配视频| 18禁在线无遮挡免费观看视频| 麻豆国产97在线/欧美| 亚洲国产欧美在线一区| 亚洲精品成人久久久久久| 男女啪啪激烈高潮av片| 男女啪啪激烈高潮av片| 成年女人看的毛片在线观看| 亚洲成色77777| 亚洲精华国产精华液的使用体验| 精品久久久噜噜| 午夜精品国产一区二区电影 | 亚洲国产精品成人综合色| 国产精品三级大全| 七月丁香在线播放| 国产精品一及| 亚洲精品乱久久久久久| 菩萨蛮人人尽说江南好唐韦庄| eeuss影院久久| 久久99精品国语久久久| 亚洲精品自拍成人| 神马国产精品三级电影在线观看| 亚洲精品乱码久久久久久按摩| 欧美精品一区二区大全| 亚洲欧美精品自产自拍| 九草在线视频观看| 亚洲精品456在线播放app| 一级毛片我不卡| 国产亚洲91精品色在线| 亚洲熟女精品中文字幕| 欧美精品人与动牲交sv欧美| 免费观看在线日韩| 欧美精品人与动牲交sv欧美| 久久久亚洲精品成人影院| 老司机影院毛片| 国产伦在线观看视频一区| 午夜精品一区二区三区免费看| 老女人水多毛片| 性色av一级| 青春草国产在线视频| 久久久久精品性色| 国产片特级美女逼逼视频| 国语对白做爰xxxⅹ性视频网站| 嫩草影院新地址| 欧美性感艳星| 在线观看美女被高潮喷水网站| 国产亚洲午夜精品一区二区久久 | 欧美成人精品欧美一级黄| 免费在线观看成人毛片| 成年人午夜在线观看视频| 日本欧美国产在线视频| 最近手机中文字幕大全| 国产免费视频播放在线视频| 久久久久久久午夜电影| 一边亲一边摸免费视频| 一边亲一边摸免费视频| 97超视频在线观看视频| 精品国产乱码久久久久久小说| 婷婷色综合大香蕉| 日韩av在线免费看完整版不卡| 国产精品一区二区性色av| 最近中文字幕2019免费版| 夫妻性生交免费视频一级片| 亚洲无线观看免费| 老女人水多毛片| 美女高潮的动态| 超碰97精品在线观看| 久久精品国产亚洲网站| 秋霞在线观看毛片| 国产亚洲精品久久久com| 禁无遮挡网站| 一本一本综合久久| 一本一本综合久久| 能在线免费看毛片的网站| 精品一区二区三区视频在线| 国产精品一区www在线观看| 大香蕉97超碰在线| 嫩草影院入口| 亚洲婷婷狠狠爱综合网| 最后的刺客免费高清国语| 日韩免费高清中文字幕av| 国产成人福利小说| 大片电影免费在线观看免费| 午夜激情久久久久久久| 亚洲美女视频黄频| 亚洲av成人精品一二三区| 国产成人免费观看mmmm| 日韩av免费高清视频| 自拍欧美九色日韩亚洲蝌蚪91 | 美女视频免费永久观看网站| 国产精品一二三区在线看| 丝袜脚勾引网站| 欧美成人一区二区免费高清观看| 欧美日韩国产mv在线观看视频 | 久久综合国产亚洲精品| 色视频在线一区二区三区| 日日摸夜夜添夜夜爱| 日韩免费高清中文字幕av| 国产精品99久久99久久久不卡 | 婷婷色综合大香蕉| 久久99蜜桃精品久久| 久久久午夜欧美精品| 国产 一区精品| 少妇人妻久久综合中文| 亚洲国产精品专区欧美| 中国三级夫妇交换| 日本猛色少妇xxxxx猛交久久| 自拍偷自拍亚洲精品老妇| 色哟哟·www| 国产极品天堂在线| 日韩欧美一区视频在线观看 | 久久精品国产a三级三级三级| 亚洲久久久久久中文字幕| 亚洲av成人精品一区久久| 搞女人的毛片| av.