• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Device topological thermal management of β-Ga2O3 Schottky barrier diodes?

    2021-06-26 03:30:08YangTongYu俞揚(yáng)同XueQiangXiang向?qū)W強(qiáng)XuanZeZhou周選擇KaiZhou周凱GuangWeiXu徐光偉XiaoLongZhao趙曉龍andShiBingLong龍世兵
    Chinese Physics B 2021年6期

    Yang-Tong Yu(俞揚(yáng)同), Xue-Qiang Xiang(向?qū)W強(qiáng)), Xuan-Ze Zhou(周選擇), Kai Zhou(周凱),Guang-Wei Xu(徐光偉), Xiao-Long Zhao(趙曉龍), and Shi-Bing Long(龍世兵)

    School of Microelectronics,University of Science and Technology of China,Hefei 230026,China

    Keywords: β-Ga2O3 Schottky barrier diode,thermal management,TCAD simulation,infrared thermal imaging camera

    1. Introduction

    Ultra-wide bandgap (UWBG)β-gallium oxide (β-Ga2O3)has attracted numerous attention because of its higher Baliga’s figure of merit and lower cost of large-sized substrates in comparison to other wide bandgap semiconductors like 4H-SiC and GaN.[1–5]All these properties enableβ-Ga2O3to be preferable for various power future electronic applications such as energy-saving electronic systems and efficient semiconductor switches, in which the thermal property plays a critical role for their operation.[6–8]At room temperature,the highest thermal conductivity ofβ-Ga2O3is 27 W/m·K along the (010) crystalline direction, which is still one order of magnitude lower than that of 4H-SiC and GaN.[9–13]The self-heating effect (SHE) seriously affects the reliability and stability of the devices, such as the reduction of electron mobility and saturation velocity, owing to the rise of the device temperature.[14,15]Thus the poor thermal conductivity ofβ-Ga2O3limits its application in the field of high temperature and high voltage.[16,17]

    To overcome the poor thermal property ofβ-Ga2O3,a series of methods have been proposed including heterogeneous integration,[18–22]embedded cooling micro-channels,[23]topside air-jet impingement,[24]and so on.[25,26]Impressively,ion cutting technology was applied to transfer 2-inchβ-Ga2O3film to SiC substrate with better heat dissipation,[27–29]but this method probably degraded the quality of the thin film. Researchers also found that about 30%of the total heat was generated near the interface of anode/β-Ga2O3due to the resistive nature of the Schottky contact.[30]It was the concentrated heat dissipation and low thermal conductivity ofβ-Ga2O3that resulted in a large temperature gradient near the Schottky contact. Thus,previous works indicate that the structure parameters of power devices play significant roles in thermal management. Althoughβ-Ga2O3SBDs are approaching commercialization, there is still no comprehensive simulation or experimental study on their heat dissipation.

    In this work,the impact of device structure on peak temperature ofβ-Ga2O3SBDs has been studied by both TCAD simulation and experiment. We simulate the internal temperature distribution with the crystal orientation, work function,anode area,and thickness,suggesting that the thickness ofβ-Ga2O3plays a key role in reducing the peak temperature of the diode. Hence,β-Ga2O3diodes based on various thickness epitaxial and substrates were fabricated, and the surface temperatures of the diodes were tested using an infrared thermal imaging camera. The experimental results show that it is an effective method to reduce the peak temperature of the device by thinning the thickness of the drift layer.

    2. Simulations

    The device simulations were carried out using a commercial Silvaco TCAD software and a 2D device non-isothermal device model, so that they were more close to the real fact.Material parameters ofβ-Ga2O3were mostly adopted from Ref. [31]. The constant thermal conductivity and low-field mobility model were assumed. Moreover,the LAT.TEMP parameter was added to the model,in order to consider heat flow in the device. The temperature-dependent lattice temperature coefficient of electron mobility is set asτ=2.0 as in the equation

    whereμn0is the adjusted electron mobility for lattice temperature,μ0is the initial input mobility,TLis the lattice temperature,andτis the temperature dependence coefficient.Through the Silvaco TCAD simulation software, we compared the internal temperature distributions of devices with different parameters under the same working conditions,and extracted the peak temperature in the device when the device reached thermal equilibrium. Then we can find which condition makes advantageous contribution to the device thermal management from these simulation data.

