• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials?

    2021-06-26 03:04:04HuaweiYao姚華偉XiaoxiaWang王曉霞HuaiyuanYin殷懷遠(yuǎn)YuanlinJia賈淵琳YongGao高勇JunqiaoWang王俊俏andChunzhenFan范春珍
    Chinese Physics B 2021年6期
    關(guān)鍵詞:高勇懷遠(yuǎn)

    Huawei Yao(姚華偉) Xiaoxia Wang(王曉霞) Huaiyuan Yin(殷懷遠(yuǎn)) Yuanlin Jia(賈淵琳) Yong Gao(高勇)Junqiao Wang(王俊俏) and Chunzhen Fan(范春珍)

    1School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450001,China

    2Department of Physics,Shanghai Polytechnic University,Shanghai 201209,China

    Keywords: daytime radiative cooling,hollow zigzag metamaterials,net cooling power,emissivity

    1. Introduction

    With the increasing demands of modern refrigeration,the corresponding emission of greenhouse gases poses a threat to people’s lives, especially from traditional refrigeration methods such as air conditioners which consume a lot of electric energy and generate net heat, which further aggravates CO2emission and increases temperatures.It is becoming extremely urgent to find an effective method to reduce temperatures and energy consumption. Recently,the passive cooling technique has aroused widespread interest, which can reduce the target object temperature below the ambient one without any energy consumption.It is regarded as an alternative way to achieve effective cooling,in which refers to reflecting the sunlight in the solar spectrum and pumping heat from objects to cold outer space via the atmospheric window.[1–3]Catalanottiet al.realized a selective surface at the atmospheric window and demonstrated practical cooling during nighttime operation in 1975.[4]Since then, nighttime coolers have been extensively studied and improved cooling performances were reported.[5–10]However, to achieve selective radiation in daytime, the radiative cooler needs to have approximately unit reflection at the solar spectrum and high emission at the atmospheric window while considering the non-radiative condition.[11,12]

    In order to meet the necessary requirements,a multilayer structure,[13]a photonic metamaterials structure[14–18]and a random particle structure[19,20]were proposed to achieve daytime cooling. Rephaeliet al.achieved a metal–dielectric photonic structure to get high-performance daytime radiative cooling.[21]Ramanet al.proposed a seven alternating layers of SiO2and HfO2on the top of Ag layer which had a reflectivity of 97%. They experimentally verified 4.9?C of cooling temperature under direct sunlight in 2014.[22]Chenet al.proposed a three-layer radiator with silicon nitride, amorphous silicon and aluminum,which achieved an average temperature reduction of 37?C by eliminating parasitic thermal load.[23]Kecebaset al.investigated a similar periodic radiator with a seven-layer structure and replaced the top layer with Al2O3to improve the net cooling power.[24]Jeonget al.put forward a structure with eight alternating layers of SiO2and TiO2, and the average emissivity was 84% in the atmospheric window.[25]The combination of polymer layers such as PDMS,[26]PMMA[27]and PTFE[28]has also been tested for daytime radiative cooling. Photonic metamaterials could prevent high solar absorption in the solar spectrum with a large emissivity in the atmospheric window. Wuet al.designed a two-dimensional antenna composed of a low loss alternating Al2O3and SiO2multi-layer structure, which possessed both selective MIR emissivity and low solar absorption.[29]Zhuet al.proposed a micro photonic design consisting of a twodimensional silica pyramid array and a 100μm-thick uniform silica layer atop the bare solar cell.[30]Jeonget al.presented a periodic multilayer structure based on PDMS, which verified that patterned metamaterials could obtain high emission.[31]Gentleet al.reported that embedded microparticles into polymer could also achieve a radiative cooling effect in 2010.[32]In the subsequent research,random SiO2or TiO2microparticles in a polymer layer exhibited superior performance for daytime radiative cooling with high emissivity in the atmospheric window and low absorptivity in the solar spectrum region.[33–35]Although much progress had been achieved in the previous works, it is still difficult to realize ideal broadband selective absorption in the atmospheric window with a simple inorganic radiative cooler.Thus,it is necessary to design photonic metamaterials to improve their emissivity and maintain high reflectivity.

    In this study, we have proposed a novel metamaterial to achieve a broadband absorption spectrum,which incorporates a patterned SiO2layer and Si3N4and Ag layers. The radiative cooler exhibits an average reflection of 92.0%in the solar spectral region and an average emissivity of 98.7% in the atmospheric window simultaneously. The electric field distributions at the resonant peak positions are carefully examined to figure out the origin of the high emissivity. Tunable average emissivity of our proposed structure is explored in detail with different geometric parameters and incident angles. Finally,cooling performance in the steady and transient state is examined respectively and its cooling ability persists when considering non-radiative heat exchange.

