• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Floquet bands and photon-induced topological edge states of graphene nanoribbons?

    2021-06-26 03:04:12WeijieWang王威杰Xiaolong呂小龍andHangXie謝航
    Chinese Physics B 2021年6期
    關(guān)鍵詞:小龍

    Weijie Wang(王威杰), Xiaolong L¨u(呂小龍), and Hang Xie(謝航)

    College of Physics,Chongqing University,Chongqing,China

    Keywords: Floquet bands,graphene,topological phase transition,edge states

    1. Introduction

    In recent years, the periodically-driven systems have attracted a lot of research concerns. By using the Floquet theorem to these systems,the time-dependent system can be transformed into the steady system with the infinite-dimensional Floquet Hamiltonian. This Hamiltonian generates a serial of quasienergies due to Floquet band branches in the energy domain.[1]

    Under the light radiation,graphene-like 2D materials can obtain some topological properties,such as the photo-induced Hall effect,as well as some photo-induced energy gaps.[2]Recently, this type of Hall effect has also been experimentally observed.[3]In addition,the graphene system under illumination may exhibit edge current and magnetic field.[4]Moreover,it is experimentally and theoretically confirmed that radiated graphene has the quantum-rachet effect,which causes the unidirectional current.[5]According to the Floquet theorem, under the periodic perturbations of external fields,both graphene and the Su–Schrieffer–Heeger systems can generate unidirectional currents and various topological phases.[6,7]Besides,the light resonance may cause some suppression effect of ballistic conduction in graphene systems.[8]

    In the aspect of topological properties,researchers found that radiated graphene nanoribbons (GNR) have the dynamic gaps, in which there exist some topological chiral edge states.[9]These edge states have a bulk–edge correspondence with the topological characteristics of its bulk system.[10,11]More recently, in the Floquet researches, some high-Chernnumber systems are discovered in the systems with the complex periodic perturbations (such as quenching systems).[12]Under the high-frequency approximation, one can derive the effective Hamiltonian with one or more perturbation terms(by the Brillouin–Wigner theory)in the hexagonal lattice of twodimensional materials.[13,14]Besides, some experimental observations have also revealed the Floquet–Bloch states and the interaction with the dressed Volkov states in the topological insulator with the Dirac fermions, which established a systematic path for the coherent manipulation of solids via lightmatter interaction.[15,16]

    However,many of the current works on the topology analysis and quantum transport of radiated two-dimensional materials are based on the high-frequency approximation.[13,17–21]In the realistic graphene systems,due to the large hopping energy of 2D materials (from 1 eV to 3 eV), the corresponding high-frequency light(with the energy about above 10 eV)goes into the ultraviolet range. This is experimentally unrealistic and can result in the photon-ionization of the samples.Therefore,the low-frequency illumination is more suitable for experimental researches of Floquet electronic systems. We notice that some recent theoretical work considers the lowfrequency systems, such as the effective Hamiltonian model reported by Voglet al.[22]and the topological phase transition studies of black phosphorene by Kanget al.[23]Besides,Usajet al.[9]and Torreset al.[24]considered the frequencies smaller than the bandwidth of the Floquet topological insulator, and analyzed the edge states and the transport properties.Perez-Piskunowet al.[25]found the hierarchy of Floquet gaps and topological phase transitions in the driven honeycomb lattices with the very low driven frequencies. But the detailed investigations of the topological properties of the graphene system,as well as the edge state distributions and its relation with the photon excitations at low (or arbitrary) frequencies, still remain unexplored.

    In this paper,we use the non-perturbative Floquet Hamiltonian and Berry curvature formula to study the Chern numbers at arbitrary frequency.We find that there exist many types of photo-induced edge states and high-Chern-number states in the low frequency range,besides the ordinary quantum anomalous Hall(QAH)states with the Chern number of±1 under the high-frequency illumination. All these edge states have topological properties and follow the bulk–edge correspondence.We also find the correspondence of the Floquet bands and the edge states distributions in the decomposed photon-number space.Moreover,we investigate the size effect in zigzag GNR.

    This paper is organized as follows. Section 2 gives the theoretical introduction of this work, including the theory of the Floquet band for graphene systems and the Chern numbers calculation method. Section 3 shows our results and discussion, including the topological phase transitions of GNR, the band structures, the edge state profiles in the photo-number space,and the size/photo-number effects. Section 4 gives the conclusions of this work.

    2. Theories and methods

    2.1. Floquet–Bloch Hamiltonian for the honeycomb lattice systems

    In this work, we use the tight-binding model for the graphene system with the nearest neighbor approximation

    wherec+iandciare the electron creation and annihilation operators at sitei,εiis the on-site energy,andγi j(t)is the timedependent hopping energy between sitesiandj;〈i,j〉means the hopping only occurs between the nearest neighbors.

