• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Floquet bands and photon-induced topological edge states of graphene nanoribbons?

    2021-06-26 03:04:12WeijieWang王威杰Xiaolong呂小龍andHangXie謝航
    Chinese Physics B 2021年6期
    關(guān)鍵詞:小龍

    Weijie Wang(王威杰), Xiaolong L¨u(呂小龍), and Hang Xie(謝航)

    College of Physics,Chongqing University,Chongqing,China

    Keywords: Floquet bands,graphene,topological phase transition,edge states

    1. Introduction

    In recent years, the periodically-driven systems have attracted a lot of research concerns. By using the Floquet theorem to these systems,the time-dependent system can be transformed into the steady system with the infinite-dimensional Floquet Hamiltonian. This Hamiltonian generates a serial of quasienergies due to Floquet band branches in the energy domain.[1]

    Under the light radiation,graphene-like 2D materials can obtain some topological properties,such as the photo-induced Hall effect,as well as some photo-induced energy gaps.[2]Recently, this type of Hall effect has also been experimentally observed.[3]In addition,the graphene system under illumination may exhibit edge current and magnetic field.[4]Moreover,it is experimentally and theoretically confirmed that radiated graphene has the quantum-rachet effect,which causes the unidirectional current.[5]According to the Floquet theorem, under the periodic perturbations of external fields,both graphene and the Su–Schrieffer–Heeger systems can generate unidirectional currents and various topological phases.[6,7]Besides,the light resonance may cause some suppression effect of ballistic conduction in graphene systems.[8]

    In the aspect of topological properties,researchers found that radiated graphene nanoribbons (GNR) have the dynamic gaps, in which there exist some topological chiral edge states.[9]These edge states have a bulk–edge correspondence with the topological characteristics of its bulk system.[10,11]More recently, in the Floquet researches, some high-Chernnumber systems are discovered in the systems with the complex periodic perturbations (such as quenching systems).[12]Under the high-frequency approximation, one can derive the effective Hamiltonian with one or more perturbation terms(by the Brillouin–Wigner theory)in the hexagonal lattice of twodimensional materials.[13,14]Besides, some experimental observations have also revealed the Floquet–Bloch states and the interaction with the dressed Volkov states in the topological insulator with the Dirac fermions, which established a systematic path for the coherent manipulation of solids via lightmatter interaction.[15,16]

    However,many of the current works on the topology analysis and quantum transport of radiated two-dimensional materials are based on the high-frequency approximation.[13,17–21]In the realistic graphene systems,due to the large hopping energy of 2D materials (from 1 eV to 3 eV), the corresponding high-frequency light(with the energy about above 10 eV)goes into the ultraviolet range. This is experimentally unrealistic and can result in the photon-ionization of the samples.Therefore,the low-frequency illumination is more suitable for experimental researches of Floquet electronic systems. We notice that some recent theoretical work considers the lowfrequency systems, such as the effective Hamiltonian model reported by Voglet al.[22]and the topological phase transition studies of black phosphorene by Kanget al.[23]Besides,Usajet al.[9]and Torreset al.[24]considered the frequencies smaller than the bandwidth of the Floquet topological insulator, and analyzed the edge states and the transport properties.Perez-Piskunowet al.[25]found the hierarchy of Floquet gaps and topological phase transitions in the driven honeycomb lattices with the very low driven frequencies. But the detailed investigations of the topological properties of the graphene system,as well as the edge state distributions and its relation with the photon excitations at low (or arbitrary) frequencies, still remain unexplored.

    In this paper,we use the non-perturbative Floquet Hamiltonian and Berry curvature formula to study the Chern numbers at arbitrary frequency.We find that there exist many types of photo-induced edge states and high-Chern-number states in the low frequency range,besides the ordinary quantum anomalous Hall(QAH)states with the Chern number of±1 under the high-frequency illumination. All these edge states have topological properties and follow the bulk–edge correspondence.We also find the correspondence of the Floquet bands and the edge states distributions in the decomposed photon-number space.Moreover,we investigate the size effect in zigzag GNR.

    This paper is organized as follows. Section 2 gives the theoretical introduction of this work, including the theory of the Floquet band for graphene systems and the Chern numbers calculation method. Section 3 shows our results and discussion, including the topological phase transitions of GNR, the band structures, the edge state profiles in the photo-number space,and the size/photo-number effects. Section 4 gives the conclusions of this work.

    2. Theories and methods

    2.1. Floquet–Bloch Hamiltonian for the honeycomb lattice systems

    In this work, we use the tight-binding model for the graphene system with the nearest neighbor approximation

    wherec+iandciare the electron creation and annihilation operators at sitei,εiis the on-site energy,andγi j(t)is the timedependent hopping energy between sitesiandj;〈i,j〉means the hopping only occurs between the nearest neighbors.