在线天堂| 亚洲精品久久久久久婷婷小说| 永久免费av网站大全| 人人妻人人澡人人爽人人夜夜| 亚洲av中文av极速乱| 国产 一区精品| 亚洲精品日韩av片在线观看| 99热网站在线观看| 中国国产av一级| 黄色怎么调成土黄色| 色播亚洲综合网| 18禁在线无遮挡免费观看视频| 国产老妇伦熟女老妇高清| 国产乱来视频区| 伊人久久国产一区二区| 亚洲在线观看片| kizo精华| av天堂中文字幕网| 三级男女做爰猛烈吃奶摸视频| 成年女人看的毛片在线观看| 国产精品无大码| 精品一区二区免费观看| 国产成人福利小说| 视频中文字幕在线观看| 久久6这里有精品| 国产精品嫩草影院av在线观看| 国产乱来视频区| 久久精品国产亚洲av天美| 午夜视频国产福利| 不卡视频在线观看欧美| 精品国产一区二区三区久久久樱花 | 黄片无遮挡物在线观看| 日日啪夜夜撸| 黄片wwwwww| 国产一区亚洲一区在线观看| 各种免费的搞黄视频| 国产高清国产精品国产三级 | 久久综合国产亚洲精品| 久久6这里有精品| 亚洲av免费高清在线观看| 性色av一级| 国产一区有黄有色的免费视频| 尾随美女入室| 国产精品一区二区三区四区免费观看| 麻豆久久精品国产亚洲av| 国产精品福利在线免费观看| 亚洲伊人久久精品综合| 精品久久国产蜜桃| 久久99热这里只频精品6学生| 最后的刺客免费高清国语| 久久精品久久久久久久性| 亚洲精品乱码久久久v下载方式| 99久久精品一区二区三区| 欧美人与善性xxx| 大陆偷拍与自拍| 深夜a级毛片| 亚洲精品乱久久久久久| 久久久精品94久久精品| 亚洲国产最新在线播放| 国产亚洲一区二区精品| 国产一区二区在线观看日韩| 欧美精品一区二区大全| 亚洲精品成人久久久久久| 色哟哟·www| 国产成人a∨麻豆精品| 日本黄色片子视频| 观看免费一级毛片| 亚洲无线观看免费| 国产男女超爽视频在线观看| 男女边摸边吃奶| 99热网站在线观看| 国产亚洲最大av| 色视频在线一区二区三区| 性色avwww在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲美女搞黄在线观看| 日韩欧美一区视频在线观看 | 久久精品综合一区二区三区| 一级毛片久久久久久久久女| 在现免费观看毛片| 国产v大片淫在线免费观看| 日韩视频在线欧美| 尾随美女入室| av.在线天堂| 又大又黄又爽视频免费| 噜噜噜噜噜久久久久久91| videossex国产| 国产黄色视频一区二区在线观看| 成年av动漫网址| 国产毛片在线视频| 我的老师免费观看完整版| 九九久久精品国产亚洲av麻豆| 男女国产视频网站| 好男人在线观看高清免费视频| 久久久久久久大尺度免费视频| 精品久久久久久久人妻蜜臀av| 日本-黄色视频高清免费观看| 国产精品无大码| 777米奇影视久久| 一区二区三区免费毛片| 久久精品国产亚洲网站| 婷婷色av中文字幕| 成人综合一区亚洲| .国产精品久久| 日产精品乱码卡一卡2卡三| 在线观看三级黄色| 亚洲高清免费不卡视频| 午夜激情福利司机影院| 老女人水多毛片| 日韩在线高清观看一区二区三区| 内射极品少妇av片p| 亚洲欧美一区二区三区黑人 | 国产黄频视频在线观看| 啦啦啦在线观看免费高清www| 毛片一级片免费看久久久久| 免费看av在线观看网站| 久热这里只有精品99| 身体一侧抽搐| 最新中文字幕久久久久| 国产亚洲午夜精品一区二区久久 | 亚洲欧美日韩东京热| 久久精品人妻少妇| 在线观看三级黄色| 欧美成人a在线观看| 又爽又黄无遮挡网站| 亚洲欧美成人精品一区二区| 亚洲av欧美aⅴ国产| 国产一区亚洲一区在线观看| 一区二区三区免费毛片| 国产91av在线免费观看| 麻豆成人av视频| 日韩一本色道免费dvd| 