• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films?

    2021-06-26 03:04:32QiXunGuo郭奇勛ZhongXuRen任中旭YiYaHuang黃意雅ZhiChaoZheng鄭志超XueMinWang王學(xué)敏WeiHe何為ZhenDongZhu朱振東andJiaoTeng滕蛟
    Chinese Physics B 2021年6期

    Qi-Xun Guo(郭奇勛) Zhong-Xu Ren(任中旭) Yi-Ya Huang(黃意雅) Zhi-Chao Zheng(鄭志超)Xue-Min Wang(王學(xué)敏) Wei He(何為) Zhen-Dong Zhu(朱振東) and Jiao Teng(滕蛟)

    1Department of Material Physics and Chemistry,University of Science and Technology Beijing,Beijing 100083,China

    2Collaborative Innovation Center of Advanced Steel Technology,University of Science and Technology Beijing,Beijing 100083,China

    3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    4National Institute of Metrology,Beijing 100029,China

    Keywords: topological insulator, magnetron sputtering, post annealing, Kiessig fringes, low carrier density,weak antilocalization

    Three-dimensional topological insulators (TIs) like Bi2Te3have attracted considerable research attention on account of their unique energy band structure: they are insulating in the bulk and exhibit gapless metallic surface states. The nontrivial surface states of TIs have been confirmed by various methods such as angle-resolved photoemission spectroscopy experiments,[1–3]scanning tunneling microscopy/spectroscopy,[4]and transport measurements.[5]However,in most TIs,the bulk does not insulate and the Dirac point is not exposed or not close to the Fermi level, masking the topological phenomena. To utilize the unique electronic properties of the surface states, suppressing the contribution from the bulk is desirable in TIs-based electronic devices. Tremendous efforts have been made to reduce the bulk carrier density,such as using compensation doping with Sb or Se elements in Bi2Te3materials,[6,7]back gate, top gate, or dual gate modulation.[8–10]

    Due to the hexagonal structure of bulk Bi2Se3, Bi2Te3,and Sb2Te3,it is common that thin films of TIs are composed of many triangular grains and each grain has terrace-step surface morphology.[11,12]At the center of the triangular grains,the film thickness is the largest,while at the grain boundaries,the thickness is the smallest.Therefore,TI thin films may have relatively large root-mean-square surface roughness.

    To grow high-quality topological insulator thin films with low roughness and suppress the bulk carriers density, several methods have been used, including molecular beam epitaxy(MBE),[13,14]pulsed laser deposition (PLD),[15,16]chemical vapor deposition(CVD),[17]and magnetron sputtering.[18]As is well known, MBE growth allows for a precise control of the growth parameters to obtain a very low density of defects.However,MBE operates in ultra-high vacuum conditions and is significantly expensive. On the other hand,magnetron sputtering is highly versatile and a well-established method for growing a variety of TIs on a large scale, which is very important for industrial applications.

    In our previous work,[18]we have successfully fabricated Bi2Te3thin films on 4 inches wafer by magnetron sputtering method. Here,we present a method of the heating process to obtain the high-quality Bi2Te3films with low carrier density down to 4.0×1013cm?2. For comparison, the Bi2Te3thin films were prepared by magnetron sputtering with two different heating processes:one is grown at a high substrate temperature, the other is grown at room temperature then followed by post-annealing. Structure analysis using x-ray diffraction(XRD), x-ray reflectivity (XRR), and scanning electron microscope (SEM) indicates that the latter process enables the growth of highly-oriented Bi2Te3thin films with larger grain size and smoother interface. Electrical transport properties show that lower carrier density and larger coherent length have been achieved in post-annealed Bi2Te3thin films. Our studies pave a way for Bi2Te3thin films to be integrated with magnetic multilayers and heterostructures for spintronic applications.

    All of our samples were prepared by magnetron sputtering on silicon substrates(300 nm SiO2/Si). The co-sputtering method with high purity(99.99%)Bi2Te3alloying target and Te target was used to control films’ composition. Direct current (DC) power source was used for Bi2Te3alloying target and radio-frequency (RF) power source was used for Te target. The base pressure of the deposition chamber was below 3×10?7Torr and the working argon pressure was set at 2 mTorr. Films were deposited at room temperature and the substrate temperature was kept at 240?C. All films were capped with a 4 nm thick Al thin film. The Al thin film was naturally oxidized to form AlOxafter exposure in air and to protect the TIs layer from oxidation. The post-annealing process was performed in a vacuum of 10?7Torr for 3 hours at various temperatures (200?C, 240?C, and 280?C). XRD,XRR, and SEM were used to characterize the film structure.The transport properties were tested by the physical properties measurement system(PPMS)of the Quantum Design.