    2. Model and method

    2.1. Model design

    Figure 1(a) depicts the three-dimensional configuration of our designed radiative cooler, which consists of hollow zigzag SiO2metamaterials deposited on Si3N4and silver substrate. The Si3N4and SiO2has extremely low loss in the solar spectrum and a strong absorption peak in the atmospheric window,[36]serving as the absorptive segments. The hollow zigzag structure with a gradual refractive index is designed to improve the anti-reflection performance of the proposed model. Figure 1(b) is the cross-section view of the metamaterials and the geometric parameters are clearly indicated.The periodicity is taken as 7 μm along thexdirection. The inner and outer heights of hollow SiO2areh2=2.6 μm andh1=3μm. The inner and outer widths of the patterned SiO2arew2=3.5 μm andw1=7 μm. The tilted angle off thexaxis is taken asθ. Here it is set as 63?. The thicknesses of the Si3N4and Ag films areh3=0.8μm andh4=0.2μm,respectively. The absorption spectra and field distribution are numerically investigated with the finite difference time domain method. The incident plane electromagnetic wave is in thezdirection and the electric field polarization is alongxdirection. A perfectly matched layer (PML) is set surrounding the unit cell in thezdirection. The periodic boundary condition is applied along thexandydirections. The mesh size of each layer is 20 nm in thezdirection and 50 nm in thexandydirections. The refractive index of Si3N4and SiO2are obtained from the reference data.[37,38]The dielectric properties of the silver film are taken from Ref. [38]. With the solutions of Maxwell’s equations on electromagnetic waves,we can finally obtain the optical spectrum. To obtain our designed metamaterials in the lab, silicon can be employed as the substrate of the radiative cooler and it does not influence the optical properties of the upper structure. The silver layer was firstly deposited on the silicon wafer by using dc magnetron sputtering, and then layers of Si3N4and SiO2were deposited.[39]After that, an array of grooves on the top of the SiO2layer could be fabricated with lithography and the inductively coupled plasma reactive ion etching method.[40]A sacrificial layer was deposited on the silica layer to obtain the triangular prism patterns through the lithography and wetetching process.[41]Then, a SiO2layer was deposited on the triangular prism patterns and the sacrificial layer etched away with a specific solution to get the hollow zigzag SiO2metamaterials.

    Fig. 1. Schematic diagram of thermal metamaterials. (a) 3D illustration.(b)Crosssection view. Parameters: h1 =3μm,h2 =2.6μm,h3 =0.8μm,h4=0.2μm,w1=7μm,w2=3.5μm,θ =63?.

    2.2. Radiative cooling power

    In order to evaluate the cooling performance of the thermal emitter, it is necessary to obtain its net cooling power(Pnet). Usually, it is determined by four factors in the daytime environment. Namely, the infrared radiation of radiative cooler,solar irradiance,atmospheric thermal radiation and non-radiative radiation. The net radiative cooling powerPnetis defined as[42]

    Pcond+convis the power absorbed by conduction and convection

    HereTambis the ambient temperature,Tis the radiator surface temperature.IB=(2hc2/λ5)/[ehc/kBT ?1]stands for the blackbody radiation andεatm(λ,θ)=1?t(λ)1/cos(θ)is the angular atmospheric emissivity.h,c,kB, andhcindicate the Planck constant,the speed of light,Boltzmann’s constant,and the heat transfer coefficient,respectively.ε(λ,θ)is the emissivity of the film andAis the surface area of the radiative cooler. According to Kirchhoff’s law, the absorptivity of an object is equivalent to emissivity in a thermodynamic equilibrium state. The mean solar reflectivity and emissivity can be obtained with the integral formula.[43]The column water vapor is assumed to be 1.0 mm and the air mass is 1.0 in this calculation. The global AM1.5 solar spectrum in Eq. (4) is

    987 W·m?2of direct normal irradiance.[44]The ambient temperature is taken as 300 K in our analysis.

    3. Results and discussion

    The absorption spectra of our designed radiative cooler as a function of the incident wavelength from 0.3 μm to 15 μm is shown in Fig. 2. It can be clearly observed that the proposed structure can simultaneously achieve high reflection in the solar band and high emission in the atmospheric window.In addition, the average emissivity is as high as 98.7% near the atmospheric window,which enables the structure to radiative cool maximally. Yellow and cyan colored spectra indicate AM1.5 solar power density and atmospheric transmittance in the atmospheric transparency window for reference. It illustrates that the radiative cooler has a broad near-unit absorptivity region in the atmospheric window embodying high performance for daytime radiative cooling.

    Fig.3. (a)The absorption spectra of the thermal metamaterial with the resonant positions are marked with I,II,III,IV,and V.(b)The electric field distributions at(I)8.1μm,(II)8.7μm,(III)9.3μm,(IV)10.0μm,(V)11.1μm. Parameters: w1=7μm,θ =63?,h2=2.6μm.

    Fig.2. Absorptivity of the hollow zigzag SiO2 thermal metamaterials in the wavelength from 0.3μm to 15μm. Parameters: w1 =7μm,h2 =2.6μm,θ =63?. Emissivity curve of the radiative cooler (red), the scaled AM1.5 solar spectrum(yellow)and the atmospheric absorption spectrum(cyan)are plotted for reference.

