• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1?x)1.9 compounds?

    2021-06-26 03:30:26MinYuZeng曾敏玉QingTang唐慶ZhiWeiMei梅志巍CaiYanLu陸彩燕YanMeiTang唐妍梅XiangLi李翔YunHe何云andZePingGuo郭澤平
    Chinese Physics B 2021年6期
    關(guān)鍵詞:李翔

    Min-Yu Zeng(曾敏玉) Qing Tang(唐慶) Zhi-Wei Mei(梅志巍) Cai-Yan Lu(陸彩燕)Yan-Mei Tang(唐妍梅) Xiang Li(李翔) Yun He(何云) and Ze-Ping Guo(郭澤平)

    1Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology,Guangxi Normal University,Guilin 541004,China

    2School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China

    Keywords: easy magnetization direction(EMD),magnetostriction,spin-reorientation

    1. Introduction

    The binary C15 cubic Laves phase compound terfenol-D (Tb0.27Dy0.73Fe2) is well known for its outstanding magnetostriction at room temperature, which is widely applied in acoustic transducers,sensors,and actuators.[1–3]However,the heavy rare earths are expensive, and their excellent magnetostrictive properties can only retain at the temperature range of?20?C to+60?C.[4,5]Therefore,the low-cost compound PrFe2,which has large magnetostriction at a wide temperature range(λ111~5600 ppm at 0 K and|λ‖?λ⊥|~1100 ppm at room temperature)should be of giant interest.[1,6–8]However,the alloy also exhibits large magnetocrystalline anisotropy at low temperatures. Therefore, in the past decades, much efforts have been paid on developing a RxPr1?xFe2anisotropic compensation system by selecting another RFe2alloy with different signs of magnetocrystalline anisotropy constantK1to PrFe2to obtain large magnetostriction at low magnetic fields.[9–17]

    To develop a RxPr1?xFe2anisotropic compensation system, the studies of crystal structures and spin reorientation temperature (TSR) in PrFe2are significant. This is because for RFe2alloys, there is a one-to-one relationship between lattice distortion and EMD (rhombohedral structure with EMD along〈111〉, orthorhombic structure with EMD along〈110〉,and tetragonal structure with EMD along〈100〉,respectively).[1,6,16–21]Besides,different EMDs correspond to different magnetocrystalline anisotropy properties, ifK2and higher-order anisotropy constants are neglected.[21]PrFe2is a tetragonal symmetry below itsTSR(70 K) and a rhombohedral structure above itsTSR.[1,6–8,22]Then, another RFe2alloy considered in a RxPr1?xFe2anisotropic compensation system should be selected basing on the crystal structure andTSRof PrFe2. For example, TbFe2with EMD lying along〈111〉should be considered whenT <70 K,[1,23,24]and DyFe2with EMD lying along〈100〉should be considered when 70 K<T <300 K,etc.[1,19]

    As mentioned above,TSRis an important property for PrFe2alloy, which significantly impacts the EMD and magnetic anisotropy. Low magnetocrystalline anisotropy frequently occurs atTSR.[9–16]Therefore, it is of great interest if we find a method to control it for different temperature applications. According to the investigations of Ga substitution for Fe in TbFe2system, the EMD of the compound may deviate slightly from the major axis of symmetry, and it leads to the increase of tetragonal distortionλ100.[25]Besides, the investigation of Ga substitution for Fe in Dy0.6Tb0.3Pr0.1(Fe0.95?xMn0.05Gax)1.85alloys shows that the substitution can affect the homogeneity region and the grain size of the multicomponent pseudobinary compound(Dy,Tb,Pr)(Fe,Mn,Ga)2.[26]These results indicate that Ga substitution for Fe can impact the EMD orTSRin the alloys.Then,we would like to examine here the effect of Ga substitution for Fe in the magnetic and magnetostriction properties,especially the EMD andTSRin PrFe1.9alloy. Here, we choose the ratio of R:(Fe,Ga)as 1:1.9 instead of 1:2 in order to obtain a more pure Laves phase.[7,9]