    In Fig.1,we present the x-ray results of the prepared samples. As described in our previous report,[18]polycrystalline Bi2Te3thin films can be successfully grown at the substrate temperature of 240?C.XRD spectrum of this sample is shown as the red curve in Fig. 1(a). We can see three peaks in this spectrum: (0 0 3),(0 0 6),and(0 0 15),showing the evidence of preferred growth with ac-axis orientation. We can also see that there is no obvious peak in the curve of the Bi2Te3film grown at room temperature, indicating an amorphous phase.However,after annealing at 200?C for 3 hours,the characteristic peaks of(0 0 3n)appeared,suggesting that the amorphous sample transformed into the crystalline phase after annealing.The full-width at half-maximum (FWHM) of (0 0 6) of the film annealed at 200?C is about 0.6?,smaller than 0.9?of the substrate-heated sample. When the annealing temperature increased to 280?C, the characteristic peaks still exist and the FWHM is nearly constant at 0.6?. The smaller FWHM, or sharper diffraction peaks of the annealed samples than that of the substrate heated sample means that the post-annealed Bi2Te3films have a larger grain size and better crystallinity.Strong Kiessig fringes can be observed around the Bi2Te3diffraction peaks, as shown in the inset of Fig. 1(a), which originate from the interference of x-ray beams reflected at the substrate–film and film–air interfaces.[19]The occurrence of these well-shaped fringes confirms a uniform and smooth surface and high crystal quality of the annealed Bi2Te3films.

    Figures 1(b) and 1(c) show measured XRR data (black dots)of the substrate-heated and 280?annealed Bi2Te3films.For the substrate-heated sample (Fig. 1(c)), the XRR curve shows a monotone decrease,while for the post-annealed sample(Fig.1(d)),continuous oscillation(Kiessig fringes)can be observed. By the deepness of Kiessig fringes, we conclude that the substrate-heated Bi2Te3film has a much larger roughness while the post-annealed Bi2Te3film has a better interface and lower roughness, which is consistent with the results obtained from XRD.Besides,the thickness of the post-annealed Bi2Te3film is determined to be 13.8 nm by using the GenX software.[20]

    Fig.1.XRD and XRR spectra of the Bi2Te3 films.(a)XRD spectra of Bi2Te3 films for different substrate temperatures(room temperature and 240?C)and different annealing temperatures (200 ?C, 240 ?C, and 280 ?C). The inset shows a fine scanned image of the BT film annealed at 280 ?C between 15?and 20?. XRR spectra of the substrate-heated (b) and 280 ?C annealed(c) Bi2Te3 films. The black dots are measured data, and the red line is the fitting curve.

    Figure 2 shows SEM images of surface morphologies of Bi2Te3films with different heat treatment processes. It can be seen that the surface of the as-deposited film(Fig.2(a))is quite flat, while the surface of the 280?annealed film (Fig. 2(c))is rougher, indicating that annealing causes the growth of the grains. The film sputtered at high substrate temperature has flaky or granular morphology and is formed by grains of Bi2Te3nanoplates with different sizes(Fig.2(b)). In this image,we notice that many Bi2Te3nanoplates are not parallel to the surface of the substrate,which may be responsible for the broader peaks of XRD pattern of the substrate-heated sample.

    Fig.2.SEM images for Bi2Te3 thin films sputtered at room temperature(a),sputtered at the substrate temperature of 240 ?C(b),and sputtered at room temperature then followed by annealing at 280 ?C(c).

    The transport measurements were carried out in the standard Hall bar geometry. Figures 3(a) and 3(c) are the Hall curves (Rxy–H) of the substrate-heated and 280?C annealed Bi2Te3films, respectively. The Hall slopes of both samples at 2 K and 300 K are negative, which clearly reveals that the dominant carriers of both samples are electrons. Figures 3(b)and 3(d)show the temperature-dependent nominal carrier density of two samples estimated fromRxy. At 2 K, the carrier density is 13.5×1013cm?2for the substrate-heated sample and is 4.0×1013cm?2for the 280?C annealed sample.The carrier density of the substrate-heated sample is about 3.4 times larger than that of the 280?C annealed sample. It indicates that the carrier from bulk is largely suppressed in the 280?C annealed Bi2Te3thin films.