    To fully explore the physical origin of the high absorption in the atmospheric window,the resonant positions are marked in the absorptivity spectrum in Fig.3(a). It is clearly found the minimum absorptivity is still around 0.95 in the atmospheric window. The electric field distribution at resonant positions of 8.1μm,8.7μm,9.3μm,10.0μm and 11.1μm are illustrated in Fig.3(b)(I–V). The electric field mainly focuses on the top of the hollow zigzag structure at 8.1μm in Fig.3(I).It moves to the lateral sides of the hollow zigzag structure in the lower position as shown in Fig. 3(II). The electric field is confined around the two lateral regions in Fig. 3(III) at the resonant peak 10.0μm. However,it penetrates the cavity in Fig.3(IV).At a larger resonant wavelength of 11.1μm,the electric field intensity in the cavity gradually decreases. The intensity at resonant peak position V is less than that of(I,II,III and IV),indicating that the hollow zigzag structure plays a major role in the overall enhanced absorption. The graded refractive index(moth eye effects) can be employed to explain the high absorptivity in the atmospheric window.[29]The hollow zigzag structure can be viewed as an infinite number of thin layers.The index of each thin layer is lower than the lower adjacent layer when the groove width of the air decreases. Thus, the effective refractive index of the material changes continuously along the depth direction and a multilayer antireflective constitution occurs.[45–48]The imaginary part of the dielectric constant in Si3N4and SiO2is extremely low in the solar region.Therefore, the reflectivity is not affected by the thickness of SiO2.

    Fig.4. (a)Absorptivity with different depths h2. (b)The emissivity in relation with different depths. (c)Net cooling power with different depths.Parameters: w1 =7 μm, θ =63?. (d) Absorptivity with different angles θ. (e) The emissivity with different angle θ. (f) Net cooling power in relation with different angles θ. Parameters: w1=7μm,h2=2.6μm. (g)Absorptivity with different widths w1. (h)The emissivity with different widths w1. (i)Net cooling power with different widths w1. Parameters: h2=2.6μm,θ =63?. The ambient temperature is 300 K.

    Figure 4 presents the absorptivity in our designed metamaterials with different geometric parameters. Here the structure width is taken as 7 μm andθ=63?. With the increase ofh2from 2.0 μm to 2.4 μm, the absorption spectrums shift to the high frequency region. To better reflect the tendency of the absorptivity, the average emissivity with different depths is shown in Fig. 4(b). With a largerh2, the average emissivity first increases and then decreases. It reaches a maximum value at 2.6 μm. The relevant net cooling power at different depths is shown in Fig. 4(c). The trend of cooling power is consistent with the average emissivity and reaches the highest value of 100.6 W·m?2at 2.6μm. The dependence of the absorption spectrum with differentθis shown in Fig.4(d). The absorptivity is above 92% in the atmospheric window. With a larger angle, the enhanced electric field around the edges is no longer the same. The electric field inside the cavity varies as well. Therefore, the absorptivity no longer overlaps in the wavelength ranging from 8μm to 13μm.To clearly reveal the influence of the angleθ,the average emissivity with differentθis illustrated in Fig.4(e). The average emissivity increases from 50?to 63?and then decreases from 63?to 70?with an angle interval of 2?. The average emissivity and cooling power of the absorber are closely related to the widthw1in Fig.4(g).Whenw1is taken from 3μm to 7μm,the emissivity is getting larger in Fig. 4(h). The net cooling power with differentw1follows the same trend in Fig.4(i). Whenw1is getting larger,the emissivity increases as well. Therefore,the optical geometry parameters can be obtained to get the desired emissivity in the atmospheric transparency window.

    It should be pointed out that the tunable emissivity can be achieved with different incident angle. Thus,the effect of incident angle on emissivity is taken into consideration in Fig.5.This is more in line with the fact that the position of the sun changes every day. The high average emissivity is approaching 1.0 and it keeps as a constant between 0?and 30?. When the incident angle exceeds 60?, the average emissivity drops gradually. However, the average emissivity remains above 0.83. Namely,the emissivity can persist above 0.83 for angles of incidence less than 80?. Our results demonstrate that the proposed emitter can absorb the energy of incident wave almost perfectly with incident angle smaller than 80?,embodying excellent radiation performance in the atmospheric transparency window.

    Fig.5.Emissivity as a function of various incident angles in the atmospheric transparency window.

    The net cooling power of our proposed structure as a function of emitter surface temperatureTis demonstrated in Fig. 6. The influence of parasitic convection and conduction are in the absence (red curve). The net cooling power of the radiative cooler is 100.6 W·m?2at the ambient temperature 300 K, which is due to its near-ideal emissivity and excellent heat dissipation performance in the atmospheric window. Moreover, the radiative cooler can reach an extremely low equilibrium temperature at 257 K. The influence of the non-radiative heat exchange coefficients is also taken into consideration. Here the coefficient is taken ashc= 3, 6,9(W·m?2·K?1). With the increasedhc,the cooling power decreases rapidly when it is lower than the ambient temperature.Especially,the cooling effect persists even with a largerhc.