    We consider a beam of circularly-polarized light vertically radiated on the graphene plane. The photon–electron interaction is considered by modifying the hopping parameters with the Peierls substitution[25]

    whereΦ0=h/eis the quantum flux with the Planck constanthand elementary chargee;γ0is the hopping energy between sitesiandjwithout radiation,riandrjare the positions of the two sites; andA(t)is the vector potential of the light. In the case of the circular polarization with angular frequencyωand amplitudeA0,A(t)=A0(cosωt,sinωt);the corresponding electric field is given asE(t)=E0(?sinωt,cosωt)withE0=A0ω.

    Since the Hamiltonian of the light-driven system is periodic in time domain with the periodT,H(t)=H(t+T)andT=2π/ω,we may use the Fourier transformation to change the time-dependent Hamiltonian into the frequency domain according to the Floquet theory[1]

    whereεnis the quasienergy;HnandFnare the Fourier component of the Hamiltonian and the wave function, respectively.The former component is calculated as

    We can also write the whole HamiltonianHFin the extended Floquet–Hilbert(Sambe)space as[13]

    In practical calculations, people use the photon-number cut-off scheme to change the above infinite-dimensional Floquet matrix into some small Floquet matrix, which only includes finite Fourier components of the Hamiltonian. For example, the following Floquet Hamiltonian is cut off by one photon number(NF=1):

    Figure 1 shows the lattice of the bulk graphene. With the tight-binding approximation and the Bloch theorem, we may obtain the Hamiltonian in the momentum space

    wherekis the Bloch wavevector in two dimensions, andγ0is the hopping energy between the nearest neighboring sites.When we consider the light radiation, the Peierls substitution(Eq. (2)) is employed. The Fourier component of the timedependent Hamiltonian is calculated as

    In our case, the vector potential is approximately spatial uniform in the region of the nearest neighboring atom sites(landl')of graphene. So the hopping energy under radiation can be written as

    The vector potential of the circularly polarized light is given asA=A0(cosωt·x+sinωt·y); and the displacement between two neighboring atoms isrl'l=rl'?rl=a(cosαl'l·x+sinαl'l·y), whereαl'lis the angle betweenrl'landxaxis. Substituting these expressions into Eq.(10),we obtain

    where?l'l=αl'l ?π/2 is the angle betweenrl'landy-axis(see Fig.1,?l'lforr1,r2,andr3are 0,θ,and?θ,respectively).Then by applying the Jacobi–Anger expansion

    whereJm(x)is them-th order Bessel function, Eq.(9)can be rewritten as

    Similarly,H?1andH?2expressions can also be derived by this way.

    For the GNR system under the light radiation,we also use the Peierls substitution to Eq.(1)and use the Floquet theorem to obtain the Floquet Hamiltonian.

    Fig.1. Honeycomb lattice of graphene and GNR in the real space. The bond length is a and the dashed rectangle box denotes the unit cell of GNR(with the period b and Ny repeat units in y direction),r1,r2,and r3 are the three vectors between the nearest-neighboring sites.

    2.2. The Berry curvature and Chern number calculations

    When the Hamiltonian in the momentum space is obtained, we can calculate the Chern number, which can characterize the topological property of the Floquet system. The Chern number of then-th band is defined by an integral in the first Brillouin zone(FBZ)

    In this paper, we use a more efficient numerical method to calculate the Berry curvature and the Chern number.[26]Firstly,we define the following normalized link quantities:

    where ? is the infinitesimal shift inxorydirection;N1(k),N2(k),N12(k), andN21(k) are the corresponding normalization constants, for exampleN1(k) =|〈n(k1,k2)|n(k1+?,k2)〉|. The Chern number can be evaluated as the Berry curvature summation in the discretized FBZ

    Here we give an equivalence proof between this new formula and the original Berry curvature definition (Eq. (15)).With the Taylor expansion and ignoring the higher order, we haven(k1+?,k2)≈n(k1,k2)+?k1n(k1,k2)·?. Substituting this into Eq.(18a),we have

    Then with the Taylor expansion of logarithm function ln(1+x)≈xand Eq.(16),we obtain

    Similarly,we can prove that

    Thus we see that Eq.(20)is the discretized form of Eq.(15),and these two methods are equivalent.

    3. Results and analyzing

    In order to better describe the results, we set a fixed electric field asE0=γ0/(ea) throughout the paper. With otherE0values, we may have similar results. Figures 2(a)–2(b) show that in different driven frequencies, the graphene is in different topological phases with corresponding Chern numbers. We name the three topological phases as phase A(?ω>5.96γ0), phase B (2.92γ0≤?ω ≤5.96γ0), and phase C (1.4γ0≤?ω <2.92γ0) in Fig. 2(b). In the Floquet calculations, we need to set a proper cutoff value (NF) due to the infinite dimension of the Floquet Hamiltonian. In Fig. 2, we draw the Chern number curves as a function of different driven frequencies withNF=1 andNF=2. We can see that the Chern number curves shown in Figs.2(a)and 2(b)are coincident in the region of 1.4γ0≤?ω ≤7γ0,while they are different in the region ofγ0≤?ω <1.4γ0. In this low-frequency range,more Floquet bands(or largerNFvalue)should be used for convergence. So we may conclude that in the frequency region of ?ω ≥1.4γ0, the Chern numbers are converged withNF=1 and 2. Appendix A also shows that with ?ω=1.4γ0,the band structures of GNR are converged only whenNF≥2. In this work, we just focus on the region of 1.4γ0≤?ω ≤7γ0, and we takeNF=2 throughout this paper. Figures 2(c) and 2(d)show the Berry curvature distributions withNF=2 and different ?ωvalues. We can see that all the Berry curvature peaks are around the Dirac points.