    Fig.3. Hall curves of substrate-heated(a)and 280 ?C annealed(c)samples at 2 K and 300 K, respectively. Carrier density of substrate-heated (b) and 280 ?C annealed(d)samples as a function of temperature.

    Figure 4 shows sheet conductanceσxx(σxx=Rxx/(R2xx+R2xy))of the above two Bi2Te3thin films measured at various magnetic fields in the temperature range of 2 K to 10 K. A well-defined linear lnTdependence ofσxxis observed at low temperatures(solid lines are the linear fits). The slope ofσxxis defined byκ=(πh/e2)dσxx/dlnT.[21]As shown in the inset,κincreases with increasing magnetic field and is approximately unchanged when the magnetic field ranges from 0.5 T to 2 T. The sharp increase at low magnetic fields can be attributed to the rapid suppression of the weak antilocalization(WAL)effect,and the saturated value ofκin a high field range of 0.5–2 T suggests that the effect is quenched. At the high magnetic field, the saturatedκis ascribed to the contribution of electron–electron interaction(EEI).[22,23]Interestingly, the ratio of saturatedκof these two Bi2Te3thin films is very close to the ratio of the carrier density,3.4,which suggests that the strength of EEI is proportional to the carrier density.

    Fig. 4. Temperature dependencies of sheet conductance σxx (open symbols) recorded at different magnetic fields for (a) 280 ?C annealed and(b) substrate-heated Bi2Te3 thin films. The straight lines are linear fits of σxx to lnT. Inset of each plot shows the slope κ =(πh/e2)dσxx/dlnT as a function of magnetic field.

    To further explore WAL behavior,the magnetic field dependent sheet resistance was measured at varied temperature. Figure 5(a) shows the magnetic field dependence of?Rxxof the post-annealed sample at different temperatures.The parabolic ?Rxxcurve at the high-temperature region(50–250 K) is ascribed to a semiclassical model that conduction electrons drift in a magnetic field and are deflected by the Lorentz force. At the low temperatures (2–10 K), the ?Rxxcurve is nearly linear at the high magnetic field, and a sharp dip appears near the zero magnetic field, which is a typical feature of the WAL effect. As shown in Fig. 5(b), the WAL behavior at the low magnetic field region(less than 0.5 T)can be well fitted by Hikami–Larkin–Nagaoka(HLN)equation[24]

    whereαis the WAL coefficient,l?is the phase coherence length, andψ(x) is the digamma function. It should be noted that, for the magnetic field larger than 0.5 T, the magnetoconductance is found to deviate from the HLN equation, and this is consistent with the results ofκbeing saturated above 0.5 T. Fitting ?σxxat 2 K with the HLN equation yieldsl? ~228 nm and 180 nm for the 280?C annealed and substrate-heated Bi2Te3thin films, respectively. Both values are much larger than the thickness of the films(14 nm), justifying the two-dimensional WAL characteristics in our samples. The temperature dependence ofl?of the two Bi2Te3thin films is shown in Fig. 5(c).It is clear that bothl?decrease with the temperature increasing from 2 K to 10 K and this monotonous reduction of coherence length was also observed in other topological insulator systems.[25,26]It is well-known that the coherence lengthl?is proportional toT?1/2for the two-dimensional system.[27]Here,the power exponents of the two samples are?0.58 and?0.63(Fig.5(c)),slightly differ from?1/2,suggesting a contribution of the bulk channel. Anyhow,the long phase coherence length encourages us to take its advance in the quantum transport.

    Fig.5. (a)The ?Rxx of post-annealed sample as a function of magnetic field at different temperature,?Rxx =Rxx(H)?Rxx(0). (b)Longitudinal conductance ?σxx of post-annealed sample as a function of magnetic field at different temperature, ?σxx =σxx(H)?σxx(0). The solid lines show the fit of HLN equation. (c) Phase coherence length l? of substrate-heated and postannealed samples as a function of temperature.