    Fig.6. The net cooling power of the proposed cooler with different hc.

    The net cooling power of the proposed cooler with different non-radiative heat exchange coefficients in Fig.6 represents a steady-state process. However,the transient process of the radiative cooler under ambient temperature conditions is demonstrated in Fig.7,which can be obtained by solving the differential equation[49]

    whereCcoolerrepresents the heat capacitance and determined from the sum rule of multilayer design. The initial temperatures of the radiative cooler and ambient temperature are taken as the same. Herehcis set as 6 W·m?2·K?1. The temperature variation of the radiative cooler as a function of time at different ambient temperatures is shown in Fig. 7(a). When the ambient temperature is 280 K,the cooling capacity of the radiative cooler is very limited. With the increase of the ambient temperature to 300 K,the cooling capacity of the radiative cooler increases to a value of 13?C. An obvious drop of the temperature is found when the ambient temperature is 320 K.It indicates that the surface temperature of the radiant cooler finally decreases to 287 K,verifying the cooling ability of our designed cooler. Considering the transient process,the radiative cooling power versus time is considered in Fig. 7(b). It verifies that our designed emitter has excellent cooling performance. Meanwhile, the net radiative cooling power (Pnet)shown with the blue line and radiative power(Prad)in red gradually decrease with time. When the equilibrium process is approached, the net radiative cooling power becomes 0 and the radiative power is 165 W·m?2,which is employed to eliminate the non-radiative radiation and the absorbed sun power.

    Fig.7. Temperature evolution of the radiative cooler versus time at 280 K,300 K and 320 K ambient temperature. (b) Prad and Pnet of the radiative cooler versus time under 300 K ambient temperature.

    4. Conclusions

    In summary, we have numerically described and investigated the emission properties of hollow zigzag SiO2metamaterials to achieve efficient daytime radiative cooling. A broadband absorption in the atmospheric window and a high reflectivity in the solar spectral can be simultaneously achieved.It can be analyzed with electric distribution and it originates from the graded refractive index of the hollow zigzag structure. The effects of the structure widthw1, the depth of the grooveh2, the degree of zigzagθand incident angle on the absorptivity are fully analyzed. Moreover,tunable ideal emissivity can be maintained at large angles, which is a desirable feature in maximizing the cooling power. The hollow zigzag SiO2metamaterial structure can achieve 100.6 W·m?2and a drop of 13?C for daytime cooling. When non-radiative exchange is considered, the proposed radiative cooler can still achieve effective cooling. Therefore, the designed structure not only provides potential applications in the radiative cooling system of buildings, solar cells and sensors, but also provides an insight into designing radiative coolers and related photonic structures.

