• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain?

    2021-06-26 03:04:22XiaoShuGuo郭小姝andSanDongGuo郭三棟
    Chinese Physics B 2021年6期

    Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三棟)

    1School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    2Key Laboratory of Advanced Semiconductor Devices and Materials,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    Keywords: MoSi2N4,electronic transport,2D materials

    1. Introduction

    The successful exfoliation of graphene[1]induces increasing attention on two-dimensional (2D) materials. Many of them have semiconducting behavior, which has various potential applications in electronics, optoelectronics and piezoelectronics.[2–5]Their electronic structures, heat transport and piezoelectric properties have been widely investigated.[6–16]It has been proved that the strain can effectively tune electronic structures, transport and piezoelectric properties of 2D materials,[15–23]which shows great potential for better use in the nanoelectronic,thermoelectric and piezoelectric applications.For example,both compressive and tensile strains can induce the semiconductor-to-metal transition in monolayer MoS2.[17]In many monolayers of transition metal dichalchogenides (TMD), the power factor can be enhanced by strain due to bands converge.[15,16,18]With increased tensile strain, the lattice thermal conductivity shows monotonous decrease, up-and-down and jump behavior with similar penta-structures.[19]Strain can also improve the piezoelectric strain coefficient by tuning the elastic and piezoelectric stress coefficients.[20–23]

    Recently, the layered 2D MoSi2N4and WSi2N4have been experimentally achieved by chemical vapor deposition (CVD).[24]The septuple-atomic-layer MA2Z4monolayers with twelve different structures are constructed by intercalating MoS2-type MZ2monolayer into InSe-type A2Z2monolayer.[25]The 66 thermodynamically and dynamically stable MA2Z4structures are predicted by the first principle calculations. They can be commonly semiconductors,half-metal ferromagnetisms or spin-gapless semiconductors(SGSs), Ising superconductors and topological insulators,which depend on the number of valence electrons.[25]We predict intrinsic piezoelectricity in monolayer MA2Z4,[26]which means that MA2Z4family may have potential application in piezoelectric field. Structure effect on intrinsic piezoelectricity in monolayer MSi2N4(M=Mo and W)has also been reported by the first principle calculations.[27]By applied strain,the VSi2P4monolayer undergoes ferromagnetic metal(FMM)to SGS to ferromagnetic semiconductor (FMS) to SGS to ferromagnetic half-metal (FMHM) with increasing strain.[28]Some materials of MA2Z4lack inversion symmetry with a strong SOC effect, which are expected to exhibit rich spinvalley physics.[25]The valley-dependent properties of monolayer MoSi2N4, WSi2N4and MoSi2As4have been predicted by the first-principles calculations.[25,29,30]Recently,Janus 2D monolayer in the new septuple-atomic-layer 2D MA2Z4family has been achieved,[31]which shows Rashba spin splitting and out-of-plane piezoelectric polarizations.

    In nanoscale devices,the residual strain usually exists in real applications.[32]In our previous work,the small strain effects(0.96 to 1.04)on piezoelectric coefficients of monolayer MoSi2N4have been investigated.[26]In this work, the large(0.90 to 1.10) biaxial strain-tuned electronic structures and transport coefficients of monolayer MoSi2N4are studied by the first principle calculations. Witha/a0from 0.90 to 1.10,the energy band gap of monolayer MoSi2N4firstly increases,and then decreases. In n-type doping,the Seebeck coefficientScan be effectively enhanced by applying compressive strain,and then theZTecan be improved. The tensile strain can induce flat valence bands around theΓpoint near the Fermi level, producing large p-typeS. Therefore, our works give an experimental proposal to improve transport coefficients of monolayer MoSi2N4.

    The rest of the paper is organized as follows. In Section 2,we give our computational details and methods about transport coefficients. In Sections 3 and 4, we present the main results of monolayer MoSi2N4about strain-tuned electronic structures and transport coefficients. Finally, we present our conclusions in Section 5.