    At room temperature, the thermal conductivities ofβ-Ga2O3are different for different crystal orientations. Theoretically,the substrate,which has a higher thermal conductivity, can accelerate the heat dissipation from the device to the environment under the same work condition. Therefore, we simulatedβ-Ga2O3SBDs on three different crystal orientation (100)/(–201)/(010) substrates, as illustrated in Fig. 1(a).These structures have a good geometrical symmetry, and the dotted linePP'in Fig. 1(a) is perpendicular to the device.The substrate thickness,doping concentration,and anode area of these three devices were 300 μm, 1.0×1016cm?3, and 100 μm2, respectively. Platinum (Pt) and titanium (Ti) were set as Schottky and Ohmic contacts, respectively. A range of voltages from 0 V to 5 V with a step of 0.01 V were applied to these three devices,and the current–voltage(I–V)characteristics are shown in Fig.1(b). The intersection of the orange dotted line and these solid lines indicates the same power density of 42.3 W/mm2.In order to ensure that the devices were working at the same power density,the biases of 5/4.95/4.86 V were needed on the (100)/(–201)/(010) crystal orientation related devices. Figures 1(c)–1(e) are the temperature distributions of these three different devices under the same power density when the devices reached thermal equilibrium. The temperature rises of the three different devices alongPP'are shown in Fig. 1(f), and the rise of (100) is the highest of 21.9?C, followed by(–201)of 16.2?C,and(010)is the lowest of 8.3?C.Thus,it is important to fabricate device on the substrates with high thermal conductivity. But limited by the type of samples,we did not conduct the experiments with different substrate orientations.

    Fig.1. TCAD simulation of crystal orientation dependence of thermal profile in SBDs. (a)Schematic of the device structure. (b)Comparison of the I–V characteristics for SBDs with(100)/(–201)/(010)orientation. (c)–(e)The temperature distribution of(100)/(–201)/(010)orientation substrate based device. (f)The temperature rises of the three different devices along PP'.

    The heat ofβ-Ga2O3SBDs is relatively concentrated at the Schottky junction,thus we simulated the temperature distribution with different Schottky contacts as respect of the area of the Schottky electrode and the work function of the contact metal. Figure 2(a) is theI–Vcurves under different electrode areas(100/200/300/400/500μm2). In order to make sure that the devices work at the same power density, the applied voltages of different areas are 3.37/4.08/4.49/4.79/5 V,respectively. The temperature rises of five devices alongPP'are shown in Fig. 2(b). When the area is 100 μm2, the device temperature rise inside the device is the lowest one about 7.9?C.As the anode area increases,the temperature rise goes up as well. The highest temperature rise is about 29.6?C for the 500μm2electrode area.

    Figure 2(c) shows theI–Vcurves under different work functions (4.8/5.0/5.3 eV) of the Schottky metal, and the applied voltages corresponding to these work functions are 4.74/4.85/5 V,respectively. The temperature rises of the three different devices alongPP'are shown in Fig.2(d). When the work function is 5.3 eV, the temperature inside the device is the minimum, and the temperature rise is about 21.1?C.The maximum temperature rise is about 23.5?C for the device with the work function of 4.8 eV.The probable reason is that higher work function means higher Schottky barrier height and larger contact resistance at the interface between the metal and the semiconductor substrate, resulting in more heat generated in the junction rather than in the substrate. It is noteworthy that the heat generated in the junction can be delivered to the air much more easily than the heat generated in the substrate.Hence the Schottky electrode with higher work function not only reduces the reverse leakage current, but also improves the heat dissipation of SBD devices.

    At the same time, the heat generation of the substrate accounts for 70% of the SBD device.[30]Under differentβ-Ga2O3substrate thicknesses, the heat distribution inside the device is studied in Fig. 3. The substrate thicknesses are 650/550/450/350/250μm,respectively,as shown in Fig.3(a).The area and the work function of the Schottky electrode are 100 μm2and 5.23 eV. TheI–Vcomparison of the five devices is shown in Fig. 3(b), and the power density is approximately 32.6 W/mm2, meaning that the applied voltages are set as 5/4.86/4.72/4.55/4.29 V,respectively. Figures 3(c)–3(g)are the temperature distributions of the five different Ga2O3substrates, and the temperature rises alongPP'are shown in Fig.3(h). The thinner substrate means the lower resistance in diode,which is certainly conducive to suppressing the generation of heat.

    Fig.2. TCAD simulation of anode area and work function. (a)Comparison of the I–V characteristic and(b)the temperature rises along PP'for SBDs with five different anode areas of 500/400/300/200/100μm2. (c)Comparison of the I–V characteristic and(d)the temperature rises along PP' for SBDs with three different work functions of 5.3/5.0/4.8 eV.

    Fig.3. TCAD simulation of substrate thickness dependence of thermal profile in SBDs. (a)Schematic of the device structure. (b)Comparison of the I–V characteristics for SBDs with substrate thicknesses of 650/550/450/350/250μm. (c)–(g)The temperature distribution in diodes with substrate thicknesses of 650/550/450/350/250μm. (f)The temperature rises of five different devices along PP'.