亚洲美女视频黄频| 日韩成人av中文字幕在线观看| 少妇人妻精品综合一区二区| 精品视频人人做人人爽| 久久女婷五月综合色啪小说 | 国产精品爽爽va在线观看网站| 久久久色成人| 亚洲不卡免费看| 九草在线视频观看| 少妇人妻一区二区三区视频| 亚洲av一区综合| 免费黄色在线免费观看| 免费少妇av软件| 国产精品久久久久久久电影| 在线观看一区二区三区| 一级毛片久久久久久久久女| 欧美丝袜亚洲另类| 国产免费又黄又爽又色| 在线天堂最新版资源| 七月丁香在线播放| 日韩免费高清中文字幕av| 直男gayav资源| 中国美白少妇内射xxxbb| 亚洲精品aⅴ在线观看| 中国三级夫妇交换| 国产成人免费无遮挡视频| 国产一级毛片在线| 精品少妇黑人巨大在线播放| 国产精品无大码| 视频中文字幕在线观看| 国产成人aa在线观看| 午夜免费观看性视频| 身体一侧抽搐| 亚洲精品乱久久久久久| 日韩免费高清中文字幕av| 乱码一卡2卡4卡精品| 午夜福利在线观看免费完整高清在| 日本色播在线视频| 校园人妻丝袜中文字幕| 亚洲精品中文字幕在线视频 | 久久久久久久久久人人人人人人| 亚洲自偷自拍三级| 国产成人a∨麻豆精品| 欧美高清性xxxxhd video| 波野结衣二区三区在线| 精品国产三级普通话版| 亚洲国产最新在线播放| 国产高清三级在线| 精品国产露脸久久av麻豆| 精品一区二区免费观看| 18禁在线无遮挡免费观看视频| 直男gayav资源| 一个人看的www免费观看视频| 成人国产麻豆网| 欧美成人a在线观看| 国产亚洲av片在线观看秒播厂| 午夜福利在线观看免费完整高清在| 亚洲av男天堂| 国产精品熟女久久久久浪| 联通29元200g的流量卡| 天堂中文最新版在线下载 | 亚洲精品国产av成人精品| 国产日韩欧美在线精品| 人妻夜夜爽99麻豆av| 国产精品三级大全| 日韩 亚洲 欧美在线| 国产毛片在线视频| 黄片无遮挡物在线观看| 啦啦啦中文免费视频观看日本| 又爽又黄无遮挡网站| 欧美激情国产日韩精品一区| 国产真实伦视频高清在线观看| 色播亚洲综合网| av黄色大香蕉| 最近中文字幕2019免费版| 中国三级夫妇交换| 免费观看的影片在线观看| 国产一区有黄有色的免费视频| 亚洲电影在线观看av| 欧美精品国产亚洲| av女优亚洲男人天堂| av专区在线播放| 国产永久视频网站| 久久人人爽人人爽人人片va| 国产 精品1| 人妻 亚洲 视频| 久久久午夜欧美精品| 免费观看性生交大片5| 国产久久久一区二区三区| 国产av码专区亚洲av| 日本猛色少妇xxxxx猛交久久| 国产精品99久久99久久久不卡 | 一级毛片我不卡| 亚洲人成网站高清观看| 日韩欧美 国产精品| 亚洲欧洲日产国产| 亚洲欧美日韩另类电影网站 | 亚洲精品一区蜜桃| 国产精品一区二区性色av| 青青草视频在线视频观看| 18禁动态无遮挡网站| 免费观看av网站的网址| 大片电影免费在线观看免费| 亚洲人与动物交配视频| 黄色配什么色好看| 日韩大片免费观看网站| 国内精品宾馆在线| 久久久欧美国产精品| 深夜a级毛片| 色视频在线一区二区三区| 特大巨黑吊av在线直播| 久久久久久久久久人人人人人人| 黑人高潮一二区| 老司机影院成人| 可以在线观看毛片的网站| 日日啪夜夜撸| 久久97久久精品| 97在线人人人人妻| 国产免费一级a男人的天堂| 久久久国产一区二区| 国产亚洲一区二区精品| 大香蕉久久网| 精品一区二区免费观看| 亚洲四区av| 亚洲丝袜综合中文字幕| 欧美亚洲 丝袜 人妻 在线| 