    2. Computational detail

    To avoid interactions between two neighboring images,a vacuum spacing of more than 32 ?A along thezdirection is added to construct monolayer MoSi2N4. The elastic stiffness tensor elementsCi jare calculated using strain-stress relationship(SSR),which are performed by employing the VASP code[33,35,38]within the framework of DFT.[36,37]A kinetic cutoff energy of 500 eV is adopted, and we use the popular generalized gradient approximation of Perdew, Burke and Ernzerh of (GGA-PBE)[37]as the exchange–correlation potential to calculate elastic and electronic properties. The total energy convergence criterion is set to 10?8eV, and the Hellmann–Feynman forces on each atom are less than 0.0001 eV·?A?1. The Brillouin zone (BZ) sampling is obtained using a Monkhorst–Pack mesh of 15×15×1 for elastic constantsCi j. The 2D elastic coefficientsC2Di jhave been renormalized by the the length of unit cell alongzdirection(Lz):C2Di j=LzC3Dij.

    The electronic transport coefficients of MoSi2N4monolayer are calculated by solving the Boltzmann transport equations within the constant scattering time approximation (CSTA), which is performed by the BoltzTrap[39]code.To include the SOC, a full-potential linearized augmentedplane-waves method is used to calculate the energy bands of MoSi2N4monolayer, as implemented in the WIEN2k package.[40]To attain accurate transport coefficients, a 35×35×1k-point meshes is used in the first BZ for the energy band calculation,make harmonic expansion up tolmax=10 in each of the atomic spheres,and setRmtkmax=8.

    3. Electronic structures

    The MoSi2N4monolayer can be considered as the insertion of the 2H MoS2-type MoN2monolayer into theα-InSetype Si2N2,and the side and top views of the structure of the MoSi2N4monolayer are plotted in Fig.1.The structure breaks the inversion symmetry,but preserves a horizontal mirror corresponding to the plane of the Mo layer. This leads to that MoSi2N4monolayer only has in-plane piezoelectric response,and has not out-of-plane piezoelectric polarizations. Using optimized lattice constants,[26]the energy bands of MoSi2N4monolayer using GGA and GGA+SOC are shown in Fig. 2,and exhibit both the indirect band gaps with valence band maximum (VBM) atΓpoint and CBM atKpoint. Due to lacking inversion symmetry and containing the heavy element Mo,there exists an SOC induced spin splitting of about 0.13 eV near the Fermi level in the valence bands atKpoint. This may provide a platform for spin-valley physics,[25,29,30]but the VBM is not atKpoint,which can be tuned by strain. According to orbital projected band structure,it is found that the states near the Fermi level are dominated by the Mo d orbitals.More specifically, the states around both CBM and VBM are dominated by the Modz2orbital.

    Fig.1. The crystal structure of monolayer MoSi2N4 ((a)side view and(b) top view). The primitive cell is are marked by black line, and the large red balls represent Mo atoms, and the middle blue balls for Si atoms,and the small green balls for N atoms.

    It is proved that the electronic structures, topological properties, transport and piezoelectric properties of 2D materials can be effectively tuned by strain.[15–23,41]The biaxial strain can be simulated bya/a0or(a?a0)/a0,whereaanda0are the strained and unstrained lattice constants, respectively.Thea/a0<1 or (a ?a0)/a0<0 means compressive strain,whilea/a0>1 or(a?a0)/a0>0 implies tensile strain. Witha/a0from 0.90 to 1.10, the energy band structures are plotted in Fig.2,and the energy band gap and spin-orbit splitting value?atKpoint are shown in Fig.3.

    Fig.2. The energy band structures of monolayer MoSi2N4 using GGA+SOC with the application of biaxial strain(?10%to 10%),and the unstrained energy band using GGA.The VBM and CBM are marked by arrows. At 0.96(0.98)strain,four CBE(two VBE)are marked by ellipse.

    Fig. 3. For MoSi2N4 monolayer, the energy band gap and spin-orbit splitting value ?at K point using GGA+SOC as a function of strain.