    We consider a beam of circularly-polarized light vertically radiated on the graphene plane. The photon–electron interaction is considered by modifying the hopping parameters with the Peierls substitution[25]

    whereΦ0=h/eis the quantum flux with the Planck constanthand elementary chargee;γ0is the hopping energy between sitesiandjwithout radiation,riandrjare the positions of the two sites; andA(t)is the vector potential of the light. In the case of the circular polarization with angular frequencyωand amplitudeA0,A(t)=A0(cosωt,sinωt);the corresponding electric field is given asE(t)=E0(?sinωt,cosωt)withE0=A0ω.

    Since the Hamiltonian of the light-driven system is periodic in time domain with the periodT,H(t)=H(t+T)andT=2π/ω,we may use the Fourier transformation to change the time-dependent Hamiltonian into the frequency domain according to the Floquet theory[1]

    whereεnis the quasienergy;HnandFnare the Fourier component of the Hamiltonian and the wave function, respectively.The former component is calculated as

    We can also write the whole HamiltonianHFin the extended Floquet–Hilbert(Sambe)space as[13]

    In practical calculations, people use the photon-number cut-off scheme to change the above infinite-dimensional Floquet matrix into some small Floquet matrix, which only includes finite Fourier components of the Hamiltonian. For example, the following Floquet Hamiltonian is cut off by one photon number(NF=1):

    Figure 1 shows the lattice of the bulk graphene. With the tight-binding approximation and the Bloch theorem, we may obtain the Hamiltonian in the momentum space

    wherekis the Bloch wavevector in two dimensions, andγ0is the hopping energy between the nearest neighboring sites.When we consider the light radiation, the Peierls substitution(Eq. (2)) is employed. The Fourier component of the timedependent Hamiltonian is calculated as

    In our case, the vector potential is approximately spatial uniform in the region of the nearest neighboring atom sites(landl')of graphene. So the hopping energy under radiation can be written as

    The vector potential of the circularly polarized light is given asA=A0(cosωt·x+sinωt·y); and the displacement between two neighboring atoms isrl'l=rl'?rl=a(cosαl'l·x+sinαl'l·y), whereαl'lis the angle betweenrl'landxaxis. Substituting these expressions into Eq.(10),we obtain

    where?l'l=αl'l ?π/2 is the angle betweenrl'landy-axis(see Fig.1,?l'lforr1,r2,andr3are 0,θ,and?θ,respectively).Then by applying the Jacobi–Anger expansion

    whereJm(x)is them-th order Bessel function, Eq.(9)can be rewritten as

    Similarly,H?1andH?2expressions can also be derived by this way.

    For the GNR system under the light radiation,we also use the Peierls substitution to Eq.(1)and use the Floquet theorem to obtain the Floquet Hamiltonian.

    Fig.1. Honeycomb lattice of graphene and GNR in the real space. The bond length is a and the dashed rectangle box denotes the unit cell of GNR(with the period b and Ny repeat units in y direction),r1,r2,and r3 are the three vectors between the nearest-neighboring sites.

    2.2. The Berry curvature and Chern number calculations

    When the Hamiltonian in the momentum space is obtained, we can calculate the Chern number, which can characterize the topological property of the Floquet system. The Chern number of then-th band is defined by an integral in the first Brillouin zone(FBZ)

    In this paper, we use a more efficient numerical method to calculate the Berry curvature and the Chern number.[26]Firstly,we define the following normalized link quantities:

    where ? is the infinitesimal shift inxorydirection;N1(k),N2(k),N12(k), andN21(k) are the corresponding normalization constants, for exampleN1(k) =|〈n(k1,k2)|n(k1+?,k2)〉|. The Chern number can be evaluated as the Berry curvature summation in the discretized FBZ

    Here we give an equivalence proof between this new formula and the original Berry curvature definition (Eq. (15)).With the Taylor expansion and ignoring the higher order, we haven(k1+?,k2)≈n(k1,k2)+?k1n(k1,k2)·?. Substituting this into Eq.(18a),we have

    Then with the Taylor expansion of logarithm function ln(1+x)≈xand Eq.(16),we obtain

    Similarly,we can prove that

    Thus we see that Eq.(20)is the discretized form of Eq.(15),and these two methods are equivalent.

    3. Results and analyzing

    In order to better describe the results, we set a fixed electric field asE0=γ0/(ea) throughout the paper. With otherE0values, we may have similar results. Figures 2(a)–2(b) show that in different driven frequencies, the graphene is in different topological phases with corresponding Chern numbers. We name the three topological phases as phase A(?ω>5.96γ0), phase B (2.92γ0≤?ω ≤5.96γ0), and phase C (1.4γ0≤?ω <2.92γ0) in Fig. 2(b). In the Floquet calculations, we need to set a proper cutoff value (NF) due to the infinite dimension of the Floquet Hamiltonian. In Fig. 2, we draw the Chern number curves as a function of different driven frequencies withNF=1 andNF=2. We can see that the Chern number curves shown in Figs.2(a)and 2(b)are coincident in the region of 1.4γ0≤?ω ≤7γ0,while they are different in the region ofγ0≤?ω <1.4γ0. In this low-frequency range,more Floquet bands(or largerNFvalue)should be used for convergence. So we may conclude that in the frequency region of ?ω ≥1.4γ0, the Chern numbers are converged withNF=1 and 2. Appendix A also shows that with ?ω=1.4γ0,the band structures of GNR are converged only whenNF≥2. In this work, we just focus on the region of 1.4γ0≤?ω ≤7γ0, and we takeNF=2 throughout this paper. Figures 2(c) and 2(d)show the Berry curvature distributions withNF=2 and different ?ωvalues. We can see that all the Berry curvature peaks are around the Dirac points.

