• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic impurity in hybrid and type-II nodal line semimetals?

    2021-06-26 03:29:56XiaoRongYang楊曉容ZhenZhenHuang黃真真WanShengWang王萬勝andJinHuaSun孫金華
    Chinese Physics B 2021年6期
    關(guān)鍵詞:金華

    Xiao-Rong Yang(楊曉容), Zhen-Zhen Huang(黃真真), Wan-Sheng Wang(王萬勝), and Jin-Hua Sun(孫金華)

    Department of Physics,Ningbo University,Ningbo 315211,China

    Keywords: hybrid nodal line semimetals,type-II nodal line semimetals,Anderson impurity,Kondo screening

    1. Introduction

    Topological semimetals,[1,2]represented by the Dirac semimetals (DSMs), Weyl semimetals (WSMs), and nodal line semimetals (NLSMs), are a new class of quantum matter, and have been predicted in theories and realized in experiments. Different from the DSMs/WSMs whose conduction and valence bands touch at discrete points, the NLSMs are those with the bands cross in one-dimensional lines in the momentum space.[3–5]In most studied NLSMs, the density of states(DOS)is proportional to(E ?EF)2,and the NLSMs normally have drumhead-like surface states. By comparison,the DOS is proportional to (E ?EF) in type-I DSMs/WSMs,and the Weyl nodes are connected by 1D Fermi arc surface states in the WSMs.[6]In analogous to the WSMs, the NLSMs can also be categorized into three types, depending on the electronic structure of the bands. To date, type-I NLSMs have been intensively studied both theoretically[7–21]and experimentally.[13,20–25]The type-II NLSMs are those with closed nodal lines but the local cones along the lines become tilted.[26,27]The hybrid NLSMs are proposed to have a partially over-tilted linear dispersion at the nodal loop. It has been reported that the type-I,type-II,and hybrid NLSMs can be realized in a realistic material, i.e., quasi-2Dα-FeSi2, by strain switching.[28]

    The purpose of this paper is to investigate the properties of the Kondo screening in the hybrid and the type-II NLSMs.The Kondo effect arises from the interactions between the local magnetic atom and the conduction electrons, and the Kondo effect in a normal metal has been widely studied and well understood.[29]One of the reasons that this seemingly“old” problem still receives great research interest is due to the rapidly emerging novel materials with intriguing dispersion and topological properties. In the type-I DSMs/WSMs,the DOS vanishes if the Fermi level lies right at the nodes,and the Kondo problem in such systems falls into the category of pseudo-gap Kondo problem.[30–32]The magnetic impurity and the conduction electrons form a bound state only if the hybridization between them exceeds a critical value. In Lorentzviolating host systems like tilted Dirac surface states and type-II WSMs, the formation of the impurity-conduction electron bound states is also determined by the DOS of the Fermi surface,and the spatial screening shows very rich features due to the unique dispersion relations.[33,34]

    In this paper,we systematically study the binding energy and real space spin–spin correlations of a magnetic impurity in both the hybrid and type-II NLSMs. The variational method we apply has been used to study the ground state of the Kondo problem in normal metals,[35,36]antiferromagnet,[37]2D helical metals,[38]3D Weyl semimetals,[34,39]tilted Dirac surface states,[33]type-I NLSMs[40]and multi-WSMs,[41]and the Fermi arc surface states of WSMs.[42]Due to the intriguing nodal loop structure of the hybrid and type-II NLSMs, the Kondo screening in these systems is expected to show very interesting features.

    The paper is organized as follows. We present the model and dispersion relation in Section 2. By using the model Hamiltonian we adopt, one can easily obtain different types of NLSM by tuning the parameters:[43]the system is a type-I NLSM with the tilting ratios|m·wx|<0.5 and|m·wy|<0.5,and is a type-II NLSM if|m·wx|>0.5 and|m·wy|>0.5. For the rest of the cases,the model Hamiltonian describes a hybrid NLSM.In Section 3,we apply the variational method to study the binding energy. In Section 4,we investigate the spin–spin correlation between the magnetic impurity and the conduction electrons in the hybrid and the type-II NLSMs. Finally, the discussions and conclusions are given in Section 5.

    2. Anderson model Hamiltonian

    We consider a spin-1/2 magnetic impurity in a 3D NLSM,and the Anderson model Hamiltonian writes

    in whichH0describes the NLSM,Hdis the magnetic impurity part, andHVis the hybridization between the magnetic impurity and the conduction electrons of the NLSM.