    It is found that the energy band gap firstly increases(0.90 to 0.96), and then decreases (0.96 to 1.10), which is due to transformation of CBM.Similar phenomena can be observed in many TMD and Janus TMD monolayers.[16,44]With strain from compressive one to tensile one, the?has a rapid increase, and then a slight decrease. With increasing compressive strain(1.00 to 0.90),the position of CBM(VBM)changes fromK(Γ) point to one point along theK–Γdirection (Kpoint),when the compressive strain reaches about 0.94(0.96).The compressive strain can also tune the numbers and relative positions of valence band extrema(VBE)or CBE.For example,at 0.96,the four CBE can be observed,and their energies are very close, which has very important effects on transport properties. To explore orbital contribution to the conduction bands in the case of 0.96 strain,we project the states to atomic orbitals at 0.96 strained and unstrained conditions, which are shown in Fig. 4. At 0.96 strain, the composition of the lowenergy states has little change with respect to unstrained one.At 0.98, the energy of two VBE are nearly the same. The compressive strain can makeKpoint with spin splitting become VBM, which is very useful to allow spin manipulation for spin-valley physics. For example,at 0.94 strain,the VBM atKpoint is 0.49 eV higher than that atΓpoint. It is clearly seen that the increasing tensile strain can make valence band around theΓpoint near the Fermi level more flat.

    Finally,the elastic constantsCijare calculated as a function ofa/a0to study the mechanical stability of MoSi2N4monolayer with strain. For 2D hexagonal crystals, the Born criteria of mechanical stability[45](C11>0 andC66>0)should be satisfied. The calculatedC11andC66as a function of strain are plotted in Fig. 5, and it is clearly seen that the MoSi2N4monolayer in considered strain range is mechanically stable,which is very important for farther experimental exploration.

    Fig.4. For MoSi2N4 monolayer,the orbital projected band structure at 0.96 strained and unstrained conditions.

    Fig. 5. For MoSi2N4 monolayer, the elastic constants C11 and C66 vs.a/a0 from 0.90 to 1.10.

    4. Electronic transport property

    Proposed by Hicks and Dresselhaus in 1993,[42,43]the potential thermoelectric materials can be achieved in the lowdimensional systems or nanostructures. The dimensionless figure of merit,ZT=S2σT/(κe+κL),can be used to measure the efficiency of thermoelectric conversion of a thermoelectric material, whereS,σ,T,κe, andκLare the Seebeck coefficient,electrical conductivity,working temperature,electronic and lattice thermal conductivities,respectively.It is noted that,for the 2D material,the calculatedσ,κeandκLdepend onLz(here,Lz= 40 ?A), and theSandZTis independent ofLz.For 2D materials, we use electrons or holes per unit cell instead of doping concentration, which is described byN, and theN <0(N >0)mean n-type(p-type)doping. It is proved that the SOC has important effects on transport coefficients of TMD and Janus TMD monolayers.[16,18,44]However,the SOC has neglectful influences on transport properties of unstrained MoSi2N4monolayer,which can be observed from typical Seebeck coefficientSin Fig.6.

    This is because the energy bands near the Fermi level between GGA and GGA+SOC are nearly the same. However,the SOC has an important effect on p-type transport coefficients under the condition of compressive strain. For example,at 0.96 strain, a detrimental effect on Seebeck coefficientScan be observed, when including SOC (see Fig. 6). This is because the SOC can remove the band degeneracy near the VBM. Thus, the SOC is included to investigate the biaxial strain effects on transport coefficients of MoSi2N4monolayer.

    Fig.6. For MoSi2N4 monolayer,the room-temperature Seebeck coefficient S using GGA and GGA+SOC at 1.00 and 0.96 strains as a function of doping level N with N being the number of electrons or holes per unit cell.

    An upper limit ofZTcan be measured byZTe=S2σT/κe, neglecting theκL. The room-temperatureZTeof MoSi2N4monolayer under different strains as a function of doping level is also shown in Fig. 7. The calculated results show that the dependence ofZTeis very similar toS(absolute value),which can be explained by the Wiedemann–Franz law:κe=LσT(Lis the Lorenz number). Then theZTecan be reformulated byZTe=S2/L. Thus, the strain-induced bands convergence improvesS,which is beneficial to betterZTe.

    Fig.7.For MoSi2N4 monolayer,the room-temperature transport coefficients with the a/a0 from 0.90 to 1.10,i.e.,Seebeck coefficient S,electrical conductivity with respect to scattering time σ/τ,power factor with respect to scattering time S2σ/τ and ZTe (an upper limit of ZT)as a function of doping level N using GGA+SOC.Left: compressive strain. Right: tensile strain.