最近中文字幕高清免费大全6| 尤物成人国产欧美一区二区三区| 国产精品一区二区性色av| 久久综合国产亚洲精品| 精品亚洲乱码少妇综合久久| 天堂中文最新版在线下载 | 一级二级三级毛片免费看| 晚上一个人看的免费电影| 99视频精品全部免费 在线| 亚洲av福利一区| 99热6这里只有精品| 看黄色毛片网站| 久久精品久久久久久噜噜老黄| 最近手机中文字幕大全| 国产欧美日韩精品一区二区| 亚洲精品久久久久久婷婷小说| 久久久精品94久久精品| 久久精品夜色国产| 国产精品国产av在线观看| 亚洲精品成人久久久久久| 成人无遮挡网站| 赤兔流量卡办理| 免费观看a级毛片全部| 色播亚洲综合网| 又爽又黄a免费视频| 熟女电影av网| 大片电影免费在线观看免费| 国产精品国产三级国产专区5o| 久久鲁丝午夜福利片| 99久久中文字幕三级久久日本| 韩国av在线不卡| 欧美日韩综合久久久久久| 亚洲国产欧美在线一区| 人妻系列 视频| 人体艺术视频欧美日本| 有码 亚洲区| 香蕉精品网在线| 欧美三级亚洲精品| 国产精品女同一区二区软件| 熟妇人妻不卡中文字幕| 欧美xxⅹ黑人| 黄色怎么调成土黄色| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久久久久婷婷小说| 亚洲av一区综合| 老女人水多毛片| 日日啪夜夜撸| 亚洲国产最新在线播放| 成年女人在线观看亚洲视频 | kizo精华| 22中文网久久字幕| 亚洲av福利一区| 欧美丝袜亚洲另类| 99久久九九国产精品国产免费| 亚洲av福利一区| 女人被狂操c到高潮| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品视频女| 亚洲精品影视一区二区三区av| 熟女av电影| 亚洲伊人久久精品综合| 亚洲人与动物交配视频| 中文资源天堂在线| 亚洲av.av天堂| 亚洲av不卡在线观看| 人妻夜夜爽99麻豆av| 色播亚洲综合网| 久热这里只有精品99| 精品国产乱码久久久久久小说| 久久久久网色| 天天一区二区日本电影三级| 亚洲内射少妇av| 精品99又大又爽又粗少妇毛片| 日韩av不卡免费在线播放| 一区二区三区四区激情视频| 亚洲av在线观看美女高潮| 制服丝袜香蕉在线| 欧美国产精品一级二级三级 | 国产精品成人在线| 插阴视频在线观看视频| 欧美+日韩+精品| 久久久久久伊人网av| 麻豆精品久久久久久蜜桃| 欧美三级亚洲精品| 一级毛片久久久久久久久女| 男女那种视频在线观看| 国产黄片美女视频| 80岁老熟妇乱子伦牲交| 日韩伦理黄色片| 美女高潮的动态| 国产av码专区亚洲av| 综合色丁香网| 亚洲在线观看片| 草草在线视频免费看| 欧美xxxx性猛交bbbb| 内射极品少妇av片p| 丰满乱子伦码专区| 狠狠精品人妻久久久久久综合| av天堂中文字幕网| 偷拍熟女少妇极品色| 精品视频人人做人人爽| 日本午夜av视频| 秋霞在线观看毛片| 亚洲国产高清在线一区二区三| 激情 狠狠 欧美| 成人综合一区亚洲| 少妇人妻 视频| 在线亚洲精品国产二区图片欧美 | 成人毛片60女人毛片免费| 免费观看性生交大片5| 久久这里有精品视频免费| 国产成年人精品一区二区| 欧美极品一区二区三区四区| 纵有疾风起免费观看全集完整版| 欧美成人一区二区免费高清观看| 特级一级黄色大片| 91久久精品国产一区二区三区| 精品99又大又爽又粗少妇毛片| 午夜福利在线在线| 婷婷色综合www| 黄色配什么色好看| 观看美女的网站| 