• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of post-sinter annealing on microstructure and magnetic properties of Nd–Fe–B sintered magnets with Nd–Ga intergranular addition?

    2021-06-26 03:30:20JinHaoZhu朱金豪LeiJin金磊ZheHuanJin金哲歡GuangFeiDing丁廣飛BoZheng鄭波ShuaiGuo郭帥RenJieChen陳仁杰andRuYan閆阿儒
    Chinese Physics B 2021年6期

    Jin-Hao Zhu(朱金豪) Lei Jin(金磊) Zhe-Huan Jin(金哲歡) Guang-Fei Ding(丁廣飛)Bo Zheng(鄭波) Shuai Guo(郭帥) Ren-Jie Chen(陳仁杰) and A-Ru Yan(閆阿儒)

    1CAS Key Laboratory of Magnetic Materials and Devices,and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology,

    Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences(CAS),Ningbo 315201,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: Nd–Fe–B magnet,magnetic properties,grain boundary,microstructures

    1. Introduction

    The 2:14:1-type Nd–Fe–B magnets with excellent magnetic performance have been widely used in traction motors of electric vehicles,wind turbines and other fields.[1–3]As heavy rare-earth(HRE)resources are limited and expensive,it is urgent to find other effective ways of avoiding the abuse of expensive elements to stabilize the performance of the magnets at high temperature operation. Based on the nucleation fields theory,[4,5]the achievement of high coercivity relies on the modification in the averaged local effective demagnetization factor and microstructural parameter for the Nd–Fe–B sintered magnets without HRE.Grain refinement has been an effective approach to improve the coercivity by reducing the demagnetization effect of the grains,[6–9]but it is also limited by process cost and equipment conditions.

    On the other hand, the annealing process is a significant way to improve the microstructures in grain boundary(GB)areas. It is generally accepted that the thin GB phase is formed mainly by the infiltration of liquid from the triple junction phase (TJP) during the annealing process. And the morphology of the GB phase/main grain interface becomes smooth after the annealing process.[10,11]In order to strengthen the effect of the annealing process and improve the wettability of the GB phase, metal elements formed low melting points alloy with rare-earths (RE), such as Cu, Ga, and Al, were discussed.[12–14]In addition,the distribution of these trace alloy elements was influenced by the annealing process, especially Cu atoms were enriched in the Nd-rich/Nd2Fe14B interface after the annealing process.[15,16]By adjusting the distribution and composition of the GB phase,the RE-M(M=Al,Cu) is reported to be beneficial for high coercivity through addition or grain boundary diffusion process after annealing process.[17–20]

    Recently, the Nd–Fe–B magnets prepared from Nd-rich Ga-doped Nd–Fe–B strip cast flakes have become an important object of research.[21,22]In these Ga-doped magnets,continuous GB phases were formed which brings out the isolated intergrain exchange coupling. Note that unlike the conventional magnets,these significant changes in microstructure and coercivity of Ga-doped magnets are accompanied by the formation of anti-ferromagneticRE6Fe13Ga(RE=Pr,Nd)phase after the annealing process. This GB phase formation process is affected by grain boundary composition,[23,24]and the preparation conditions as well.[25,26]

    In this work,we investigate the microstructures and magnetic properties of B-lean Nd–Fe–B sintered and annealed magnets with different quantities of Nd–Ga additions. According to the sensitive dependence of the formation of theRE6Fe13Ga phase on the composition and the annealing process,the effects of the annealing process on the magnets with different compositions of the GB phase are systematically investigated based on the characterization, microstructure and elemental distributions of phase constituents.

    2. Experiment

    In this experiment, the master alloy with the nominal compositions of (PrNd)32Febal.(CuAlCoZr)1.75B0.88(wt% in content ratio) were prepared by strip casting. These strips were subjected to the hydrogen decrepitated process and the jet milling process to obtain the Nd–Fe–B powders(~2.8μm in size). Then, the Nd77.5Ga22.5(wt% in content ratio) powders(~2.5μm in size)were also obtained by the similar process. The Nd–Fe–B powders mixed with different content ratios of the Nd–Ga powders (0, 1, 2, 3, 4, 8 wt%) were compacted with a magnetic field 1800 kA/m followed by isostatic pressing at 150 MPa. Afterwards, the sintering process was performed at 1030?C–1040?C for 2 h in vacuum, followed by argon gas quenching,accordingly obtaining the as-sintered magnets(AS).The as-sintered samples were also annealed at 500?C for 2 h in vacuum,accordingly obtaining the annealed magnets(AN).Hereafter,the Nd–Fe–B magnets with different Nd–Ga concentrations were named 0NG–8NG samples.