    2. Experiment design

    We prepared the ingots of Pr(GaxFe1?x)1.9withx=0.0,0.02, 0.05, 0.10, and 0.15 stoichiometry by melting the high purity metals in a magneto controlled arc furnace in an argon atmosphere. The purities of the constituents are 99.9 wt%.Because the radius of Pr3+is large, and the radius ratio of(R,Pr):Fe ion is too big to fit the ideal atomic radius ratio for Laves phase(1.225),the ingot were pressed to 6 GPa by a hexahedral anvil press and heated to 900?C for 30 min to obtain single-phase Laves phase.[7,27]Conventional x-ray diffraction(XRD)analysis was carried out at room temperature using CuKαradiation with a Rigaku D/Max-gA diffractometer. Figures 1(a) and 1(b) show the examples of XRD spectrum of Pr(GaxFe1?x)1.9compounds prepared under ordinary pressure and high pressure,respectively. The indices(hkl)of the Laves phase are also indexed here.[7,15,27,28]It can be seen from Fig. 1(a) that cubic Laves phase could hardly be observed in the samples prepared under ordinary pressure. However, all of the samples prepared by high-pressure annealing method exhibit almost single Cubic Laves phase with MgCu2structure, with minor impurity phases (i.e.rare-earth phases) over the whole concentration range investigated.[7,15,27,28]This indicates high-pressure annealing method is an effective method to prepare cubic Laves phase alloys with high content of Pr.The lattice parameters were calculated from the{220},{311},{422},{333}, and{440}XRD spectra of Fig. 1(b) by Unit-Cell. The Curie temperatureTCwas detected by a thermal gravitation analyzer (TGA) with a vertical gradient magnetic field under the samples. The Curie temperatureTCwas determined by the differential thermal analysis(DTA).The crystal structure was determined by the Rigaku-TTR3 x-ray diffractometer. The scaling scale is from 40.5?to 43?for the{440}peak and from 70.5?to 73?for{222}peak,respectively,both with a step width of 0.02 between 15 K and 300 K. The xray diffraction(XRD)was performed with a fitted time mode,where each point was relaxed for 4 seconds. The XRD peaks were fitted by Jade 6.5 XRD analytical software, and the effect of theKα2radiation was eliminated by a standard process. We used superconducting quantum interference device magnetometer (SQUID) to measure the temperature dependence of the magnetization(M)to determineTSR. The magnetostrictions were measured using standard strain-gauge technique, while the magnetic fields were supplied by Quantum Design physical property measurement system (PPMS). The57Fe M¨ossbauer spectra were collected on a constant accelerated spectrometer with the transmission geometry at room temperature and 77 K, with the source of57Co in Pd matrix with an activity of about 25 mCi. The spectrums were calibrated with a standardα-Fe foil and analyzed by Lorentzian lines in 256 channels using the software Klencsar and Moss-Winn.

    Fig. 1. XRD patterns of Pr(GaxFe1?x)1.9 compounds prepared (a) under ordinary pressure and(b)high pressure,respectively.

    3. Results and discussion

    In order to detect the Curie temperatureTCof Pr(Fe1?xGax) alloys, the thermo gravimetric analysis (TGA)was performed, and the results are shown in Fig. 2. ThenTCwas determined by the differential thermal analysis(DTA),which is shown in the inset of Fig. 2 (taking the alloy withx=0.02 as an example).

    The concentration dependence ofTCis plotted in Fig.3.It can be found in Fig.3 thatTCdecreases from 513 K to 433 K with increasing Ga concentrationx, which can be probably attributed to the decrease ofR–Tcoupling strength due to Ga substitution.It is similar to the results of Tb(Fe1?xGax)[25]and Dy0.6Tb0.3Pr0.1(Fe0.95?xMn0.05Gax)1.85alloys.[26]The lattice parameteracalculated from the XRD spectra (Fig. 1(b)) is also plotted in Fig. 3. The lattice parameter increases from 0.746 nm to 0.753 nm with increasing Ga content,which can be attributed to the larger atom radius of Ga compared to that of Fe. This result is also similar to that of Tb(Fe1?xGax)[25]and Dy0.6Tb0.3Pr0.1(Fe0.95?xMn0.05Gax)1.85alloys.[26]

    Fig.2. The TGA of Pr(GaxFe1?x)1.9 alloys. The inset shows the differential thermal analysis of the alloy with x=0.02.

    Fig.3. Ga concentration dependence of lattice parameter a and Curie temperature TC,respectively.

    Figure 4 shows the magnetic field dependence of magnetostrictionλ=(λ||?λ⊥)at both room temperature and 5 K,respectively. As shown in Fig. 4(a), the magnetostriction decreases monotonously with the increasingxat room temperature (RT), due to the decrease of magnetic properties of the compounds.[1,25,26]Once again,this result is similar to that of Tb(Fe1?xGax)[25]and Dy0.6Tb0.3Pr0.1(Fe0.95?xMn0.05Gax)1.85systems.[26]However,at 5 K,Ga substitution reduces the magnetostriction when 10 kOe≤H ≤90 kOe,while it yields an increased magnetostriction with 0 kOe≤H ≤10 kOe,as shown in the inset of Fig. 4(b). This indicates that Ga substitution with 0.02≤x ≤0.05 can enhance the magnetostriction at 5 K.

    Fig.4.(a)The field dependence of magnetostriction(λ=λ||?λ⊥)at RT.(b)The field dependence of the magnetostriction(λ||)at 5 K of Pr(GaxFe1?x)1.9 alloys. The inset shows λ|| with 0 kOe ≤H ≤12 kOe.