    The NLSM is given by[3,14,15,40,43–45]

    wherek2i ≡k2x+k2y+k2zandwik2i ≡wxk2x+wyk2y+wzk2z,m >0 is the effective mass.?is the radius of nodal ring projected onto thekx–kyplane, and we choose?as the energy unit.μis the chemical potential,andνis the Fermi velocity in thezdirection. The basis is given byck={c1k↑,c1k↓,c2k↑,c2k↓}T,

    wherecjk↑(j=1,2) andcjk↓are the annihilation operators of spin-up and spin-downj-orbital electrons,respectively.σα(α=x,y,z)andταare spin and orbital Pauli matrices,andσ0andτ0are identity matrices.In this model Hamiltonian,different types of NLSMs are conveniently obtained by tuning the tilting ratios:[43](1)if|m·wx|<0.5 and|m·wy|<0.5,h0describes a type-I NLSM,(2)if|m·wx|>0.5 and|m·wy|>0.5,h0describes a type-II NLSM,(3)for the rest of the cases,h0shall be the Hamiltonian of a hybrid NLSM.

    The local magnetic impurity Hamiltonian is given by

    whered?↑(↓)andd↑(↓)are the creation and annihilation operators of the spin-up (spin-down) state on the impurity site.εdandUare the impurity energy level and on-site Coulomb repulsion,respectively. The hybridization between the magnetic impurity and the host material is described by

    whereVkis the hybridization strength. Here we assume that the magnetic impurity is equivalently coupled to the two orbits in the NLSM for simplicity. Without loss of generally,we choose the position of the impurity as the originr=0, such that the hybridizationVkis in fact independent of momentum and orbits.

    One can easily obtain the single-particle eigenenergy ofh0(k),

    wherej=1,2 labels the orbits ands=1,2 labels the bands.Note that the bands are two fold degenerate, and the corresponding eigenstate operators are given by

    whereΦj1sandΦj2sare defined in Appendix A.

    In Fig.1,we show the band structure and DOS of the hybrid and the type-II NLSMs. The band structures shown are plotted in thekx–kymomentum space withkz=0.

    Fig.1. Schematics of the band structure and the nodal ring of(a)a hybrid NLSM and (b) a type-II NLSM for kz =0. The nodal rings are formed by the crossing between two different bands. (c)The finite DOS per unit cell of a hybrid NLSM, and (d) the DOS of a type-II NLSM. For type-II NLSM,the lowest energy state lies at energy/?=?1,so the DOS below??is zero,and it increases monotonically with the energy.

    As shown in Fig.1(a),the nodal ring of the hybrid NLSM is formed by the crossing between the parabolic bands and the saddle-shaped bands. In thekx–kyplane, the nodal ring satisfiesk2x+k2y=2m?, and one can see clearly that the nodal ring has energy variation along the loop, with the scale between?2m?wxand?2m?wy. In Fig.1(b),we show the band structure of a type-II NLSM.Different from the hybrid NLSM case,the nodal ring in the type-II NLSM lies at the energy of?2m?wy. In Figs. 1(c) and 1(d), we show the DOS per unit cell for the hybrid and the type-II NLSMs, respectively. The DOS is directly affected by the choice ofwivalues. If we fix the value of|m·wy|>0.5, in the hybrid NLSM regime, as|m·wx|=|m·wz|increases from 0.1 to about 0.5,the DOS increases accordingly.|m·wx|=|m·wz|=0.5 is a critical point at which the system transits from a hybrid to a type-II NLSM.|m·wx|=|m·wz|>0.5 describes the type-II regime, where the DOS results are drastically distinct from those in the hybrid regime. In the type-II NLSMs, the DOS is much lower,and most typically,the DOS below??vanishes. As shown in Fig.1(c),the DOS is larger around the charge neutrality point for the hybrid NLSM, and the DOS is always finite. Thus,one can expect that the impurity and the conduction electrons always form a bound state. For the type-II NLSM shown in Fig. 1(d), the DOS is zero if the energy is below??, independent of the model parameterswiandν. For the cases that energy is above??, the DOS increases monotonically with the energy level. In general,the DOS around the charge neutral point is much larger in the hybrid NLSM than that in a type-II case.

    3. Self-consistent calculation

    We utilize the well-known trial wavefunction approach which has been used to study the ground state of the Anderson impurity problem in the conventional metal,[35,36]2D helical metals,[38]antiferromagnets,[37]and various novel topological insulators[46]and topological semimetals.[33,34,39,42]We assume that the Coulomb repulsionUis large enough, and the impurity energy levelεdis below the Fermi energy,so that the impurity site is always singly occupied by a local moment.For the simplest case, we first discuss the case ofHV=0, in which the magnetic impurity and the NLSM are completely decoupled from each other.

    The ground state ofH0is given by

    where{jks}means the product runs over all the states inside the Fermi surface. The total energy of the system is just the sum of the energies of the NLSM and of the bare magnetic impurity

    Then we move on to take into account the hybridization,the trial wave function for the ground state is

    The energy of the Hamiltonian in variational state|Ψ〉is

    The variational method requires that?E/?a0=?E/?ajks=0,from which we can obtain the following two equations:

    We defind the binding energy as?b=E0?E, then the selfconsistent equation is given by

    By numerically solving Eq.(13), we can obtain the values of?b.?b>0 means that the hybridized state has lower energy than the bare state,such that the hybridized state is more stable.In our numerical calculations,the hybridization strength isVk=VΘ(Λ ?|εjks|),whereΘ(x)is the Heaviside step function andΛis the energy cutoff. The Kondo effect is mainly influenced by the conduction electrons near the Fermi surface,so if we choose large enough values ofΛ, the Kondo effect shall be insensitive to the values of the energy cutoff. The energy cutoffs for both the hybrid and type-II NLSMs are chosen asΛ=100?,where?is the energy unit introduced in the NLSM Hamiltonian in Eq.(3).