    5. Conclusion

    In summary,we have investigated the biaxial strain(0.90 to 1.10) effects on electronic structures and transport coefficients of monolayer MoSi2N4by the reliable first-principles calculations. With the strain from 0.90 to 1.10, the energy band gap of MoSi2N4monolayer shows a nonmonotonic behavior. It is found that the SOC has little effects on transport coefficients of unstrained MoSi2N4in the considered doping range due to the hardly changed dispersion of bands near the Fermi level. However,the SOC has very important influences on transport properties of strained MoSi2N4,for example,0.96 strain, which is due to the position change of VBM.The calculated results show that compressive strain can tune the numbers and relative positions of CBE,which can lead to enhanced n-typeS,and then better n-typeZTe.Our work may provide an idea to optimize the electronic structures and transport properties of monolayer MoSi2N4.

    Acknowledgments

    We are grateful to the Advanced Analysis and Computation Center of China University of Mining and Technology(CUMT)for the award of CPU hours and WIEN2k/VASP software to accomplish this work.

    村上凉子中文字幕在线| 国产色爽女视频免费观看| 成人欧美大片| 国产高清视频在线播放一区| 亚洲精品粉嫩美女一区| 操出白浆在线播放| 国产欧美日韩精品一区二区| 精品人妻偷拍中文字幕| 哪里可以看免费的av片| 成人性生交大片免费视频hd| 日韩大尺度精品在线看网址| 午夜两性在线视频| 美女高潮喷水抽搐中文字幕| 亚洲五月婷婷丁香| 高潮久久久久久久久久久不卡| 亚洲av五月六月丁香网| www日本黄色视频网| 国产精品精品国产色婷婷| 欧美日韩福利视频一区二区| 午夜免费男女啪啪视频观看 | 免费在线观看亚洲国产| 麻豆一二三区av精品| 成人av一区二区三区在线看| 九色成人免费人妻av| 美女cb高潮喷水在线观看| 国产精品永久免费网站| 全区人妻精品视频| 长腿黑丝高跟| 黄色片一级片一级黄色片| 一级毛片女人18水好多| 成年女人看的毛片在线观看| 亚洲av成人av| 亚洲人与动物交配视频| 亚洲无线观看免费| 亚洲国产精品sss在线观看| 舔av片在线| 热99re8久久精品国产| 成人一区二区视频在线观看| 神马国产精品三级电影在线观看| 欧美性感艳星| 日本撒尿小便嘘嘘汇集6| 中出人妻视频一区二区| 成年免费大片在线观看| 狂野欧美激情性xxxx| 黄色片一级片一级黄色片| 色视频www国产| 成人鲁丝片一二三区免费| 亚洲精品久久国产高清桃花| 欧美性猛交╳xxx乱大交人| 国产91精品成人一区二区三区| АⅤ资源中文在线天堂| 