    Fig. 5. Temperature dependence of the magnetization (M) for the alloys with x=0.0, 0.02, 0.05, 0.10, and 0.15, respectively, at the field strength H=50 kOe. The inset shows the determination of TSR when x=0.15.

    Figure 5 shows the magnetization (M) temperature dependence of the alloys at the magnetic field of 50 kOe.An abnormity can be seen clearly in the magnetization (M)curve for each compounds, which has been marked by an arrow in the figure. By comparing theM–Tdata with those obtained from the high-precision XRD step scanning,as well as our earlier reported M¨ossbauer spectra measurements,we are able to identify the anomalies corresponding to the spin reorientations.[8,10,13,16–20,29,30]Forx=0,an anomaly appears in the form of a peak at 74 K, which is identified as a spin reorientation taking place from〈100〉to〈111〉. Then this anomalies seems to shift to approximately 120 K whenxincreases from 0.0 to 0.15. The anomaly forx=0.15 is not very obvious, but it can be observed in an enlarged view as shown in the inset of Fig.5,which is similar to the situations of Sm0.76Nd0.24Fe2and Sm0.7Nd0.3Fe2.[29]

    In order to further confirm the EMD type in Gacontainning alloys above and below the anomalies temperature inM–Tcurve, a high-precision XRD step scanning was performed on Pr(Ga0.02Fe0.98)1.9for the{222}and{440}peaks during cooling from 300 K to 15 K after elimination of Kα2, which are shown in Figs.6(a)and 6(b), respectively.The double-splitting of the{222}and{440}reflections (the intensity ratio of split peaks is about 1:3 and 1:1, respectively) between 135 K and 300 K are typical for rhombohedral structure,[1,6–8,19,20]indicating the EMD of the compound lies along〈111〉in this temperature range. On the other hand,a prominent tetragonal symmetry can be seen between 15 K and 80 K,which can be confirmed by the non-splitting of the{222}reflections and doubly splitting of the{440}reflections.This indicates the EMD of the compound lies along〈100〉in this temperature range. Thus we can conclude that the spinreorientation occurs in the Pr(Ga0.02Fe0.98)1.9alloy,which has been verified in Pr-containning alloys.[1,6–8]

    Fig.6. The profiles of the step-scanned{440}and{222}XRD reflection of the sample with x=0.02.

    Fig. 7. 57Fe M¨ossbauer spectra of Pr(Ga0.02Fe0.98)1.9 at 77 K and room temperature,respectively.

    Figure 7 shows the57Fe M¨ossbauer spectra for singlephase Pr(Ga0.02Fe0.98)1.9at both 77 K and room temperature,where the circles present the experimental data and the solid lines give the fitted curves. The data can be fitted by two sextets with area ratio about 3:1 at room temperature, indicating that the EMD is along the〈111〉axis.[9,22,23,31]On the other hand,for the data at 77 K,the spectra can be fitted by a single sextet,indicating that EMD is lying along〈100〉.These results are in good agreement with the XRD result in Fig. 6. Therefore,the abnormities in magnetization(M)results in Fig.5 can be explained by the transform of EMD from〈111〉to〈100〉in the alloys.

    The phase diagram of the spin configuration accompanied with different structures for Pr(GaxFe1?x)1.9alloys are plotted in Fig. 8, in whichTSRis obtained from the collection of theM–Tcurve in Fig. 5 andTCis obtained from the collection of the DTA data in Fig. 3. Meanwhile, the EMD type were determined by XRD (Fig. 6) and M¨ossbauer spectra measurements (Fig. 7), and were represented by red circle, blue trigon, light blue diamond, and pink trigon, respectively. It can be seen from Fig. 8 that the phase diagram can be separated into three regions,which have been identified by cubic symmetry region I, rhombohedral symmetry region II,and tetragonal symmetry region III, respectively. It can be seen that the EMD types accurately land in the corresponding region (〈111〉in region II and〈100〉in region III). This indicates that the data from XRD and M¨ossbauer spectra measurement are well consistent with theTSRdetermined byM–Tcurve. Furthermore, it shows thatTCdecreases with increasing Ga concentrationx, due to the decrease ofR–Tcoupling strength caused by Ga substitution.[19,20]An increase ofTSRfrom 70 K to 120 K can be seen in Fig. 8, with the increasing Ga concentrationx. It indicates that the 3d–4f hybridization or even 4f–4f coupling is composition-sensitive in this system.[25,26]This result is similar to that of Co or Al substitution for Fe in light rare earth Laves phase compounds,such as Pr0.5Nd0.5(Fe1?xCox)1.9,[16]Nd(Fe1?xCox)1.9,[32]Pr(Fe1?xCox)1.9,[33]and Pr(Fe1?xAlx)1.9systems.[34]However, it is different to that in Tb0.3Dy0.7(Fe1?xMnx)2,[35]and Sm0.88Dy0.12(Fe1?xCox)2systems,[36]in which Co or Mn substitution for Fe slightly decreasesTSR. The underlying physical mechanisms is still to be investigated.