    猜你喜歡
    高勇懷遠(yuǎn)
    懷遠(yuǎn) 學(xué)習(xí)貫徹二十大 巾幗奮進(jìn)新征程
    你就別裝了
    你就別裝了
    汲古懷遠(yuǎn)造物歸真
    高勇,記者的好朋友
    高且勇兮
    高勇印象
    肖懷遠(yuǎn)主任深入河?xùn)|區(qū)專題調(diào)研圖片報道
    天津人大(2017年4期)2017-06-22 14:22:59
    有事短信說
    “義氣”救人也害人
    9热在线视频观看99| 日韩精品免费视频一区二区三区| 午夜福利视频精品| xxxhd国产人妻xxx| 久久 成人 亚洲| av一本久久久久| 男人操女人黄网站| 欧美xxⅹ黑人| 精品少妇黑人巨大在线播放| 亚洲少妇的诱惑av| 九色亚洲精品在线播放| 日韩 亚洲 欧美在线| 国产日韩欧美视频二区| 妹子高潮喷水视频| 在线亚洲精品国产二区图片欧美| 人人妻,人人澡人人爽秒播| 中文字幕制服av| 久久久久久人人人人人| 亚洲专区字幕在线| 精品一区在线观看国产| a在线观看视频网站| 天堂中文最新版在线下载| 亚洲久久久国产精品| 国产免费av片在线观看野外av| 国产免费av片在线观看野外av| 久久毛片免费看一区二区三区| 欧美老熟妇乱子伦牲交| 一区二区日韩欧美中文字幕| a级片在线免费高清观看视频| 亚洲精品国产精品久久久不卡| 高清视频免费观看一区二区| 大香蕉久久网| 精品国产一区二区三区久久久樱花| 交换朋友夫妻互换小说| 国产福利在线免费观看视频| 中文字幕人妻丝袜一区二区| 国产主播在线观看一区二区| 乱人伦中国视频| 国产无遮挡羞羞视频在线观看| 久久久精品区二区三区| 妹子高潮喷水视频| 亚洲av成人不卡在线观看播放网 | 黄色视频,在线免费观看| 黄色视频,在线免费观看| 中亚洲国语对白在线视频| 美女主播在线视频| 极品人妻少妇av视频| 欧美一级毛片孕妇| 制服人妻中文乱码| 亚洲av片天天在线观看| 五月天丁香电影| 久久精品国产a三级三级三级| 午夜福利一区二区在线看| 久久久精品免费免费高清| 成人18禁高潮啪啪吃奶动态图| 亚洲 欧美一区二区三区| av不卡在线播放| 婷婷色av中文字幕| 日韩视频在线欧美| 女人久久www免费人成看片| 18在线观看网站| 亚洲五月婷婷丁香| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲第一欧美日韩一区二区三区 | 国产成人av教育| 国产人伦9x9x在线观看| 国产精品熟女久久久久浪| 久久精品国产a三级三级三级| 美女高潮喷水抽搐中文字幕| 国产成人精品无人区| 69精品国产乱码久久久| tocl精华| 亚洲成国产人片在线观看| 91大片在线观看| 我要看黄色一级片免费的| 亚洲国产成人一精品久久久| 欧美97在线视频| 成年人免费黄色播放视频| 母亲3免费完整高清在线观看| 国产成人av教育| 黄色怎么调成土黄色| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文字幕日韩| 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区三区在线| 国产野战对白在线观看| 欧美黑人精品巨大| 国产免费av片在线观看野外av| 久久av网站| 午夜福利在线免费观看网站| 精品福利永久在线观看| 99久久精品国产亚洲精品| 亚洲欧洲精品一区二区精品久久久| 亚洲自偷自拍图片 自拍| 丝瓜视频免费看黄片| 人人妻人人爽人人添夜夜欢视频| 91av网站免费观看| 亚洲精品自拍成人| 日本一区二区免费在线视频| 十分钟在线观看高清视频www| 50天的宝宝边吃奶边哭怎么回事| 窝窝影院91人妻| 777久久人妻少妇嫩草av网站| 12—13女人毛片做爰片一| 亚洲国产毛片av蜜桃av| 欧美激情 高清一区二区三区| 欧美激情高清一区二区三区| 大香蕉久久成人网| 两人在一起打扑克的视频| 中文字幕最新亚洲高清| 亚洲国产欧美网| 国产视频一区二区在线看| 新久久久久国产一级毛片| av欧美777| 90打野战视频偷拍视频| 又大又爽又粗| 美女福利国产在线| h视频一区二区三区| 十八禁人妻一区二区| 天堂8中文在线网| 少妇粗大呻吟视频| 精品免费久久久久久久清纯 | 91av网站免费观看| av天堂久久9| 国产精品久久久久久精品古装| 在线天堂中文资源库| 午夜老司机福利片| av免费在线观看网站| 亚洲,欧美精品.