    Magnetic properties of sintered and annealed magnets were measured by pulsed field magnetometer(PFM)(HIRST PFM14.CN) at a temperature of 20?C. The constitution of phase was identified by x-ray diffraction (XRD) (Bruker D8 Advance Davinci) using CuKαradiation. The microstructures and element distribution of the magnets were observed by using the back scatter electron scanning electron microscopy (BSE-SEM) equipped with energy dispersive x-ray spectroscopy (EDS) detector, and the scanning/transmission electron microscope(S/TEM)(Talos F200X)with energy dispersive x-ray spectroscopy(EDS)signal detection.

    3. Results and discussion

    Figures 1(a)and 1(b) show the diverse effects of the annealing process on the magnetic properties in magnets with different Nd–Ga additions. In the annealed magnets with fewer Nd–Ga additions as shown in area I,the remanence(Br)is unchanged basically and the coercivity (Hcj) is increased slightly compared with in the sintered magnets. It is similar to the effect of the annealing process on the conventional magnet.With the further increase of Nd–Ga addition shown in area II,theBrof the annealed magnet has a slight decrease relative to that of the sintered magnets,while the change ofHcjcontinues to increase after the annealing process.Finally,with the excessive addition of Nd–Ga shown in area III, the increase inHcjof the magnet remains basically unchanged after annealing,while the change inBrbecomes smaller. Thus, the annealed magnet with 4-wt%Nd–Ga addition is considered to have excellent comprehensive magnetic properties. Table 1 shows the magnetic properties of representative samples from the areas I,II,and III.

    Fig.1. Diverse effects of annealing process on(a)remanence and(b)coercivity in magnets with Nd–Ga concentrations.

    Table 1. Values of remanence Br, coercivity μ0Hcj, and maximum energy product(BH)max of samples.

    In order to investigate the effects of the annealing process on the phase composition of anisotropic magnets with 0%,4%,and 8% (wt%) Nd–Ga concentration, XRD analyses are performed as shown in Fig.2. The tested plane is perpendicular to theCaxis. Neither the annealing process nor the addition of Nd–Ga is found to have a significant effect on the grain orientation in the anisotropic magnets, where their ratios of relative intensity,I(006)/I(105), range about from 0.95 to 1.00.The characteristic peaks of the Nd6Fe13Ga phase are detected in the 4NG sample after being annealed, and compared with in the 0NG. The diffraction peaks of the Nd6Fe13Ga phase slightly shift toward the low-angle region. It is considered that Pr atoms are substituted for part of Nd atoms at theRE6Fe13Ga phase,in which the radius of Pr atom in the alloy is larger than that of Nd atom due to lanthanide contraction. In addition,the characteristic peaks of Nd6Fe13Ga are also detected in the 8NG-AN sample, which corresponds strictly to its standard peak. Therefore, the introduction of Ga by intergranular addition of Nd–Ga is similar to alloy melting. It results in the formation of Nd6Fe13Ga phase regulated by the appropriate composition and annealing process. What is worth noting is that the characteristic peaks of the Nd6Fe13Ga are measured in the 8NG-AS sample similarly. Thus the excess Nd–Ga addition leads the Nd6Fe13Ga phase to form in sintered magnet.

    Fig.2. (a)XRD profiles of the anisotropic as-sintered and annealed magnets with 0%,4%,and 8%(wt%)Nd–Ga concentration,with tested plane being perpendicular to C axis. [(b)–(g)]XRD partial enlarged view of the corresponding samples,with red perpendicular line indicating three strongest peaks of Nd6Fe13Ga in XRD.

    Fig.3. BSE SEM images of as-sintered and annealed magnets with Nd–Ga concentration of[(a)–(h)]0%–8%(wt%). HRTEM images of GB phases of(e)as-sintered and(d)annealed magnets with Nd–Ga concentration of 4%(wt%). Observed plane is perpendicular to C axis.