    Fig. 8. Phase diagram of the spin configuration accompanied with different crystal structures for Pr(GaxFe1?x)1.9 compounds(Ms denotes the easy magnetization direction,PS denotes the paramagnetic state).

    The intrinsic magnetostrictionλ111of the PrFe1.9and Pr(Ga0.02Fe0.98)1.9as a function of temperature is shown in Fig.9,in whichλ111was obtained from

    withd440anddenoting the crystallographic plane distances of{440}and{40}, respectively. The parametersd440andcan be calculated by the Bragg’s formulaλ=2dsinθ(λrepresents the wavelength,θrepresents the angle of diffraction in Fig.7).[6,9,30]The data ofλ111in PrFe1.9were obtained from Ref.[8]. The error ofλ111was estimated by the error transfer formula

    in whichθ1andθ2stand for the diffraction angles of{440}and peaks,respectively,and the scanning angle error is ?θ=0.02?/2. Significant decrease ofλ111with increasing temperature can be observed in both samples, which can be attributed to the rapid decrease of the sublattice moment with decreasing temperature.[1]Ga substitution yields a rapid decrease spontaneous magnetostrictionλ111. This is similar to the result of Ga substitution for Fe in TbFe2. which can be explained by the single-ion model.[25,26]According to the singleion model,λ111varies with temperature as magnetic momentσ3R(T). Assuming the rare earth sublattice moment decreases with decreasing Curie temperatureTC,the decrease ofTCwith increasing Ga content results in a decrease ofσ3(T), which leads to a reduction in the spontaneous magnetostrictionλ111.

    Fig. 9. Temperature dependence of the spontaneous magnetostriction λ111 for PrFe1.9 and Pr(Ga0.02Fe0.98)1.9.

    4. Conclusions

    Ga substitution decreases the magnetostriction with magnetic field ofH ≥8 kOe, while increases the magnetostriction when 0 kOe≤H ≤8 kOe for the compounds withx ≤0.05 at 5 K. Drastic transition of the step scanned XRD and M¨ossbauer spectra, as well as the abnormal temperature dependence of magnetization and magnetostriction are observed,which indicate the occurrence of spin-reorientation (SR) in all the alloys investigated. The phase diagram is constructed,which illustrates an increase of the spin-reorientation temperatureTSRdue to Ga substitution.