| 别揉我奶头~嗯~啊~动态视频 | 黄频高清免费视频| 伦理电影免费视频| 女人被躁到高潮嗷嗷叫费观| 黄频高清免费视频| 男女国产视频网站| 蜜桃国产av成人99| 亚洲av日韩在线播放| 欧美少妇被猛烈插入视频| 另类精品久久| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 欧美精品啪啪一区二区三区 | 久久这里只有精品19| 搡老熟女国产l中国老女人| 美女午夜性视频免费| 麻豆av在线久日| 淫妇啪啪啪对白视频 | 丝袜人妻中文字幕| 国产成人免费无遮挡视频| 男女午夜视频在线观看| 国产色视频综合| 久久 成人 亚洲| 国产精品麻豆人妻色哟哟久久| 色精品久久人妻99蜜桃| 国产1区2区3区精品| 国产深夜福利视频在线观看| av网站免费在线观看视频| 9色porny在线观看| 亚洲国产毛片av蜜桃av| 波多野结衣一区麻豆| 国产成人精品久久二区二区免费| 久久久精品免费免费高清| 波多野结衣一区麻豆| 99久久综合免费| 欧美av亚洲av综合av国产av| 十八禁人妻一区二区| 亚洲色图综合在线观看| 欧美黑人精品巨大| 波多野结衣一区麻豆| 天天躁日日躁夜夜躁夜夜| 国产xxxxx性猛交| 国产精品久久久久久人妻精品电影 | 99久久国产精品久久久| 亚洲精品一卡2卡三卡4卡5卡 | 一本色道久久久久久精品综合| 九色亚洲精品在线播放| 最近中文字幕2019免费版| √禁漫天堂资源中文www| 亚洲精品中文字幕在线视频| 我要看黄色一级片免费的| 精品国产一区二区三区四区第35| 国产成人系列免费观看| 后天国语完整版免费观看| 久久精品国产综合久久久| avwww免费| 免费高清在线观看视频在线观看| 色播在线永久视频| 国产一级毛片在线| 国产精品99久久99久久久不卡| 久久久久久久精品精品| 在线十欧美十亚洲十日本专区| 欧美+亚洲+日韩+国产| 亚洲国产看品久久| 18禁国产床啪视频网站| 久久久水蜜桃国产精品网| 一级片免费观看大全| 女人精品久久久久毛片| 国产99久久九九免费精品| 9热在线视频观看99| 亚洲国产毛片av蜜桃av| 国产三级黄色录像| 亚洲天堂av无毛| 成人影院久久| 国产精品熟女久久久久浪| 精品人妻1区二区| 成人免费观看视频高清| 日本av免费视频播放| 夫妻午夜视频| 五月天丁香电影| 国产日韩欧美在线精品| 久久女婷五月综合色啪小说| 久久精品久久久久久噜噜老黄| 日本av手机在线免费观看| 一级黄色大片毛片| 午夜福利乱码中文字幕| 人成视频在线观看免费观看| www.精华液| 九色亚洲精品在线播放| 久久精品国产亚洲av香蕉五月 | 人成视频在线观看免费观看| 国产熟女午夜一区二区三区| 欧美另类亚洲清纯唯美| 午夜免费鲁丝| 亚洲国产精品成人久久小说| 久久国产精品男人的天堂亚洲| 国产精品自产拍在线观看55亚洲 | 两个人看的免费小视频| 啦啦啦视频在线资源免费观看| 亚洲五月色婷婷综合| 日韩欧美国产一区二区入口| 美女高潮喷水抽搐中文字幕| 大香蕉久久成人网| 午夜免费鲁丝| 啦啦啦啦在线视频资源| 他把我摸到了高潮在线观看 | 国产黄色免费在线视频| 成人三级做爰电影| 一边摸一边抽搐一进一出视频| 欧美97在线视频| 国产免费福利视频在线观看| 2018国产大陆天天弄谢| 欧美性长视频在线观看| 在线观看一区二区三区激情| 男女免费视频国产| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产色婷婷电影| 不卡av一区二区三区| 999久久久国产精品视频| av视频免费观看在线观看| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区四区五区乱码| 欧美另类一区| 国产精品一区二区精品视频观看| 成年动漫av网址| 国产精品久久久久久人妻精品电影 | 国产精品麻豆人妻色哟哟久久| 亚洲一码二码三码区别大吗| 亚洲国产欧美在线一区| 老司机影院成人| 国产av一区二区精品久久| 欧美精品人与动牲交sv欧美| 桃花免费在线播放| 一区二区三区四区激情视频| 丝袜脚勾引网站| 国产野战对白在线观看| 大陆偷拍与自拍| 少妇人妻久久综合中文| 国产1区2区3区精品| 男人舔女人的私密视频| www.av在线官网国产| 国产成人一区二区三区免费视频网站| 免费一级毛片在线播放高清视频 | 免费高清在线观看视频在线观看| 亚洲第一欧美日韩一区二区三区 | 亚洲天堂av无毛| 国产人伦9x9x在线观看| 欧美日韩黄片免| 亚洲视频免费观看视频| 天堂中文最新版在线下载| 菩萨蛮人人尽说江南好唐韦庄| 免费在线观看日本一区| 动漫黄色视频在线观看| 人妻一区二区av| 男女边摸边吃奶| 午夜激情久久久久久久| 久热爱精品视频在线9| 欧美老熟妇乱子伦牲交| 久久久久国内视频| 亚洲国产av影院在线观看| av国产精品久久久久影院| 亚洲精品成人av观看孕妇| 