• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process

    2021-06-26 03:05:00DanhongLi李丹虹ChangyongJiang江昌勇HuiLi栗慧andMahanderPandey
    Chinese Physics B 2021年6期

    Danhong Li(李丹虹) Changyong Jiang(江昌勇) Hui Li(栗慧) and Mahander Pandey

    1Changzhou Institute of Technology,Changzhou 213000,China

    2Department of Materials Science and Metallurgical Engineering,Heydarabad 502258,India

    Keywords: metallic glasses,disordered structures,amorphous materials,relaxation

    1. Introduction

    High entropy bulk metallic glasses (HEBMGs) are a new class of metallic alloys that simultaneously inherit the unique properties of crystalline high entropy alloys and attractive structural features of metallic glasses.[1–5]Compared to conventional BMGs, this novel metallic alloy has a more homogeneous atomic arrangement with large configuration entropy.[6–8]Moreover, the serration sizes in loaddisplacement curves,which are an indicator of shear band formation and propagation,are significantly smaller,showing the homogenous plasticity of HE-BMGs.[9,10]However,considering the same constituents, the HEBMGs possess a low glassforming ability (GFA) and marred thermal stability. Due to this fact, the design of HE-BMGs has been restricted to few chemical compositions. Therefore, the identification of the glass formation mechanism and relaxation behavior of HEBMGs is of great importance for engineering novel materials with varied alloying compositions and outstanding properties.There are several works focusing on the study of inherent features of HEBMGs.[11–15]Duanet al.[16]indicated that the shear modulus relaxation data could be employed to evaluate the effects of structural relaxation, glass transition, and crystallization in TiZrHfCuNiBe alloy. Guet al.[17]found that the relaxation enthalpy monotonically enhanced with the application of cryogenic cycling treatment. Yinet al.[18]investigated the atomic structure of GdTbCoAl alloy and found that the cryogenic environment would decrease the bond lengths of the large atom–small atom and small atom–small atom pairs,while large atom–large atom pairs unexpectedly enhanced.

    In order to evaluate a septenary HEBMG,Wadaet al.[19]fabricated a ZrHfTiAlCoNiCu BMG system with excellent GFA, which makes the critical thickness of 18 mm possible. Tonget al.[20]discovered that the tiny defect concentration in the HEBMGs led to the small Newtonian viscosities compared to their conventional counterparts. Jinet al.[21]reported that the substitution of Cu by Ni in TiZrHfBeCu alloy could improve the GFA properties. However, it deteriorates the thermal stability and introduces undesired crystalline phases.Bizhanovaet al.[22]designed a near-equiatomic HEBMG with excellent GFA and revealed that the crystallization evolution shows both characteristics of traditional BMGs and equiatomic HEBMGs. In another study, it was unveiled that the low fragility in HEBMGs hampers micro-forming and thermoplastic formability.[23]The evaluation of physical properties and plasticity are other topics,which have been investigated by researchers.[24,25]

    Although several works have investigated the inherent properties of HEBMGs,their crystallization evolution and relaxation behaviors are still research highlights in this field.The minor addition process is one of the main techniques providing novel BMGs with improved characteristics.[26,27]For example, Samavatianet al.[28]added different elements with negative heat of mixing into the Zr-Co-Al system and found that the minor addition improved the GFA of ZrCoAl BMGs; however, the level of improvement strongly relied on the atomic size of trace element. On the other hand,an added element with positive heat of mixing might also enhance the GFA in BMGs. It was revealed that Nb minor addition into the ZrCu-based metallic glass enhanced the GFA by strong interaction between Zr and Nb atoms causing shorter metallic bonds.[29,30]In another work, it was reported that the Sn minor addition into TiZrHfCuBe BMG led to the improvement of GFA and plasticity through the promotion of chemical heterogeneity.[7]Positive heat of mixing in Sn–Cu(Be)pairs is the main reason for the intensification of chemical heterogeneity in this system.Liet al.[31]also showed that the minor addition improved the mechanical properties of HEBMGs. Consequently,in this work,we try to show that how the minor addition of elements,including positive or negative heat of mixing,into a high entropy system alters the dynamic relaxation and crystallization evolution in a HEBMG system.