    Fig.4. TCAD simulation of epitaxial thickness dependence of thermal profile in SBDs. (a)Schematic of the device structure. (b)Comparison of the I–V characteristic for SBDs with 10/8/6μm thickness epitaxial layer. (c)–(e)The temperature distribution in 10/8/6μm epitaxial layer based diodes.

    The substrate with HVPE epitaxial layer is the main platform to fabricate high performance SBD. The epitaxial layer ofβ-Ga2O3SBD is low-doped and high-resistance compared to the substrate, which is the primary source of heat generation theoretically. As shown in Fig. 4(a), the thicknesses of the epitaxial layer were set as 10μm,8μm,and 6μm,respectively,and the thickness of the substrate was 650μm.The doping concentrations of theβ-Ga2O3substrate and the epitaxial layer were set as 5.3×1018and 2×1016cm?3, respectively.The crystal orientation we chosen was(100),and the thermal conductivity was 11 W/m·K,which are consistent with the actual SBD device. As shown in Fig.4(b),the applied voltages were 5 V,4.25 V,and 4.08 V,respectively. Figures 4(c)–4(e)show the three devices’ different internal temperature distributions under the same power density. When the thickness is 10 μm, the peak temperature inside the device is the highest, and the temperature rise is about 210?C as shown in Fig.4(c),followed by the 8μm thickness device about 162?C in Fig. 4(d). The minimum temperature rise is about 152?C with the 6μm thickness as shown in Fig. 4(e). Theoretically for the need of 1.2 kV blocking voltage, the 3 μm epitaxial layer is enough forβ-Ga2O3,in which the critical electric field can reach up to 8 MV/cm. In our experiment,the thinnest epitaxial layer is 6μm, which means the breakdown voltages of all samples is above 1.2 kV.Therefore,thinning thickness has little impact on the device performance.

    3. Experiments

    The five SBDs on 5 mm× 7.5 mm unintentionally ntype doped(–201)β-Ga2O3substrate with different substrate thicknesses (650/550/450/350/250/150 μm) were fabricated.The substrates were manufactured by Novel Crystal Technology, Inc. using edge-defined film-fed growth (EFG) method.Using the photoresist to protect the obverse side of the substrate,we thinned the substrate thickness by chemical mechanical polishing(CMP).After cleaning the substrate,etching the backsides surface through inductively coupled plasma (ICP)was definitely necessary to improve the ohmic contact before the ohmic electrode of Ti/Al/Ni/Au(10/80/50/100 nm)grown by E-beam evaporation equipment. Then the samples were put in the atmosphere of N2and annealed at 470?C for 1 min to further improve the ohmic contact. Finally, after soaking in the BOE liquor,the Schottky electrode Ni/Au(40/200 nm)was deposited on the front side by E-beam evaporation.

    The SBDs with different epitaxial layers were fabricated on a 640μm substrate,also provided by Novel Crystal Technology, Inc. The doping concentrations of the substrate and the epitaxial layer are 5.3×1018cm?3and 2×1016cm?3,respectively. By using NR9-3000 photoresist as a mask, firstly two-third area of the left epitaxial layer was etched by ICP etching machine. The etching gas is BCl3with the etching time of 21 min. Secondly, we covered up the two-third area of the right epitaxial surface and etched the rest area by ICP with the same gas and the same time. Finally, the ohmic and Schottky contacts shared the same processes with the above mentioned single crystal substrate sample. The current–voltage and capacitance–voltage characteristics were measured by Keysight B1500A semiconductor device analyzer.

    The infrared image is a quick,visual way to tell the temperature distribution of the working device. It should be noted that the surface temperature of transparent or specular materials cannot be accurately measured because of the working principle of infrared camera. The power was applied on the diodes by Kethley 2450 sourcemeter. It should mention that the same power was chosen by varying the voltage between 4 V and 5 V,at which the diodes normally work on. In order to improve the accuracy of measurement, we sprayed black,insulating,and washable lacquer on the sample surface.

    4. Results and discussion

    Figure 5(a)is the real chip image of the five single crystal substrate SBDs. Figure 5(b)is the thickness mapping scanned by a profiler of five different substrates. The forwardI–Vcurve as shown in Fig. 6(a) is fundamentally in consistence with what has been simulated in Fig.3(b). TheC–Vcurve as shown in Fig.6(b)indicates that the interfacial damage is not very severe.

    Fig.5.(a)Photo of the devices with 650/550/450/350/250μm substrate,(b)the step mapping of the five devices’surface.