    Figures 3(a)–3(h) show backscattered electron (BSE)SEM images taken from the as-sintered and annealed magnets with Nd–Ga concentration in a range of of 0%–8%(wt%).The observed plane is perpendicular to theCaxis. In the original B-lean magnet without Nd–Ga addition, Fe and Cu are enriched in the TJP according to the EDS quantitative analysis shown in Table 2. This enrichment of Fe in the GB area is beneficial to the subsequent addition of Nd–Ga to induce the Nd6Fe13Ga phase to form. With the Nd–Ga addition increasing,the proportion of TJP in the sintered magnet is enhanced.Besides, the continuous thin GB phase forms in the annealed magnet with Nd–Ga addition, and some GB phases with dim contrast are confirmed to beRE6Fe13(Ga, Cu) phase by further EDS quantitative analysis in Table 2,such as points B and D.Moreover,a small number of Nd6Fe12(Ga,Cu)2phases are found at the edge of the TJP in the 8NG-AS sample, and the excessive Nd–Ga phases are observed in the triple junctions in the 8NG-AN sample. It indicates that under the excess Nd–Ga addition,RE6(Fe, Ga)14phase trends to form in the cooling process,with residual Nd–Ga phase remaining in TJP.The high-resolution(HR)TEM bright field images of interface between adjacent grains in 4NG-AS and 4NG-AN samples are shown in Figs. 3(i) and 3(j). Comparing with in the sintered sample,a continuous thin GB phase is generated after the annealing process has contributed to the intergrain exchange decoupling.

    Table 2. EDS analysis results of selected areas in Fig.3.

    To further investigate the prior formation of GB phase in sintered magnets with excess Nd–Ga addition, TEM characterizations are carried out to obtain the detailed microstructure and element distribution features. The observed plane is perpendicular to theCaxis. Figure 4 shows the bright field TEM images and HAADF-STEM images of the 8NG-AS sample,where the TJP is surrounded by matrix grains. Further, there are observed two different GB phases in the GB area in sintered samples. Through EDS elemental maps and spectra obtained from points A and B, the detailed results of EDS are summarized in Table 3,there is theRE6Fe13Ga phase found at the edge of part matrix phases marked in dark green, and the GB phase marked in light green is considered to be the Nd(Ga,Cu) phase. Therefore, in the cooling process after sintering,theRE6Fe13Ga phase formation occurs partially at TJP along the edge of the part matrix phase with the excessive addition of Nd–Ga.The results of TEM characterizations correspond with the XRD and SEM analysis. Thus,a part of antiferromagneticRE6Fe13Ga phases formed by RE, Ga, and Cu reacting with ferromagnetic element regulate the magnetism of part of GB phases in sintered magnets ahead of time.

    Fig. 4. (a) Bright field TEM image, (b) HAADF-STEM image, (c) corresponding schematic image, and (d) EDS elemental maps of triple junction in the 8NG as-sintered sample. Matrix grains are marked in dark blue and GB phases are marked in light green and dark green in the corresponding schematic image. Observed plane is perpendicular to C axis.

    Table 3. Detailed results of EDS in Fig.4(b),with O element decreasing.

    Figure 5 schematically illustrates the respective evolution of the grain boundary structure in sintered magnets with different Nd–Ga additions after annealing. For the magnet with fewer Nd–Ga additions,the composition and distribution of the GB phase have not been optimized, thus the change in the magnetic properties of the magnet is similar to that of the conventional magnet after it has been annealed. With the appropriate Nd–Ga addition in B-lean magnet,theRE6Fe13Ga phase and continuous GB phase are generated after it has been annealed. This formation of the GB phase by the annealing process results in a significant enhancement of theHcjvalue,while the further increase of Nd–Ga addition can only dilute the matrix grain proportion and form a part ofRE6Fe13Ga phases in the sintered magnet. The analyses of microstructure and magnetic properties indicate that after the annealing process, the formation of the non-ferromagneticRE6Fe13Ga phase triggers the formation of continuous GB phase,leading theBrvalue to slightly decrease,while the continuous thin GB phase isolating the matrix grain is the major factor of the significant improvement inHcjrather than the formation of theRE6Fe13Ga phase itself at TJP.Therefore,the excess addition of Nd–Ga in magnets cannot strengthen the effect of the annealing process in enhancingHcj, and prior formation of the GB phase at triple junctions leads to a weaker change inBrafter the annealing process.