    It has been shown in this study that the post-annealing Bi2Te3thin films have lower bulk carrier density than the films grown at high substrate temperatures. We note that the achieved carrier density is also lower than the values of samples grown by MBE,[13,14]PLD,[15,16]and CVD.[17]In previous studies, the bulk charge carriers of Bi2Te3mostly originate from point defects like TeBiantisite donor defects.[29,30]Thus, we can infer that the number of TeBiantisite defects in the 280?C annealed samples is smaller than that in the substrate-heated samples. More detailed annealing processes,such as refining the annealing temperature and annealing time,than those used here would be necessary to find the best condition for further reducing the bulk carrier density of Bi2Te3thin films. Besides,more microstructure characterizations are needed to reveal the relationship between carrier density and the heat treatment process of Bi2Te3thin films.

    Fig.6. Comparison of our carrier density of Bi2Te3 thin films with previous reported data.

    In conclusion,we present a feasible and scalable method based on magnetron sputtering to obtain high-quality Bi2Te3films,which was firstly sputtered at room temperature and then followed with post-annealing. It enables the growth of highlyoriented Bi2Te3thin films with larger grain size and smoother interface. The results of electrical transport show that it has a lower carrier density down to 4.0×1013cm?2as well as a larger coherent length up to 228 nm. The appearance of the WAL effect and EEI in our sample indicates that it keeps the character of the topological surface state. This work facilitates the fabrication of TI-based devices for electronic and spintronic applications.