国产伦理片在线播放av一区| 一级,二级,三级黄色视频| 亚洲一区中文字幕在线| avwww免费| 在线观看免费日韩欧美大片| 久久99热这里只频精品6学生| 18禁观看日本| 国产一区二区三区在线臀色熟女 | 咕卡用的链子| av天堂在线播放| 免费在线观看影片大全网站| 国产一区二区三区在线臀色熟女 | 欧美国产精品一级二级三级| 黄色 视频免费看| 91精品三级在线观看| 黄色片一级片一级黄色片| 五月天丁香电影| 深夜精品福利| 国产精品亚洲av一区麻豆| 免费在线观看视频国产中文字幕亚洲 | 啦啦啦 在线观看视频| 成人国产av品久久久| 久久久久久久精品精品| 欧美日韩黄片免| 免费观看av网站的网址| 亚洲欧洲日产国产| 午夜两性在线视频| 亚洲精品美女久久av网站| 三级毛片av免费| 免费在线观看视频国产中文字幕亚洲 | 国产深夜福利视频在线观看| 岛国毛片在线播放| 最新在线观看一区二区三区| 欧美日韩精品网址| 中文字幕高清在线视频| 性少妇av在线| 老司机影院成人| 日韩电影二区| 狠狠婷婷综合久久久久久88av| 99精品久久久久人妻精品| 精品第一国产精品| 亚洲三区欧美一区| 久久av网站| 日本wwww免费看| 老司机深夜福利视频在线观看 | 国产免费现黄频在线看| 亚洲三区欧美一区| 国产精品久久久av美女十八| 午夜福利免费观看在线| 日本撒尿小便嘘嘘汇集6| 人妻人人澡人人爽人人| 日韩欧美一区视频在线观看| 嫁个100分男人电影在线观看| 精品高清国产在线一区| 国产成人系列免费观看| 两性夫妻黄色片| 老司机深夜福利视频在线观看 | 国产亚洲欧美精品永久| 又黄又粗又硬又大视频| 中国国产av一级| 亚洲精品在线美女| 岛国毛片在线播放| 中文字幕最新亚洲高清| 日本欧美视频一区| 精品国产一区二区久久| 韩国高清视频一区二区三区| 99国产综合亚洲精品| 久久久国产一区二区| 亚洲精品国产区一区二| 亚洲一区二区三区欧美精品| 啦啦啦在线免费观看视频4| 啦啦啦免费观看视频1| 亚洲精品久久久久久婷婷小说| 高清在线国产一区| 韩国精品一区二区三区| 51午夜福利影视在线观看| 久久影院123| 国产精品1区2区在线观看. | 老司机靠b影院| 国产精品香港三级国产av潘金莲| 狠狠婷婷综合久久久久久88av| 亚洲精品国产一区二区精华液| 一区二区三区激情视频| 在线天堂中文资源库| 亚洲av男天堂| 国产精品久久久久久精品电影小说| 欧美黑人欧美精品刺激| 欧美日韩一级在线毛片| 久久精品亚洲熟妇少妇任你| 欧美av亚洲av综合av国产av| 电影成人av| 少妇猛男粗大的猛烈进出视频| 久久国产精品男人的天堂亚洲| 欧美日韩视频精品一区| 欧美精品啪啪一区二区三区 | 成人手机av| 色婷婷久久久亚洲欧美| 一二三四社区在线视频社区8| 中文精品一卡2卡3卡4更新| 女人被躁到高潮嗷嗷叫费观| 中文字幕另类日韩欧美亚洲嫩草| 色综合欧美亚洲国产小说| 一级黄色大片毛片| 视频区欧美日本亚洲| 久久久久视频综合| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久视频综合| 少妇粗大呻吟视频| 亚洲黑人精品在线| 久久99热这里只频精品6学生| 999久久久国产精品视频| 香蕉丝袜av| 精品第一国产精品| 97在线人人人人妻| 免费女性裸体啪啪无遮挡网站| 夫妻午夜视频| av线在线观看网站| 久久精品成人免费网站| 大片免费播放器 马上看| 热99久久久久精品小说推荐| 中文字幕色久视频| 999久久久国产精品视频| 久久久久国内视频| 欧美人与性动交α欧美软件| 一本一本久久a久久精品综合妖精| 免费不卡黄色视频| 一级a爱视频在线免费观看| 日韩,欧美,国产一区二区三区| 亚洲免费av在线视频| www日本在线高清视频| 高清视频免费观看一区二区| 老司机午夜十八禁免费视频| 国产精品国产三级国产专区5o| 成人亚洲精品一区在线观看| 国产精品 欧美亚洲| 丁香六月天网| 亚洲人成电影免费在线| 欧美成人午夜精品| 永久免费av网站大全| 搡老熟女国产l中国老女人| 国产欧美亚洲国产| av天堂久久9| 日本91视频免费播放| 免费高清在线观看视频在线观看| 搡老熟女国产l中国老女人| 亚洲成人国产一区在线观看| bbb黄色大片| 狂野欧美激情性bbbbbb| 99精国产麻豆久久婷婷| 成人影院久久| 国产日韩欧美在线精品| 免费观看a级毛片全部| 亚洲五月色婷婷综合| 肉色欧美久久久久久久蜜桃| 91老司机精品| 99国产极品粉嫩在线观看| 国产精品久久久久久人妻精品电影 | 十八禁网站免费在线| 精品熟女少妇八av免费久了| 国产精品亚洲av一区麻豆| 热re99久久精品国产66热6| 国产男女超爽视频在线观看| 