    Fig.2. Chern-number phase diagrams with(a)NF=1 and(b)NF=2. Berry curvature distributions with different driven frequencies[(c)?ω=2γ0,(d)?ω=3.5γ0]in the Floquet graphene system(E0=γ0/(ea)).

    In Fig.2,there are three topological phases in the region of 1.4γ0≤?ω ≤7γ0, with the Chern numbers of 2, 3, and 1. For zigzag GNR systems,these topological phases also exhibit the bulk–edge correspondence from the band structures.Figures 3(a)–3(c)show the results. We can see that under the radiation,there appear some edge-state bands across the original gap near the zero energy (called as 0-gap). And there appears a new dynamic gap aroundE=±?ω/2 with some edge-state bands across this gap.[9]This new gap results from the anti-crossing of the two intersecting band replicas(with the photon numbersn=0 andn=±1),due to the coupling Floquet matrices. This gap is called theπ-gap since it is similar to the gaps near the Brillouin zone boundary.[22]In Fig.3(a),with ?ω= 7γ0we see that there just exists one edge state(red line) within 0-gap in the upper GNR edge. In Fig. 3(b)with ?ω=4γ0,there are not only one pair of edge-state bands within 0-gap,but also two pairs of edge-state bands withinπg(shù)ap. And in Fig.3(c),there are two types of edge states bands within 0-gap(one in the middle and one at the two sides of the band range[0,2π/b]).

    Here we show that the bulk–edges correspondence also holds in the graphene system under different radiation frequencies.We define the net chirality of edge states in the upper edge as the winding number,denoted asW0(in 0-gap)andWπ(inπ-gap). The net chirality is the sum of the edge-state numbers, which is positive for the positive slope of the band; and negative for the negative slope of the band. Then we calculatec=Wπ ?W0, wherecis the Chern number of the band between 0-gap andπ-gap.[10,27]Table 1 lists all these quantities in the three phases. We can see that the calculated Chern numbers agree well with our numerical results in Fig.2(b).

    Table 1. The winding numbers and Chern numbers in different topological phases of GNR.

    Fig.3. Quasienergy spectra of zigzag GNR with the size Ny=40 at different driven frequencies: (a)?ω =7γ0;(b)?ω =4γ0;(c)?ω =2γ0. The red lines denote the upper-edge states,and the blue lines denote the lower-edge states.

    Fig.4.Projected 2D band structures of Floquet graphene system with different frequencies(ky=0):(a)?ω=6.5γ0,(b)?ω=5.96γ0,(c)?ω=4γ0,(d)?ω =2.92γ0,(e)?ω =2.5γ0. The different colors denote different Floquet bands,for example,blue: n=0;red: n=1;black: n=?1;green:n=2. The circles in(b)and(d)denote the band close(touching)regions between n=0 and n=1,or n=?1 and n=1 replicas,respectively.

    In order to explain the topological phase transition as a function of frequency,we show the Floquet band structures in Fig.4. We use the projected band structures from the 2D Floquet bands for a clear view. In Ref.[28], it was reported that the 0-gap orπ-gap close and reopening means the occurrence of a topological phase transition. In Fig. 4(a), the frequency lies in the phase A range (see Fig. 2(a)). It shows that there is almost no coupling betweenn= 0 andn= 1 (?1) Floquet bands(replica). Then as the driven frequency decreases,the Floquet bands approach to each other and in some critical stage,n=0 andn=1 (?1) replicas tend to get touched and theπ-gap almost closes(Fig.4(b)). But when further reducing the frequency,theπ-gap is reopened(Fig.4(c)),which means the topological phase transition(from phaseAto phaseB)happens. From the colored bands in Fig.4(c), we can see that then=1 andn=0 Floquet bands are intersected nearπ-gap and are anti-crossed near the cross-points. With the similar analysis,from Figs.4(c)–4(e),there exists a gap close and reopening near 0-gap. Therefore,phase B is transformed into phase C.In Fig.4(e), we also see that the corresponding coupled (hybrid) band near 0-gap is withn=1 andn=?1 replicas. As will be seen in Fig. 5 later, these coupled Floquet bands will result in different edge state distributions in the decomposed photon-number space.

    Fig. 5. Electron density distribution of edge states in GNR in the decomposed photon-number space (Ny =40) (a) The edge states in 0-gap with ?ω =7γ0. (b)The edge states in π-gap with ?ω =4γ0. (c)The edge states in the side parts of 0-gap with ?ω =2γ0. The red lines denote the situation of dE/dk >0,and the blue lines denote dE/dk <0.