    Fig.2. Chern-number phase diagrams with(a)NF=1 and(b)NF=2. Berry curvature distributions with different driven frequencies[(c)?ω=2γ0,(d)?ω=3.5γ0]in the Floquet graphene system(E0=γ0/(ea)).

    In Fig.2,there are three topological phases in the region of 1.4γ0≤?ω ≤7γ0, with the Chern numbers of 2, 3, and 1. For zigzag GNR systems,these topological phases also exhibit the bulk–edge correspondence from the band structures.Figures 3(a)–3(c)show the results. We can see that under the radiation,there appear some edge-state bands across the original gap near the zero energy (called as 0-gap). And there appears a new dynamic gap aroundE=±?ω/2 with some edge-state bands across this gap.[9]This new gap results from the anti-crossing of the two intersecting band replicas(with the photon numbersn=0 andn=±1),due to the coupling Floquet matrices. This gap is called theπ-gap since it is similar to the gaps near the Brillouin zone boundary.[22]In Fig.3(a),with ?ω= 7γ0we see that there just exists one edge state(red line) within 0-gap in the upper GNR edge. In Fig. 3(b)with ?ω=4γ0,there are not only one pair of edge-state bands within 0-gap,but also two pairs of edge-state bands withinπg(shù)ap. And in Fig.3(c),there are two types of edge states bands within 0-gap(one in the middle and one at the two sides of the band range[0,2π/b]).

    Here we show that the bulk–edges correspondence also holds in the graphene system under different radiation frequencies.We define the net chirality of edge states in the upper edge as the winding number,denoted asW0(in 0-gap)andWπ(inπ-gap). The net chirality is the sum of the edge-state numbers, which is positive for the positive slope of the band; and negative for the negative slope of the band. Then we calculatec=Wπ ?W0, wherecis the Chern number of the band between 0-gap andπ-gap.[10,27]Table 1 lists all these quantities in the three phases. We can see that the calculated Chern numbers agree well with our numerical results in Fig.2(b).

    Table 1. The winding numbers and Chern numbers in different topological phases of GNR.

    Fig.3. Quasienergy spectra of zigzag GNR with the size Ny=40 at different driven frequencies: (a)?ω =7γ0;(b)?ω =4γ0;(c)?ω =2γ0. The red lines denote the upper-edge states,and the blue lines denote the lower-edge states.

    Fig.4.Projected 2D band structures of Floquet graphene system with different frequencies(ky=0):(a)?ω=6.5γ0,(b)?ω=5.96γ0,(c)?ω=4γ0,(d)?ω =2.92γ0,(e)?ω =2.5γ0. The different colors denote different Floquet bands,for example,blue: n=0;red: n=1;black: n=?1;green:n=2. The circles in(b)and(d)denote the band close(touching)regions between n=0 and n=1,or n=?1 and n=1 replicas,respectively.

    In order to explain the topological phase transition as a function of frequency,we show the Floquet band structures in Fig.4. We use the projected band structures from the 2D Floquet bands for a clear view. In Ref.[28], it was reported that the 0-gap orπ-gap close and reopening means the occurrence of a topological phase transition. In Fig. 4(a), the frequency lies in the phase A range (see Fig. 2(a)). It shows that there is almost no coupling betweenn= 0 andn= 1 (?1) Floquet bands(replica). Then as the driven frequency decreases,the Floquet bands approach to each other and in some critical stage,n=0 andn=1 (?1) replicas tend to get touched and theπ-gap almost closes(Fig.4(b)). But when further reducing the frequency,theπ-gap is reopened(Fig.4(c)),which means the topological phase transition(from phaseAto phaseB)happens. From the colored bands in Fig.4(c), we can see that then=1 andn=0 Floquet bands are intersected nearπ-gap and are anti-crossed near the cross-points. With the similar analysis,from Figs.4(c)–4(e),there exists a gap close and reopening near 0-gap. Therefore,phase B is transformed into phase C.In Fig.4(e), we also see that the corresponding coupled (hybrid) band near 0-gap is withn=1 andn=?1 replicas. As will be seen in Fig. 5 later, these coupled Floquet bands will result in different edge state distributions in the decomposed photon-number space.

    Fig. 5. Electron density distribution of edge states in GNR in the decomposed photon-number space (Ny =40) (a) The edge states in 0-gap with ?ω =7γ0. (b)The edge states in π-gap with ?ω =4γ0. (c)The edge states in the side parts of 0-gap with ?ω =2γ0. The red lines denote the situation of dE/dk >0,and the blue lines denote dE/dk <0.