    Figure 2 shows the dependence of the binding energy?bon the effective hybridizationΓfor different values ofμ. In here and below,we fix the parameters asm=0.005??1?A?2,ν=10??A,and the impurity energy level asεd=μ?0.01?.We usewx=wz=?20??A2andwy=?200??A2for the hybrid NLSM,whilewx=wy=wz=?200??A2for the type-II NLSM.

    Note that actually the types of the NLSMs are not affect by the choice ofwz. However,by choosingwz=wxin our numerical calculations,the system shall preserve higher symmetry property,such that the analysis on the spin–spin correlation might become clearer. As illustrated in Fig. 2(a), for a fixed value ofΓ,the binding energy is the largest whenμ=?0.6?,and the smallest ifμ=30?. This result is consistent with the results of DOS shown in Fig.1(c). The binding energy is mainly influenced by the DOS at the Fermi energy, and the bound state is more easily formed when the DOS is large.For the hybrid NLSM,the DOS is always finite,so a positive binding energy always emerges for any finite values ofVk. In Fig.2(b),we can see that for a certain value ofΓ,the binding energy increases monotonically with the values ofμ,which is also consistent with the DOS results given in Fig. 1(d). Notice that for relatively smallΓ, the binding energies for both cases are also very small,but finite. It is well-known that the binding energy is positive only if the hybridization exceeds a critical value if the DOS is zero, but the binding energy shall always be positive for any finite hybridization.[33,34,38,39,42,47]

    Fig.2. Binding energy ?b of a magnetic impurity(a)in a hybrid NLSM and(b)in a type-II NLSM as a function of the effective hybridization Γ for different chemical potentialμ.

    4. Spin–spin correlation

    whereu,v=x,y,zare the spin indices and〈···〉denotes the ground state average. One can see that the NLSM Hamiltonian given in Eq. (3) is invariant under combined operationsT Ry(π),T Rz(π), andRx(π), whereTis the time-reversal operation andRu(π) (u=x,y,z) is the rotation of angleπabout theu-axis. For example, considering the invariance under the combined operationT Ry(π), one can prove thatJuv(r)=Juv()in thex–yplane,where=(?x,y,z).

    The diagonal terms and the non-zero off-diagonal terms of the spin–spin correlation function are given by

    One can easily prove thatAj11(r) =Aj22(r), soJyy(r) =Jzz(r). Thus we only show the term of the spin–spin correlationrnJyy(r)in Figs.3–7.

    In Fig.3,one can see that the spin–spin correlation functions along all the three spatial directions,x-,y- andz-axes decay with power law 1/r2. The momentum cutoffkcis chosen with respect to the energy cutoffΛ. The major difference is that the off-diagonal terms are all zero along thex- andydirections,but one off-diagonal termJxy(r)is finite along thez-axis.

    Fig. 3. Spin–spin correlations in a hybrid NLSM decay at the power of 1/r2 along the x-, y-, and z-axes at long distance. r2Jxx(r) along the x-axis decays in the same way as that along the z-axis. kc is the momentum cutoff chosen with respect to the energy cutoff Λ.

    Fig. 4. Various components of the spin–spin correlation function in a type-II NLSM decay at the power of 1/r3 along the three coordinate axes at long distance. Due to the rotational symmetry about the z-axis,Juv(x)is exactly the same as Juv(y).

    Fig. 5. Terms of the spin–spin correlation r2Juv(r) (u,v=x,y,z) in the x–y coordinate plane for a hybrid NLSM.All the off-diagonal terms vanish in the x–y plane,so they are not shown.

    The spin–spin correlations between the local magnetic impurity and the conduction electrons in different 2D coordinate planes are given in Figs. 5–7. In Fig. 5 we show the spin–spin correlations between the magnetic impurity and the conduction electrons in a hybrid NLSM in thex–yplane. The tilting ratios of the NLSM model Hamiltonian are|m·wx|=|m·wz|=0.1 and|m·wy|=1. The system is invariant under the operations ofT Ry(π) orRx(π), so the spin–spin correlations in thex–yplane is symmetric with respect to thex-andy-axes.Jxx(r) is always antiferromagnetic and oscillates as|r|increases. The other two diagonal terms have the relationJyy(r)=Jzz(r), and all the off-diagonal terms vanish in this plane. In fact, the contributions from two different NLSM orbits cancel each other forJxz(r) andJyz(r). ForJxy(r),considering the symmetry operations, we can getJxy(x,y)=?Jxy(?x,y)=Jxy(?x,?y)=?Jxy(x,?y)=0,which is different fromx–zandy–zplans.