    2. Materials and methods

    The ingots with nominal chemical compositions of Zr20Cu20Ni20Ti20Hf20?x(Al,Nb)x=2were prepared by arc remelting process with high-purity elements under a Ti-gettered argon environment. As observed in Table 1, the Al and Nb elements were selected to induce negative and positive heat of mixing in the master alloying composition, respectively.The copper mold suction casting was then used to fabricate HEBMGs in the form of rods with 3 mm diameter and 4 cm length. X-ray diffraction (XRD) test was performed to ensure the amorphousness of samples. Using a differential scanning calorimeter (DSC), the thermal behavior of samples under a heating rate of 20 K/min and an argon atmosphere was evaluated. Applying the DMA Q800 TA instrument, the dynamic mechanical analysis (DMA) was carried out under a nitrogen atmosphere. In this test, the loss modulus (E'') and storage modulus(E')were measured in the temperature range of 350 K to 700 K at the frequency of 1 Hz and a constant heating rate of 3 K/min, where the sample was bent by the drive shaft. Moreover,a frequency range of 1 Hz to 16 Hz was applied to obtain activation energy of relaxation in HEBMGs. In the current test, BMG samples were provided by electric discharge machining with dimensions of 30 mm×2 mm×1 mm from the reference rod. To measure the viscosity changes in the super-cooled liquid region,a thermal mechanical analyzer(TMA)under purified nitrogen, a constant load of 5 N,and a heating rate 10 K/min was performed. It should be noted that the diameter and length of samples in the TMA test were 3 mm and 6 mm,respectively.

    Table 1.The heat of mixing(KJ/mol)for Al,Nb–X pairs in the alloying compositions.

    3. Results and discussion

    3.1. Primary characterizations

    The initial step in our work is to justify that the microalloying process does not alter the microstructural features of HEBMGs. As given in Fig. 1(a), the XRD patterns show a diffuse scattering trend with a broad peak in the range of 2θ=37?–40?for all samples. Hence, it can be concluded that the structure remains amorphous after a minor addition.Figure 1(b) shows the DSC curves for all the samples under a heating rate of 20 K/min in the temperature range of 500–900 K. According to thermal properties, it was detected that the microalloying process changed the crystallization behavior in the amorphous system. Al element with negative heat of mixing altered the crystallization evolution so that the low-temperature crystallization peak was intensified,while Nb addition with positive heat of mixing strengthened the hightemperature crystallization peak and led to the appearance of a third crystallization peak at 827 K in the DSC curves. In the following, the crystallization behaviors will be discussed in detail. As given in Table 2,it is observed that the minor addition leads to improvement of thermal stability in the HEBMGs. Although the crystallization peaks shift to the higher temperatures, the glass transition temperature shows a slight decrease, which is an indicator of thermal stability in the designed HEBMGs.

    Fig. 1. (a) XRD patterns and (b) DSC curves for HEBMG samples.

    Table 2. Thermal characteristics extracted from DSC curves.

    3.2. Structural relaxation features

    Under a driving frequency of 1 Hz and a heating rate of 3 K/min, the DMA analysis was carried out, and the relation between energy and temperature was obtained. Figure 2(a)indicates loss modulus variations of the HEBMG as a function of temperature. The hightemperature peak is related toαrelaxation, while the lowtemperature wing, adjacent toαrelaxation, indicates slowβrelaxation. It should be noted that there are limited chemical compositions showing distinctiveβrelaxation in their thermal spectra,[32]while a huge number of glassy compositions show a slight wing as the lowtemperature relaxation. To separate the relaxation events, we used a de-convoluting technique in the MATLAB environment based on peak positions and energy distribution(see Fig.2(a)).As illustrated in Figs.2(b)–2(c),the minor addition leads to a significant change in the relaxation intensification and the corresponding temperature. When Al or Nb elements are added to the system, the maximum temperatures ofα(i.e.,Tα) andβ(i.e.,Tβ) relaxation events shift to the lower temperatures.TheTα/Tβratio also increases in minor added samples,which shows the significant effects ofβrelaxation. In other words,theβrelaxation has sharper thermal changes compared toαevent. Moreover,it is observed that the peak ofβrelaxation is intensified after the microalloying process,while there are no significant changes in the peak intensification ofαrelaxation.The results also reveal that the Nb addition with positive heat of mixing has a more pronouncing effect on the relaxation behavior of HEBMG.In general,αrelaxation is correlated to the dynamics of the supercooled liquid and the quench-in defects,whileβrelaxation energy is consistent with the nanoscale source of dynamics in the system and induces partial devitrification and deformation.[33]Moreover,βrelaxation is principally due to the localized cooperative movement of atoms in the loosely packed structures.[34]Hence, it can be concluded thatβrelaxation determines the level of structural heterogeneity and potential plastic deformation in the glassy alloys.[35]According to our results,the microalloying process intensifies the structural heterogeneity in the material. In other words,the added element is able to enhance the variety of clusters at shortrange order (SRO) and consequently manifold mediumrange order(MRO)arrangements in the atomic system.[36]This event enhances the structural confusion in the system and induces heterogeneity through atomic rearrangement.[2]On the other hand,the minor addition with positive heat of mixing provides more structural heterogeneity in the material. However,crystallization may have priority when the added element reaches a certain value.[37]In our case,the Nb addition is low enough to induce any crystallization in the microstructure. It is suggested that the Nb atoms are able to improve structural heterogeneity in the glassy systems,as that occurred under Al addition. However, the positive heat of mixing in the system also provides conditions for nanoscale glassy phase separation in the material.[38]Hence, the structural heterogeneity is more intensified andβrelaxation is more strengthened in the thermal curves. In summary,it is concluded that a certain amount of minor addition with positive heat of mixing is more effective for inducing structural heterogeneity in HEBMGs.For some BMG compositions with pronouncedβrelaxation such as La-based alloys,it was derived that the large negative heat of mixing in the system, as a chemical effect, leads to the intensification ofβrelaxation peaks in the dynamic loss spectra, while microalloying with large positive heat of mixing weakens theβrelaxation and changes theβpeak to a wing trend.[39]This result is inconsistent with studies on typical blendedα–βrelaxation spectra of BMGs, reporting that the minor addition with positive heat of mixing is able to improve the possible structural heterogeneity and plasticity behavior in the BMGs.[40]This event is due to the fact that the structural heterogeneity in a blendedα–βrelaxation BMGs is not maximum,and consequently,a modification in the alloying composition may induce the extra defects in the microstructure leading toβpeak intensification in the spectrum.