国产精品爽爽va在线观看网站| 日日干狠狠操夜夜爽| 18美女黄网站色大片免费观看| 操出白浆在线播放| 少妇的丰满在线观看| 国产精品永久免费网站| 窝窝影院91人妻| 好看av亚洲va欧美ⅴa在| 亚洲电影在线观看av| 伊人久久大香线蕉亚洲五| 国产三级在线视频| 久久久成人免费电影| 乱人视频在线观看| 亚洲欧美精品综合久久99| 在线十欧美十亚洲十日本专区| 亚洲国产精品sss在线观看| 国产黄色小视频在线观看| 成人鲁丝片一二三区免费| 国产免费男女视频| 男女下面进入的视频免费午夜| 免费人成视频x8x8入口观看| 女人被狂操c到高潮| 国产成+人综合+亚洲专区| 亚洲欧美日韩无卡精品| 亚洲av熟女| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av| 国产精品久久久人人做人人爽| 日本 欧美在线| 国产精品永久免费网站| 91久久精品电影网| 我要搜黄色片| 高清在线国产一区| 亚洲成人久久性| 国产三级黄色录像| 久久精品国产99精品国产亚洲性色| 内射极品少妇av片p| 搡老岳熟女国产| 69av精品久久久久久| 日韩欧美在线二视频| 九九在线视频观看精品| 国产一区二区在线av高清观看| 国产成人aa在线观看| 日韩欧美在线乱码| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 久久久国产成人免费| 亚洲第一电影网av| 日日摸夜夜添夜夜添小说| 国产一级毛片七仙女欲春2| 久久精品夜夜夜夜夜久久蜜豆| 美女高潮喷水抽搐中文字幕| 变态另类丝袜制服| 久久久国产精品麻豆| а√天堂www在线а√下载| 国产精华一区二区三区| 成年免费大片在线观看| 国产久久久一区二区三区| a级一级毛片免费在线观看| 激情在线观看视频在线高清| 亚洲成人久久性| 中文字幕人成人乱码亚洲影| 亚洲熟妇中文字幕五十中出| 欧美性猛交╳xxx乱大交人| 午夜精品在线福利| 脱女人内裤的视频| 成人三级黄色视频| 国产亚洲精品久久久com| 人妻丰满熟妇av一区二区三区| 日韩欧美 国产精品| 九九热线精品视视频播放| 成人鲁丝片一二三区免费| 激情在线观看视频在线高清| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区精品| 亚洲欧美日韩东京热| avwww免费| 日韩高清综合在线| 亚洲国产日韩欧美精品在线观看 | 狂野欧美激情性xxxx| 黄色成人免费大全| 国产精品爽爽va在线观看网站| 少妇的丰满在线观看| 免费av不卡在线播放| 欧美黑人欧美精品刺激| 国产麻豆成人av免费视频| 国产免费男女视频| 免费av毛片视频| 毛片女人毛片| 天天一区二区日本电影三级| 国产国拍精品亚洲av在线观看 | 在线a可以看的网站| 99精品欧美一区二区三区四区| 熟女人妻精品中文字幕| 又黄又粗又硬又大视频| www.999成人在线观看| 热99re8久久精品国产| 天天一区二区日本电影三级| 亚洲熟妇熟女久久| 亚洲av电影不卡..在线观看| ponron亚洲| 少妇裸体淫交视频免费看高清| 欧洲精品卡2卡3卡4卡5卡区| 在线观看av片永久免费下载| 啪啪无遮挡十八禁网站| 国产成人av激情在线播放| 精品人妻1区二区| 亚洲aⅴ乱码一区二区在线播放| 九色国产91popny在线| 亚洲专区中文字幕在线| 成人无遮挡网站| 日韩大尺度精品在线看网址| 国内揄拍国产精品人妻在线| 很黄的视频免费| 日韩精品中文字幕看吧| 亚洲熟妇熟女久久| 老司机福利观看| 精品一区二区三区视频在线观看免费| 亚洲av日韩精品久久久久久密| 国产单亲对白刺激| 美女被艹到高潮喷水动态| 久久国产乱子伦精品免费另类| 中国美女看黄片| 免费人成在线观看视频色| 亚洲美女黄片视频| 亚洲成av人片免费观看| 欧美乱码精品一区二区三区| 97超视频在线观看视频| 免费在线观看亚洲国产| 动漫黄色视频在线观看| 91久久精品国产一区二区成人 | 免费av毛片视频| 99riav亚洲国产免费| 精品久久久久久成人av| 亚洲成av人片在线播放无| 午夜福利18| 两个人视频免费观看高清| 亚洲人成电影免费在线| 