    Next we show the electron density distribution in the decomposed photon-number space to analyze the origin of the edge states. In Fig. 5(a), the density distribution of the edge states within 0-gap (shown in Fig. 3(a)) only exists inn=0 Floquet photon number space,which means there is no photon resonance. In Fig.5(b),we plot the density distributions of the edge states withinπ-gap(shown in Fig.3(b)).We find they exist inn=0 andn=1 photon number space,which clearly indicates that the edge states originate from the one-photon resonance of the light. It also agrees with the hybrid 2D Floquet bands in Fig. 4(c), wheren=0 andn=1 replica bands are coupled and anti-crossed nearπ-gap. Similarly, in Fig. 5(c),the density distribution with respect to the edge states within 0-gap in Fig. 3(c) mostly exists inn=?1 andn=1 photon number space and only a small amount inn=0 photon number space, which means the edge states are mainly from the two-photons resonance and secondarily from two constructive one-photon resonances. We notice that Kang,Park and Moon also found such resonances in the Floquet bands of black phosphorene systems recently.[23]And these edge-state density distributions are also consistent with the hybrid 2D Floquet bands in Fig.4(e).

    At last, we give a discussion on the size effect of these Floquet edge states. All the band structures in Fig. 6 are in phase B. When ?ω=5γ0, we find with increasing the ribbon width,theπ-gap and the edge states in this gap are gradually formed(see Figs.6(a)–6(c)). From this,we see that although there existsπ-gap for bulk graphene as long as the frequency lies in the phase B range (2.92γ0≤?ω ≤5.96γ0), the GNR band can exhibit this gap and the corresponding edge states only with the large-enough ribbon width. We also observe this size effect for the frequency ofω=5.8γ0(Figs. 6(d)–6(f)).Compared to the ones in Figs. 6(a)–6(c), a larger width is needed to generate theπ-gap and the edge states since the frequency is close to the topological transition point (?ω=5.96γ0). So the size effect plays an important role in the GNR Floquet systems,especially for the frequency close to the transition point.

    Fig.6. Size effect for energy bands of GNR under light radiation with different ribbon widths: (a)–(c)?ω=5γ0,(d)–(f)?ω=5.8γ0.

    4. Conclusion

    To summarize,we have investigated the phase transitions of graphene under light irradiation,and verified the bulk–edge correspondence by calculating the Chern number and analyzing the winding numbers of edge states in the Floquet gaps.We also have used the projected 2D Floquet bands and GNR

    1D bands to analyze its density distributions in the decomposed photon-number space. The origin of the Floquet edge states has been discussed. The size effect in the GNR system is important and becomes strengthened when the driven frequency is close to the phase transition point.

    Appendix A

    To further demonstrate the reliability of our calculations,we give an example for the photon number convergence in GNR band calculations. We use differentNFvalues and plot the corresponding GNR bands below. The low driven frequency (?ω=1.4γ0) on the lower boundary of phase range C is used.

    In Fig. A1, we see that the Floquet band withNF=2 is almost as the same as that withNF=3. ButNF=1 is vastly different, especially inπ-gap. Let us explain it more theoretically. In the Floquet Hamiltonian matrix(Eq.(5)),the coupling matrix elementHnis proportional to the Bessel functions of the first kindHn∝Jn(z)withz=eA0a/?.

    Fig. A1. Quasienergy spectra of zigzag GNR (Ny =40) with different NF values: (a)NF =1; (b)NF =2; (c)NF =3. The corresponding parameters E0=γ0/(ea)and ?ω =1.4γ0.

    Becausez=E0/?ω ≈0.7 in our example, we see thatJn(z)is small enough to be ignored when|n|≥2(Fig.A2(b)).Then according to Fig.A1,we can conclude that the result ofNF=2 is reliable enough with 1.4γ0≤ω ≤7γ0. Meanwhile,we emphasize here that there needs an even largerNFvalue to insure the accuracy and converge of Floquet band calculation when the driven frequency is further smaller. The cut-off value can be estimated from the Bessel function variations in Fig.A2.

    Fig.A2. (a)The behaviors of the Bessel functions of the first kind(Jn(z),n ∈[0,4]). (b)The Bessel functions Jn(0.7)with different n values.