    Fig.2. (a)DMA curves of the as-cast sample,(b)de-convoluted relaxation curves of samples extracted from DMA spectra, (c) Tα/Tβ ratio for the samples.

    As given in Fig.3,the dynamic behavior of HEBMGs was studied under different applied frequencies, while the inset shows the fitted Arrhenius association of frequency and temperature related toβrelaxation. In general,atomic mobility is mainly dominated by thermal activation,which is the physical origin of the Arrhenius-type law.[41]It is believed that Arrhenius temperature dependence can be seen when dynamics are dominated by thermal fluctuations to prevail over the barrier.According to the results in Fig.3,the increase in applied frequency leads to the rise in the peak temperatures. The fitting of ln(f)–1/Tβcurves and their corresponding slope define the activation energy ofβrelaxation in the glassy system. According to the results,the activation energy is measured for the free-microalloying, Al-containing, and Nb-containing samples about 89±2 kJ/mol,107±3 kJ/mol,and 12±3 kJ/mol,respectively. This indicates that the HEBMG with a minor Nb addition has high structural heterogeneity. In other words,the nanoscale separation is increased in the system,and the atomic rearrangement is accompanied by the annihilation of ordered configurations in the structure.

    Fig.3. DMA curves of as-cast sample in different applied frequencies.Inset shows Arrhenius plots of ln(f)vs. 1000/T.

    3.3. Crystallization evolution

    Using thermal mechanical analysis(TMA),it is possible to evaluate the viscosity behavior of metallic glasses under the applied load. In the temperature range of the supercooled region,the crystallization evolution of BMG structures appears,which is due to their individual thermoplastic forming features. Figure 4 shows the viscosity behavior of HEBMGs as a function of temperature in the supercooled region. To obtain the viscosity changes, the sample height variation under the continuous loading was measured. According to the Stephen equation,the viscosity is attained[38]

    Herepdefines the applied load,randcintroduce the radius and height of the sample,respectively. As observed in Fig.4,with the temperature increasing to 700 K,the viscosity slightly decreases in all the samples, which is due to the inherent nature of glassy alloys. However, in the range of supercooled liquid region,the viscosity trend changes for each sample,owing to their crystallization behavior. For the as-cast sample,two peaks with significant viscosity alterations were detected,which are consistent with the crystallization peak temperatures in the DSC curves.

    Fig.4. Viscosity curves of samples as a function of temperature in the range of the supercooled liquid region.

    Fig.5. Schematic of energy states in HEBMG samples showing the structural heterogeneity.