一级毛片电影观看| 涩涩av久久男人的天堂| 欧美日韩成人在线一区二区| 无限看片的www在线观看| 国产精品二区激情视频| 精品欧美一区二区三区在线| 12—13女人毛片做爰片一| 欧美日韩成人在线一区二区| 免费日韩欧美在线观看| 黄色视频不卡| 多毛熟女@视频| 在线亚洲精品国产二区图片欧美| 亚洲精品中文字幕一二三四区 | 两人在一起打扑克的视频| 老司机靠b影院| 最新的欧美精品一区二区| 欧美精品啪啪一区二区三区 | 欧美日韩一级在线毛片| 亚洲五月色婷婷综合| 亚洲精品中文字幕一二三四区 | 亚洲情色 制服丝袜| 免费少妇av软件| 亚洲激情五月婷婷啪啪| 欧美人与性动交α欧美软件| 在线天堂中文资源库| 黑人欧美特级aaaaaa片| 精品一品国产午夜福利视频| 久久久久国产一级毛片高清牌| 新久久久久国产一级毛片| 99香蕉大伊视频| 一级a爱视频在线免费观看| 狠狠婷婷综合久久久久久88av| 久久久久久久久免费视频了| 日韩电影二区| bbb黄色大片| 国产无遮挡羞羞视频在线观看| 午夜福利在线观看吧| 无限看片的www在线观看| 日韩熟女老妇一区二区性免费视频| 制服人妻中文乱码| 久久亚洲国产成人精品v| 少妇猛男粗大的猛烈进出视频| 啦啦啦 在线观看视频| 精品少妇久久久久久888优播| 考比视频在线观看| 国产区一区二久久| 黄色 视频免费看| 1024视频免费在线观看| 在线十欧美十亚洲十日本专区| 午夜福利免费观看在线| 久久久久久久精品精品| 亚洲,欧美精品.| 欧美另类一区| 亚洲国产看品久久| 久久久精品94久久精品| 欧美午夜高清在线| 国产高清videossex| 精品一品国产午夜福利视频| 亚洲伊人久久精品综合| 亚洲欧美精品综合一区二区三区| 少妇裸体淫交视频免费看高清 | 国产真人三级小视频在线观看| av福利片在线| 亚洲成人免费电影在线观看| 高清黄色对白视频在线免费看| 黑人操中国人逼视频| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 青春草视频在线免费观看| 两人在一起打扑克的视频| 久久精品国产a三级三级三级| 热99re8久久精品国产| 18禁观看日本| 一区在线观看完整版| 亚洲欧美日韩另类电影网站| 69av精品久久久久久 | 女人高潮潮喷娇喘18禁视频| 热99re8久久精品国产| 国产深夜福利视频在线观看| 亚洲欧美成人综合另类久久久| 国产成人欧美| 成人手机av| 黑人巨大精品欧美一区二区mp4| 日韩视频一区二区在线观看| 国产1区2区3区精品| 久久久欧美国产精品| 久久ye,这里只有精品| 国产欧美日韩一区二区三 | 咕卡用的链子| 日韩欧美免费精品| 亚洲国产欧美网| 黄色视频不卡| 男男h啪啪无遮挡| 午夜福利在线免费观看网站| 天堂8中文在线网| 80岁老熟妇乱子伦牲交| 国产亚洲欧美精品永久| 丝袜喷水一区| 日韩大片免费观看网站| 涩涩av久久男人的天堂| 亚洲伊人久久精品综合| 人人妻,人人澡人人爽秒播| 国产欧美日韩综合在线一区二区| 超碰97精品在线观看| 国产欧美日韩一区二区精品| 黄色 视频免费看| 国产成人av教育| 男人舔女人的私密视频| 精品国产乱码久久久久久小说| 婷婷成人精品国产| 十八禁人妻一区二区| 国产精品99久久99久久久不卡| 亚洲欧美精品自产自拍| 欧美 亚洲 国产 日韩一| 欧美xxⅹ黑人| 亚洲va日本ⅴa欧美va伊人久久 | 欧美日韩一级在线毛片| 亚洲 国产 在线| 老司机午夜十八禁免费视频| 久久久久久久国产电影| bbb黄色大片| 成年av动漫网址| 99久久国产精品久久久| 国产深夜福利视频在线观看| 免费在线观看黄色视频的| 亚洲精品国产av蜜桃| 久久精品久久久久久噜噜老黄| 悠悠久久av| 热99re8久久精品国产| 欧美av亚洲av综合av国产av| 人妻久久中文字幕网| 久久精品国产亚洲av香蕉五月 | 老熟妇仑乱视频hdxx| 成人黄色视频免费在线看| 亚洲国产欧美日韩在线播放| 18禁黄网站禁片午夜丰满| 丝瓜视频免费看黄片| 色婷婷av一区二区三区视频| 啦啦啦免费观看视频1| 一级毛片电影观看| www.999成人在线观看| 日日摸夜夜添夜夜添小说| 国产免费现黄频在线看| 亚洲成人手机| 久久中文字幕一级| 又黄又粗又硬又大视频| 美女脱内裤让男人舔精品视频| 99久久综合免费| 久久人妻熟女aⅴ| 精品福利观看| 一级,二级,三级黄色视频| 热re99久久精品国产66热6| 国产精品秋霞免费鲁丝片| 欧美精品高潮呻吟av久久| 亚洲欧洲日产国产| 欧美午夜高清在线| 精品第一国产精品| 十八禁网站网址无遮挡| 日日摸夜夜添夜夜添小说| 女性生殖器流出的白浆| 国产免费一区二区三区四区乱码| 日韩欧美免费精品|