    Fig.5. Schematic illustrations of respective evolution of grain boundaries of magnets with different Nd–Ga additions after annealing.

    4. Conclusions

    In this work, the effects of the annealing process on the microstructure and magnetic properties of the B-lean Nd–Fe–B magnets with different Nd–Ga additions are investigated systematically. The characterization of phase constituents and microstructure reflect that the appropriate Nd–Ga concentration in magnets after being annealed can bring out the continuous thin GB phase and formation of the non-ferromagneticRE6Fe13Ga phase. This GB composition and annealing process can optimize the microstructure effectively to facilitate the intergrain exchange decoupling, resulting in a significant improvement ofHcjaccompanied with a slight decrease ofBrafter the annealing process. However, the excessive Nd–Ga addition cannot further optimize the microstructure, resulting in a limitedHcjincrement. In addition, a part ofRE6Fe13Ga phases are found at TJP along the edge of a part of matrix phases in sintered magnet with excessive addition,giving rise to a weaker change inBrafter the annealing process. Therefore, the respective evolution of grain boundary after the annealing process leads to the diverse change of magnetic properties in magnets with different Nd–Ga additions.

    一个人免费看片子| 一本久久精品| 黑丝袜美女国产一区| 建设人人有责人人尽责人人享有的 | 亚洲欧美成人综合另类久久久| 久久久久性生活片| 国产精品欧美亚洲77777| 日韩在线高清观看一区二区三区| 水蜜桃什么品种好| 能在线免费看毛片的网站| 免费久久久久久久精品成人欧美视频 | 国模一区二区三区四区视频| 成人国产av品久久久| 日韩制服骚丝袜av| 少妇的逼水好多| 黄色视频在线播放观看不卡| 国产精品一及| 久久99蜜桃精品久久| 国产精品.久久久| 秋霞伦理黄片| 极品教师在线视频| 毛片一级片免费看久久久久| www.