    The viscosities of 9.22×109Pa·s and 9.95×109Pa·s at the peaks of crystallization events show that the crystallization stages in the supercooled liquid region behave in the same trend and their energy release is at the same level. In other words, the portion of crystalline phase formation is generically and quantitatively identical in each crystallization stage.On the other side, the Al microalloying process led to the change of crystallization evolution. As observed, the Al minor addition changes the atomic structure somehow to induce the lowtemperature crystallization stage in the material. This means that the compositional heterogeneity under Al minor addition provides potential sites with lower energy barriers for crystallization at lower temperatures(see Fig.4). As schematically given in Fig. 5, Al minor addition increases the potential sites with higher energy states, i.e., free volumes, and induces more severe structural heterogeneity compared with the as-cast sample. On the other side,Nb microalloying not only intensifies the second peak but also creates a third one at the higher temperatures. According to the results, the Nb addition is accompanied by crystallization events with more varied energy levels in the structure. The intensified crystallization peaks at higher temperatures indicate that the structural change caused by Nb addition is significantly different from what happened under Al addition. In other words, the types of atomic arrangement, including SRO and MRO, are considerably affected by the certain added element. Moreover, one can see that the Nb minor addition manifold the crystallization stages in the supercooled liquid region. This means that the structural heterogeneity in this alloying composition is intensified,and consequently, several energy-level sites are provided for crystallization. In summary,one can see that the type of added element significantly affects the crystallization evolution and structural relaxation in HEBMGs, which is closely related to the change in the structural heterogeneity.

    4. Conclusion

    This study shows the effects of minor addition on the crystallization evolution and relaxation features of Zr20Cu20Ni20Ti20Hf20HEBMG. Al and Nb elements were separately added to the base alloying compositions to affect the heat of mixing in the master alloy negatively and positively,respectively. The results indicate that the added elements lead to a slight intensification ofβrelaxation. However, there is no obvious change inαrelaxation. The detailed DMA analysis also determines that the activation energy ofβrelaxation increases during the microalloying process,and this enhancement is optimum in the Nb-added sample with sharp structural heterogeneity. By evaluating the crystallization behavior,it is found that the microalloying process changes the crystallization enthalpy in the samples. For Nb added one,the two-peak crystallization curve changes to a three distinct peaks curve in the supercooled liquid region, which is due to the multiple energy states in the heterogeneous structure of Nb-added HEBMG.