    精品少妇黑人巨大在线播放 | 亚洲电影在线观看av| 精品久久久久久久人妻蜜臀av| 又爽又黄无遮挡网站| 亚洲无线在线观看| 亚洲国产精品sss在线观看| 免费一级毛片在线播放高清视频| 亚洲不卡免费看| 日本撒尿小便嘘嘘汇集6| 日韩亚洲欧美综合| 免费搜索国产男女视频| 亚洲aⅴ乱码一区二区在线播放| 日韩成人av中文字幕在线观看 | 亚洲国产精品久久男人天堂| 成人鲁丝片一二三区免费| 日本欧美国产在线视频| 一级毛片我不卡| 亚洲国产精品成人综合色| 久久久精品欧美日韩精品| 色哟哟·www| 亚州av有码| 亚洲成人中文字幕在线播放| 亚洲av中文av极速乱| 男女啪啪激烈高潮av片| 91久久精品电影网| 精品一区二区三区视频在线观看免费| 精品福利观看| 又黄又爽又免费观看的视频| 欧美日本视频| 免费av观看视频| 啦啦啦观看免费观看视频高清| 日本一本二区三区精品| 国产久久久一区二区三区| 成年女人毛片免费观看观看9| 1024手机看黄色片| 99在线视频只有这里精品首页| 亚洲最大成人手机在线| 国产成人a∨麻豆精品| 丝袜美腿在线中文| 校园人妻丝袜中文字幕| 一级毛片久久久久久久久女| 黄色视频,在线免费观看| 国国产精品蜜臀av免费| 女生性感内裤真人,穿戴方法视频| 国产男人的电影天堂91| 美女黄网站色视频| 国产私拍福利视频在线观看| 亚洲美女视频黄频| 看非洲黑人一级黄片| 精品久久久久久久久亚洲| 日本色播在线视频| 亚洲自拍偷在线| 少妇人妻一区二区三区视频| 久久久午夜欧美精品| ponron亚洲| 欧美+亚洲+日韩+国产| 国产精品一区二区性色av| 亚洲中文字幕一区二区三区有码在线看| 夜夜看夜夜爽夜夜摸| 成人亚洲欧美一区二区av| 一级黄色大片毛片| 久久人人爽人人爽人人片va| 国产成人91sexporn| 亚洲综合色惰| 99热网站在线观看| 亚洲18禁久久av| 亚洲熟妇中文字幕五十中出| 国产亚洲91精品色在线| 国产亚洲91精品色在线| 男女边吃奶边做爰视频| 日韩强制内射视频| 最近视频中文字幕2019在线8| 乱人视频在线观看| 国产精品爽爽va在线观看网站| 久久久精品欧美日韩精品| 免费大片18禁| 69av精品久久久久久| 69av精品久久久久久| 一区二区三区免费毛片| videossex国产| 午夜老司机福利剧场| 俺也久久电影网| 一本久久中文字幕| 亚洲四区av| 国产精品一区www在线观看| 麻豆成人午夜福利视频| 能在线免费观看的黄片| 免费在线观看成人毛片| 99热6这里只有精品| 干丝袜人妻中文字幕| 91午夜精品亚洲一区二区三区| 你懂的网址亚洲精品在线观看 | 亚洲五月天丁香| 日韩高清综合在线| 高清毛片免费观看视频网站| 男人的好看免费观看在线视频| 午夜精品在线福利| 人妻少妇偷人精品九色| 国产麻豆成人av免费视频| 桃色一区二区三区在线观看| 午夜福利成人在线免费观看| 亚洲国产精品国产精品| 成年av动漫网址| 国产综合懂色| 一级毛片aaaaaa免费看小| 看片在线看免费视频| 在线国产一区二区在线| 色综合色国产| 插逼视频在线观看| 一区二区三区高清视频在线| 日韩av不卡免费在线播放| 欧美日韩在线观看h| 久久婷婷人人爽人人干人人爱| 免费电影在线观看免费观看| 精品久久国产蜜桃| 欧美一区二区亚洲| 久久6这里有精品| 国产精华一区二区三区| 国产片特级美女逼逼视频| 久久精品夜色国产| 成人二区视频| 亚洲第一电影网av| 淫妇啪啪啪对白视频| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 国产精品亚洲一级av第二区| 国产乱人视频| 一a级毛片在线观看| 国产高清视频在线观看网站| 国产精品精品国产色婷婷| 欧美在线一区亚洲| 春色校园在线视频观看| 熟女人妻精品中文字幕| 女人被狂操c到高潮| 色尼玛亚洲综合影院| 大又大粗又爽又黄少妇毛片口| 18+在线观看网站| 色综合色国产| 精品一区二区三区视频在线观看免费| 久久精品人妻少妇| 欧美bdsm另类| 免费高清视频大片| 日韩欧美免费精品| 中国美女看黄片| 麻豆成人午夜福利视频| 女人被狂操c到高潮| av在线老鸭窝| 国产亚洲精品综合一区在线观看| 成人高潮视频无遮挡免费网站| 免费无遮挡裸体视频| av在线蜜桃| 无遮挡黄片免费观看| 成人国产麻豆网| 国产成人福利小说| av在线播放精品| av卡一久久| 国产中年淑女户外野战色| 99热这里只有精品一区| 成人综合一区亚洲| 中文资源天堂在线| .