    猜你喜歡
    李翔
    李翔《記憶膠囊系列》
    《光明頂上光芒照 排云亭中排郁愁》
    李翔作品欣賞
    黔江:“三在一融合”精細(xì)化治理城市
    《勾股定理》拓展精練
    一本書(shū)的風(fēng)波
    BOUNDEDNESS OF MULTILINEAR LITTLEWOOD-PALEY OPERATORS ON AMALGAM-CAMPANATO SPACES?
    善意的謊言
    李翔書(shū)法作品欣賞
    鄉(xiāng)土情懷 筆墨新境——李翔的山水畫(huà)
    丹青少年(2017年4期)2017-02-06 03:08:20
    午夜激情av网站| 大香蕉久久成人网| 亚洲专区中文字幕在线| 国产精品乱码一区二三区的特点| 午夜久久久在线观看| 午夜激情福利司机影院| 午夜免费激情av| 精品国产乱码久久久久久男人| 长腿黑丝高跟| 99re在线观看精品视频| 精品不卡国产一区二区三区| 熟妇人妻久久中文字幕3abv| 丁香六月欧美| 淫妇啪啪啪对白视频| 久久伊人香网站| bbb黄色大片| 18禁黄网站禁片午夜丰满| 成人手机av| 国产精品爽爽va在线观看网站 | 国产三级黄色录像| 人人妻,人人澡人人爽秒播| 久久婷婷成人综合色麻豆| 日本成人三级电影网站| 国产精品99久久99久久久不卡| 日日夜夜操网爽| 淫妇啪啪啪对白视频| 黄色a级毛片大全视频| 欧洲精品卡2卡3卡4卡5卡区| 精品无人区乱码1区二区| 一进一出抽搐动态| 两人在一起打扑克的视频| 丝袜人妻中文字幕| 99riav亚洲国产免费| 桃红色精品国产亚洲av| 91成年电影在线观看| 国产精品爽爽va在线观看网站 | 色精品久久人妻99蜜桃| 国产精品 国内视频| 丝袜美腿诱惑在线| 露出奶头的视频| 亚洲精品国产精品久久久不卡| 老汉色av国产亚洲站长工具| 99在线人妻在线中文字幕| 国产一区二区激情短视频| 亚洲av美国av| 欧美黑人精品巨大| 国产伦在线观看视频一区| 两个人看的免费小视频| 日本在线视频免费播放| 国产aⅴ精品一区二区三区波| 欧美大码av| 国产又黄又爽又无遮挡在线| 国产在线精品亚洲第一网站| 精品国产乱子伦一区二区三区| 成人一区二区视频在线观看| 99国产精品99久久久久| 日韩国内少妇激情av| 老熟妇乱子伦视频在线观看| 欧美日韩瑟瑟在线播放| 白带黄色成豆腐渣| 国产99白浆流出| 日本免费一区二区三区高清不卡| 精品电影一区二区在线| 99国产极品粉嫩在线观看| 777久久人妻少妇嫩草av网站| 色婷婷久久久亚洲欧美| 国产精品99久久99久久久不卡| 黄网站色视频无遮挡免费观看| 国产99白浆流出| 亚洲全国av大片| 国产三级在线视频| 韩国精品一区二区三区| 村上凉子中文字幕在线| av在线播放免费不卡| 日韩 欧美 亚洲 中文字幕| 亚洲自拍偷在线| avwww免费| 国内揄拍国产精品人妻在线 | 亚洲精品久久成人aⅴ小说| 中文字幕人成人乱码亚洲影| 久久天堂一区二区三区四区| 欧美激情 高清一区二区三区| 国产免费av片在线观看野外av| 国产欧美日韩一区二区三| 一二三四社区在线视频社区8| 19禁男女啪啪无遮挡网站| 久久久精品欧美日韩精品| 亚洲无线在线观看| 精品国产乱码久久久久久男人| 天天添夜夜摸| 亚洲精品中文字幕一二三四区| 中国美女看黄片| 亚洲五月婷婷丁香| 别揉我奶头~嗯~啊~动态视频| 久久午夜亚洲精品久久| 在线观看免费午夜福利视频| 午夜激情福利司机影院| 日本撒尿小便嘘嘘汇集6| 久久久国产成人精品二区| 91麻豆av在线| 老司机福利观看| 久久午夜综合久久蜜桃| 在线观看日韩欧美| 人人妻人人澡人人看| 一级作爱视频免费观看| 日韩高清综合在线| tocl精华| 精品一区二区三区四区五区乱码| 久久这里只有精品19| 国产精品亚洲av一区麻豆| 老司机福利观看| 久久伊人香网站| 免费在线观看日本一区| 好看av亚洲va欧美ⅴa在| 老司机在亚洲福利影院| 一边摸一边做爽爽视频免费| 精品不卡国产一区二区三区| 99久久久亚洲精品蜜臀av| 人人妻,人人澡人人爽秒播| 欧美在线黄色| 99精品欧美一区二区三区四区| 男女床上黄色一级片免费看| 亚洲性夜色夜夜综合| 在线观看午夜福利视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人欧美在线观看| 国内久久婷婷六月综合欲色啪| 国产精品电影一区二区三区| 亚洲中文日韩欧美视频| 国产精品一区二区精品视频观看| 亚洲va日本ⅴa欧美va伊人久久| 中文亚洲av片在线观看爽| 麻豆久久精品国产亚洲av| av中文乱码字幕在线| 午夜福利一区二区在线看| 99精品欧美一区二区三区四区| 亚洲狠狠婷婷综合久久图片| 人成视频在线观看免费观看| 桃红色精品国产亚洲av| 一进一出抽搐动态| 一卡2卡三卡四卡精品乱码亚洲| 91大片在线观看| netflix在线观看网站| 777久久人妻少妇嫩草av网站| 午夜两性在线视频| 久久久久久九九精品二区国产 | 精品国产超薄肉色丝袜足j| 成人欧美大片| 国产高清videossex| 50天的宝宝边吃奶边哭怎么回事| 9191精品国产免费久久| 日韩精品中文字幕看吧| 国产精品1区2区在线观看.