    猜你喜歡
    小龍
    《小龍的假日》
    El regreso del dragón
    Erratum to“Floquet bands and photon-induced topological edge states of graphene nanoribbons”
    Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring*
    小小小小龍
    新書架
    河南電力(2017年1期)2017-11-30 03:04:23
    劉小龍
    董小龍赴寶雞市宣講黨的十八屆六中全會(huì)精神
    讓“數(shù)”“形”結(jié)合更暢通
    風(fēng)中的祈禱詞
    詩(shī)選刊(2015年4期)2015-10-26 08:45:28
    亚洲精品国产av成人精品| 电影成人av| h视频一区二区三区| 女性被躁到高潮视频| 中文字幕人妻丝袜制服| 国产伦人伦偷精品视频| 嫩草影视91久久| 天堂俺去俺来也www色官网| 国产成人精品久久二区二区免费| 国产人伦9x9x在线观看| 午夜成年电影在线免费观看| 高清av免费在线| 欧美日韩亚洲国产一区二区在线观看 | 日韩 欧美 亚洲 中文字幕| 乱人伦中国视频| 亚洲 国产 在线| 久久狼人影院| 18禁国产床啪视频网站| 国产精品.久久久| videosex国产| 视频在线观看一区二区三区| 国产成人av教育| 久久久久久亚洲精品国产蜜桃av| 大码成人一级视频| e午夜精品久久久久久久| 日韩有码中文字幕| 久久精品成人免费网站| 亚洲av日韩精品久久久久久密| 国产一区有黄有色的免费视频| 亚洲伊人色综图| av在线老鸭窝| 国产亚洲av片在线观看秒播厂| 18禁观看日本| 丁香六月天网| 久久国产精品男人的天堂亚洲| 日韩精品免费视频一区二区三区| 国产xxxxx性猛交| 在线永久观看黄色视频| 他把我摸到了高潮在线观看 | 亚洲成av片中文字幕在线观看| 国产免费现黄频在线看| 成人手机av| 搡老乐熟女国产| 国产精品免费视频内射| 考比视频在线观看| 青草久久国产| 日日爽夜夜爽网站| 午夜免费成人在线视频| 欧美xxⅹ黑人| 多毛熟女@视频| 欧美激情久久久久久爽电影 | 亚洲九九香蕉| 婷婷丁香在线五月| 97精品久久久久久久久久精品| 精品一品国产午夜福利视频| a在线观看视频网站| 国产片内射在线| 一级a爱视频在线免费观看| h视频一区二区三区| 欧美在线一区亚洲| 丰满人妻熟妇乱又伦精品不卡| 男人爽女人下面视频在线观看| 国产日韩欧美在线精品| 1024视频免费在线观看| 亚洲欧美日韩高清在线视频 | 国产在线视频一区二区| 日本wwww免费看| 在线观看免费高清a一片| 亚洲全国av大片| 亚洲中文av在线| 99热国产这里只有精品6| 人人妻人人添人人爽欧美一区卜| 嫩草影视91久久| 人人妻人人澡人人爽人人夜夜| 久久久精品国产亚洲av高清涩受| 中文字幕精品免费在线观看视频| 久久亚洲精品不卡| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区在线不卡| 久久久久久人人人人人| 精品国产一区二区三区久久久樱花| 精品一区二区三区四区五区乱码| 免费日韩欧美在线观看| 国产又色又爽无遮挡免| 最黄视频免费看| 人人妻人人添人人爽欧美一区卜| 午夜免费成人在线视频| 啪啪无遮挡十八禁网站| 丰满迷人的少妇在线观看| 国产亚洲一区二区精品| videosex国产| 成人三级做爰电影| 国产亚洲一区二区精品| 久久国产精品大桥未久av| av片东京热男人的天堂| 国产精品久久久久久精品电影小说| avwww免费| 中亚洲国语对白在线视频| 丰满人妻熟妇乱又伦精品不卡| 免费看十八禁软件| 亚洲精品国产色婷婷电影| 久久人人爽人人片av| 黄片小视频在线播放| 国产精品偷伦视频观看了| 我的亚洲天堂| 亚洲少妇的诱惑av| av网站免费在线观看视频| 夫妻午夜视频| 成人av一区二区三区在线看 | 在线十欧美十亚洲十日本专区| 免费少妇av软件| 一级片免费观看大全| av一本久久久久| 国产精品一二三区在线看| 91精品三级在线观看| 视频区图区小说| 久久精品国产综合久久久| 国产精品麻豆人妻色哟哟久久| 欧美xxⅹ黑人| 天堂8中文在线网| 亚洲国产成人一精品久久久| 天堂中文最新版在线下载| 午夜久久久在线观看| 侵犯人妻中文字幕一二三四区| 国产91精品成人一区二区三区 | 国产99久久九九免费精品| 好男人电影高清在线观看| 大陆偷拍与自拍| 成年女人毛片免费观看观看9 | svipshipincom国产片| 99热全是精品| 美女高潮到喷水免费观看| 