    亚洲精品中文字幕在线视频| 欧美国产精品一级二级三级| 中文字幕av电影在线播放| 亚洲人与动物交配视频| 午夜福利视频在线观看免费| 波野结衣二区三区在线| 国产一区二区在线观看日韩| 免费大片18禁| 性色av一级| 秋霞伦理黄片| a级毛片在线看网站| 成人国语在线视频| 午夜91福利影院| 亚洲精品456在线播放app| 精品人妻在线不人妻| 大话2 男鬼变身卡| 七月丁香在线播放| av电影中文网址| 国产精品蜜桃在线观看| 国产欧美亚洲国产| 久久精品国产自在天天线| 国产精品一区二区在线不卡| 美女国产高潮福利片在线看| av在线老鸭窝| 全区人妻精品视频| 亚洲国产精品专区欧美| 大片免费播放器 马上看| 香蕉精品网在线| 宅男免费午夜| 亚洲国产精品一区二区三区在线| 久久人人爽人人爽人人片va| 亚洲精品国产av成人精品| 三上悠亚av全集在线观看| 午夜福利,免费看| 久久免费观看电影| 91久久精品国产一区二区三区| 精品一区二区三区视频在线| 人妻 亚洲 视频| 成人毛片a级毛片在线播放| 又粗又硬又长又爽又黄的视频| 亚洲欧美清纯卡通| 亚洲三级黄色毛片| 大话2 男鬼变身卡| 国产男人的电影天堂91| 久久久久精品性色| 国产xxxxx性猛交| 一级毛片黄色毛片免费观看视频| 色吧在线观看| 老司机影院成人| 亚洲欧美色中文字幕在线| 最近中文字幕2019免费版| 少妇人妻 视频| 日日摸夜夜添夜夜爱| 欧美亚洲日本最大视频资源| 精品酒店卫生间| 美女主播在线视频| 美女内射精品一级片tv| 丝瓜视频免费看黄片| 黄色配什么色好看| www.色视频.com| 久久午夜福利片| 99久久人妻综合| 欧美最新免费一区二区三区| 精品午夜福利在线看| 我要看黄色一级片免费的| 乱码一卡2卡4卡精品| 免费av不卡在线播放| 草草在线视频免费看| 99九九在线精品视频| 精品亚洲成a人片在线观看| 看十八女毛片水多多多| 久久久久视频综合| 欧美xxxx性猛交bbbb| 国产成人午夜福利电影在线观看| 男人操女人黄网站| 嫩草影院入口| 一级爰片在线观看| 国产精品国产三级专区第一集| 久久影院123| 激情视频va一区二区三区| 国产毛片在线视频| 国产一区二区在线观看av| 精品卡一卡二卡四卡免费| 欧美成人午夜免费资源| 午夜福利在线观看免费完整高清在| 黑人高潮一二区| 国内精品宾馆在线| 在线观看免费视频网站a站| 天天操日日干夜夜撸| 亚洲欧洲日产国产| 欧美 日韩 精品 国产| 在线天堂中文资源库| 26uuu在线亚洲综合色| 国产1区2区3区精品| 高清毛片免费看| 色94色欧美一区二区| 国产麻豆69| 一本久久精品| 另类亚洲欧美激情| 中文字幕人妻熟女乱码| 99九九在线精品视频| 亚洲国产毛片av蜜桃av| 视频在线观看一区二区三区| 免费观看无遮挡的男女| 亚洲图色成人| 精品国产露脸久久av麻豆| 精品久久蜜臀av无| 欧美日韩av久久| 国产不卡av网站在线观看| 一区二区三区精品91| 视频中文字幕在线观看| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 五月玫瑰六月丁香| 久久精品人人爽人人爽视色| 国产成人精品婷婷| 国产成人欧美| 久久国产精品大桥未久av| 一级毛片 在线播放| 大香蕉97超碰在线| 色5月婷婷丁香| 免费观看a级毛片全部| 91精品国产国语对白视频| 97在线人人人人妻| 久久免费观看电影| 在线观看免费高清a一片| 高清在线视频一区二区三区| 日本-黄色视频高清免费观看| 国产亚洲欧美精品永久| 婷婷色av中文字幕| 肉色欧美久久久久久久蜜桃| 国产精品女同一区二区软件| 亚洲国产精品国产精品| 日韩一本色道免费dvd| 国产成人av激情在线播放| 国产欧美日韩一区二区三区在线| 精品国产露脸久久av麻豆| 免费久久久久久久精品成人欧美视频 | 亚洲成色77777| 色婷婷av一区二区三区视频| 亚洲av免费高清在线观看| av在线老鸭窝| 国产精品成人在线| 中文字幕精品免费在线观看视频 | 免费大片18禁| 亚洲图色成人| 天天操日日干夜夜撸| 美女xxoo啪啪120秒动态图| 中文字幕免费在线视频6| 99视频精品全部免费 在线| 2018国产大陆天天弄谢| 亚洲精品国产av蜜桃| 国产精品久久久久久久电影| 一级a做视频免费观看| 性色av一级| 人人妻人人澡人人爽人人夜夜| 一本—道久久a久久精品蜜桃钙片| 午夜激情av网站| 亚洲性久久影院| 极品人妻少妇av视频| 亚洲国产色片| 