    Next we show the electron density distribution in the decomposed photon-number space to analyze the origin of the edge states. In Fig. 5(a), the density distribution of the edge states within 0-gap (shown in Fig. 3(a)) only exists inn=0 Floquet photon number space,which means there is no photon resonance. In Fig.5(b),we plot the density distributions of the edge states withinπ-gap(shown in Fig.3(b)).We find they exist inn=0 andn=1 photon number space,which clearly indicates that the edge states originate from the one-photon resonance of the light. It also agrees with the hybrid 2D Floquet bands in Fig. 4(c), wheren=0 andn=1 replica bands are coupled and anti-crossed nearπ-gap. Similarly, in Fig. 5(c),the density distribution with respect to the edge states within 0-gap in Fig. 3(c) mostly exists inn=?1 andn=1 photon number space and only a small amount inn=0 photon number space, which means the edge states are mainly from the two-photons resonance and secondarily from two constructive one-photon resonances. We notice that Kang,Park and Moon also found such resonances in the Floquet bands of black phosphorene systems recently.[23]And these edge-state density distributions are also consistent with the hybrid 2D Floquet bands in Fig.4(e).

    At last, we give a discussion on the size effect of these Floquet edge states. All the band structures in Fig. 6 are in phase B. When ?ω=5γ0, we find with increasing the ribbon width,theπ-gap and the edge states in this gap are gradually formed(see Figs.6(a)–6(c)). From this,we see that although there existsπ-gap for bulk graphene as long as the frequency lies in the phase B range (2.92γ0≤?ω ≤5.96γ0), the GNR band can exhibit this gap and the corresponding edge states only with the large-enough ribbon width. We also observe this size effect for the frequency ofω=5.8γ0(Figs. 6(d)–6(f)).Compared to the ones in Figs. 6(a)–6(c), a larger width is needed to generate theπ-gap and the edge states since the frequency is close to the topological transition point (?ω=5.96γ0). So the size effect plays an important role in the GNR Floquet systems,especially for the frequency close to the transition point.

    Fig.6. Size effect for energy bands of GNR under light radiation with different ribbon widths: (a)–(c)?ω=5γ0,(d)–(f)?ω=5.8γ0.

    4. Conclusion

    To summarize,we have investigated the phase transitions of graphene under light irradiation,and verified the bulk–edge correspondence by calculating the Chern number and analyzing the winding numbers of edge states in the Floquet gaps.We also have used the projected 2D Floquet bands and GNR

    1D bands to analyze its density distributions in the decomposed photon-number space. The origin of the Floquet edge states has been discussed. The size effect in the GNR system is important and becomes strengthened when the driven frequency is close to the phase transition point.

    Appendix A

    To further demonstrate the reliability of our calculations,we give an example for the photon number convergence in GNR band calculations. We use differentNFvalues and plot the corresponding GNR bands below. The low driven frequency (?ω=1.4γ0) on the lower boundary of phase range C is used.

    In Fig. A1, we see that the Floquet band withNF=2 is almost as the same as that withNF=3. ButNF=1 is vastly different, especially inπ-gap. Let us explain it more theoretically. In the Floquet Hamiltonian matrix(Eq.(5)),the coupling matrix elementHnis proportional to the Bessel functions of the first kindHn∝Jn(z)withz=eA0a/?.

    Fig. A1. Quasienergy spectra of zigzag GNR (Ny =40) with different NF values: (a)NF =1; (b)NF =2; (c)NF =3. The corresponding parameters E0=γ0/(ea)and ?ω =1.4γ0.

    Becausez=E0/?ω ≈0.7 in our example, we see thatJn(z)is small enough to be ignored when|n|≥2(Fig.A2(b)).Then according to Fig.A1,we can conclude that the result ofNF=2 is reliable enough with 1.4γ0≤ω ≤7γ0. Meanwhile,we emphasize here that there needs an even largerNFvalue to insure the accuracy and converge of Floquet band calculation when the driven frequency is further smaller. The cut-off value can be estimated from the Bessel function variations in Fig.A2.

    Fig.A2. (a)The behaviors of the Bessel functions of the first kind(Jn(z),n ∈[0,4]). (b)The Bessel functions Jn(0.7)with different n values.