日韩一卡2卡3卡4卡2021年| 又黄又粗又硬又大视频| 国产精品久久久人人做人人爽| 久久性视频一级片| 亚洲av片天天在线观看| 国产免费av片在线观看野外av| 国产精品成人在线| 一本综合久久免费| 91麻豆精品激情在线观看国产 | 欧美在线黄色| 国产成人影院久久av| av在线播放精品| 国产日韩欧美亚洲二区| 人成视频在线观看免费观看| 91大片在线观看| 久久久久久久大尺度免费视频| 国产男女超爽视频在线观看| 中国国产av一级| 成年av动漫网址| 国产伦人伦偷精品视频| 久久久久久久久免费视频了| 欧美av亚洲av综合av国产av| a级毛片在线看网站| 精品少妇久久久久久888优播| 好男人电影高清在线观看| 久久精品国产亚洲av高清一级| 制服人妻中文乱码| 亚洲 国产 在线| 久久精品国产亚洲av高清一级| 欧美大码av| 成年av动漫网址| 狠狠狠狠99中文字幕| 久久国产精品人妻蜜桃| 丝袜喷水一区| 久9热在线精品视频| 一本久久精品| 91精品三级在线观看| 国产成人免费观看mmmm| 婷婷色av中文字幕| 欧美在线一区亚洲| 脱女人内裤的视频| av视频免费观看在线观看| 午夜精品久久久久久毛片777| 日韩免费高清中文字幕av| 国产精品久久久人人做人人爽| 精品国产乱码久久久久久小说| 免费在线观看视频国产中文字幕亚洲 | 人人妻人人澡人人看| 色婷婷久久久亚洲欧美| 久久av网站| 日本vs欧美在线观看视频| a 毛片基地| 十八禁网站免费在线| 成人国语在线视频| 在线亚洲精品国产二区图片欧美| 一级,二级,三级黄色视频| 国产av国产精品国产| 国产日韩欧美在线精品| 波多野结衣一区麻豆| 欧美人与性动交α欧美软件| 美女高潮到喷水免费观看| 大片电影免费在线观看免费| 亚洲专区中文字幕在线| 亚洲精品久久久久久婷婷小说| 国产成人精品久久二区二区免费| 亚洲av美国av| 日本猛色少妇xxxxx猛交久久| 丝袜在线中文字幕| 一级片免费观看大全| 午夜福利视频精品| 亚洲视频免费观看视频| 99久久国产精品久久久| 啦啦啦啦在线视频资源| 老鸭窝网址在线观看| 窝窝影院91人妻| 国产真人三级小视频在线观看| 麻豆国产av国片精品| kizo精华| 久久精品人人爽人人爽视色| 欧美大码av| 新久久久久国产一级毛片| 国产黄色免费在线视频| 亚洲va日本ⅴa欧美va伊人久久 | 国产高清国产精品国产三级| 国产日韩欧美在线精品| 极品人妻少妇av视频| 久久久久国产精品人妻一区二区| 大陆偷拍与自拍| 精品第一国产精品| h视频一区二区三区| 热99re8久久精品国产| 国产精品免费视频内射| 老司机影院毛片| 亚洲欧洲精品一区二区精品久久久| 日韩欧美国产一区二区入口| 国产熟女午夜一区二区三区| 99热全是精品| av网站免费在线观看视频| 中文字幕高清在线视频| a级片在线免费高清观看视频| 成人国产av品久久久| 日本五十路高清| 十八禁人妻一区二区| 日韩免费高清中文字幕av| www.999成人在线观看| 婷婷丁香在线五月| 女人被躁到高潮嗷嗷叫费观| 性色av乱码一区二区三区2| 看免费av毛片| 在线观看免费视频网站a站| 国产麻豆69| 国产视频一区二区在线看| 亚洲九九香蕉| 亚洲av片天天在线观看| www.av在线官网国产| 免费av中文字幕在线| 亚洲伊人色综图| 中文欧美无线码| 免费日韩欧美在线观看| 欧美激情高清一区二区三区| 亚洲精品久久午夜乱码| 国产精品香港三级国产av潘金莲| 欧美黄色淫秽网站| 乱人伦中国视频| 久久性视频一级片| 国产视频一区二区在线看| 性色av乱码一区二区三区2| 啦啦啦视频在线资源免费观看| 午夜福利一区二区在线看| 操美女的视频在线观看| 亚洲 国产 在线| 国产精品成人在线| 麻豆乱淫一区二区| 日韩欧美免费精品| 精品国产国语对白av| 精品少妇黑人巨大在线播放| 亚洲欧洲日产国产| 日韩视频在线欧美| 18禁裸乳无遮挡动漫免费视频| 午夜视频精品福利| 香蕉国产在线看| 欧美精品亚洲一区二区| 久久人妻福利社区极品人妻图片| 亚洲中文日韩欧美视频| 亚洲中文av在线| 久久热在线av| 亚洲第一av免费看| 久久久久视频综合| 精品亚洲成国产av| 最新在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 两性夫妻黄色片| 9热在线视频观看99| 欧美日韩亚洲综合一区二区三区_| 久久99热这里只频精品6学生| 国产av一区二区精品久久| 成年女人毛片免费观看观看9 | 咕卡用的链子| 天天添夜夜摸| 美女福利国产在线| 亚洲av日韩精品久久久久久密| 91老司机精品| 男女床上黄色一级片免费看| 欧美大码av| 一区福利在线观看| 2018国产大陆天天弄谢| 巨乳人妻的诱惑在线观看| 