国产欧美亚洲国产| 免费av中文字幕在线| 蜜桃国产av成人99| 欧美精品一区二区大全| 美女福利国产在线| 亚洲人成网站在线观看播放| 日日撸夜夜添| 久久久精品区二区三区| 最近最新中文字幕大全免费视频 | 美女脱内裤让男人舔精品视频| 色哟哟·www| 亚洲av综合色区一区| 久久久久久久久久人人人人人人| 青春草亚洲视频在线观看| 久久久久久久国产电影| 亚洲精品日韩在线中文字幕| 美女内射精品一级片tv| 亚洲欧美成人精品一区二区| 99久久中文字幕三级久久日本| 久久精品夜色国产| 精品国产一区二区三区久久久樱花| 亚洲内射少妇av| 热re99久久精品国产66热6| 女性生殖器流出的白浆| 免费久久久久久久精品成人欧美视频 | 精品人妻在线不人妻| 国产熟女午夜一区二区三区| av不卡在线播放| 日韩成人伦理影院| 爱豆传媒免费全集在线观看| 中文字幕免费在线视频6| 久久99一区二区三区| 9色porny在线观看| 久久狼人影院| 国产一区二区在线观看av| 国产黄色视频一区二区在线观看| 欧美日韩综合久久久久久| 欧美另类一区| 午夜精品国产一区二区电影| 18在线观看网站| 亚洲成人手机| 久久久精品免费免费高清| 成人国产麻豆网| 日韩 亚洲 欧美在线| www.av在线官网国产| 精品午夜福利在线看| 婷婷成人精品国产| 精品人妻偷拍中文字幕| 一本大道久久a久久精品| 国产成人一区二区在线| 国产成人精品婷婷| 久久久久久人妻| 亚洲精品aⅴ在线观看| 黄色怎么调成土黄色| 国产高清三级在线| 搡女人真爽免费视频火全软件| 下体分泌物呈黄色| 亚洲成色77777| 激情五月婷婷亚洲| 国产精品麻豆人妻色哟哟久久| 大香蕉久久成人网| 男人爽女人下面视频在线观看| 精品人妻熟女毛片av久久网站| 中文精品一卡2卡3卡4更新| 黄色 视频免费看| 永久免费av网站大全| 一区二区三区四区激情视频| 男人添女人高潮全过程视频| 精品一区二区三区四区五区乱码 | 制服丝袜香蕉在线| 国产免费一区二区三区四区乱码| 99re6热这里在线精品视频| 黑人高潮一二区| 香蕉精品网在线| 男的添女的下面高潮视频| 国产免费视频播放在线视频| 少妇被粗大的猛进出69影院 | 欧美成人精品欧美一级黄| 国产女主播在线喷水免费视频网站| 免费观看性生交大片5| 亚洲丝袜综合中文字幕| 色吧在线观看| 乱人伦中国视频| 男女啪啪激烈高潮av片| av不卡在线播放| 国产一区二区激情短视频 | 丰满饥渴人妻一区二区三| 国产av码专区亚洲av| 日本av手机在线免费观看| 日韩视频在线欧美| 亚洲成国产人片在线观看| 国产无遮挡羞羞视频在线观看| 满18在线观看网站| 好男人视频免费观看在线| 欧美97在线视频| 26uuu在线亚洲综合色| 亚洲精品第二区| av.在线天堂| 最近中文字幕高清免费大全6| 日韩视频在线欧美| 最后的刺客免费高清国语| 欧美人与善性xxx| 啦啦啦在线观看免费高清www| 国产爽快片一区二区三区| 日韩av不卡免费在线播放| 午夜91福利影院| 精品少妇黑人巨大在线播放| 在线观看国产h片| 日本欧美视频一区| 日韩不卡一区二区三区视频在线| 晚上一个人看的免费电影| av网站免费在线观看视频| 亚洲婷婷狠狠爱综合网| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| 国产成人精品一,二区| 99香蕉大伊视频| 亚洲五月色婷婷综合| 免费观看av网站的网址| 久久精品国产综合久久久 | 亚洲四区av| 90打野战视频偷拍视频| 91精品国产国语对白视频| 色5月婷婷丁香| 午夜久久久在线观看| 十八禁高潮呻吟视频| 成人黄色视频免费在线看| 欧美精品亚洲一区二区| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| 国产一区二区三区综合在线观看 | 久久女婷五月综合色啪小说| 欧美日韩视频高清一区二区三区二| h视频一区二区三区| 中国三级夫妇交换| 乱码一卡2卡4卡精品| 国产国语露脸激情在线看| 青春草国产在线视频| 国产成人精品无人区| 美女内射精品一级片tv| 久久女婷五月综合色啪小说| 亚洲成人手机| 免费av不卡在线播放| av在线播放精品| 97超碰精品成人国产| 亚洲av福利一区| 国产亚洲精品第一综合不卡 | 国产淫语在线视频| 国产国拍精品亚洲av在线观看| 精品人妻一区二区三区麻豆| 国产麻豆69| 晚上一个人看的免费电影| 国产精品偷伦视频观看了| 狂野欧美激情性bbbbbb| 