    In Fig.6,we show the spin–spin correlations in the(a)x–zplane(top row)and(b)y–zplane(bottom row).Note that the off-diagonal termJxy(r)is nonzero in both planes. In thex–zplane, according to symmetry under the combined operationT Rz(π), one can easily know thatJxy(x,z)=Jxy(?x,z), such thatr2Jxy(x,z)is symmetric with respect to they-axis.Considering the operationRx(π),Jxy(x,z)=?Jxy(x,?z),and ifz=0 the off-diagonal termJxy(x,z) is always zero. Analogously,Jxy(y,z) is always zero ifz=0, which is caused by the symmetries aboutx-axis in they–zplane plus the two combined operationsT Ry(π)andT Rz(π). The diagonal terms in thex–zplane andy–zplane are symmetric with respect to the axes.Due to the unique band structure and the spin–orbit coupling,the spin–spin correlations shows strong anisotropy in different planes,and among the different diagonal components.

    Fig.6. The r2Juv(r)(u,v=x,y,z)in the(a)x–z plane and(b)y–z plane for a hybrid NLSM.All the other off-diagonal components not shown are zero.

    Fig.7. The diagonal terms of the spin–spin correlation r3Juv(r)(u,v=x,y,z)of the type-II NLSM in(a)x–y plane and(b)x–z plane. All the off-diagonal terms vanish in the type-II NLSM.

    5. Conclusions

    In summary, we study the Kondo screening effect of a spin-1/2 magnetic impurity in the hybrid and type-II NLSMs.The NLSM model Hamiltonian we adopt has the advantage that by expediently tuning the model parameters different types of NLSMs are realized: (a)a type-I NLSM if|m·wx|<0.5 and|m·wy|<0.5,(b)a type-II NLSM if|m·wx|>0.5 and|m·wy|>0.5,(c)a hybrid NLSM for the rest of the cases. In our calculation,|m·wx|=|m·wz|=0.1 and|m·wy|=1 are used for a hybrid case,while|m·wx|=|m·wy|=|m·wz|=1 are used for a type-II case.

    The Kondo effect of a single magnetic impurity in a type-I NLSM has been studied,and it has been reported that when the chemical potential lies at the nodal loop,the magnetic impurity and the conduction electrons form bound states only if their coupling exceeds a critical value and the spatial decay ratio is either proportional to 1/r2or 1/r3, depending on the real space directions.[40]

    Distinct from the type-I case already studied,in the hybrid and type-II NLSMs discussed in this paper,the DOS is always significant,so the magnetic impurity and the conduction electrons always form bound states. The DOS of the hybrid case is much larger than that of the type-II case, so in general the binding energy takes larger values in the hybrid case.

    The spatial spin–spin correlations between the magnetic impurity and the conduction electrons shows anisotropic patterns,which can be discussed using the symmetry analysis of the host materials,and decays withr?2in hybrid NLSMs,and followsr?3decay in type-II NLSMs. This behavior is independent of the chemical potential and DOS, and is also independent of real space axis directions. Ther?3decay behavior in our type-II NLSM Hamiltonian is qualitatively consistent with the results obtained in the type-I case,[40]considering that the dispersion relation contains quadratic terms along thekz-axis. However, ther?2decay rate observed in the hybrid NLSM is much distinct from the type-I and type-II cases. Overall, the spatial decays in the hybrid and type-II NLSMs are different from that in a nomal metal,[48,49]and in the DSMs/WSMs.[39]This interesting feature can possibly work as a fingerprint to distinguish different types of NLSMs in experiments.

    Appendix A

    According Eq.(3),by diagonalizing this Hamiltonian,we obtain the eigenvalues

    The transform matrix is defined as

    and sinceSis a unitary matrix, we haveS?=S?1. Then the Hamiltonian can be written as

    Because the two orbits in the NLSM are not coupled with each other,for the convenience of expression,we re-define the non-zero diagonal blocks of theSmatrix as two 2×2 matrices