色视频.com| 亚洲真实伦在线观看| 老司机影院毛片| av线在线观看网站| 麻豆乱淫一区二区| 嫩草影院入口| 午夜老司机福利剧场| 毛片女人毛片| av国产精品久久久久影院| 国产精品秋霞免费鲁丝片| 亚洲成色77777| 亚洲精品国产av蜜桃| 老司机影院成人| 日韩免费高清中文字幕av| 日本猛色少妇xxxxx猛交久久| 老司机影院毛片| 一级爰片在线观看| 建设人人有责人人尽责人人享有的 | 国产女主播在线喷水免费视频网站| 久久久久久久久久成人| 狠狠精品人妻久久久久久综合| 亚洲综合精品二区| 2018国产大陆天天弄谢| 少妇人妻 视频| 日本与韩国留学比较| 亚洲精品一二三| 亚洲精品456在线播放app| 欧美精品亚洲一区二区| 国产精品三级大全| 国产男人的电影天堂91| 国产精品成人在线| 亚洲成人av在线免费| 久久精品国产a三级三级三级| 久久精品国产亚洲网站| 欧美另类一区| 亚洲av男天堂| 十分钟在线观看高清视频www | av女优亚洲男人天堂| 观看美女的网站| 亚洲伊人久久精品综合| 纵有疾风起免费观看全集完整版| 欧美日韩综合久久久久久| 精品亚洲成a人片在线观看 | 久久精品熟女亚洲av麻豆精品| 成年人午夜在线观看视频| 国产视频首页在线观看| 国产一区二区在线观看日韩| 性高湖久久久久久久久免费观看| 狠狠精品人妻久久久久久综合| 三级国产精品片| 春色校园在线视频观看| 久久影院123| av免费在线看不卡| 黄片wwwwww| 日韩不卡一区二区三区视频在线| 日韩欧美 国产精品| 国产在线免费精品| 久久精品熟女亚洲av麻豆精品| 亚洲精品456在线播放app| 能在线免费看毛片的网站| 亚洲av福利一区| 国产黄频视频在线观看| 国产成人精品久久久久久| 欧美激情极品国产一区二区三区 | 久久久久久伊人网av| 精品人妻熟女av久视频| 亚州av有码| 99久久中文字幕三级久久日本| 国产精品一及| 日日撸夜夜添| 国产亚洲5aaaaa淫片| 日韩人妻高清精品专区| 日日啪夜夜撸| av天堂中文字幕网| 一个人看的www免费观看视频| 亚洲av不卡在线观看| 国语对白做爰xxxⅹ性视频网站| 色哟哟·www| 日日撸夜夜添| 大话2 男鬼变身卡| 内射极品少妇av片p| 麻豆成人av视频| av专区在线播放| 成人午夜精彩视频在线观看| 特大巨黑吊av在线直播| 毛片女人毛片| 99久久精品国产国产毛片| 一级二级三级毛片免费看| 夫妻午夜视频| 精品人妻视频免费看| 久久久亚洲精品成人影院| 国内少妇人妻偷人精品xxx网站| 国产在线视频一区二区| 少妇的逼水好多| av在线老鸭窝| 国产欧美日韩一区二区三区在线 | 午夜视频国产福利| 麻豆乱淫一区二区| 丝袜脚勾引网站| 麻豆乱淫一区二区| 最后的刺客免费高清国语| 久久国产亚洲av麻豆专区| 亚洲精品久久午夜乱码| 色哟哟·www| av一本久久久久| 多毛熟女@视频| 一边亲一边摸免费视频| 免费播放大片免费观看视频在线观看| 中文字幕av成人在线电影| 91久久精品电影网| 夜夜看夜夜爽夜夜摸| 夜夜看夜夜爽夜夜摸| 美女脱内裤让男人舔精品视频| 国产精品99久久久久久久久| 久久精品国产亚洲av涩爱| 国产淫语在线视频| 蜜桃在线观看..| 国产乱人偷精品视频| 国产精品伦人一区二区| 国产精品伦人一区二区| 日韩一区二区三区影片| 国产视频内射| 亚洲欧美日韩另类电影网站 | 夜夜骑夜夜射夜夜干| 大片电影免费在线观看免费| 一级a做视频免费观看| av免费在线看不卡| 99久久中文字幕三级久久日本| 国产欧美另类精品又又久久亚洲欧美| 精品久久国产蜜桃| 又粗又硬又长又爽又黄的视频| 精品久久国产蜜桃| 高清av免费在线| 啦啦啦在线观看免费高清www| xxx大片免费视频| 国产精品欧美亚洲77777| 国产国拍精品亚洲av在线观看| 国产成人免费观看mmmm| 菩萨蛮人人尽说江南好唐韦庄| 七月丁香在线播放| 国产成人91sexporn| 欧美精品国产亚洲| 一级片'在线观看视频| 免费av中文字幕在线| 久久久精品94久久精品| 激情五月婷婷亚洲| 一区二区三区四区激情视频| 青青草视频在线视频观看| 中文精品一卡2卡3卡4更新| 亚洲av电影在线观看一区二区三区| 免费大片18禁| 少妇裸体淫交视频免费看高清| 天堂8中文在线网| 国产免费视频播放在线视频| 在现免费观看毛片| 一二三四中文在线观看免费高清| 欧美一区二区亚洲| 国产精品国产三级专区第一集| 大话2 男鬼变身卡| 搡女人真爽免费视频火全软件| 一区二区av电影网| 久久久久久九九精品二区国产| 日本免费在线观看一区| 国产免费一级a男人的天堂| 91午夜精品亚洲一区二区三区| 亚洲欧美日韩无卡精品| 亚洲怡红院男人天堂| 