母亲3免费完整高清在线观看 | 日韩一区二区三区影片| 蜜臀久久99精品久久宅男| 亚洲国产精品成人久久小说| 边亲边吃奶的免费视频| 丝袜脚勾引网站| 全区人妻精品视频| videossex国产| 亚洲中文av在线| xxxhd国产人妻xxx| 亚洲精品美女久久久久99蜜臀 | 亚洲av电影在线进入| 天美传媒精品一区二区| 欧美日本中文国产一区发布| 91在线精品国自产拍蜜月| 亚洲性久久影院| 国产精品一区二区在线不卡| 亚洲国产精品999| 欧美另类一区| 国产不卡av网站在线观看| 色哟哟·www| 亚洲国产看品久久| 精品久久国产蜜桃| 精品人妻在线不人妻| 2018国产大陆天天弄谢| 久久精品aⅴ一区二区三区四区 | av在线播放精品| 91精品三级在线观看| 中文字幕最新亚洲高清| 国产不卡av网站在线观看| 一级毛片电影观看| kizo精华| 亚洲国产精品一区三区| 免费在线观看完整版高清| 在线观看国产h片| 国产精品人妻久久久久久| 日本猛色少妇xxxxx猛交久久| 欧美精品高潮呻吟av久久| 久久久久久伊人网av| 九九爱精品视频在线观看| 免费在线观看黄色视频的| 亚洲国产欧美日韩在线播放| 日韩精品有码人妻一区| 亚洲伊人色综图| 草草在线视频免费看| 亚洲美女搞黄在线观看| 久久这里只有精品19| 欧美成人午夜免费资源| av片东京热男人的天堂| 日本91视频免费播放| 一级毛片 在线播放| 男女午夜视频在线观看 | 国产午夜精品一二区理论片| 成人影院久久| a级片在线免费高清观看视频| 欧美少妇被猛烈插入视频| 午夜福利乱码中文字幕| 欧美少妇被猛烈插入视频| 少妇被粗大的猛进出69影院 | 国产xxxxx性猛交| 国产男人的电影天堂91| 久久久精品免费免费高清| 黑人猛操日本美女一级片| 欧美变态另类bdsm刘玥| www.熟女人妻精品国产 | 国产免费视频播放在线视频| 国产高清不卡午夜福利| 日韩免费高清中文字幕av| 狠狠婷婷综合久久久久久88av| 中文字幕精品免费在线观看视频 | 国产精品一二三区在线看| 国产黄频视频在线观看| 亚洲精品456在线播放app| 美女主播在线视频| 精品亚洲乱码少妇综合久久| 免费不卡的大黄色大毛片视频在线观看| 在线观看人妻少妇| 久久久国产一区二区| 午夜福利乱码中文字幕| 青春草亚洲视频在线观看| 伦精品一区二区三区| xxxhd国产人妻xxx| 国产精品一区二区在线观看99| 亚洲,一卡二卡三卡| 岛国毛片在线播放| 美女福利国产在线| 肉色欧美久久久久久久蜜桃| a 毛片基地| 美女大奶头黄色视频| 9热在线视频观看99| 精品福利永久在线观看| 少妇熟女欧美另类| av在线观看视频网站免费| 中文亚洲av片在线观看爽 | 精品人妻1区二区| 最新在线观看一区二区三区| 精品视频人人做人人爽| 国产高清videossex| 1024香蕉在线观看| 亚洲色图综合在线观看| 国产成人精品在线电影| 亚洲va日本ⅴa欧美va伊人久久| 久久人妻熟女aⅴ| 曰老女人黄片| 国产精品成人在线| 日韩制服丝袜自拍偷拍| 色婷婷av一区二区三区视频| 亚洲国产看品久久| 久久影院123| 亚洲精品美女久久av网站| 亚洲中文日韩欧美视频| 亚洲av第一区精品v没综合| 曰老女人黄片| 久久九九热精品免费| 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 国产在线观看jvid| av天堂久久9| 亚洲成av片中文字幕在线观看| 怎么达到女性高潮| 午夜福利在线免费观看网站| 亚洲国产精品合色在线| 男人的好看免费观看在线视频 | 在线天堂中文资源库| 少妇猛男粗大的猛烈进出视频| 精品国产一区二区三区久久久樱花| 不卡av一区二区三区| 最近最新免费中文字幕在线| 精品一区二区三区视频在线观看免费 | 久久久久视频综合| 午夜福利乱码中文字幕| 国产精品亚洲av一区麻豆| 纯流量卡能插随身wifi吗| 三级毛片av免费| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费午夜福利视频| 老司机靠b影院| 老司机午夜十八禁免费视频| 日韩 欧美 亚洲 中文字幕| 国产高清国产精品国产三级| 国产一区二区三区综合在线观看| 国产亚洲精品一区二区www | 免费在线观看影片大全网站| 亚洲免费av在线视频| 午夜福利乱码中文字幕| 看免费av毛片| 欧美日韩乱码在线| 欧美成人午夜精品| 美女 人体艺术 gogo| 999久久久国产精品视频| 