• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials?

    2021-06-26 03:04:04HuaweiYao姚華偉XiaoxiaWang王曉霞HuaiyuanYin殷懷遠(yuǎn)YuanlinJia賈淵琳YongGao高勇JunqiaoWang王俊俏andChunzhenFan范春珍
    Chinese Physics B 2021年6期
    關(guān)鍵詞:高勇懷遠(yuǎn)

    Huawei Yao(姚華偉) Xiaoxia Wang(王曉霞) Huaiyuan Yin(殷懷遠(yuǎn)) Yuanlin Jia(賈淵琳) Yong Gao(高勇)Junqiao Wang(王俊俏) and Chunzhen Fan(范春珍)

    1School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450001,China

    2Department of Physics,Shanghai Polytechnic University,Shanghai 201209,China

    Keywords: daytime radiative cooling,hollow zigzag metamaterials,net cooling power,emissivity

    1. Introduction

    With the increasing demands of modern refrigeration,the corresponding emission of greenhouse gases poses a threat to people’s lives, especially from traditional refrigeration methods such as air conditioners which consume a lot of electric energy and generate net heat, which further aggravates CO2emission and increases temperatures.It is becoming extremely urgent to find an effective method to reduce temperatures and energy consumption. Recently,the passive cooling technique has aroused widespread interest, which can reduce the target object temperature below the ambient one without any energy consumption.It is regarded as an alternative way to achieve effective cooling,in which refers to reflecting the sunlight in the solar spectrum and pumping heat from objects to cold outer space via the atmospheric window.[1–3]Catalanottiet al.realized a selective surface at the atmospheric window and demonstrated practical cooling during nighttime operation in 1975.[4]Since then, nighttime coolers have been extensively studied and improved cooling performances were reported.[5–10]However, to achieve selective radiation in daytime, the radiative cooler needs to have approximately unit reflection at the solar spectrum and high emission at the atmospheric window while considering the non-radiative condition.[11,12]

    In order to meet the necessary requirements,a multilayer structure,[13]a photonic metamaterials structure[14–18]and a random particle structure[19,20]were proposed to achieve daytime cooling. Rephaeliet al.achieved a metal–dielectric photonic structure to get high-performance daytime radiative cooling.[21]Ramanet al.proposed a seven alternating layers of SiO2and HfO2on the top of Ag layer which had a reflectivity of 97%. They experimentally verified 4.9?C of cooling temperature under direct sunlight in 2014.[22]Chenet al.proposed a three-layer radiator with silicon nitride, amorphous silicon and aluminum,which achieved an average temperature reduction of 37?C by eliminating parasitic thermal load.[23]Kecebaset al.investigated a similar periodic radiator with a seven-layer structure and replaced the top layer with Al2O3to improve the net cooling power.[24]Jeonget al.put forward a structure with eight alternating layers of SiO2and TiO2, and the average emissivity was 84% in the atmospheric window.[25]The combination of polymer layers such as PDMS,[26]PMMA[27]and PTFE[28]has also been tested for daytime radiative cooling. Photonic metamaterials could prevent high solar absorption in the solar spectrum with a large emissivity in the atmospheric window. Wuet al.designed a two-dimensional antenna composed of a low loss alternating Al2O3and SiO2multi-layer structure, which possessed both selective MIR emissivity and low solar absorption.[29]Zhuet al.proposed a micro photonic design consisting of a twodimensional silica pyramid array and a 100μm-thick uniform silica layer atop the bare solar cell.[30]Jeonget al.presented a periodic multilayer structure based on PDMS, which verified that patterned metamaterials could obtain high emission.[31]Gentleet al.reported that embedded microparticles into polymer could also achieve a radiative cooling effect in 2010.[32]In the subsequent research,random SiO2or TiO2microparticles in a polymer layer exhibited superior performance for daytime radiative cooling with high emissivity in the atmospheric window and low absorptivity in the solar spectrum region.[33–35]Although much progress had been achieved in the previous works, it is still difficult to realize ideal broadband selective absorption in the atmospheric window with a simple inorganic radiative cooler.Thus,it is necessary to design photonic metamaterials to improve their emissivity and maintain high reflectivity.

    In this study, we have proposed a novel metamaterial to achieve a broadband absorption spectrum,which incorporates a patterned SiO2layer and Si3N4and Ag layers. The radiative cooler exhibits an average reflection of 92.0%in the solar spectral region and an average emissivity of 98.7% in the atmospheric window simultaneously. The electric field distributions at the resonant peak positions are carefully examined to figure out the origin of the high emissivity. Tunable average emissivity of our proposed structure is explored in detail with different geometric parameters and incident angles. Finally,cooling performance in the steady and transient state is examined respectively and its cooling ability persists when considering non-radiative heat exchange.