    The infrared images were taken by Fluke TiX580 infrared thermal camera at the same power density and the surface temperature distributions are shown in Figs.6(c)–6(g). The peak surface temperature of the five devices’ surface is 56.3?C,51.6?C,50.7?C,50.3?C,and 49.5?C,respectively, indicating the decrease of temperature rise with thinning the single crystal substrate.

    Fig. 6. Comparison of the (a) I–V and (b) C–V characteristics for SBDs with 650/550/450/350/250 μm thickness substrate. (c)–(g) The temperature distributions of five devices’surfaces.

    Fig.7. (a)Photo of the devices with 10/8/6μm epitaxial layer,(b)the step mapping of the five device’s surfaces. Comparison of the (c) I–V and (d)C–V characteristics of SBDs with different thickness epitaxial layers.

    Figure 7(a)is the schematic diagram of the actual device structure with a 650 μm thicknessβ-Ga2O3substrate and a 10μm or 8.1μm thickness epitaxial layer. This diagram was taken after wire bonding,and the shading in it is the gold wire used in bonding. Figure 7(b) is epitaxial thickness mapping scanned by the profiler after twice etching and washing. Actually,these two etching depths are 1.9μm and 2.1μm,respectively.It is one possible reason that the etching rate of ICP gets slower and slower as time goes on. The forwardI–Vcurve as shown in Fig.7(c)is fundamentally in consistence with what has been simulated in Fig. 4(b). TheC–Vcurve as shown in Fig. 7(d) indicates that the quality of the Schottky interface keeps similar after etching.

    Fig. 8. Infrared imaging test of devices. (a)–(c) Temperature distribution of three devices’surface, and(d)the temperature rises with the time of applied voltage.

    The infrared images were taken by Fluke TiX580 infrared thermal camera at the same power density and the surface temperature distributions are shown in Figs.8(a)–8(c). The peak surface temperatures of the three devices are 48.4?C,47.8?C,and 47.2?C,respectively,indicating the decrease of temperature rise with thinning the epitaxial layer. From Fig.8(d),the temperature rise trend agrees with the simulation results. But there is a big difference of peak temperature between the simulation data and the experiment data. This distinction stems from the different temperatures between simulation and experiment,where the internal peak temperature was calculated in simulation, but the interface temperature was measured in experiment.

    5. Conclusion

    In this work, we simulated SBDs with different crystal orientations, Schottky contacts, substrates, and epitaxial layer thicknesses systematically. The simulation results indicate thatβ-Ga2O3should be with(010)crystal orientation, a smaller anode area, larger work function metal, thinner substrates and epitaxial layers for reducing the self-heating effect inside the diodes. In addition, five SBDs with different substrate thicknesses were fabricated on a (–201)β-Ga2O3single-crystal substrate and three SBDs with different epitaxial layer thicknesses were fabricated on a(001)substrate in our study. The devices show good forward electrical characteristics, which are almost consistent with the simulations. The experiments data verifies the decrease of temperature rise by thinning the substrate thickness and epitaxial layer. This work opens a new route to overcome the issue of low thermal conductivity forβ-Ga2O3power electronic applications.

    Acknowledgment

    This work was partially carried out at the Center for Micro and Nanoscale Research and Fabrication of University of Science and Technology of China(USTC).