| 一进一出抽搐gif免费好疼| 亚洲成人精品中文字幕电影| 一进一出好大好爽视频| 天天添夜夜摸| 禁无遮挡网站| 亚洲一区高清亚洲精品| 法律面前人人平等表现在哪些方面| 一级毛片女人18水好多| 久久久久免费精品人妻一区二区 | 亚洲国产欧美日韩在线播放| av中文乱码字幕在线| 久久中文看片网| 久久久久久大精品| 国产伦人伦偷精品视频| 国产精品爽爽va在线观看网站 | 99久久精品国产亚洲精品| 人妻久久中文字幕网| 成人18禁在线播放| 人妻丰满熟妇av一区二区三区| 一本综合久久免费| 日本成人三级电影网站| 日本五十路高清| 色综合亚洲欧美另类图片| 黄色视频,在线免费观看| 两性夫妻黄色片| 欧美一级毛片孕妇| 久久青草综合色| 色老头精品视频在线观看| 国产高清视频在线播放一区| 欧美日本亚洲视频在线播放| 午夜免费观看网址| 精品国产乱码久久久久久男人| 国产成人影院久久av| 日本撒尿小便嘘嘘汇集6| 观看免费一级毛片| 欧美 亚洲 国产 日韩一| 亚洲欧美精品综合一区二区三区| 欧美三级亚洲精品| 成人国产一区最新在线观看| 啦啦啦免费观看视频1| 宅男免费午夜| 黑丝袜美女国产一区| 国产亚洲av嫩草精品影院| 国产日本99.免费观看| 国产成人av激情在线播放| 欧美日韩瑟瑟在线播放| 日韩欧美 国产精品| 国产精品久久久av美女十八| 国产av不卡久久| 亚洲精华国产精华精| xxxwww97欧美| 99精品在免费线老司机午夜| 亚洲成人免费电影在线观看| 99re在线观看精品视频| 美女高潮到喷水免费观看| 色精品久久人妻99蜜桃| xxxwww97欧美| 夜夜躁狠狠躁天天躁| netflix在线观看网站| 亚洲一区二区三区色噜噜| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品在线美女| 午夜福利欧美成人| 国产一区二区三区在线臀色熟女| 亚洲五月天丁香| 欧美色欧美亚洲另类二区| 国内久久婷婷六月综合欲色啪| 91在线观看av| 99久久久亚洲精品蜜臀av| avwww免费| 男女之事视频高清在线观看| 国产麻豆成人av免费视频| 国产片内射在线| 中文字幕精品免费在线观看视频| 久久久久久人人人人人| 免费av毛片视频| 亚洲七黄色美女视频| 免费在线观看成人毛片| 啦啦啦观看免费观看视频高清| 男男h啪啪无遮挡| 不卡一级毛片| 婷婷六月久久综合丁香| 免费观看人在逋| 97超级碰碰碰精品色视频在线观看| 人妻丰满熟妇av一区二区三区| 少妇 在线观看| 此物有八面人人有两片| 91麻豆精品激情在线观看国产| 99国产精品一区二区蜜桃av| 性欧美人与动物交配| 香蕉久久夜色| 神马国产精品三级电影在线观看 | 国产精品,欧美在线| 亚洲av电影在线进入| 一本久久中文字幕| 欧美国产日韩亚洲一区| 黑人操中国人逼视频| 精品国产超薄肉色丝袜足j| 久久99热这里只有精品18| 亚洲精品中文字幕一二三四区| 很黄的视频免费| 国产99久久九九免费精品| 在线观看66精品国产| 国产男靠女视频免费网站| 国产成年人精品一区二区| 亚洲一码二码三码区别大吗| 中出人妻视频一区二区| 亚洲国产精品久久男人天堂| 看免费av毛片| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av香蕉五月| 国产精品精品国产色婷婷| www.www免费av| 亚洲第一欧美日韩一区二区三区| netflix在线观看网站| 天天躁夜夜躁狠狠躁躁| 国产精品免费一区二区三区在线| av超薄肉色丝袜交足视频| 久久精品国产99精品国产亚洲性色| 日日爽夜夜爽网站| 久久婷婷成人综合色麻豆| 国产精品免费一区二区三区在线| 男女之事视频高清在线观看| 中文字幕精品亚洲无线码一区 | 日本黄色视频三级网站网址| 国产主播在线观看一区二区| 亚洲一码二码三码区别大吗| 91麻豆av在线| 国内久久婷婷六月综合欲色啪| 熟妇人妻久久中文字幕3abv| ponron亚洲| 女生性感内裤真人,穿戴方法视频| 久久午夜亚洲精品久久| 久久午夜综合久久蜜桃| 麻豆成人av在线观看| 91麻豆精品激情在线观看国产| 久久精品91无色码中文字幕| 美女扒开内裤让男人捅视频| 欧美激情久久久久久爽电影| 亚洲美女黄片视频| 午夜亚洲福利在线播放| 