国产精品久久| 国产精品一区二区性色av| 国产午夜精品久久久久久一区二区三区 | 亚洲中文字幕日韩| 天天躁夜夜躁狠狠久久av| 国内揄拍国产精品人妻在线| 国产男人的电影天堂91| 在线观看美女被高潮喷水网站| 18禁在线无遮挡免费观看视频 | 亚洲中文字幕日韩| 午夜福利18| 国产精品久久久久久精品电影| 久久人人爽人人爽人人片va| 深爱激情五月婷婷| 午夜老司机福利剧场| 日本黄色片子视频| 男女那种视频在线观看| 日日摸夜夜添夜夜添av毛片| 在线天堂最新版资源| 亚洲美女黄片视频| 黑人高潮一二区| 国产黄色小视频在线观看| 最近手机中文字幕大全| 久久人人爽人人片av| 乱码一卡2卡4卡精品| 伦精品一区二区三区| 一级黄色大片毛片| av天堂在线播放| 亚洲av.av天堂| 深爱激情五月婷婷| 久久久久九九精品影院| 午夜激情福利司机影院| 老师上课跳d突然被开到最大视频| 亚洲中文日韩欧美视频| 日本成人三级电影网站| 又粗又爽又猛毛片免费看| 国产伦一二天堂av在线观看| 一进一出抽搐gif免费好疼| 国产精品福利在线免费观看| 成人国产麻豆网| 淫秽高清视频在线观看| 禁无遮挡网站| 欧美3d第一页| 国内精品久久久久精免费| 欧美激情久久久久久爽电影| 老熟妇仑乱视频hdxx| 欧美日韩精品成人综合77777| 国产黄a三级三级三级人| 久久天躁狠狠躁夜夜2o2o| 乱人视频在线观看| 插阴视频在线观看视频| 亚洲av熟女| 国产成人aa在线观看| 久久久久久久久久久丰满| 日日摸夜夜添夜夜添av毛片| 国产成人精品久久久久久| 人人妻人人澡欧美一区二区| 99热网站在线观看| 日日干狠狠操夜夜爽| 亚洲成人久久爱视频| 级片在线观看| 国产成人一区二区在线| 国产爱豆传媒在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 精品无人区乱码1区二区| 精品人妻一区二区三区麻豆 | 国产三级中文精品| 亚洲av.av天堂| 一区二区三区四区激情视频 | 一本一本综合久久| 成人亚洲精品av一区二区| 久久久欧美国产精品| 午夜福利在线观看免费完整高清在 | 国产av麻豆久久久久久久| 日本成人三级电影网站| 欧美日韩精品成人综合77777| 亚洲无线在线观看| 午夜精品在线福利| 直男gayav资源| 91狼人影院| 在线观看av片永久免费下载| 99久久中文字幕三级久久日本| 国产精品女同一区二区软件| 欧美色视频一区免费| 色尼玛亚洲综合影院| 伦精品一区二区三区| 日韩一本色道免费dvd| 国产精品久久久久久精品电影| 嫩草影院新地址| 桃色一区二区三区在线观看| 人人妻人人看人人澡| 日本黄色视频三级网站网址| 日韩制服骚丝袜av| 91在线精品国自产拍蜜月| 久久99热6这里只有精品| 麻豆一二三区av精品| 夜夜看夜夜爽夜夜摸| 九九久久精品国产亚洲av麻豆| 免费看美女性在线毛片视频| 国产黄色视频一区二区在线观看 | 日韩制服骚丝袜av| 69人妻影院| 国产视频内射| 少妇的逼水好多| 国产熟女欧美一区二区| 一区福利在线观看| 99九九线精品视频在线观看视频| 人妻少妇偷人精品九色| 观看免费一级毛片| 国产精品亚洲一级av第二区| 最新中文字幕久久久久| 嫩草影院新地址| 免费看av在线观看网站| av专区在线播放| 国产精品一区二区性色av| 国产精品久久久久久精品电影| 日日摸夜夜添夜夜爱| 午夜福利成人在线免费观看| 日韩精品中文字幕看吧| 日韩欧美精品v在线| 我要看日韩黄色一级片| 可以在线观看的亚洲视频| 天堂网av新在线| 高清午夜精品一区二区三区 | 国产不卡一卡二| 精品免费久久久久久久清纯| 最新在线观看一区二区三区| 亚洲中文日韩欧美视频| 久久久久久九九精品二区国产| 国产精品一区二区三区四区久久| 最近手机中文字幕大全| 天堂影院成人在线观看| av福利片在线观看| 精品国产三级普通话版| 日日干狠狠操夜夜爽| 久久草成人影院| 内射极品少妇av片p| 国产真实伦视频高清在线观看| 综合色av麻豆| 韩国av在线不卡| 亚洲成av人片在线播放无| av在线蜜桃| 有码 亚洲区| 三级毛片av免费| 免费一级毛片在线播放高清视频| 国产高潮美女av| 国产av不卡久久| 久久久国产成人免费| 亚洲在线自拍视频| 亚洲第一区二区三区不卡| 国产精品一区二区三区四区久久| 国内精品宾馆在线| 女人被狂操c到高潮| 久久久久久久久久成人| 亚洲美女黄片视频| 黄色视频,在线免费观看| 