18+在线观看网站| 五月玫瑰六月丁香| 老师上课跳d突然被开到最大视频| 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 永久网站在线| 国产亚洲精品久久久com| 日韩国内少妇激情av| 男女边吃奶边做爰视频| 久久精品熟女亚洲av麻豆精品| 亚洲美女视频黄频| 久久精品久久久久久久性| 两个人的视频大全免费| 一本久久精品| 黄色配什么色好看| 精品少妇久久久久久888优播| 亚洲精品一二三| 国产一区二区亚洲精品在线观看| 观看免费一级毛片| 在线观看一区二区三区| 欧美成人精品欧美一级黄| 神马国产精品三级电影在线观看| 男人爽女人下面视频在线观看| 国产高清不卡午夜福利| 免费观看无遮挡的男女| 91精品一卡2卡3卡4卡| 国产成人免费观看mmmm| 国产精品蜜桃在线观看| 免费看a级黄色片| 亚洲精品成人av观看孕妇| 国产高潮美女av| 18禁裸乳无遮挡免费网站照片| 熟女av电影| 久久久精品欧美日韩精品| 久久这里有精品视频免费| av又黄又爽大尺度在线免费看| av在线app专区| 亚洲美女视频黄频| 亚洲精品国产av蜜桃| 26uuu在线亚洲综合色| 一级av片app| 欧美日韩视频精品一区| 性色av一级| 国产精品福利在线免费观看| 国产视频内射| 蜜臀久久99精品久久宅男| 国产老妇伦熟女老妇高清| 日本-黄色视频高清免费观看| 春色校园在线视频观看| 五月开心婷婷网| 女人十人毛片免费观看3o分钟| 80岁老熟妇乱子伦牲交| 777米奇影视久久| 国产成人精品一,二区| 七月丁香在线播放| 精品亚洲乱码少妇综合久久| 亚洲真实伦在线观看| 中文乱码字字幕精品一区二区三区| 精品少妇黑人巨大在线播放| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区国产| 日日摸夜夜添夜夜添av毛片| 午夜日本视频在线| 99热网站在线观看| 成人无遮挡网站| 国产黄片美女视频| 婷婷色综合www| 三级国产精品欧美在线观看| 亚洲综合精品二区| 尾随美女入室| 99久久精品热视频| 国产精品国产三级国产专区5o| 久久女婷五月综合色啪小说 | 亚洲最大成人手机在线| 成人亚洲精品一区在线观看 | 婷婷色综合大香蕉| 国产一级毛片在线| 亚洲欧美精品专区久久| 特大巨黑吊av在线直播| 日韩中字成人| 免费看av在线观看网站| 精华霜和精华液先用哪个| 免费看av在线观看网站| 亚洲天堂av无毛| 中文字幕制服av| 菩萨蛮人人尽说江南好唐韦庄| 午夜精品国产一区二区电影 | 久久久久久久精品精品| 成人高潮视频无遮挡免费网站| av国产精品久久久久影院| 日韩,欧美,国产一区二区三区| 一二三四中文在线观看免费高清| 人人妻人人爽人人添夜夜欢视频 | 18禁动态无遮挡网站| 看非洲黑人一级黄片| 中文字幕亚洲精品专区| 九九久久精品国产亚洲av麻豆| 老女人水多毛片| 九色成人免费人妻av| 亚洲丝袜综合中文字幕| 搡老乐熟女国产| 欧美+日韩+精品| 欧美激情在线99| 99精国产麻豆久久婷婷| 久久久久网色| 国产永久视频网站| 人妻系列 视频| 2021天堂中文幕一二区在线观| 免费看日本二区| 亚洲怡红院男人天堂| 最近最新中文字幕大全电影3| 欧美精品国产亚洲| 国产成人午夜福利电影在线观看| 免费大片18禁| 色网站视频免费| 简卡轻食公司| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品古装|