真实男女啪啪啪动态图| 一级黄色大片毛片| 免费看a级黄色片| 男女床上黄色一级片免费看| 亚洲成a人片在线一区二区| 免费av不卡在线播放| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 久久欧美精品欧美久久欧美| 欧美乱妇无乱码| 18+在线观看网站| 亚洲专区中文字幕在线| 88av欧美| 夜夜躁狠狠躁天天躁| 色哟哟哟哟哟哟| 亚洲国产欧洲综合997久久,| 日日干狠狠操夜夜爽| 日韩亚洲欧美综合| 夜夜躁狠狠躁天天躁| 老熟妇仑乱视频hdxx| 高清日韩中文字幕在线| 亚洲无线在线观看| 在线观看免费午夜福利视频| 午夜精品一区二区三区免费看| 网址你懂的国产日韩在线| 老汉色∧v一级毛片| 午夜福利免费观看在线| 国产美女午夜福利| 成人精品一区二区免费| 国产野战对白在线观看| 亚洲av一区综合| 欧美日韩乱码在线| 成人18禁在线播放| 一区二区三区高清视频在线| 美女高潮喷水抽搐中文字幕| 高清毛片免费观看视频网站| 九色国产91popny在线| 国产一区二区三区视频了| 国产欧美日韩精品亚洲av| 一级黄片播放器| 人人妻人人看人人澡| 午夜福利18| av在线天堂中文字幕| 亚洲人成网站在线播| 在线天堂最新版资源| 国产高清视频在线观看网站| 97超级碰碰碰精品色视频在线观看| 欧美日韩精品网址| 国产一区二区在线av高清观看| 中文字幕精品亚洲无线码一区| 国产精品野战在线观看| 国产男靠女视频免费网站| 欧美xxxx黑人xx丫x性爽| 亚洲av中文字字幕乱码综合| 亚洲精品成人久久久久久| 亚洲国产精品成人综合色| 精品日产1卡2卡| av福利片在线观看| 麻豆国产97在线/欧美| 女人被狂操c到高潮| 99视频精品全部免费 在线| 国产av不卡久久| 18美女黄网站色大片免费观看| 色综合婷婷激情| 91av网一区二区| 日本一二三区视频观看| 可以在线观看毛片的网站| 日韩成人在线观看一区二区三区| 亚洲国产精品成人综合色| 窝窝影院91人妻| 一a级毛片在线观看| 久99久视频精品免费| 国产毛片a区久久久久| 深夜精品福利| 国产亚洲欧美98| 久久久久国产精品人妻aⅴ院| 欧美在线黄色| 欧美色视频一区免费| 精品国内亚洲2022精品成人| 91av网一区二区| 国产亚洲av嫩草精品影院| 国产成+人综合+亚洲专区| 美女高潮喷水抽搐中文字幕| 在线看三级毛片| 亚洲最大成人中文| 免费av毛片视频| 51国产日韩欧美| 99国产精品一区二区三区| 国产免费av片在线观看野外av| 无人区码免费观看不卡| 黄色成人免费大全| 麻豆国产97在线/欧美| 欧美中文日本在线观看视频| 国产极品精品免费视频能看的| 男女做爰动态图高潮gif福利片| 日韩欧美免费精品| 99精品久久久久人妻精品| 天堂av国产一区二区熟女人妻| 国产私拍福利视频在线观看| 99久久成人亚洲精品观看| 美女免费视频网站| 久久久国产成人精品二区| 国产乱人视频| 亚洲人成电影免费在线| 国产高清视频在线播放一区| 国产淫片久久久久久久久 | 香蕉久久夜色| 国产成人福利小说| 免费在线观看日本一区| 亚洲国产欧洲综合997久久,| 精品一区二区三区av网在线观看| 97超视频在线观看视频| xxx96com| 欧美黑人欧美精品刺激| 国产成人a区在线观看| 久久99热这里只有精品18| 99久久综合精品五月天人人| av国产免费在线观看| 在线看三级毛片| 久久久久久九九精品二区国产| 国产精华一区二区三区| 成年女人看的毛片在线观看| 国产亚洲av嫩草精品影院| 亚洲专区国产一区二区| 最近最新免费中文字幕在线| av福利片在线观看| 18美女黄网站色大片免费观看| 亚洲最大成人中文| 亚洲欧美日韩卡通动漫| 色老头精品视频在线观看| 叶爱在线成人免费视频播放| 亚洲av电影不卡..在线观看| 免费看a级黄色片| 国产成人av教育| 老汉色∧v一级毛片| 男人的好看免费观看在线视频| 国产精品1区2区在线观看.