啦啦啦啦在线视频资源| 一个人看视频在线观看www免费| 日韩欧美精品v在线| 日日干狠狠操夜夜爽| 校园春色视频在线观看| 精品福利观看| 成人国产麻豆网| 国产成人影院久久av| 国产在视频线在精品| 亚洲中文字幕日韩| 国产亚洲91精品色在线| 国产精品美女特级片免费视频播放器| 亚洲三级黄色毛片| 精品人妻偷拍中文字幕| 中文字幕熟女人妻在线| 美女 人体艺术 gogo| 欧美日本视频| 亚洲成人精品中文字幕电影| 久久综合国产亚洲精品| 成年女人毛片免费观看观看9| 欧美激情国产日韩精品一区| 久久国产乱子免费精品| 欧美在线一区亚洲| 又爽又黄a免费视频| 寂寞人妻少妇视频99o| 亚洲国产欧美人成| 三级毛片av免费| 久久久久免费精品人妻一区二区| 欧美又色又爽又黄视频| 黄色视频,在线免费观看| 欧美中文日本在线观看视频| 黄色一级大片看看| 久久久久久伊人网av| 日韩亚洲欧美综合| 成人精品一区二区免费| 午夜福利18| 日日摸夜夜添夜夜爱| 级片在线观看| 国产免费一级a男人的天堂| 综合色av麻豆| 久久草成人影院| 一个人看的www免费观看视频| 丰满的人妻完整版| 老司机影院成人| 午夜日韩欧美国产| 国产 一区精品| 少妇猛男粗大的猛烈进出视频 | 天堂动漫精品| 欧美xxxx性猛交bbbb| 日韩国内少妇激情av| 日本 av在线| 一本一本综合久久| 午夜免费男女啪啪视频观看 | 亚洲人与动物交配视频| 尾随美女入室| av国产免费在线观看| 毛片一级片免费看久久久久| 久久人妻av系列| 12—13女人毛片做爰片一| 噜噜噜噜噜久久久久久91| 欧美3d第一页| 亚洲av二区三区四区| 亚洲一级一片aⅴ在线观看| 在线免费十八禁| 免费av观看视频| 一区福利在线观看| 久久久色成人| 91在线观看av| 少妇被粗大猛烈的视频| 俺也久久电影网| 亚洲成av人片在线播放无| 少妇丰满av| 禁无遮挡网站| 18+在线观看网站| 男女做爰动态图高潮gif福利片| 久久国内精品自在自线图片| 亚洲av中文字字幕乱码综合| 亚洲真实伦在线观看| 日韩亚洲欧美综合| 搡老熟女国产l中国老女人| 国产蜜桃级精品一区二区三区| 简卡轻食公司| 久久久久国产精品人妻aⅴ院| 国产精品,欧美在线| 秋霞在线观看毛片| 熟妇人妻久久中文字幕3abv| 色综合亚洲欧美另类图片| 麻豆成人午夜福利视频| 亚洲,欧美,日韩| 在线免费观看的www视频| 秋霞在线观看毛片| 大香蕉久久网| 国产一区亚洲一区在线观看| 非洲黑人性xxxx精品又粗又长| 看十八女毛片水多多多| 天堂√8在线中文| 三级毛片av免费| 欧美激情久久久久久爽电影| 深夜精品福利| 中出人妻视频一区二区| 欧美日韩综合久久久久久| 97在线视频观看| 99热这里只有精品一区| 精品一区二区三区视频在线观看免费| 国国产精品蜜臀av免费| 免费黄网站久久成人精品| 欧美一区二区精品小视频在线| 国产高清有码在线观看视频| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区| 欧美成人一区二区免费高清观看| 久久久a久久爽久久v久久| 国产精品福利在线免费观看| 欧美在线一区亚洲| av专区在线播放| 少妇丰满av| 美女 人体艺术 gogo| 一个人看的www免费观看视频| 床上黄色一级片| 欧美高清性xxxxhd video| 两个人的视频大全免费| 日本免费a在线| 日本一本二区三区精品| 亚洲欧美日韩无卡精品| 亚洲精品久久国产高清桃花| 亚洲精华国产精华液的使用体验 | 日本色播在线视频| 欧美色视频一区免费| 老熟妇乱子伦视频在线观看| 欧美精品国产亚洲| 男人狂女人下面高潮的视频| 亚洲中文字幕一区二区三区有码在线看| 少妇裸体淫交视频免费看高清| 国产av一区在线观看免费| 婷婷精品国产亚洲av在线| 午夜免费激情av| 特级一级黄色大片| 久久久久久久久久黄片| 成年女人永久免费观看视频| 亚洲人成网站在线播| ponron亚洲| 97热精品久久久久久| 日韩在线高清观看一区二区三区| 久久久久久伊人网av| 桃色一区二区三区在线观看| 永久网站在线| 69人妻影院| 啦啦啦观看免费观看视频高清| 一级a爱片免费观看的视频| 高清毛片免费观看视频网站| 97超碰精品成人国产| 精品一区二区免费观看| 午夜免费激情av| 尾随美女入室| 国产精品国产三级国产av玫瑰| 麻豆精品久久久久久蜜桃| 免费av不卡在线播放| or卡值多少钱| 尤物成人国产欧美一区二区三区| 