    中文字幕精品亚洲无线码一区| 黄色视频,在线免费观看| 国产免费男女视频| 免费在线观看成人毛片| 久久精品影院6| 丁香欧美五月| 精品福利观看| 成人亚洲精品av一区二区| 成人午夜高清在线视频| 欧美在线黄色| 婷婷精品国产亚洲av| 在线播放国产精品三级| 精品熟女少妇八av免费久了| 免费大片18禁| 五月玫瑰六月丁香| 亚洲精品在线观看二区| 午夜视频国产福利| 精品一区二区三区视频在线| 亚洲av美国av| 国产午夜精品久久久久久一区二区三区 | 永久网站在线| 尤物成人国产欧美一区二区三区| 精品无人区乱码1区二区| 精品久久久久久久久av| 午夜福利在线在线| 久久国产精品人妻蜜桃| 午夜精品久久久久久毛片777| 欧美一区二区亚洲| 村上凉子中文字幕在线| 757午夜福利合集在线观看| 日韩欧美国产在线观看| 18禁黄网站禁片午夜丰满| 国产伦人伦偷精品视频| 少妇被粗大猛烈的视频| 国产精品98久久久久久宅男小说| 又黄又爽又刺激的免费视频.| 毛片一级片免费看久久久久 | 欧美国产日韩亚洲一区| 精品熟女少妇八av免费久了| a级毛片a级免费在线| 欧美又色又爽又黄视频| 欧美另类亚洲清纯唯美| 亚洲欧美日韩卡通动漫| 亚洲自偷自拍三级| 日韩精品青青久久久久久| 欧美不卡视频在线免费观看| 国产精品久久久久久精品电影| 亚洲专区国产一区二区| 成人欧美大片| 人妻丰满熟妇av一区二区三区| 校园春色视频在线观看| 成人性生交大片免费视频hd| 嫁个100分男人电影在线观看| 成人午夜高清在线视频| 90打野战视频偷拍视频| 久久中文看片网| 1000部很黄的大片| 亚洲专区国产一区二区| 国产乱人伦免费视频| 日韩国内少妇激情av| 精品人妻一区二区三区麻豆 | 欧美成狂野欧美在线观看| 欧美黑人欧美精品刺激| 精品久久久久久,| 身体一侧抽搐| 亚洲成人免费电影在线观看| 中文资源天堂在线| 国产精品一区二区免费欧美| 欧美丝袜亚洲另类 | 亚洲av熟女| 久久久久久久午夜电影| a级毛片a级免费在线| 免费高清视频大片| 最好的美女福利视频网| 亚洲成人久久性| 国产黄片美女视频| 99国产精品一区二区三区| 在线播放无遮挡| 欧美潮喷喷水| 国产精品电影一区二区三区| 国产精品永久免费网站| 久99久视频精品免费| 欧美zozozo另类| 国产高清有码在线观看视频| 亚洲av日韩精品久久久久久密| av国产免费在线观看| 国产精品综合久久久久久久免费| 麻豆成人av在线观看| 搡老熟女国产l中国老女人| 一级av片app| 亚洲精华国产精华精| 国产精品国产高清国产av| 美女被艹到高潮喷水动态| 中文字幕免费在线视频6| 能在线免费观看的黄片| 成年人黄色毛片网站| 禁无遮挡网站| 国产亚洲av嫩草精品影院| 免费搜索国产男女视频| 男女视频在线观看网站免费| 舔av片在线| 亚洲熟妇中文字幕五十中出| 亚洲人与动物交配视频| 国产精品嫩草影院av在线观看 | 免费无遮挡裸体视频| 丁香六月欧美| 桃色一区二区三区在线观看| 一边摸一边抽搐一进一小说| 一个人免费在线观看电影| 观看美女的网站| 乱人视频在线观看| 欧美精品国产亚洲| 亚州av有码| 97超视频在线观看视频| eeuss影院久久| 两个人视频免费观看高清| 亚州av有码| 一区福利在线观看| 色噜噜av男人的天堂激情| www日本黄色视频网| 搡老岳熟女国产| 一区福利在线观看| 日韩人妻高清精品专区| 欧美区成人在线视频| 国语自产精品视频在线第100页| 国产精品一区二区性色av| 色哟哟哟哟哟哟| 波多野结衣高清无吗| 午夜福利高清视频| 日韩精品青青久久久久久| 国内精品美女久久久久久| 国产在线男女| 国产精品人妻久久久久久| 99精品在免费线老司机午夜| 淫妇啪啪啪对白视频| 免费观看精品视频网站| 中文资源天堂在线| 免费观看精品视频网站| 观看免费一级毛片| 欧洲精品卡2卡3卡4卡5卡区| 国产精品伦人一区二区| 欧美中文日本在线观看视频| 亚洲一区高清亚洲精品| 日韩亚洲欧美综合| 久久性视频一级片| 男插女下体视频免费在线播放| 欧美zozozo另类| 欧美性感艳星| 亚洲18禁久久av| 国产精品,欧美在线| 午夜影院日韩av| 欧美在线黄色| eeuss影院久久| 精华霜和精华液先用哪个| 久久国产乱子免费精品| 91av网一区二区| 国产高清激情床上av| 久久国产乱子伦精品免费另类| 村上凉子中文字幕在线| 一级a爱片免费观看的视频| 