| 国产高清有码在线观看视频| 国产毛片a区久久久久| 在线观看美女被高潮喷水网站 | 又黄又爽又免费观看的视频| а√天堂www在线а√下载| 国产亚洲精品一区二区www| 丰满乱子伦码专区| 人人妻人人看人人澡| 国产一区二区激情短视频| 怎么达到女性高潮| 变态另类丝袜制服| 国产激情欧美一区二区| 美女高潮喷水抽搐中文字幕| 欧美一级a爱片免费观看看| 亚洲,欧美精品.| 日韩欧美国产在线观看| 在线观看一区二区三区| 国产久久久一区二区三区| 国产精品香港三级国产av潘金莲| 法律面前人人平等表现在哪些方面| 中文字幕av成人在线电影| 国产精品 国内视频| 欧美成人a在线观看| 天天添夜夜摸| 亚洲人成伊人成综合网2020| 日韩精品中文字幕看吧| 88av欧美| 黄色片一级片一级黄色片| 亚洲无线观看免费| 久久人人精品亚洲av| 午夜亚洲福利在线播放| 内射极品少妇av片p| 制服丝袜大香蕉在线| 在线观看舔阴道视频| 露出奶头的视频| 中文字幕高清在线视频| 舔av片在线| 在线观看舔阴道视频| 99国产综合亚洲精品| 中文资源天堂在线| 欧美日韩乱码在线| 激情在线观看视频在线高清| 中国美女看黄片| 精品不卡国产一区二区三区| 一边摸一边抽搐一进一小说| 亚洲人成网站在线播放欧美日韩| 日本一二三区视频观看| 我的老师免费观看完整版| 久9热在线精品视频| 一进一出抽搐gif免费好疼| 日韩亚洲欧美综合| 精品人妻偷拍中文字幕| 老司机午夜十八禁免费视频| 成人三级黄色视频| 亚洲国产中文字幕在线视频| 高清日韩中文字幕在线| 看免费av毛片| 色综合站精品国产| 国产伦一二天堂av在线观看| 最近最新中文字幕大全免费视频| 亚洲av二区三区四区| 欧美成人一区二区免费高清观看| 熟女电影av网| 亚洲欧美日韩高清专用| 国产三级中文精品| 亚洲精品456在线播放app | 亚洲av二区三区四区| 免费看十八禁软件| 一区二区三区激情视频| 午夜精品久久久久久毛片777| 日本免费一区二区三区高清不卡| 一级黄片播放器| 欧美日本亚洲视频在线播放| 国产成人欧美在线观看| 国产主播在线观看一区二区| 国产色爽女视频免费观看| www.999成人在线观看| 美女被艹到高潮喷水动态| 欧美日韩中文字幕国产精品一区二区三区| 亚洲无线观看免费| 亚洲aⅴ乱码一区二区在线播放| 国语自产精品视频在线第100页| 免费看十八禁软件| 99久久久亚洲精品蜜臀av| bbb黄色大片| 婷婷精品国产亚洲av在线| 国产69精品久久久久777片| 无遮挡黄片免费观看| 成熟少妇高潮喷水视频| 免费电影在线观看免费观看| 丁香六月欧美| 午夜亚洲福利在线播放| 在线观看66精品国产| a在线观看视频网站| 国产一区二区三区视频了| 一进一出抽搐动态| 亚洲欧美日韩无卡精品| 高清在线国产一区| 亚洲内射少妇av| 亚洲国产欧美网| 日本免费a在线| 成年版毛片免费区| 男人的好看免费观看在线视频| 国产免费一级a男人的天堂| 午夜激情欧美在线| eeuss影院久久| 高清在线国产一区| 少妇的逼好多水| 少妇的逼水好多| 深爱激情五月婷婷| 免费av不卡在线播放| 欧美乱妇无乱码| 好男人电影高清在线观看| 国产69精品久久久久777片| 男女下面进入的视频免费午夜| 国产在视频线在精品| АⅤ资源中文在线天堂| 国产午夜精品论理片| 91久久精品国产一区二区成人 | 女人十人毛片免费观看3o分钟| 欧美最新免费一区二区三区 | 久久久久性生活片| 欧美在线黄色| 国产高清三级在线| 噜噜噜噜噜久久久久久91| 香蕉久久夜色| 欧美精品啪啪一区二区三区| 叶爱在线成人免费视频播放| 激情在线观看视频在线高清| 亚洲最大成人手机在线| 91久久精品电影网| 狂野欧美激情性xxxx| 国产高清激情床上av| 国产在线精品亚洲第一网站| 亚洲av电影在线进入| 欧美日韩瑟瑟在线播放| 毛片女人毛片| 亚洲真实伦在线观看| 人妻久久中文字幕网| 国产精品,欧美在线| 亚洲欧美日韩高清在线视频| 深爱激情五月婷婷| 欧美日韩综合久久久久久 | 国产av不卡久久| 中文资源天堂在线| 久久天躁狠狠躁夜夜2o2o| 欧美日韩黄片免| 成人性生交大片免费视频hd| 精华霜和精华液先用哪个| 国产又黄又爽又无遮挡在线| 90打野战视频偷拍视频| 国产乱人伦免费视频| 日韩亚洲欧美综合| 日韩成人在线观看一区二区三区| 