    According Eq. (5), we can obtain the transformation ofdoperators as

    猜你喜歡
    金華
    張金華
    大江南北(2022年11期)2022-11-08 12:04:18
    歲朝清供
    寶藏(2021年1期)2021-03-10 11:06:18
    壽鶴延年
    寶藏(2021年1期)2021-03-10 11:06:16
    陶金華
    安金華 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:50:56
    那個春天(散文)
    陳金華
    故事作文·低年級(2018年3期)2018-04-08 16:41:16
    紅氣球請客
    紅氣球請客
    快樂語文(2017年33期)2017-12-06 09:27:36
    久久天躁狠狠躁夜夜2o2o| 白带黄色成豆腐渣| 成年版毛片免费区| 日本五十路高清| 午夜成年电影在线免费观看| 脱女人内裤的视频| 动漫黄色视频在线观看| 国产不卡一卡二| 久久香蕉国产精品| 精品欧美国产一区二区三| 最新在线观看一区二区三区| 久久久精品大字幕| 一级黄色大片毛片| 美女大奶头视频| 美女高潮喷水抽搐中文字幕| 最近最新免费中文字幕在线| 级片在线观看| 国产熟女xx| 国产视频一区二区在线看| 午夜福利18| 亚洲精品色激情综合| 搡老妇女老女人老熟妇| e午夜精品久久久久久久| 日日摸夜夜添夜夜添小说| 一级黄色大片毛片| 88av欧美| 精品熟女少妇八av免费久了| 亚洲av成人精品一区久久| 精品不卡国产一区二区三区| 岛国视频午夜一区免费看| 69av精品久久久久久| 亚洲精品456在线播放app | 悠悠久久av| 亚洲av成人不卡在线观看播放网| 久久久精品欧美日韩精品| 亚洲成av人片免费观看| 精品日产1卡2卡| 亚洲一区二区三区不卡视频| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久午夜电影| 真人一进一出gif抽搐免费| 精品久久蜜臀av无| 一区二区三区国产精品乱码| 日韩免费av在线播放| 一二三四社区在线视频社区8| 欧美乱妇无乱码| 九色国产91popny在线| 一个人看视频在线观看www免费 | 床上黄色一级片| 国产精品 国内视频| 亚洲av电影不卡..在线观看| 日本熟妇午夜| 国产野战对白在线观看| 久久久久久久精品吃奶| 免费看日本二区| 久久人妻av系列| 婷婷亚洲欧美| 99re在线观看精品视频| 色综合站精品国产| 精品无人区乱码1区二区| 国产探花在线观看一区二区| 国产亚洲av高清不卡| 91麻豆精品激情在线观看国产| 国产高清有码在线观看视频| 国产成人一区二区三区免费视频网站| 国产精品一区二区免费欧美| 亚洲色图av天堂| 美女大奶头视频| 岛国在线免费视频观看| 亚洲成a人片在线一区二区| 国内精品久久久久精免费| 欧美日韩黄片免| 香蕉av资源在线| 最近最新中文字幕大全免费视频| 日韩欧美在线二视频| 国产精品亚洲美女久久久| 男人舔女人的私密视频| 亚洲av第一区精品v没综合| 国产成人一区二区三区免费视频网站| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 一个人免费在线观看的高清视频| 在线看三级毛片| 91在线观看av| 日本与韩国留学比较| 国产亚洲欧美在线一区二区| www国产在线视频色| 久久久久久久久中文| 12—13女人毛片做爰片一| 亚洲精品粉嫩美女一区| 久久久色成人| 美女被艹到高潮喷水动态| 久久精品人妻少妇| 中文字幕熟女人妻在线| 99久久国产精品久久久| 岛国在线观看网站| 日韩欧美一区二区三区在线观看| 亚洲五月婷婷丁香| 脱女人内裤的视频| 老熟妇仑乱视频hdxx| 视频区欧美日本亚洲| 后天国语完整版免费观看| 中文字幕久久专区| 亚洲 国产 在线| 麻豆国产97在线/欧美| 日本一二三区视频观看| 亚洲国产日韩欧美精品在线观看 | 一a级毛片在线观看| 国内毛片毛片毛片毛片毛片| www国产在线视频色| 欧美不卡视频在线免费观看| av国产免费在线观看| a级毛片a级免费在线| 亚洲成a人片在线一区二区| 日韩欧美在线乱码| 无遮挡黄片免费观看| av视频在线观看入口| 少妇的丰满在线观看| 一区二区三区国产精品乱码| 亚洲国产精品999在线| 亚洲av第一区精品v没综合| 国产久久久一区二区三区| 亚洲欧美日韩东京热| 午夜影院日韩av| 亚洲av熟女| 欧美成人免费av一区二区三区| 亚洲av片天天在线观看| 国产蜜桃级精品一区二区三区| 色播亚洲综合网| 国产成+人综合+亚洲专区| 久久久久久人人人人人| 国产高清有码在线观看视频| 日本一本二区三区精品| 午夜福利高清视频| 亚洲aⅴ乱码一区二区在线播放| 欧美成人免费av一区二区三区| 国产视频一区二区在线看| 国产私拍福利视频在线观看| 俺也久久电影网| 国产av麻豆久久久久久久| 国产av在哪里看| 欧美成人性av电影在线观看| 国内精品久久久久精免费| 日韩欧美国产一区二区入口| 亚洲av第一区精品v没综合| 欧美3d第一页| 亚洲专区国产一区二区| 十八禁网站免费在线| 国产日本99.