    猜你喜歡
    小龍
    《小龍的假日》
    El regreso del dragón
    Erratum to“Floquet bands and photon-induced topological edge states of graphene nanoribbons”
    Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring*
    小小小小龍
    新書架
    河南電力(2017年1期)2017-11-30 03:04:23
    劉小龍
    董小龍赴寶雞市宣講黨的十八屆六中全會(huì)精神
    讓“數(shù)”“形”結(jié)合更暢通
    風(fēng)中的祈禱詞
    詩(shī)選刊(2015年4期)2015-10-26 08:45:28
    亚洲欧美一区二区三区国产| 精品熟女少妇av免费看| 最近2019中文字幕mv第一页| 多毛熟女@视频| 亚洲av中文av极速乱| 亚洲国产日韩一区二区| 蜜桃久久精品国产亚洲av| 大码成人一级视频| 大又大粗又爽又黄少妇毛片口| 精品一区二区免费观看| 黄色一级大片看看| 熟妇人妻不卡中文字幕| 99九九在线精品视频 | 久久午夜综合久久蜜桃| 午夜av观看不卡| 日本免费在线观看一区| 赤兔流量卡办理| 中文乱码字字幕精品一区二区三区| 亚洲欧洲日产国产| 日本色播在线视频| 国产免费福利视频在线观看| 在线播放无遮挡| 香蕉精品网在线| 男人和女人高潮做爰伦理| 亚洲av福利一区| 成人黄色视频免费在线看| 人体艺术视频欧美日本| 亚洲欧美成人精品一区二区| 亚洲不卡免费看| 午夜91福利影院| 国产视频首页在线观看| 久久精品国产自在天天线| 十八禁网站网址无遮挡 | 美女脱内裤让男人舔精品视频| 国产成人精品一,二区| 日本黄色片子视频| 亚洲高清免费不卡视频| 自拍欧美九色日韩亚洲蝌蚪91 | 婷婷色综合www| 久久午夜综合久久蜜桃| 少妇人妻久久综合中文| 亚洲精品亚洲一区二区| 伊人久久精品亚洲午夜| 精品亚洲乱码少妇综合久久| 熟妇人妻不卡中文字幕| 51国产日韩欧美| 最近中文字幕高清免费大全6| www.色视频.com| 高清午夜精品一区二区三区| 色5月婷婷丁香| 亚洲精品乱码久久久v下载方式| 久久久久国产精品人妻一区二区| 青青草视频在线视频观看| 99久久精品热视频| 人妻夜夜爽99麻豆av| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影小说| 久久久久视频综合| 自拍偷自拍亚洲精品老妇| 欧美激情极品国产一区二区三区 | 男女边摸边吃奶| 成人免费观看视频高清| 亚洲av成人精品一区久久| 久久精品夜色国产| 一二三四中文在线观看免费高清| 欧美日韩精品成人综合77777| 国产在线免费精品| 久久国产精品男人的天堂亚洲 | 成人午夜精彩视频在线观看| 免费看av在线观看网站| 婷婷色综合www| 嫩草影院入口| 日韩大片免费观看网站| 男人舔奶头视频| 国产av精品麻豆| 久久这里有精品视频免费| 午夜精品国产一区二区电影| 99久久精品一区二区三区| 国产精品三级大全| 午夜日本视频在线| 国产av精品麻豆| 久久亚洲国产成人精品v| videos熟女内射| 亚洲精品第二区| 一区二区三区免费毛片| 亚洲av男天堂| 欧美日韩视频精品一区| 三级国产精品欧美在线观看| 国产精品不卡视频一区二区| 日本91视频免费播放| av线在线观看网站| 一级黄片播放器| 精品少妇内射三级| 91久久精品国产一区二区三区| 国内揄拍国产精品人妻在线| 寂寞人妻少妇视频99o| av有码第一页| 亚洲无线观看免费| 精品亚洲成a人片在线观看| 天堂俺去俺来也www色官网| 热99国产精品久久久久久7| 高清不卡的av网站| 黄色怎么调成土黄色| a级毛片免费高清观看在线播放| 国产真实伦视频高清在线观看| 亚洲久久久国产精品| 国产伦精品一区二区三区四那| 三级国产精品片| 亚洲精品日本国产第一区| 91久久精品国产一区二区成人| 午夜av观看不卡| 制服丝袜香蕉在线| 亚洲中文av在线| 人人妻人人爽人人添夜夜欢视频 | 久久精品熟女亚洲av麻豆精品| 国产乱来视频区| 国语对白做爰xxxⅹ性视频网站| √禁漫天堂资源中文www| 女人精品久久久久毛片| 3wmmmm亚洲av在线观看| 三级国产精品欧美在线观看| 国产欧美亚洲国产| 久久久精品免费免费高清| 午夜精品国产一区二区电影| 婷婷色av中文字幕| 男人爽女人下面视频在线观看| 噜噜噜噜噜久久久久久91| 色吧在线观看| 日本色播在线视频| 伊人亚洲综合成人网| h日本视频在线播放| 亚洲av成人精品一区久久| 性色av一级| 简卡轻食公司| 亚洲综合精品二区| 一区二区三区四区激情视频| 伦理电影免费视频| 丰满乱子伦码专区| 26uuu在线亚洲综合色| 亚洲内射少妇av| 亚洲一区二区三区欧美精品| av.