国产精品欧美亚洲77777| 欧美zozozo另类| av国产久精品久网站免费入址| 男人和女人高潮做爰伦理| 国产91av在线免费观看| 在线免费观看不下载黄p国产| 亚洲国产成人一精品久久久| 欧美97在线视频| 欧美高清成人免费视频www| av福利片在线观看| 国产精品一区二区在线观看99| 色网站视频免费| 中文字幕av成人在线电影| 日日啪夜夜撸| 亚洲美女黄色视频免费看| 日本午夜av视频| 亚洲av成人精品一二三区| 十分钟在线观看高清视频www | 国产 一区 欧美 日韩| 国产免费又黄又爽又色| 最近最新中文字幕大全电影3| 又黄又爽又刺激的免费视频.| 在线精品无人区一区二区三 | 777米奇影视久久| 我要看日韩黄色一级片| 国产免费视频播放在线视频| 简卡轻食公司| 如何舔出高潮| 国产成人午夜福利电影在线观看| 人妻制服诱惑在线中文字幕| 国产成人freesex在线| 精品国产露脸久久av麻豆| 22中文网久久字幕| 国产 一区精品| 国产精品一及| 免费久久久久久久精品成人欧美视频 | 王馨瑶露胸无遮挡在线观看| 亚洲欧美日韩另类电影网站 | 亚洲丝袜综合中文字幕| 十八禁网站网址无遮挡 | 熟女电影av网| 婷婷色综合大香蕉| 青青草视频在线视频观看| 亚洲欧美日韩另类电影网站 | 免费av不卡在线播放| 国产极品天堂在线| 亚洲一级一片aⅴ在线观看| 久久影院123| 毛片女人毛片| 亚洲国产精品国产精品| 99re6热这里在线精品视频| 亚洲av日韩在线播放| 国产成人免费观看mmmm| 校园人妻丝袜中文字幕| 亚洲人与动物交配视频| 亚洲av在线观看美女高潮| 久久精品国产亚洲av涩爱| 三级国产精品欧美在线观看| 九九久久精品国产亚洲av麻豆| 激情 狠狠 欧美| 狂野欧美激情性bbbbbb| tube8黄色片| 亚洲国产日韩一区二区| 亚洲精品日韩在线中文字幕| 视频区图区小说| 国产精品一区二区在线不卡| 国语对白做爰xxxⅹ性视频网站| 超碰97精品在线观看| 欧美97在线视频| 欧美日韩综合久久久久久| 草草在线视频免费看| 六月丁香七月| 啦啦啦啦在线视频资源| 少妇的逼水好多| 亚洲av中文av极速乱| 亚洲伊人久久精品综合| 校园人妻丝袜中文字幕| 亚洲精品456在线播放app| 久久久精品免费免费高清| 1000部很黄的大片| av免费在线看不卡| 一区二区三区乱码不卡18| 中文字幕亚洲精品专区| 欧美+日韩+精品| 高清黄色对白视频在线免费看 | 亚洲第一区二区三区不卡| 日产精品乱码卡一卡2卡三| 99久久中文字幕三级久久日本| 久久韩国三级中文字幕| 久久久久性生活片| 亚洲av中文字字幕乱码综合| 在线天堂最新版资源| 亚洲欧美日韩无卡精品| 国产一区亚洲一区在线观看| 嫩草影院入口| 成人特级av手机在线观看| 简卡轻食公司| 久久久欧美国产精品| 亚洲精品乱码久久久久久按摩| 久久精品国产自在天天线| 男女边吃奶边做爰视频| 亚洲va在线va天堂va国产| 又爽又黄a免费视频| 人妻制服诱惑在线中文字幕| 国产黄频视频在线观看| 国产精品精品国产色婷婷| 女性被躁到高潮视频| 国产深夜福利视频在线观看| 欧美高清成人免费视频www| 亚洲av日韩在线播放| 草草在线视频免费看| 一区二区三区四区激情视频| 麻豆乱淫一区二区| 亚洲国产毛片av蜜桃av| 久久久久久久久久久免费av| 国产精品福利在线免费观看| 国产精品欧美亚洲77777| 下体分泌物呈黄色| 亚洲第一av免费看| 九九在线视频观看精品| 99热国产这里只有精品6| 天堂8中文在线网| 国产 精品1| 久久精品国产亚洲av天美| 免费看光身美女| 91aial.com中文字幕在线观看| 2018国产大陆天天弄谢| 国产成人免费无遮挡视频| 久久久久国产精品人妻一区二区| 久久精品熟女亚洲av麻豆精品| 男女免费视频国产| 国产欧美另类精品又又久久亚洲欧美| 夜夜骑夜夜射夜夜干| 新久久久久国产一级毛片| 大香蕉久久网| 成人黄色视频免费在线看| 久久综合国产亚洲精品| 美女福利国产在线 | 热re99久久精品国产66热6| 亚洲不卡免费看| kizo精华| 九九在线视频观看精品| 日本色播在线视频| 高清av免费在线| 