免费观看| 亚洲午夜理论影院| 久久久成人免费电影| 国模一区二区三区四区视频 | 1024香蕉在线观看| 99在线视频只有这里精品首页| 看黄色毛片网站| 97碰自拍视频| 黄频高清免费视频| 淫妇啪啪啪对白视频| 国产99白浆流出| 亚洲无线在线观看| 欧美中文日本在线观看视频| 黄色日韩在线| 中文字幕熟女人妻在线| 久久精品国产99精品国产亚洲性色| 国产乱人伦免费视频| 他把我摸到了高潮在线观看| 麻豆国产av国片精品| 久久久久久久久中文| 2021天堂中文幕一二区在线观| 日韩欧美免费精品| 日韩欧美在线二视频| 悠悠久久av| 色综合站精品国产| 欧美丝袜亚洲另类 | 一a级毛片在线观看| 国产亚洲av嫩草精品影院| 真实男女啪啪啪动态图| 波多野结衣高清无吗| 岛国在线免费视频观看| 国产成人av激情在线播放| 亚洲精品在线观看二区| 免费搜索国产男女视频| 窝窝影院91人妻| 亚洲 国产 在线| 欧美午夜高清在线| 久久九九热精品免费| 国产高清videossex| 午夜日韩欧美国产| 在线观看一区二区三区| 久久性视频一级片| 国产精品野战在线观看| 黄色女人牲交| 国产成人aa在线观看| 丁香六月欧美| 成人三级黄色视频| 啪啪无遮挡十八禁网站| 精品久久久久久久久久久久久| 午夜福利高清视频| 欧美zozozo另类| 成人一区二区视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 性色avwww在线观看| 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 高清毛片免费观看视频网站| 久久精品国产综合久久久| 在线视频色国产色| 别揉我奶头~嗯~啊~动态视频| 麻豆一二三区av精品| 国产三级在线视频| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品综合一区在线观看| 日本 av在线| 国产美女午夜福利| www日本在线高清视频| 丰满的人妻完整版| 最新在线观看一区二区三区| 国产精品98久久久久久宅男小说| 天堂√8在线中文| 婷婷丁香在线五月| 亚洲中文字幕一区二区三区有码在线看 | 丝袜人妻中文字幕| 亚洲av成人一区二区三| 黄片小视频在线播放| 99精品久久久久人妻精品| 一级毛片女人18水好多| 久久精品aⅴ一区二区三区四区| 青草久久国产| 欧美不卡视频在线免费观看| 国产三级黄色录像| 91老司机精品| 精华霜和精华液先用哪个| 亚洲无线在线观看| 高潮久久久久久久久久久不卡| 日韩免费av在线播放| 最近最新免费中文字幕在线| 9191精品国产免费久久| 99久久精品热视频| 女警被强在线播放| av福利片在线观看| 18禁美女被吸乳视频| 国产综合懂色| 亚洲国产精品999在线| 丝袜人妻中文字幕| 婷婷精品国产亚洲av在线| 一a级毛片在线观看| 一级作爱视频免费观看| 亚洲av成人一区二区三| 宅男免费午夜| 日本三级黄在线观看| 色哟哟哟哟哟哟| 亚洲九九香蕉| 天堂av国产一区二区熟女人妻| 亚洲美女黄片视频| 国产亚洲精品久久久com| 搞女人的毛片| 久久精品影院6| 国产亚洲欧美98| 日韩大尺度精品在线看网址| 国产不卡一卡二| 国产欧美日韩一区二区精品| 9191精品国产免费久久| 黄色女人牲交| 老司机午夜十八禁免费视频| 成人特级黄色片久久久久久久| 成在线人永久免费视频| 欧美黄色淫秽网站| av中文乱码字幕在线| 99久久无色码亚洲精品果冻| 搡老熟女国产l中国老女人| xxx96com| 久久99热这里只有精品18| 美女高潮的动态| 国产精品亚洲一级av第二区| 中文字幕熟女人妻在线| 欧美最黄视频在线播放免费| 国产一区二区在线观看日韩 | 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av| 美女免费视频网站| 国内精品久久久久久久电影| 亚洲精品在线美女| 午夜免费激情av| 一本综合久久免费| 床上黄色一级片| 制服人妻中文乱码| 老熟妇仑乱视频hdxx| 亚洲欧美日韩卡通动漫| 欧美日本视频| 中文字幕人妻丝袜一区二区| 