久久久国产成人精品二区| 精品国产国语对白av| 99国产极品粉嫩在线观看| 成在线人永久免费视频| 两人在一起打扑克的视频| 久久精品国产综合久久久| 国产亚洲精品第一综合不卡| 久久久久久大精品| 国产成人一区二区三区免费视频网站| 黄片播放在线免费| 亚洲中文字幕日韩| 久久天堂一区二区三区四区| 久久久久国内视频| 日本在线视频免费播放| 在线观看66精品国产| 日韩欧美一区二区三区在线观看| 日本 欧美在线| 高清在线国产一区| 一级a爱视频在线免费观看| 男人舔奶头视频| 天天添夜夜摸| 欧美中文日本在线观看视频| 天天一区二区日本电影三级| 精品一区二区三区视频在线观看免费| 国产成年人精品一区二区| 一本一本综合久久| 脱女人内裤的视频| 国产伦一二天堂av在线观看| 亚洲一区二区三区色噜噜| 美女午夜性视频免费| 国产一区二区三区在线臀色熟女| 最新在线观看一区二区三区| 欧美国产精品va在线观看不卡| 亚洲成人精品中文字幕电影| 久久人妻福利社区极品人妻图片| 午夜福利成人在线免费观看| 少妇 在线观看| 国产精品二区激情视频| 一进一出抽搐动态| 超碰成人久久| 久久国产精品男人的天堂亚洲| 亚洲五月婷婷丁香| 亚洲 欧美一区二区三区| 国产一区二区三区视频了| 国产精品爽爽va在线观看网站 | 黄色毛片三级朝国网站| 无遮挡黄片免费观看| 亚洲精品国产区一区二| 国产av一区在线观看免费| 日韩高清综合在线| 色精品久久人妻99蜜桃| 久久天躁狠狠躁夜夜2o2o| 天堂影院成人在线观看| 婷婷精品国产亚洲av在线| 亚洲五月婷婷丁香| 国产精品98久久久久久宅男小说| АⅤ资源中文在线天堂| 精品第一国产精品| 国产av一区二区精品久久| 亚洲一区高清亚洲精品| 妹子高潮喷水视频| 久久精品91无色码中文字幕| 又黄又爽又免费观看的视频| 少妇裸体淫交视频免费看高清 | 国产一区二区三区在线臀色熟女| 国产成人av激情在线播放| 亚洲成人国产一区在线观看| 桃色一区二区三区在线观看| 99国产极品粉嫩在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆久久精品国产亚洲av| 丝袜人妻中文字幕| 亚洲午夜精品一区,二区,三区| 嫩草影院精品99| 成人欧美大片| 国产午夜精品久久久久久| 久久久久久久久免费视频了| 国产一区在线观看成人免费| 国产v大片淫在线免费观看| 亚洲真实伦在线观看| bbb黄色大片| 亚洲国产欧美日韩在线播放| 一本久久中文字幕| 精品少妇一区二区三区视频日本电影| 叶爱在线成人免费视频播放| 麻豆一二三区av精品| 久久精品影院6| 黄片播放在线免费| 国产精品,欧美在线| 色尼玛亚洲综合影院| 久久狼人影院| www.精华液| 久久精品aⅴ一区二区三区四区| 特大巨黑吊av在线直播 | 国产精品永久免费网站| 日本 av在线| 色av中文字幕| av欧美777| 成熟少妇高潮喷水视频| 午夜a级毛片| 校园春色视频在线观看| 美女午夜性视频免费| 老司机午夜福利在线观看视频| 午夜影院日韩av| 在线看三级毛片| 国产精品久久久久久亚洲av鲁大| 国产日本99.免费观看| 97碰自拍视频| 亚洲成a人片在线一区二区| 亚洲av成人不卡在线观看播放网| 亚洲欧美激情综合另类| 精品人妻1区二区| 亚洲人成伊人成综合网2020| 最好的美女福利视频网| 国产视频内射| 美女大奶头视频| 久久精品国产99精品国产亚洲性色| 国产男靠女视频免费网站| 免费在线观看成人毛片| 午夜免费成人在线视频| 一区二区三区精品91| 午夜福利成人在线免费观看| 一本综合久久免费| 中文字幕高清在线视频| 精品第一国产精品| 在线观看66精品国产| 精品高清国产在线一区| 人妻丰满熟妇av一区二区三区| 国产午夜福利久久久久久| 91成年电影在线观看| 十分钟在线观看高清视频www| 国产成人精品久久二区二区免费| 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿诱惑在线| 国内久久婷婷六月综合欲色啪| 亚洲成人免费电影在线观看| 久久亚洲精品不卡| 男人的好看免费观看在线视频 | 非洲黑人性xxxx精品又粗又长| 一级毛片高清免费大全| 久久国产精品男人的天堂亚洲| 久久九九热精品免费| 人人妻人人看人人澡| 亚洲成人精品中文字幕电影| 母亲3免费完整高清在线观看| 免费在线观看日本一区| 婷婷精品国产亚洲av在线| 国产亚洲av嫩草精品影院| 国产精品一区二区免费欧美| 亚洲一区二区三区色噜噜| 亚洲熟妇熟女久久| 国产精品自产拍在线观看55亚洲| 精品日产1卡2卡| 国产亚洲精品一区二区www| 久久国产乱子伦精品免费另类| 在线天堂中文资源库| 亚洲aⅴ乱码一区二区在线播放 | 真人一进一出gif抽搐免费| 