国产片特级美女逼逼视频| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 各种免费的搞黄视频| 国模一区二区三区四区视频| 中文字幕制服av| 99精国产麻豆久久婷婷| 国产亚洲91精品色在线| av女优亚洲男人天堂| 精品亚洲成国产av| 性高湖久久久久久久久免费观看| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩卡通动漫| 女的被弄到高潮叫床怎么办| 中文资源天堂在线| av播播在线观看一区| 久久综合国产亚洲精品| 免费黄色在线免费观看| 最近最新中文字幕大全电影3| 日韩,欧美,国产一区二区三区| 美女主播在线视频| 91精品国产国语对白视频| 老熟女久久久| 在线观看免费视频网站a站| 国产女主播在线喷水免费视频网站| 日韩三级伦理在线观看| 色婷婷久久久亚洲欧美| 老女人水多毛片| 91午夜精品亚洲一区二区三区| 日韩成人av中文字幕在线观看| 热re99久久精品国产66热6| 欧美激情国产日韩精品一区| 婷婷色综合大香蕉| 91久久精品国产一区二区成人| 中文字幕亚洲精品专区| 国产av精品麻豆| 大片电影免费在线观看免费| 国产成人aa在线观看| 午夜视频国产福利| 中文天堂在线官网| 亚洲内射少妇av| 国产美女午夜福利| 亚洲欧美成人精品一区二区| av国产免费在线观看| 男男h啪啪无遮挡| 欧美成人午夜免费资源| 国产免费福利视频在线观看| 国产成人精品婷婷| 乱系列少妇在线播放| 99热这里只有是精品50| 成人毛片a级毛片在线播放| 成人18禁高潮啪啪吃奶动态图 | 成年免费大片在线观看| 国产探花极品一区二区| 又大又黄又爽视频免费| 亚洲国产最新在线播放| 亚洲人成网站高清观看| 成人毛片60女人毛片免费| 亚洲av福利一区| 亚洲精品成人av观看孕妇| 国产毛片在线视频| 草草在线视频免费看| 乱系列少妇在线播放| 国产午夜精品一二区理论片| 久久久久久九九精品二区国产| 亚洲精品乱久久久久久| 国产精品久久久久久精品电影小说 | 国产免费又黄又爽又色| 午夜福利高清视频| 国产成人免费无遮挡视频| 国产一区有黄有色的免费视频| 午夜福利在线观看免费完整高清在| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 人人妻人人爽人人添夜夜欢视频 | 国产成人a区在线观看| 自拍偷自拍亚洲精品老妇| 国产高清有码在线观看视频| 涩涩av久久男人的天堂| 身体一侧抽搐| 欧美zozozo另类| 精品亚洲成a人片在线观看 | av卡一久久| 久久久久久久亚洲中文字幕| 国产永久视频网站| 校园人妻丝袜中文字幕| 一个人免费看片子| 亚洲精品自拍成人| 久久久久久久精品精品| 精品亚洲成国产av| av播播在线观看一区| 麻豆精品久久久久久蜜桃| 日韩人妻高清精品专区| 毛片女人毛片| 尾随美女入室| 亚洲精品乱久久久久久| 久久久久久久大尺度免费视频| 久久久午夜欧美精品| 久久久久精品性色| 大香蕉久久网| 免费不卡的大黄色大毛片视频在线观看| 国产老妇伦熟女老妇高清| 亚洲欧美成人精品一区二区| 美女主播在线视频| 亚洲va在线va天堂va国产| 欧美高清成人免费视频www| 久久久久精品久久久久真实原创| 在现免费观看毛片| 久久鲁丝午夜福利片| 久久99热这里只有精品18| 亚洲欧美中文字幕日韩二区| 亚洲中文av在线| 国产亚洲午夜精品一区二区久久| 亚洲不卡免费看| 国产乱人视频| 综合色丁香网| 最近最新中文字幕大全电影3| 午夜福利在线在线| 春色校园在线视频观看| 伊人久久精品亚洲午夜| 久久人人爽人人爽人人片va| 高清在线视频一区二区三区| 日本与韩国留学比较| 国产精品熟女久久久久浪| 伊人久久精品亚洲午夜| av免费在线看不卡| 久久综合国产亚洲精品| 新久久久久国产一级毛片| 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 国产在线视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| 黄色视频在线播放观看不卡| 三级经典国产精品| 国产高清国产精品国产三级 | 成人毛片60女人毛片免费| 