免费观看a级毛片全部| 老司机靠b影院| 国产国语露脸激情在线看| 不卡一级毛片| 欧美人与性动交α欧美精品济南到| 美女视频免费永久观看网站| 男人操女人黄网站| 三上悠亚av全集在线观看| 男人的好看免费观看在线视频 | 国产精品1区2区在线观看. | 久久 成人 亚洲| 欧美日本中文国产一区发布| 久久婷婷成人综合色麻豆| 性色av乱码一区二区三区2| 亚洲av成人一区二区三| 亚洲精品美女久久av网站| 免费av中文字幕在线| 国产又爽黄色视频| 夜夜夜夜夜久久久久| 欧美 日韩 精品 国产| 成人手机av| 欧美乱码精品一区二区三区| 欧美日本中文国产一区发布| 久久人人爽av亚洲精品天堂| 亚洲第一青青草原| 免费av中文字幕在线| 精品人妻在线不人妻| 亚洲avbb在线观看| 美女午夜性视频免费| 女人精品久久久久毛片| 日韩免费高清中文字幕av| 国产一卡二卡三卡精品| 高清在线国产一区| 91麻豆精品激情在线观看国产 | 免费日韩欧美在线观看| 天天操日日干夜夜撸| 高清欧美精品videossex| 天堂中文最新版在线下载| x7x7x7水蜜桃| 国产精品免费大片| 亚洲精品在线观看二区| 国产成人av教育| 18禁观看日本| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久精品免费观看国产| 中文字幕人妻熟女乱码| 777久久人妻少妇嫩草av网站| 国产精品1区2区在线观看. | 国产精品久久久av美女十八| 久久久久久久精品吃奶| 午夜91福利影院| 欧美黄色片欧美黄色片| 欧美精品av麻豆av| 精品人妻在线不人妻| 在线av久久热| 日韩中文字幕欧美一区二区| 麻豆av在线久日| 国产精品一区二区精品视频观看| 亚洲九九香蕉| 亚洲午夜理论影院| 亚洲av日韩精品久久久久久密| 国产成人啪精品午夜网站| 久久亚洲精品不卡| 久久草成人影院| 日本五十路高清| 精品无人区乱码1区二区| 好男人电影高清在线观看| 中文字幕人妻熟女乱码| 一进一出抽搐gif免费好疼 | 久久性视频一级片| 婷婷成人精品国产| 精品国产一区二区久久| 免费少妇av软件| av天堂久久9| 91精品三级在线观看| 真人做人爱边吃奶动态| 国产精品av久久久久免费| 亚洲一区二区三区不卡视频| 狠狠狠狠99中文字幕| 亚洲第一欧美日韩一区二区三区| 欧美另类亚洲清纯唯美| 欧美黑人精品巨大| 午夜免费鲁丝| 岛国毛片在线播放| av电影中文网址| 老司机影院毛片| 国产精品乱码一区二三区的特点 | 国产视频一区二区在线看| 成年人黄色毛片网站| 亚洲精品中文字幕在线视频| 国产成人av教育| 亚洲成人免费av在线播放| 丰满人妻熟妇乱又伦精品不卡| 午夜福利,免费看| 亚洲中文日韩欧美视频| 精品国产一区二区三区久久久樱花| 水蜜桃什么品种好| 国产精品偷伦视频观看了| 伊人久久大香线蕉亚洲五| 国产97色在线日韩免费| 亚洲精品久久成人aⅴ小说| av一本久久久久| 一二三四社区在线视频社区8| 精品国内亚洲2022精品成人 | 99热国产这里只有精品6| 午夜精品国产一区二区电影| 两人在一起打扑克的视频| 在线观看一区二区三区激情| 国产精品久久电影中文字幕 | 制服诱惑二区| 大型黄色视频在线免费观看| 免费不卡黄色视频| 在线观看一区二区三区激情| 美女扒开内裤让男人捅视频| 免费在线观看完整版高清| 亚洲精品av麻豆狂野| 亚洲九九香蕉| 一边摸一边抽搐一进一出视频| a在线观看视频网站| 免费在线观看影片大全网站| 色婷婷av一区二区三区视频| 亚洲第一av免费看| 国产高清国产精品国产三级| 一二三四社区在线视频社区8| 韩国av一区二区三区四区| 国产成人精品久久二区二区91| 一区二区三区激情视频| 在线观看日韩欧美| 人人妻,人人澡人人爽秒播| 欧美国产精品一级二级三级| 大陆偷拍与自拍| 亚洲国产欧美日韩在线播放| 法律面前人人平等表现在哪些方面| 国产精品自产拍在线观看55亚洲 | e午夜精品久久久久久久| 日本精品一区二区三区蜜桃| 欧美日韩av久久| 99久久精品国产亚洲精品| 欧美黑人欧美精品刺激| 一边摸一边抽搐一进一出视频| 性少妇av在线| 欧美日本中文国产一区发布| 国产精品1区2区在线观看. | 亚洲av成人不卡在线观看播放网| www.熟女人妻精品国产| 国内毛片毛片毛片毛片毛片| 成人av一区二区三区在线看| 搡老乐熟女国产| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美日韩在线播放|