国产爱豆传媒在线观看| 99国产精品一区二区蜜桃av| 国产探花在线观看一区二区| 欧美日韩在线观看h| 精品一区二区三区视频在线| 可以在线观看毛片的网站| 国产一区二区三区av在线 | 久久精品综合一区二区三区| 极品教师在线视频| 亚洲成人久久性| 六月丁香七月| 国产精品野战在线观看| 搡女人真爽免费视频火全软件 | 女的被弄到高潮叫床怎么办| 亚洲中文字幕一区二区三区有码在线看| 国产精品精品国产色婷婷| 久久人妻av系列| 亚洲成人精品中文字幕电影| 男插女下体视频免费在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品国产三级国产av玫瑰| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 午夜亚洲福利在线播放| 99热精品在线国产| 国产蜜桃级精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 中文亚洲av片在线观看爽| 日本爱情动作片www.在线观看 | 国产真实伦视频高清在线观看| 男插女下体视频免费在线播放| 不卡视频在线观看欧美| 国产国拍精品亚洲av在线观看| 亚洲人成网站在线播| 亚洲av中文av极速乱| 99久久精品国产国产毛片| 久久鲁丝午夜福利片| 露出奶头的视频| 国产 一区 欧美 日韩| eeuss影院久久| 干丝袜人妻中文字幕| 国产乱人视频| 国产精品嫩草影院av在线观看| 三级男女做爰猛烈吃奶摸视频| 欧美激情在线99| av在线亚洲专区| 噜噜噜噜噜久久久久久91| 国产av麻豆久久久久久久| 国产精品一及| 别揉我奶头 嗯啊视频| 深夜a级毛片| 99热全是精品| 国产三级中文精品| 狂野欧美白嫩少妇大欣赏| 一区二区三区高清视频在线| 18禁裸乳无遮挡免费网站照片| 老熟妇乱子伦视频在线观看| 一夜夜www| 日韩在线高清观看一区二区三区| 麻豆国产97在线/欧美| 99热精品在线国产| 国产欧美日韩精品亚洲av| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线| 色av中文字幕| 日韩中字成人| 国产单亲对白刺激| 婷婷精品国产亚洲av在线| av女优亚洲男人天堂| 亚洲国产高清在线一区二区三| 日韩欧美精品免费久久| av福利片在线观看| 天天躁日日操中文字幕| 国产精品亚洲美女久久久| 超碰av人人做人人爽久久| 中文资源天堂在线| 最近视频中文字幕2019在线8| 国产精品人妻久久久久久| 哪里可以看免费的av片| 精品一区二区三区av网在线观看| 日韩欧美一区二区三区在线观看| 亚洲国产精品久久男人天堂| 国内揄拍国产精品人妻在线| 老司机福利观看| 搡老岳熟女国产| 亚洲精品456在线播放app| av在线观看视频网站免费| 国产亚洲欧美98| 色在线成人网| 国产精品伦人一区二区| 日产精品乱码卡一卡2卡三| 免费在线观看成人毛片| 波多野结衣高清无吗| av女优亚洲男人天堂| 99久久久亚洲精品蜜臀av| 亚洲国产精品成人久久小说 | 国产精品亚洲一级av第二区| 性插视频无遮挡在线免费观看| 白带黄色成豆腐渣| 欧美在线一区亚洲| h日本视频在线播放| 久久午夜福利片| 亚洲精品一卡2卡三卡4卡5卡| 99久久无色码亚洲精品果冻| 少妇熟女aⅴ在线视频| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放 | 黄色一级大片看看| 免费人成视频x8x8入口观看| 色综合色国产| av卡一久久| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 免费观看在线日韩| 久久久国产成人免费| 天天躁夜夜躁狠狠久久av| 99在线视频只有这里精品首页| 国产乱人视频| aaaaa片日本免费| 午夜福利18| 国产v大片淫在线免费观看| 五月伊人婷婷丁香| 国产91av在线免费观看| 午夜a级毛片| 精品久久久久久久久久久久久| 国产私拍福利视频在线观看| 亚洲在线自拍视频| 九色成人免费人妻av| 久久久久久久久中文| 深爱激情五月婷婷| 人妻制服诱惑在线中文字幕| 亚洲国产精品成人综合色| 成年版毛片免费区| 亚洲婷婷狠狠爱综合网| 国产亚洲精品久久久久久毛片| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 欧美色欧美亚洲另类二区| 精品人妻视频免费看| 久久午夜福利片|