丁香六月欧美| 免费看a级黄色片| 亚洲黑人精品在线| 91大片在线观看| 国产高清视频在线播放一区| 99国产综合亚洲精品| 国产精品久久电影中文字幕| 999精品在线视频| 亚洲av电影在线进入| 免费在线观看成人毛片| 欧美绝顶高潮抽搐喷水| 精品国产超薄肉色丝袜足j| 亚洲成人免费电影在线观看| 黄色成人免费大全| 欧美日韩瑟瑟在线播放| 一进一出抽搐gif免费好疼| 99在线人妻在线中文字幕| 午夜福利成人在线免费观看| 午夜两性在线视频| 一区福利在线观看| 中文字幕人妻熟女乱码| 久久精品国产99精品国产亚洲性色| 亚洲av成人一区二区三| 自线自在国产av| 黄色视频,在线免费观看| 国产片内射在线| 国产精品亚洲美女久久久| av欧美777| 久久天躁狠狠躁夜夜2o2o| 中出人妻视频一区二区| 少妇 在线观看| 成人免费观看视频高清| 国产片内射在线| 久久久国产欧美日韩av| 亚洲成人久久爱视频| 在线观看www视频免费| 中国美女看黄片| 女性被躁到高潮视频| 亚洲av美国av| 桃红色精品国产亚洲av| 在线av久久热| 精品国内亚洲2022精品成人| 曰老女人黄片| 国产精品影院久久| 国产精品久久久久久人妻精品电影| 精品熟女少妇八av免费久了| 97碰自拍视频| 男女床上黄色一级片免费看| 18禁裸乳无遮挡免费网站照片 | 亚洲欧美激情综合另类| 老司机靠b影院| 视频在线观看一区二区三区| 色老头精品视频在线观看| 91av网站免费观看| 国产精品野战在线观看| 在线免费观看的www视频| 日韩欧美在线二视频| 亚洲第一av免费看| 夜夜夜夜夜久久久久| av中文乱码字幕在线| 最新在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产国语露脸激情在线看| 亚洲 国产 在线| xxxwww97欧美| 女人高潮潮喷娇喘18禁视频| 成人国语在线视频| 国产在线观看jvid| 女人被狂操c到高潮| 最好的美女福利视频网| 国产日本99.免费观看| 免费看a级黄色片| 国产视频内射| 国产亚洲精品第一综合不卡| 国产日本99.免费观看| 成人特级黄色片久久久久久久| 一个人观看的视频www高清免费观看 | 叶爱在线成人免费视频播放| 男男h啪啪无遮挡| 亚洲精品粉嫩美女一区| 国产精品野战在线观看| 国产精品九九99| 成人一区二区视频在线观看| 免费在线观看完整版高清| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av五月六月丁香网| 欧美性猛交╳xxx乱大交人| 在线国产一区二区在线| 亚洲性夜色夜夜综合| 亚洲av成人一区二区三| 国产精品精品国产色婷婷| 国产三级黄色录像| www.精华液| www.自偷自拍.com| 国产亚洲精品久久久久5区| 亚洲第一电影网av| 无遮挡黄片免费观看| 国内毛片毛片毛片毛片毛片| 国产成人av激情在线播放| 日韩精品青青久久久久久| 亚洲国产欧洲综合997久久, | 国产亚洲精品综合一区在线观看 | 香蕉丝袜av| 在线十欧美十亚洲十日本专区| 99国产综合亚洲精品| 欧美性长视频在线观看| 大型av网站在线播放| 老司机在亚洲福利影院| 欧美性猛交黑人性爽| 麻豆一二三区av精品| 露出奶头的视频| 精品卡一卡二卡四卡免费| 日韩视频一区二区在线观看| 看片在线看免费视频| 国产一区二区三区在线臀色熟女| 在线十欧美十亚洲十日本专区| 日韩av在线大香蕉| 亚洲精品一卡2卡三卡4卡5卡| 国产色视频综合| 99久久久亚洲精品蜜臀av| 老司机午夜十八禁免费视频| 日韩 欧美 亚洲 中文字幕| 正在播放国产对白刺激| 天堂动漫精品| 免费一级毛片在线播放高清视频| 亚洲人成77777在线视频| 99国产精品一区二区三区| 色哟哟哟哟哟哟| 免费看美女性在线毛片视频| 岛国在线观看网站| 麻豆av在线久日| 久久婷婷成人综合色麻豆| 国产麻豆成人av免费视频| 一级a爱片免费观看的视频| 99热这里只有精品一区 | 欧美人与性动交α欧美精品济南到| 午夜福利高清视频| 无人区码免费观看不卡| 国产野战对白在线观看| 欧美中文综合在线视频| 欧美激情 高清一区二区三区| av电影中文网址| 精品欧美国产一区二区三| 久久精品夜夜夜夜夜久久蜜豆 | 色婷婷久久久亚洲欧美| bbb黄色大片| 在线免费观看的www视频| 不卡av一区二区三区| 国产成人av教育| 美女高潮喷水抽搐中文字幕| www日本在线高清视频| 欧美日韩一级在线毛片| 久久天堂一区二区三区四区| 国产伦一二天堂av在线观看| 两性夫妻黄色片| 久久精品aⅴ一区二区三区四区| 在线观看舔阴道视频| 在线观看免费日韩欧美大片| av在线播放免费不卡| 色综合婷婷激情| 欧美成狂野欧美在线观看| av在线播放免费不卡| 国产熟女xx|