在线天堂| 性高湖久久久久久久久免费观看| 国产日韩欧美在线精品| 久久精品国产a三级三级三级| 最近的中文字幕免费完整| 男人爽女人下面视频在线观看| 一区二区三区免费毛片| 国产精品人妻久久久影院| 亚洲国产av新网站| 免费观看a级毛片全部| 亚洲精品视频女| 91久久精品电影网| 亚洲经典国产精华液单| 免费看光身美女| 一级爰片在线观看| 男女无遮挡免费网站观看| 成人美女网站在线观看视频| 国产日韩欧美视频二区| 乱系列少妇在线播放| 中文字幕精品免费在线观看视频 | 日本欧美视频一区| 91精品一卡2卡3卡4卡| 国产淫语在线视频| 亚洲av在线观看美女高潮| 久热久热在线精品观看| 观看美女的网站| 少妇人妻一区二区三区视频| 国产女主播在线喷水免费视频网站| 亚洲,欧美,日韩| 精品亚洲乱码少妇综合久久| 欧美成人午夜免费资源| 亚洲国产毛片av蜜桃av| 久久精品熟女亚洲av麻豆精品| 国产色婷婷99| 乱码一卡2卡4卡精品| 国产精品伦人一区二区| 少妇人妻精品综合一区二区| 国产精品一区www在线观看| 男人和女人高潮做爰伦理| 能在线免费看毛片的网站| 国语对白做爰xxxⅹ性视频网站| 六月丁香七月| 黄色毛片三级朝国网站 | 欧美丝袜亚洲另类| 老司机影院成人| av不卡在线播放| 色婷婷久久久亚洲欧美| a 毛片基地| 麻豆精品久久久久久蜜桃| 热re99久久精品国产66热6| 99热这里只有精品一区| 自线自在国产av| av在线app专区| 高清在线视频一区二区三区| 亚洲精品乱码久久久v下载方式| 欧美xxxx性猛交bbbb| 99九九在线精品视频 | 国产精品久久久久久精品古装| 国产免费视频播放在线视频| av一本久久久久| √禁漫天堂资源中文www| 亚洲国产精品专区欧美| 亚洲精品亚洲一区二区| 精品久久久久久久久亚洲| 精品久久国产蜜桃| 免费观看性生交大片5| 欧美精品亚洲一区二区| 国产日韩欧美亚洲二区| 成年女人在线观看亚洲视频| 成年人免费黄色播放视频 | 一个人看视频在线观看www免费| 日日摸夜夜添夜夜添av毛片| 午夜视频国产福利| 高清在线视频一区二区三区| 丝袜在线中文字幕| 99热6这里只有精品| 狂野欧美白嫩少妇大欣赏| 久久久久久久精品精品| 校园人妻丝袜中文字幕| 久久99热这里只频精品6学生| 春色校园在线视频观看| 中文字幕亚洲精品专区| h视频一区二区三区| 国产熟女欧美一区二区| 国产免费福利视频在线观看| 如日韩欧美国产精品一区二区三区 | 亚洲真实伦在线观看| 一级毛片 在线播放| 精品久久国产蜜桃| 大片电影免费在线观看免费| 卡戴珊不雅视频在线播放| 国产美女午夜福利| 男人和女人高潮做爰伦理| 亚洲欧美中文字幕日韩二区| 色视频www国产| 晚上一个人看的免费电影| 免费人成在线观看视频色| 亚洲无线观看免费| 免费人成在线观看视频色| av视频免费观看在线观看| 伦理电影大哥的女人| 夫妻性生交免费视频一级片| 国产成人精品久久久久久| 国产亚洲5aaaaa淫片| 69精品国产乱码久久久| xxx大片免费视频| 久久青草综合色| 日韩欧美精品免费久久| 国产成人免费无遮挡视频| 男男h啪啪无遮挡| 高清不卡的av网站| 国产av国产精品国产| 日韩免费高清中文字幕av| 国精品久久久久久国模美| 国产高清有码在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 麻豆成人午夜福利视频| 丝瓜视频免费看黄片| 国产色婷婷99| 精品亚洲乱码少妇综合久久| 18+在线观看网站| 久久久久久久久久成人| 男男h啪啪无遮挡| 国产亚洲精品久久久com| 国产成人aa在线观看| 欧美成人精品欧美一级黄| 精品久久久噜噜| 成年人免费黄色播放视频 | 乱码一卡2卡4卡精品| 在线观看免费视频网站a站| 高清黄色对白视频在线免费看 | 久久青草综合色| 亚洲国产最新在线播放| 久久精品久久久久久久性| 久久久久网色| 国产一级毛片在线| 五月天丁香电影| 欧美成人精品欧美一级黄| 精品一品国产午夜福利视频| 三级经典国产精品| 这个男人来自地球电影免费观看 | 午夜福利影视在线免费观看| 99热这里只有精品一区| 国产成人精品一,二区| 人体艺术视频欧美日本| 3wmmmm亚洲av在线观看| 欧美日韩精品成人综合77777| 777米奇影视久久| 