中文在线观看免费www的网站| 成年女人永久免费观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 欧美xxxx黑人xx丫x性爽| 一区二区三区高清视频在线| 国产v大片淫在线免费观看| 91麻豆精品激情在线观看国产| 窝窝影院91人妻| 亚洲av第一区精品v没综合| 国产精品亚洲一级av第二区| 无人区码免费观看不卡| 日本 av在线| 脱女人内裤的视频| а√天堂www在线а√下载| 亚洲国产高清在线一区二区三| 精品无人区乱码1区二区| 一区福利在线观看| 成人欧美大片| 99国产精品一区二区蜜桃av| 悠悠久久av| 成年女人毛片免费观看观看9| 免费电影在线观看免费观看| 免费av观看视频| 嫩草影院入口| 国产三级中文精品| 成人18禁在线播放| 90打野战视频偷拍视频| 亚洲专区国产一区二区| 午夜激情福利司机影院| 久久精品国产亚洲av香蕉五月| 国产一区在线观看成人免费| 久久久精品大字幕| 日本免费a在线| 日韩中文字幕欧美一区二区| 日本黄色片子视频| 丰满人妻一区二区三区视频av | 99在线人妻在线中文字幕| 真人做人爱边吃奶动态| 日本 欧美在线| 91字幕亚洲| 精品久久久久久成人av| 久久久久久国产a免费观看| 欧美日韩瑟瑟在线播放| 一级作爱视频免费观看| 少妇丰满av| 国产激情欧美一区二区| 91久久精品国产一区二区成人 | 男人的好看免费观看在线视频| 女人高潮潮喷娇喘18禁视频| 午夜久久久久精精品| 嫩草影院精品99| 国产老妇女一区| av片东京热男人的天堂| 97超视频在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久久色成人| 97人妻精品一区二区三区麻豆| 国产成人av激情在线播放| 一夜夜www| 午夜福利在线观看免费完整高清在 | 成人性生交大片免费视频hd| 男女下面进入的视频免费午夜| 窝窝影院91人妻| 亚洲黑人精品在线| 欧美+亚洲+日韩+国产| 国产精品永久免费网站| 十八禁网站免费在线| a级一级毛片免费在线观看| 亚洲性夜色夜夜综合| netflix在线观看网站| 国产伦人伦偷精品视频| 免费无遮挡裸体视频| 亚洲五月婷婷丁香| 一进一出抽搐gif免费好疼| 99久久精品国产亚洲精品| 精华霜和精华液先用哪个| 尤物成人国产欧美一区二区三区| 他把我摸到了高潮在线观看| 国产 一区 欧美 日韩| 亚洲18禁久久av| 免费av观看视频| av视频在线观看入口| 99热这里只有是精品50| 久久精品人妻少妇| 欧美丝袜亚洲另类 | 夜夜爽天天搞| 白带黄色成豆腐渣| 青草久久国产| 日本熟妇午夜| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 制服丝袜大香蕉在线| 老司机在亚洲福利影院| 久久精品91无色码中文字幕| 又黄又粗又硬又大视频| 两个人视频免费观看高清| 伊人久久精品亚洲午夜| 禁无遮挡网站| 亚洲乱码一区二区免费版| 校园春色视频在线观看| 老汉色av国产亚洲站长工具| 久久精品国产综合久久久| 搡老妇女老女人老熟妇| 亚洲 欧美 日韩 在线 免费| 国产麻豆成人av免费视频| 韩国av一区二区三区四区| 亚洲美女视频黄频| 18禁黄网站禁片午夜丰满| 亚洲精品成人久久久久久| 97超级碰碰碰精品色视频在线观看| 搡女人真爽免费视频火全软件 | 精品国内亚洲2022精品成人| 亚洲av电影在线进入| 91在线观看av| 最近最新中文字幕大全免费视频| 欧美激情久久久久久爽电影| 丝袜美腿在线中文| 国产老妇女一区| 性色avwww在线观看| 国产三级中文精品| 国产久久久一区二区三区| 亚洲精品国产精品久久久不卡| 国产精品99久久久久久久久| 国产亚洲精品久久久com| 男女午夜视频在线观看| 法律面前人人平等表现在哪些方面| 99在线人妻在线中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 桃红色精品国产亚洲av| 日本与韩国留学比较| 高清在线国产一区| 色综合站精品国产| 成年版毛片免费区| 操出白浆在线播放| 在线观看一区二区三区|