菩萨蛮人人尽说江南好唐韦庄| 每晚都被弄得嗷嗷叫到高潮| 18在线观看网站| 成年人午夜在线观看视频| 丝袜美腿诱惑在线| 亚洲欧美日韩高清在线视频 | 中亚洲国语对白在线视频| 欧美国产精品va在线观看不卡| 久久国产精品大桥未久av| av在线播放精品| 深夜精品福利| 高潮久久久久久久久久久不卡| kizo精华| 男女高潮啪啪啪动态图| 久久亚洲精品不卡| 欧美另类一区| 精品人妻在线不人妻| 亚洲免费av在线视频| 亚洲全国av大片| 一区在线观看完整版| 亚洲欧美激情在线| 国产黄频视频在线观看| 在线观看www视频免费| 亚洲精品日韩在线中文字幕| 国产视频一区二区在线看| 最近最新免费中文字幕在线| 久久久久国产精品人妻一区二区| 亚洲精品日韩在线中文字幕| 丝袜脚勾引网站| 精品免费久久久久久久清纯 | 免费在线观看日本一区| 捣出白浆h1v1| 久久国产精品人妻蜜桃| 国产精品二区激情视频| 91大片在线观看| 免费少妇av软件| 久久这里只有精品19| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区黑人| 在线十欧美十亚洲十日本专区| 免费观看人在逋| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品在线电影| netflix在线观看网站| 女性生殖器流出的白浆| 精品国产国语对白av| 91成年电影在线观看| 在线观看免费高清a一片| 国产精品九九99| 一级毛片女人18水好多| 日韩,欧美,国产一区二区三区| 黄色怎么调成土黄色| 国产精品二区激情视频| 国产av国产精品国产| 捣出白浆h1v1| 午夜福利视频精品| 99国产综合亚洲精品| 午夜日韩欧美国产| 国产精品av久久久久免费| 91九色精品人成在线观看| 91成年电影在线观看| 亚洲中文日韩欧美视频| 丝袜美腿诱惑在线| 色婷婷久久久亚洲欧美| av超薄肉色丝袜交足视频| 欧美日韩精品网址| 日韩大码丰满熟妇| 国产一级毛片在线| 亚洲欧美成人综合另类久久久| 999久久久国产精品视频| 美女主播在线视频| 亚洲精品一区蜜桃| 老司机午夜福利在线观看视频 | 国产欧美日韩一区二区三 | 精品视频人人做人人爽| 欧美另类一区| 一本一本久久a久久精品综合妖精| 亚洲国产精品一区三区| 一二三四社区在线视频社区8| 人人澡人人妻人| 亚洲成av片中文字幕在线观看| 50天的宝宝边吃奶边哭怎么回事| 黄色视频不卡| 99久久综合免费| 免费高清在线观看日韩| 99国产精品一区二区三区| 日本a在线网址| 成年人午夜在线观看视频| 啪啪无遮挡十八禁网站| 亚洲成人免费电影在线观看| 一区在线观看完整版| 中文字幕制服av| 国产成人一区二区三区免费视频网站| 91成人精品电影| 老司机午夜福利在线观看视频 | 侵犯人妻中文字幕一二三四区| 国产在线视频一区二区| 亚洲精品美女久久久久99蜜臀| 69av精品久久久久久 | 午夜久久久在线观看| 午夜视频精品福利| 一级,二级,三级黄色视频| 亚洲av成人一区二区三| 18禁国产床啪视频网站| 久久久久久亚洲精品国产蜜桃av| 午夜精品国产一区二区电影| tocl精华| 国产精品久久久久久精品古装| 大香蕉久久成人网| 亚洲欧美激情在线| 国产成人影院久久av| 亚洲欧美日韩另类电影网站| 美女大奶头黄色视频| 成年人午夜在线观看视频| 久久精品国产亚洲av高清一级| 中文字幕精品免费在线观看视频| 叶爱在线成人免费视频播放| 国产欧美日韩精品亚洲av| 一本色道久久久久久精品综合| 狠狠精品人妻久久久久久综合| 在线看a的网站| av电影中文网址| 女性生殖器流出的白浆| 久久久久久久久免费视频了| 无遮挡黄片免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区三区乱码不卡18| 亚洲精品国产精品久久久不卡| 欧美少妇被猛烈插入视频| 久久久久久人人人人人| 最近最新免费中文字幕在线| netflix在线观看网站| 男女床上黄色一级片免费看| 免费久久久久久久精品成人欧美视频| 日本五十路高清| 欧美日韩一级在线毛片| 一二三四在线观看免费中文在| 天堂中文最新版在线下载| 久久精品国产综合久久久| av有码第一页| 一级毛片女人18水好多| 久久精品熟女亚洲av麻豆精品| 如日韩欧美国产精品一区二区三区| 热re99久久国产66热| 国产男女超爽视频在线观看| 免费在线观看日本一区| 欧美+亚洲+日韩+国产| 欧美变态另类bdsm刘玥| 国产一区二区三区av在线| 精品第一国产精品| 人人妻,人人澡人人爽秒播| 两性夫妻黄色片| 午夜激情av网站| 亚洲精品中文字幕一二三四区 | 精品久久久精品久久久| 国产三级黄色录像| 人人澡人人妻人| 