日韩中字成人| 久久精品夜夜夜夜夜久久蜜豆| 国产精品av视频在线免费观看| 丁香欧美五月| 国产精品影院久久| 12—13女人毛片做爰片一| 欧美+亚洲+日韩+国产| 日韩人妻高清精品专区| 精品人妻1区二区| 欧美在线黄色| 日本 av在线| 久久精品国产清高在天天线| 精品国产三级普通话版| 亚洲片人在线观看| 久久久成人免费电影| avwww免费| 九九久久精品国产亚洲av麻豆| 宅男免费午夜| 久久久久久大精品| 久久久久久久精品吃奶| 欧美色视频一区免费| 在线看三级毛片| 日本三级黄在线观看| 国产成人a区在线观看| 国产亚洲精品av在线| 免费无遮挡裸体视频| 国产高清视频在线播放一区| 嫩草影视91久久| 村上凉子中文字幕在线| www日本黄色视频网| eeuss影院久久| 亚洲,欧美精品.| 国产精品女同一区二区软件 | 午夜福利高清视频| 亚洲 欧美 日韩 在线 免费| 网址你懂的国产日韩在线| 免费在线观看影片大全网站| 国产高潮美女av| 午夜两性在线视频| av天堂中文字幕网| 12—13女人毛片做爰片一| 免费看a级黄色片| 亚洲片人在线观看| 久久久久久久久久黄片| 97超视频在线观看视频| 亚洲精品粉嫩美女一区| 国产精品精品国产色婷婷| 亚洲五月天丁香| av女优亚洲男人天堂| 午夜福利在线观看吧| 国产又黄又爽又无遮挡在线| 美女免费视频网站| 综合色av麻豆| avwww免费| 国产午夜精品久久久久久一区二区三区 | 国产综合懂色| 午夜视频国产福利| 亚洲精品一卡2卡三卡4卡5卡| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区在线观看日韩| 亚洲av免费在线观看| 免费观看人在逋| 亚洲精品久久国产高清桃花| 国产成人av教育| 亚洲天堂国产精品一区在线| 国产熟女xx| 国产精品亚洲一级av第二区| 亚洲av成人不卡在线观看播放网| 精品国产三级普通话版| 精品久久国产蜜桃| 亚洲精品影视一区二区三区av| 国产中年淑女户外野战色| 国产久久久一区二区三区| 99热这里只有是精品50| 国产在视频线在精品| 可以在线观看毛片的网站| 天天一区二区日本电影三级| 国产极品精品免费视频能看的| 亚洲成人精品中文字幕电影| 99在线人妻在线中文字幕| 69人妻影院| 精品人妻熟女av久视频| 直男gayav资源| 国产亚洲精品av在线| 在线观看66精品国产| 久久久久久九九精品二区国产| 少妇丰满av| 成年女人永久免费观看视频| 中亚洲国语对白在线视频| 两人在一起打扑克的视频| 怎么达到女性高潮| 日韩国内少妇激情av| 成人特级黄色片久久久久久久| eeuss影院久久| 国产精品一及| 成人午夜高清在线视频| 久久久久性生活片| 亚洲在线观看片| 成年版毛片免费区| 悠悠久久av| 国产高清激情床上av| 淫秽高清视频在线观看| 成年人黄色毛片网站| 99热这里只有精品一区| 国产精品人妻久久久久久| 午夜两性在线视频| 色在线成人网| 一二三四社区在线视频社区8| 亚洲av一区综合| 亚洲欧美日韩高清专用| 中文字幕免费在线视频6| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美 国产精品| 国产高清激情床上av| 亚洲七黄色美女视频| x7x7x7水蜜桃| 国产探花在线观看一区二区| 欧美日韩综合久久久久久 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲va日本ⅴa欧美va伊人久久| 成年女人看的毛片在线观看| 人人妻人人澡欧美一区二区| 亚洲内射少妇av| 久久九九热精品免费| 又爽又黄a免费视频| 免费看光身美女| av天堂在线播放| 少妇的逼好多水| 久久性视频一级片| 欧美3d第一页| 日日摸夜夜添夜夜添小说| .