久久97久久精品| 麻豆乱淫一区二区| 国产日韩欧美在线精品| 亚洲中文av在线| 亚洲欧美精品专区久久| 日韩强制内射视频| 人妻人人澡人人爽人人| 亚洲精品成人av观看孕妇| 国产精品蜜桃在线观看| 久久国产精品男人的天堂亚洲 | 亚洲成人av在线免费| 亚洲精品久久久久久婷婷小说| 国产一区二区三区av在线| 2018国产大陆天天弄谢| 嫩草影院入口| 国内精品宾馆在线| 丝袜在线中文字幕| 久热这里只有精品99| 三级国产精品欧美在线观看| 一区在线观看完整版| 亚洲国产精品一区三区| 免费大片18禁| 夫妻午夜视频| 我要看日韩黄色一级片| 嫩草影院入口| 亚洲综合精品二区| 日日啪夜夜爽| 国产高清三级在线| 女性生殖器流出的白浆| 高清午夜精品一区二区三区| 少妇人妻 视频| 各种免费的搞黄视频| 我要看日韩黄色一级片| 亚洲国产最新在线播放| 国产69精品久久久久777片| 亚洲国产成人一精品久久久| 亚洲无线观看免费| 永久网站在线| 国产午夜精品久久久久久一区二区三区| 久久久久精品久久久久真实原创| 亚洲精品国产成人久久av| 亚洲综合精品二区| videos熟女内射| 国产精品不卡视频一区二区| 女人久久www免费人成看片| 深夜a级毛片| 亚州av有码| 日韩欧美精品免费久久| 精品少妇久久久久久888优播| 亚洲精品国产色婷婷电影| 99久久精品国产国产毛片| 亚洲国产成人一精品久久久| 秋霞伦理黄片| 22中文网久久字幕| 爱豆传媒免费全集在线观看| 国产免费视频播放在线视频| 亚洲av综合色区一区| 中文资源天堂在线| 天天躁夜夜躁狠狠久久av| 精品午夜福利在线看| 最近中文字幕高清免费大全6| 欧美xxxx性猛交bbbb| 三上悠亚av全集在线观看 | 亚洲国产日韩一区二区| 22中文网久久字幕| av免费在线看不卡| 六月丁香七月| 99热这里只有精品一区| 人人妻人人看人人澡| 高清黄色对白视频在线免费看 | 中文字幕精品免费在线观看视频 | 大话2 男鬼变身卡| 亚洲av成人精品一二三区| 国产高清国产精品国产三级| 狂野欧美激情性bbbbbb| 免费人成在线观看视频色| av有码第一页| 精品国产乱码久久久久久小说| 久久午夜综合久久蜜桃| 亚洲国产精品国产精品| 亚洲成人av在线免费| 七月丁香在线播放| 一级毛片我不卡| av线在线观看网站| 黄色配什么色好看| 久久久亚洲精品成人影院| 2018国产大陆天天弄谢| 欧美日韩av久久| 久热这里只有精品99| 日本黄大片高清| 精品国产一区二区久久| 一区二区三区免费毛片| 高清欧美精品videossex| 久久精品国产a三级三级三级| 日本91视频免费播放| 人体艺术视频欧美日本| 日韩av不卡免费在线播放| 日韩精品有码人妻一区| 日韩强制内射视频| 在现免费观看毛片| 国产日韩欧美视频二区| 久久久国产欧美日韩av| 女性生殖器流出的白浆| 自拍偷自拍亚洲精品老妇| 丰满人妻一区二区三区视频av| 青春草亚洲视频在线观看| 亚洲国产精品成人久久小说| 日韩在线高清观看一区二区三区| 美女大奶头黄色视频| 成人漫画全彩无遮挡| 中文字幕免费在线视频6| 少妇高潮的动态图| 国产欧美日韩综合在线一区二区 | 精品卡一卡二卡四卡免费| 久久精品夜色国产| 精品久久久噜噜| 国产成人午夜福利电影在线观看| 久久99一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 亚洲av欧美aⅴ国产| 免费大片18禁| 美女视频免费永久观看网站| 国产黄片美女视频| 国产欧美另类精品又又久久亚洲欧美| 国产精品嫩草影院av在线观看| 大又大粗又爽又黄少妇毛片口| 美女大奶头黄色视频| 少妇裸体淫交视频免费看高清| 久久久久久久大尺度免费视频| 久久久久久久久久久免费av| 国产亚洲欧美精品永久| 青春草国产在线视频| 三级经典国产精品| 亚洲精品乱久久久久久| 亚洲精品成人av观看孕妇| 免费看不卡的av| 国产精品久久久久久久电影| 免费黄网站久久成人精品| 一级二级三级毛片免费看| 国产无遮挡羞羞视频在线观看| 蜜桃久久精品国产亚洲av| 观看免费一级毛片| 九草在线视频观看| 69精品国产乱码久久久| 啦啦啦在线观看免费高清www| 又粗又硬又长又爽又黄的视频| a级毛片免费高清观看在线播放| 久久97久久精品| 欧美xxxx性猛交bbbb| 国产精品久久久久久精品电影小说| 美女内射精品一级片tv| 人妻系列 视频| 在线观看www视频免费| 97在线人人人人妻| 91精品一卡2卡3卡4卡| 亚洲欧美精品自产自拍| 搡女人真爽免费视频火全软件| 亚洲国产精品专区欧美| 日韩强制内射视频| 