18禁国产床啪视频网站| 午夜成年电影在线免费观看| 巨乳人妻的诱惑在线观看| 夜夜夜夜夜久久久久| 久久人人97超碰香蕉20202| 亚洲熟女精品中文字幕| 亚洲精品第二区| 国产成人精品无人区| 国产成+人综合+亚洲专区| 亚洲av日韩精品久久久久久密| 日日爽夜夜爽网站| 亚洲精品美女久久av网站| 91老司机精品| 国产男人的电影天堂91| 亚洲国产欧美日韩在线播放| 亚洲精华国产精华精| 热99国产精品久久久久久7| 人人妻人人澡人人爽人人夜夜| 黄片播放在线免费| 国产精品国产av在线观看| 老司机午夜福利在线观看视频 | 欧美少妇被猛烈插入视频| 少妇精品久久久久久久| 国产一区二区在线观看av| 飞空精品影院首页| a在线观看视频网站| 一二三四在线观看免费中文在| 久久99一区二区三区| 国产在视频线精品| 性色av乱码一区二区三区2| 我要看黄色一级片免费的| 美女脱内裤让男人舔精品视频| 777久久人妻少妇嫩草av网站| 后天国语完整版免费观看| av天堂在线播放| 多毛熟女@视频| 国产欧美亚洲国产| www日本在线高清视频| 亚洲人成电影观看| 精品人妻1区二区| 欧美另类一区| 91成年电影在线观看| 下体分泌物呈黄色| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜影院在线不卡| 高潮久久久久久久久久久不卡| 丝袜美腿诱惑在线| 日韩中文字幕欧美一区二区| 日本vs欧美在线观看视频| 考比视频在线观看| 91精品国产国语对白视频| 欧美xxⅹ黑人| 老汉色∧v一级毛片| 欧美黄色淫秽网站| 国产伦理片在线播放av一区| 国产亚洲精品一区二区www | 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品古装| 在线av久久热| 一本一本久久a久久精品综合妖精| 在线观看舔阴道视频| 一级片免费观看大全| 三上悠亚av全集在线观看| 老司机午夜福利在线观看视频 | 精品国产乱码久久久久久男人| 久久人人爽人人片av| 老司机午夜十八禁免费视频| 两个人免费观看高清视频| 美女福利国产在线| 麻豆av在线久日| 日韩制服丝袜自拍偷拍| av一本久久久久| 国产一区二区三区在线臀色熟女 | 视频区图区小说| 一区二区日韩欧美中文字幕| 中文字幕高清在线视频| 中国美女看黄片| 人人妻,人人澡人人爽秒播| 丰满人妻熟妇乱又伦精品不卡| 亚洲av日韩精品久久久久久密| 九色亚洲精品在线播放| 久久这里只有精品19| 热99久久久久精品小说推荐| 9191精品国产免费久久| 18在线观看网站| videos熟女内射| 国产精品一区二区免费欧美 | 性色av一级| 久久久久视频综合| 国产一区二区三区综合在线观看| 美女国产高潮福利片在线看| 欧美日韩福利视频一区二区| 亚洲精品久久成人aⅴ小说| 91精品伊人久久大香线蕉| 色精品久久人妻99蜜桃| av线在线观看网站| 欧美大码av| 免费观看人在逋| 国产一级毛片在线| 免费久久久久久久精品成人欧美视频| 国产欧美日韩精品亚洲av| 色老头精品视频在线观看| 18禁黄网站禁片午夜丰满| 精品人妻在线不人妻| 99久久99久久久精品蜜桃| 这个男人来自地球电影免费观看| 精品亚洲成国产av| 久久久久久久精品精品| 伊人亚洲综合成人网| 日韩制服丝袜自拍偷拍| 制服人妻中文乱码| 欧美xxⅹ黑人| 午夜精品国产一区二区电影| 精品一区在线观看国产| 中文字幕另类日韩欧美亚洲嫩草| 婷婷成人精品国产| 熟女少妇亚洲综合色aaa.| 国产一区二区激情短视频 | 99久久国产精品久久久| 国产不卡av网站在线观看| 搡老熟女国产l中国老女人| 欧美成狂野欧美在线观看| 青春草视频在线免费观看| 亚洲成人手机| 青草久久国产| 精品视频人人做人人爽| 王馨瑶露胸无遮挡在线观看| 在线观看免费日韩欧美大片| 国产真人三级小视频在线观看| 国产成人免费无遮挡视频| 国产黄色免费在线视频| 亚洲欧美色中文字幕在线| 中文字幕av电影在线播放| 亚洲av国产av综合av卡| 午夜影院在线不卡| 午夜福利视频精品| 在线观看免费日韩欧美大片| 男女无遮挡免费网站观看| 99久久综合免费| 久久九九热精品免费| 日韩视频在线欧美| 亚洲av片天天在线观看| 两性夫妻黄色片| 国产主播在线观看一区二区| 欧美日韩国产mv在线观看视频| 国产av又大| 午夜福利乱码中文字幕| 欧美日韩国产mv在线观看视频| 欧美日韩视频精品一区| 久热这里只有精品99| 无限看片的www在线观看| 成年人免费黄色播放视频| 亚洲专区国产一区二区| 爱豆传媒免费全集在线观看| 欧美激情极品国产一区二区三区| 一区在线观看完整版| 精品人妻在线不人妻| 高清欧美精品videossex| bbb黄色大片|