成年免费大片在线观看| 波多野结衣高清无吗| 麻豆av在线久日| 在线国产一区二区在线| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 国内少妇人妻偷人精品xxx网站 | 中文亚洲av片在线观看爽| 露出奶头的视频| 精品国产乱子伦一区二区三区| 久久久国产欧美日韩av| 美女cb高潮喷水在线观看 | 精品国产亚洲在线| 国产一区在线观看成人免费| 国产三级黄色录像| 亚洲aⅴ乱码一区二区在线播放| www国产在线视频色| 好看av亚洲va欧美ⅴa在| 久久这里只有精品中国| 亚洲成人久久爱视频| 日本黄大片高清| 性色av乱码一区二区三区2| 99国产精品99久久久久| 亚洲激情在线av| 欧美黄色淫秽网站| 伊人久久大香线蕉亚洲五| 日韩av在线大香蕉| 亚洲国产日韩欧美精品在线观看 | 最近在线观看免费完整版| 一级黄色大片毛片| 日韩高清综合在线| 日本成人三级电影网站| 久久天躁狠狠躁夜夜2o2o| 成人国产综合亚洲| av视频在线观看入口| 特级一级黄色大片| 少妇裸体淫交视频免费看高清| 99久久99久久久精品蜜桃| 国产三级黄色录像| 一区二区三区国产精品乱码| 一二三四社区在线视频社区8| av片东京热男人的天堂| 精品国产超薄肉色丝袜足j| 亚洲黑人精品在线| 久久热在线av| 男人舔女人下体高潮全视频| 首页视频小说图片口味搜索| 美女大奶头视频| 精品熟女少妇八av免费久了| 国内少妇人妻偷人精品xxx网站 | 老汉色∧v一级毛片| 欧美zozozo另类| 国产探花在线观看一区二区| 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 中亚洲国语对白在线视频| 精品久久久久久成人av| 91av网一区二区| av女优亚洲男人天堂 | 91在线精品国自产拍蜜月 | 人人妻人人看人人澡| 国产免费av片在线观看野外av| 日韩欧美在线二视频| 国产野战对白在线观看| www国产在线视频色| 91字幕亚洲| 两性夫妻黄色片| 熟女电影av网| 啪啪无遮挡十八禁网站| 国产黄片美女视频| 精品免费久久久久久久清纯| 亚洲自偷自拍图片 自拍| 国产精品爽爽va在线观看网站| 精品久久久久久久久久久久久| 国产免费av片在线观看野外av| 国产单亲对白刺激| ponron亚洲| 又大又爽又粗| 曰老女人黄片| 18禁美女被吸乳视频| 日韩大尺度精品在线看网址| 日韩欧美三级三区| 欧美一级a爱片免费观看看| 国产主播在线观看一区二区| 欧美国产日韩亚洲一区| 18禁黄网站禁片免费观看直播| 亚洲一区高清亚洲精品| 久久欧美精品欧美久久欧美| 久久久国产成人免费| 一区二区三区高清视频在线| 午夜精品在线福利| 久久久久久九九精品二区国产| 嫩草影院入口| 变态另类成人亚洲欧美熟女| 免费人成视频x8x8入口观看| av福利片在线观看| 嫩草影院入口| 国产精品亚洲一级av第二区| 久久精品91无色码中文字幕| 熟女电影av网| 日韩高清综合在线| 午夜福利在线观看免费完整高清在 | 一本精品99久久精品77| 国产精品,欧美在线| 欧美中文综合在线视频| 99久久精品热视频| 久久伊人香网站| 午夜免费观看网址| 伦理电影免费视频| 中文字幕人妻丝袜一区二区| 淫妇啪啪啪对白视频| 亚洲av成人av| 欧美一级a爱片免费观看看| 97人妻精品一区二区三区麻豆| 欧美中文日本在线观看视频| 亚洲自拍偷在线| 婷婷丁香在线五月| www日本黄色视频网| 法律面前人人平等表现在哪些方面| 日韩欧美精品v在线| 精品日产1卡2卡| 欧美av亚洲av综合av国产av| 国产v大片淫在线免费观看| 日韩精品青青久久久久久| 99久久国产精品久久久| 日韩欧美国产一区二区入口| 99精品久久久久人妻精品| 国产午夜福利久久久久久| 亚洲国产色片| 日韩免费av在线播放| 很黄的视频免费| 男人舔奶头视频| 夜夜夜夜夜久久久久| 女人高潮潮喷娇喘18禁视频| 国产精品美女特级片免费视频播放器 | 亚洲中文av在线| 观看免费一级毛片| 亚洲av日韩精品久久久久久密| 黑人欧美特级aaaaaa片| 日韩三级视频一区二区三区| 啦啦啦韩国在线观看视频| 亚洲国产精品久久男人天堂| 国产精品香港三级国产av潘金莲| 国产高清videossex| 宅男免费午夜| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| 亚洲午夜理论影院| 叶爱在线成人免费视频播放| 国产乱人伦免费视频| 男女视频在线观看网站免费| 国产毛片a区久久久久| 这个男人来自地球电影免费观看| 一级黄色大片毛片| 麻豆成人午夜福利视频| 每晚都被弄得嗷嗷叫到高潮| 国内精品久久久久久久电影| 国产三级在线视频| 