久久韩国三级中文字幕| 国产伦精品一区二区三区四那| 亚洲国产精品专区欧美| 韩国av在线不卡| 美女脱内裤让男人舔精品视频| 欧美性感艳星| 久久精品熟女亚洲av麻豆精品| 精品久久久久久电影网| 性色av一级| 国产永久视频网站| 夜夜骑夜夜射夜夜干| 日韩,欧美,国产一区二区三区| 国产国拍精品亚洲av在线观看| 国产v大片淫在线免费观看| 交换朋友夫妻互换小说| 国模一区二区三区四区视频| 伦精品一区二区三区| 多毛熟女@视频| 精品亚洲成国产av| 日韩伦理黄色片| 99热全是精品| 亚洲欧美精品自产自拍| 亚洲,一卡二卡三卡| 国产av一区二区精品久久 | 一级毛片电影观看| 观看免费一级毛片| 国产一区二区在线观看日韩| 日本黄色片子视频| 国内少妇人妻偷人精品xxx网站| 最近手机中文字幕大全| 日本黄色日本黄色录像| av一本久久久久| 又黄又爽又刺激的免费视频.| 日韩伦理黄色片| 久久精品国产亚洲网站| 久久热精品热| 2021少妇久久久久久久久久久| 免费av不卡在线播放| 国产综合精华液| 赤兔流量卡办理| 黑人高潮一二区| 成年av动漫网址| 中文欧美无线码| 免费在线观看成人毛片| 成人毛片60女人毛片免费| 最后的刺客免费高清国语| 亚洲经典国产精华液单| 嫩草影院新地址| 国产伦在线观看视频一区| 亚洲国产欧美人成| 久久国产精品男人的天堂亚洲 | 免费人妻精品一区二区三区视频| 国产片特级美女逼逼视频| 肉色欧美久久久久久久蜜桃| 久久青草综合色| 欧美老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 伊人久久国产一区二区| 3wmmmm亚洲av在线观看| 建设人人有责人人尽责人人享有的 | 国产午夜精品一二区理论片| 国产成人精品婷婷| 99热这里只有是精品50| 美女国产视频在线观看| 国产深夜福利视频在线观看| 国产真实伦视频高清在线观看| 久久久久性生活片| 亚洲一区二区三区欧美精品| 精品一区二区三区视频在线| 大话2 男鬼变身卡| 丰满少妇做爰视频| 大陆偷拍与自拍| videossex国产| 日韩国内少妇激情av| 在线观看国产h片| 人妻 亚洲 视频| 国产亚洲91精品色在线| 国产 一区 欧美 日韩| 七月丁香在线播放| 97在线人人人人妻| 亚洲av成人精品一二三区| 99热这里只有精品一区| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 精品人妻视频免费看| 国产亚洲欧美精品永久| 老女人水多毛片| 亚洲av.av天堂| 国产高清三级在线| 各种免费的搞黄视频| 精品亚洲成a人片在线观看 | 国产淫片久久久久久久久| 永久免费av网站大全| 久久久久精品性色| 日韩欧美 国产精品| av女优亚洲男人天堂| 国产免费福利视频在线观看| 婷婷色综合www| 插逼视频在线观看| 日本一二三区视频观看| 免费观看av网站的网址| 亚洲欧美清纯卡通| 欧美xxⅹ黑人| 熟女人妻精品中文字幕| 天天躁夜夜躁狠狠久久av| 97精品久久久久久久久久精品| 男人舔奶头视频| 99热全是精品| 亚洲真实伦在线观看| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 国产精品久久久久久精品古装| 街头女战士在线观看网站| 香蕉精品网在线| 少妇丰满av| 熟妇人妻不卡中文字幕| 国产精品秋霞免费鲁丝片| 高清在线视频一区二区三区| 日日撸夜夜添| tube8黄色片| 国产精品人妻久久久影院| 亚洲国产毛片av蜜桃av| 亚洲国产欧美在线一区| av专区在线播放| 国产视频首页在线观看| 91狼人影院| 久久99热这里只频精品6学生| 国产精品.久久久| 一区二区三区乱码不卡18| 夜夜看夜夜爽夜夜摸| 女性被躁到高潮视频| 成人毛片a级毛片在线播放| 乱系列少妇在线播放| 2022亚洲国产成人精品| 97精品久久久久久久久久精品| 午夜日本视频在线| 国产精品伦人一区二区| 久久精品国产自在天天线| 又爽又黄a免费视频| xxx大片免费视频| 国产在线男女| 国产精品女同一区二区软件| 亚洲国产精品999| 久久久久久久精品精品| 精品酒店卫生间| 精品久久久久久久末码|