国产精品久久| 亚洲美女黄片视频| 国产精品一区二区三区四区久久| 一本久久中文字幕| 国产久久久一区二区三区| 一本综合久久免费| 人妻夜夜爽99麻豆av| 久久久久久久久久成人| 免费av不卡在线播放| 午夜a级毛片| 精品久久国产蜜桃| 国产淫片久久久久久久久 | 日日夜夜操网爽| 亚洲中文字幕日韩| 亚洲欧美日韩无卡精品| 国产高清视频在线观看网站| 亚洲国产精品成人综合色| 色视频www国产| 麻豆一二三区av精品| 不卡一级毛片| 一进一出好大好爽视频| 免费人成视频x8x8入口观看| 国产视频内射| 成人精品一区二区免费| 亚洲第一区二区三区不卡| 我的女老师完整版在线观看| 91久久精品国产一区二区成人| 欧美3d第一页| 成人永久免费在线观看视频| 97碰自拍视频| 有码 亚洲区| 亚洲人成电影免费在线| 精品久久久久久久久久免费视频| av福利片在线观看| 午夜影院日韩av| 欧美性猛交╳xxx乱大交人| 少妇人妻精品综合一区二区 | 一边摸一边抽搐一进一小说| 亚洲欧美精品综合久久99| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲乱码一区二区免费版| 九色成人免费人妻av| 精品熟女少妇八av免费久了| 成人一区二区视频在线观看| 亚洲 欧美 日韩 在线 免费| 搡女人真爽免费视频火全软件 | 嫁个100分男人电影在线观看| 国产精品伦人一区二区| 国产精品乱码一区二三区的特点| 亚洲自拍偷在线| 精品久久久久久久久av| 久99久视频精品免费| 麻豆一二三区av精品| 91字幕亚洲| 嫩草影院精品99| 亚洲精品456在线播放app | 小蜜桃在线观看免费完整版高清| ponron亚洲| 亚洲av成人av| 国产麻豆成人av免费视频| 国产午夜精品论理片| 精华霜和精华液先用哪个| 69人妻影院| 97超级碰碰碰精品色视频在线观看| 赤兔流量卡办理| 日韩精品青青久久久久久| 我要看日韩黄色一级片| 久久99热6这里只有精品| 丁香六月欧美| 老熟妇仑乱视频hdxx| 国产亚洲欧美在线一区二区| 国产日本99.免费观看| 午夜视频国产福利| 色在线成人网| 欧美zozozo另类| 欧美国产日韩亚洲一区| 在线观看66精品国产| 亚州av有码| 亚洲最大成人手机在线| 免费在线观看日本一区| 一区二区三区高清视频在线| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av美国av| 成人av在线播放网站| 在线国产一区二区在线| 成人三级黄色视频| 亚洲国产精品成人综合色| 最近最新中文字幕大全电影3| 免费在线观看影片大全网站| 久久久精品欧美日韩精品| 国产精品久久久久久久久免 | 婷婷色综合大香蕉| 亚洲五月天丁香| 男女那种视频在线观看| 成人特级黄色片久久久久久久| 国产成年人精品一区二区| 少妇人妻精品综合一区二区 | 狂野欧美白嫩少妇大欣赏| 亚洲av中文字字幕乱码综合| 日韩欧美精品v在线| 一个人观看的视频www高清免费观看| 日本三级黄在线观看| 动漫黄色视频在线观看| 午夜福利免费观看在线| 亚洲av不卡在线观看| 一区二区三区激情视频| 麻豆国产97在线/欧美| 欧美3d第一页| 国产精品1区2区在线观看.| 长腿黑丝高跟| 免费看日本二区| 动漫黄色视频在线观看| 亚洲狠狠婷婷综合久久图片| 精品日产1卡2卡| 三级男女做爰猛烈吃奶摸视频| 少妇的逼好多水| 久久草成人影院| 成年女人看的毛片在线观看| 噜噜噜噜噜久久久久久91| 亚洲第一电影网av| 又粗又爽又猛毛片免费看| 亚洲七黄色美女视频| 久久久久久久亚洲中文字幕 | 1024手机看黄色片| 日日摸夜夜添夜夜添av毛片 | 亚洲乱码一区二区免费版| 欧美在线一区亚洲| av在线老鸭窝| 最近视频中文字幕2019在线8| 亚洲国产色片| 精品福利观看| 哪里可以看免费的av片| 97超级碰碰碰精品色视频在线观看| 欧美绝顶高潮抽搐喷水| 国产精品,欧美在线| 欧美xxxx性猛交bbbb| 免费无遮挡裸体视频| 亚洲av日韩精品久久久久久密| 中出人妻视频一区二区| 永久网站在线| 少妇裸体淫交视频免费看高清| 国产又黄又爽又无遮挡在线| 国产av在哪里看| 午夜免费激情av| 免费一级毛片在线播放高清视频| 精华霜和精华液先用哪个| 亚洲欧美日韩高清专用| 老司机深夜福利视频在线观看| 亚洲av.av天堂| 国产亚洲欧美98| 午夜福利在线观看免费完整高清在 | 欧美日韩国产亚洲二区| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 免费看日本二区| 熟女电影av网| 日韩欧美免费精品| 亚洲av成人精品一区久久| 日韩成人在线观看一区二区三区| 桃红色精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆| 麻豆成人av在线观看| or卡值多少钱| 精品久久久久久久久久久久久| 久久精品人妻少妇| 色精品久久人妻99蜜桃| 亚洲成av人片在线播放无| 