亚洲avbb在线观看| 久久精品夜夜夜夜夜久久蜜豆| av黄色大香蕉| 深夜精品福利| 免费观看精品视频网站| 长腿黑丝高跟| 精品久久久久久久久久免费视频| 综合色av麻豆| 人人妻人人看人人澡| 精品久久久久久久毛片微露脸| 人人妻人人看人人澡| 视频区欧美日本亚洲| 久久国产精品人妻蜜桃| 精品乱码久久久久久99久播| 精品国产乱子伦一区二区三区| 老熟妇仑乱视频hdxx| 1024手机看黄色片| 欧美一区二区精品小视频在线| 美女高潮的动态| 欧美av亚洲av综合av国产av| 国产又黄又爽又无遮挡在线| 国产精品香港三级国产av潘金莲| 夜夜躁狠狠躁天天躁| 长腿黑丝高跟| 两性午夜刺激爽爽歪歪视频在线观看| 最近最新中文字幕大全免费视频| 动漫黄色视频在线观看| 99精品久久久久人妻精品| 无遮挡黄片免费观看| 又爽又黄无遮挡网站| 久久天堂一区二区三区四区| 久久热在线av| 亚洲性夜色夜夜综合| 亚洲国产日韩欧美精品在线观看 | 丝袜人妻中文字幕| 手机成人av网站| 国产亚洲精品久久久com| 国产99白浆流出| 99久久精品国产亚洲精品| 亚洲真实伦在线观看| 日本三级黄在线观看| 午夜免费观看网址| 9191精品国产免费久久| 男女之事视频高清在线观看| 精品国产亚洲在线| 麻豆成人午夜福利视频| av国产免费在线观看| 色av中文字幕| 九色成人免费人妻av| 免费一级毛片在线播放高清视频| 欧美激情在线99| 不卡av一区二区三区| 久久性视频一级片| 99久久久亚洲精品蜜臀av| 最新在线观看一区二区三区| av国产免费在线观看| 亚洲av成人精品一区久久| 午夜免费观看网址| 国产亚洲精品av在线| 极品教师在线免费播放| 亚洲人成网站在线播放欧美日韩| 午夜精品在线福利| 91av网一区二区| 又爽又黄无遮挡网站| 男女做爰动态图高潮gif福利片| 黄色丝袜av网址大全| 久久香蕉国产精品| 亚洲成av人片在线播放无| 色精品久久人妻99蜜桃| 日本成人三级电影网站| 国产日本99.免费观看| 久久欧美精品欧美久久欧美| 99久久成人亚洲精品观看| 日韩欧美三级三区| 最新美女视频免费是黄的| 老汉色av国产亚洲站长工具| 国内精品一区二区在线观看| 一边摸一边抽搐一进一小说| 国产av在哪里看| 成熟少妇高潮喷水视频| 九色成人免费人妻av| 国产亚洲精品av在线| 性色avwww在线观看| 免费在线观看影片大全网站| 91麻豆av在线| 国产私拍福利视频在线观看| 搡老熟女国产l中国老女人| 国产成人精品无人区| 1000部很黄的大片| e午夜精品久久久久久久| 久久中文看片网| 国产激情偷乱视频一区二区| cao死你这个sao货| 精品国产超薄肉色丝袜足j| www国产在线视频色| 九九久久精品国产亚洲av麻豆 | 日本与韩国留学比较| 老司机午夜福利在线观看视频| 亚洲精品色激情综合| 国产精品野战在线观看| 精品久久久久久久末码| 国内精品美女久久久久久| 特大巨黑吊av在线直播| 久久婷婷人人爽人人干人人爱| 在线国产一区二区在线| 51午夜福利影视在线观看| 在线a可以看的网站| 很黄的视频免费| 一a级毛片在线观看| 天堂av国产一区二区熟女人妻| 日本免费a在线| 麻豆久久精品国产亚洲av| 免费在线观看成人毛片| 久久精品国产清高在天天线| 高清在线国产一区| 听说在线观看完整版免费高清| 免费在线观看视频国产中文字幕亚洲| 中国美女看黄片| 欧美又色又爽又黄视频| 国产精品 欧美亚洲| 久久久精品欧美日韩精品| 老熟妇乱子伦视频在线观看| 精品一区二区三区四区五区乱码| 少妇丰满av| 色综合婷婷激情| 九九热线精品视视频播放| 在线观看66精品国产| 国产亚洲av嫩草精品影院| 国产真人三级小视频在线观看| 国产成人啪精品午夜网站| 舔av片在线| 成年版毛片免费区| 亚洲人成电影免费在线| 男女做爰动态图高潮gif福利片| 99热精品在线国产| 精品久久久久久久末码| 12—13女人毛片做爰片一| 日本三级黄在线观看| 九色成人免费人妻av| av福利片在线观看| 亚洲成人久久爱视频| 国产精品一及| 亚洲国产欧美网| 午夜精品在线福利| 色在线成人网| 丁香六月欧美| 国产成人精品久久二区二区91| 男人舔奶头视频| 日韩欧美在线二视频| 久久中文字幕一级| 熟女电影av网| 成人亚洲精品av一区二区| 亚洲熟妇中文字幕五十中出| 一个人看的www免费观看视频| 后天国语完整版免费观看| 九九久久精品国产亚洲av麻豆 | 亚洲成人久久性| 午夜成年电影在线免费观看| 日韩三级视频一区二区三区| 成年版毛片免费区| 成年免费大片在线观看| 1024香蕉在线观看| 又黄又爽又免费观看的视频| 国产精华一区二区三区| 国内揄拍国产精品人妻在线| 韩国av一区二区三区四区| 嫩草影院入口|