免费黄色在线免费观看| 在线免费观看不下载黄p国产| 久久久久久久国产电影| 伦精品一区二区三区| 夜夜看夜夜爽夜夜摸| 精品人妻偷拍中文字幕| 久久久午夜欧美精品| 十分钟在线观看高清视频www | 在线观看www视频免费| 亚洲av不卡在线观看| av卡一久久| 能在线免费看毛片的网站| 水蜜桃什么品种好| 欧美成人午夜免费资源| 99国产精品免费福利视频| 看免费成人av毛片| 亚洲av日韩在线播放| 欧美亚洲 丝袜 人妻 在线| 亚洲av中文av极速乱| 天天躁夜夜躁狠狠久久av| 五月伊人婷婷丁香| 观看av在线不卡| 国产精品一区二区在线不卡| 亚洲婷婷狠狠爱综合网| 久久99热6这里只有精品| 久久精品夜色国产| 伊人久久国产一区二区| 少妇高潮的动态图| 午夜日本视频在线| 国产精品人妻久久久影院| 国产精品久久久久久av不卡| 国产片特级美女逼逼视频| 免费看av在线观看网站| 日韩精品免费视频一区二区三区 | 人人妻人人澡人人爽人人夜夜| 久久精品国产鲁丝片午夜精品| 一级毛片aaaaaa免费看小| 久久久国产精品麻豆| 男女免费视频国产| 男人舔奶头视频| 亚洲熟女精品中文字幕| 亚洲国产欧美在线一区| 青青草视频在线视频观看| 少妇熟女欧美另类| 久久这里有精品视频免费| 你懂的网址亚洲精品在线观看| 国产精品一区二区三区四区免费观看| 国产在线免费精品| 这个男人来自地球电影免费观看 | 亚洲激情五月婷婷啪啪| 国产高清有码在线观看视频| 国产深夜福利视频在线观看| 久久久久久久久久久免费av| 看非洲黑人一级黄片| 国产美女午夜福利| 麻豆成人午夜福利视频| 欧美变态另类bdsm刘玥| 精品人妻偷拍中文字幕| 日日撸夜夜添| 精品久久久精品久久久| a级毛色黄片| 免费观看在线日韩| 大码成人一级视频| 免费观看的影片在线观看| 丝袜脚勾引网站| 亚洲国产精品999| 成人毛片a级毛片在线播放| 最新中文字幕久久久久| 91久久精品国产一区二区成人| a 毛片基地| 久久狼人影院| 国内少妇人妻偷人精品xxx网站| 国产精品无大码| 国产高清有码在线观看视频| 新久久久久国产一级毛片| 99精国产麻豆久久婷婷| 亚洲精品乱久久久久久| 中国国产av一级| 超碰97精品在线观看| 色5月婷婷丁香| 老司机影院毛片| 一本—道久久a久久精品蜜桃钙片| 天美传媒精品一区二区| 熟女人妻精品中文字幕| av在线老鸭窝| 久久久久久久久久人人人人人人| 五月伊人婷婷丁香| 高清不卡的av网站| 亚洲欧美一区二区三区国产| 一个人免费看片子| 亚洲av日韩在线播放| 欧美另类一区| 丰满饥渴人妻一区二区三| 男女免费视频国产| 成人特级av手机在线观看| 老司机亚洲免费影院| 男人添女人高潮全过程视频| 91午夜精品亚洲一区二区三区| 草草在线视频免费看| 99久久综合免费| 亚洲国产毛片av蜜桃av| 欧美三级亚洲精品| 免费久久久久久久精品成人欧美视频 | 国产免费一区二区三区四区乱码| 老熟女久久久| 少妇精品久久久久久久| 在线观看av片永久免费下载| 各种免费的搞黄视频| 老司机影院成人| 91精品一卡2卡3卡4卡| 日本与韩国留学比较| 午夜激情久久久久久久| 少妇人妻精品综合一区二区| 国产成人freesex在线| 国产黄色免费在线视频| 一边亲一边摸免费视频| 99久国产av精品国产电影| 欧美一级a爱片免费观看看| 亚洲av二区三区四区| av网站免费在线观看视频| 丰满乱子伦码专区| 日本欧美国产在线视频| 伊人久久国产一区二区| 天堂中文最新版在线下载| av一本久久久久| 欧美97在线视频| av免费观看日本| 一区二区三区免费毛片| 亚洲图色成人| 最新的欧美精品一区二区| 青春草亚洲视频在线观看| 国产又色又爽无遮挡免| 婷婷色综合大香蕉| 日本爱情动作片www.在线观看| 婷婷色av中文字幕| 女人久久www免费人成看片| 精品午夜福利在线看| 亚洲欧美日韩卡通动漫| 国产精品99久久久久久久久| 欧美日韩在线观看h| 91久久精品国产一区二区三区| 最后的刺客免费高清国语| 久久国产精品男人的天堂亚洲 | 国产美女午夜福利| 久久精品国产a三级三级三级| 在线精品无人区一区二区三| 国产精品一区二区在线不卡| 国产爽快片一区二区三区| 国产精品一区二区性色av| 免费av中文字幕在线| 老熟女久久久| 国产成人精品久久久久久| 免费大片18禁| 狠狠精品人妻久久久久久综合| 三级经典国产精品| 爱豆传媒免费全集在线观看| 18禁动态无遮挡网站| 91aial.com中文字幕在线观看| 午夜免费鲁丝| 观看免费一级毛片| 久久99蜜桃精品久久| 日日摸夜夜添夜夜爱| www.av在线官网国产| 一级片'在线观看视频|