丰满人妻一区二区三区视频av| 成年女人毛片免费观看观看9| 日本黄色视频三级网站网址| 国产一区二区在线av高清观看| 欧洲精品卡2卡3卡4卡5卡区| 神马国产精品三级电影在线观看| 欧美黑人巨大hd| 亚洲中文日韩欧美视频| 国产主播在线观看一区二区| 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| 91在线精品国自产拍蜜月| 亚洲在线观看片| 亚洲片人在线观看| 简卡轻食公司| 亚洲专区国产一区二区| 欧美一区二区亚洲| 人妻丰满熟妇av一区二区三区| 精品久久久久久久久亚洲 | 国产成人影院久久av| 国产午夜精品论理片| 亚洲熟妇中文字幕五十中出| 99视频精品全部免费 在线| 99国产极品粉嫩在线观看| 18禁裸乳无遮挡免费网站照片| 在线观看舔阴道视频| 精品乱码久久久久久99久播| 成年女人毛片免费观看观看9| 夜夜看夜夜爽夜夜摸| 51午夜福利影视在线观看| 天堂网av新在线| 国产精品久久久久久精品电影| bbb黄色大片| .国产精品久久| a级毛片a级免费在线| 尤物成人国产欧美一区二区三区| 国产午夜精品久久久久久一区二区三区 | 我要看日韩黄色一级片| 亚洲精品乱码久久久v下载方式| 日韩欧美国产一区二区入口| 高清毛片免费观看视频网站| 波多野结衣巨乳人妻| 九九久久精品国产亚洲av麻豆| 国产美女午夜福利| 国产老妇女一区| 欧美成人性av电影在线观看| 91在线观看av| 五月玫瑰六月丁香| 国产精品久久电影中文字幕| 精品免费久久久久久久清纯| 国产高清三级在线| 国内揄拍国产精品人妻在线| 亚洲一区高清亚洲精品| 我的老师免费观看完整版| 夜夜爽天天搞| 欧美乱色亚洲激情| 亚洲av日韩精品久久久久久密| av在线老鸭窝| 国产一区二区在线观看日韩| 国内精品久久久久久久电影| 永久网站在线| 欧美成人a在线观看| 搞女人的毛片| 国产精品爽爽va在线观看网站| 又黄又爽又刺激的免费视频.| 亚洲成人中文字幕在线播放| 亚洲人成伊人成综合网2020| 亚洲人成网站在线播放欧美日韩| 舔av片在线| 人妻丰满熟妇av一区二区三区| 我的女老师完整版在线观看| 欧美高清性xxxxhd video| 无遮挡黄片免费观看| 亚洲国产色片| 悠悠久久av| 久久午夜亚洲精品久久| 日本成人三级电影网站| a级毛片免费高清观看在线播放| 看免费av毛片| 国产精品免费一区二区三区在线| 色尼玛亚洲综合影院| 婷婷六月久久综合丁香| 校园春色视频在线观看| av天堂在线播放| 狂野欧美白嫩少妇大欣赏| 国内精品美女久久久久久| 久久九九热精品免费| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放| 日日摸夜夜添夜夜添av毛片 | 亚洲自偷自拍三级| 乱码一卡2卡4卡精品| 日韩中字成人| 国内精品久久久久久久电影| 国产高潮美女av| 老司机午夜十八禁免费视频| 欧美+日韩+精品| 欧美性猛交╳xxx乱大交人| 丁香六月欧美| 深夜精品福利| 久久久久久久亚洲中文字幕 | 老司机福利观看| 日韩中字成人| 久久草成人影院| eeuss影院久久| 一级av片app| av天堂在线播放| 非洲黑人性xxxx精品又粗又长| 每晚都被弄得嗷嗷叫到高潮| 亚洲av免费高清在线观看| 久久香蕉精品热| www.www免费av| 久久国产精品影院| 欧美在线一区亚洲| 国产亚洲精品av在线| 99在线人妻在线中文字幕| 亚洲av电影不卡..在线观看| 国产高潮美女av| 一区二区三区四区激情视频 | 欧美一区二区亚洲| 尤物成人国产欧美一区二区三区| av在线观看视频网站免费| 可以在线观看的亚洲视频| 两个人的视频大全免费| 久久久国产成人免费| 国产精品一区二区性色av| 最近在线观看免费完整版| 国产高潮美女av| 成人av在线播放网站| 好男人电影高清在线观看| 老司机午夜十八禁免费视频| 国产野战对白在线观看| 老司机午夜福利在线观看视频| 97人妻精品一区二区三区麻豆| 成人亚洲精品av一区二区| 丰满的人妻完整版| 99热这里只有是精品50| 免费高清视频大片| 免费观看精品视频网站| www.999成人在线观看| 亚洲在线自拍视频| 亚洲精品粉嫩美女一区| 亚洲中文日韩欧美视频| 免费观看人在逋| 亚洲,欧美,日韩| 男女视频在线观看网站免费| 一区二区三区激情视频| 成人av在线播放网站| 男人舔奶头视频| 欧美黄色淫秽网站| 欧美bdsm另类|