    2. Model and method

    2.1. Model design

    Figure 1(a) depicts the three-dimensional configuration of our designed radiative cooler, which consists of hollow zigzag SiO2metamaterials deposited on Si3N4and silver substrate. The Si3N4and SiO2has extremely low loss in the solar spectrum and a strong absorption peak in the atmospheric window,[36]serving as the absorptive segments. The hollow zigzag structure with a gradual refractive index is designed to improve the anti-reflection performance of the proposed model. Figure 1(b) is the cross-section view of the metamaterials and the geometric parameters are clearly indicated.The periodicity is taken as 7 μm along thexdirection. The inner and outer heights of hollow SiO2areh2=2.6 μm andh1=3μm. The inner and outer widths of the patterned SiO2arew2=3.5 μm andw1=7 μm. The tilted angle off thexaxis is taken asθ. Here it is set as 63?. The thicknesses of the Si3N4and Ag films areh3=0.8μm andh4=0.2μm,respectively. The absorption spectra and field distribution are numerically investigated with the finite difference time domain method. The incident plane electromagnetic wave is in thezdirection and the electric field polarization is alongxdirection. A perfectly matched layer (PML) is set surrounding the unit cell in thezdirection. The periodic boundary condition is applied along thexandydirections. The mesh size of each layer is 20 nm in thezdirection and 50 nm in thexandydirections. The refractive index of Si3N4and SiO2are obtained from the reference data.[37,38]The dielectric properties of the silver film are taken from Ref. [38]. With the solutions of Maxwell’s equations on electromagnetic waves,we can finally obtain the optical spectrum. To obtain our designed metamaterials in the lab, silicon can be employed as the substrate of the radiative cooler and it does not influence the optical properties of the upper structure. The silver layer was firstly deposited on the silicon wafer by using dc magnetron sputtering, and then layers of Si3N4and SiO2were deposited.[39]After that, an array of grooves on the top of the SiO2layer could be fabricated with lithography and the inductively coupled plasma reactive ion etching method.[40]A sacrificial layer was deposited on the silica layer to obtain the triangular prism patterns through the lithography and wetetching process.[41]Then, a SiO2layer was deposited on the triangular prism patterns and the sacrificial layer etched away with a specific solution to get the hollow zigzag SiO2metamaterials.

    Fig. 1. Schematic diagram of thermal metamaterials. (a) 3D illustration.(b)Crosssection view. Parameters: h1 =3μm,h2 =2.6μm,h3 =0.8μm,h4=0.2μm,w1=7μm,w2=3.5μm,θ =63?.

    2.2. Radiative cooling power

    In order to evaluate the cooling performance of the thermal emitter, it is necessary to obtain its net cooling power(Pnet). Usually, it is determined by four factors in the daytime environment. Namely, the infrared radiation of radiative cooler,solar irradiance,atmospheric thermal radiation and non-radiative radiation. The net radiative cooling powerPnetis defined as[42]

    Pcond+convis the power absorbed by conduction and convection

    HereTambis the ambient temperature,Tis the radiator surface temperature.IB=(2hc2/λ5)/[ehc/kBT ?1]stands for the blackbody radiation andεatm(λ,θ)=1?t(λ)1/cos(θ)is the angular atmospheric emissivity.h,c,kB, andhcindicate the Planck constant,the speed of light,Boltzmann’s constant,and the heat transfer coefficient,respectively.ε(λ,θ)is the emissivity of the film andAis the surface area of the radiative cooler. According to Kirchhoff’s law, the absorptivity of an object is equivalent to emissivity in a thermodynamic equilibrium state. The mean solar reflectivity and emissivity can be obtained with the integral formula.[43]The column water vapor is assumed to be 1.0 mm and the air mass is 1.0 in this calculation. The global AM1.5 solar spectrum in Eq. (4) is

    987 W·m?2of direct normal irradiance.[44]The ambient temperature is taken as 300 K in our analysis.

    3. Results and discussion

    The absorption spectra of our designed radiative cooler as a function of the incident wavelength from 0.3 μm to 15 μm is shown in Fig. 2. It can be clearly observed that the proposed structure can simultaneously achieve high reflection in the solar band and high emission in the atmospheric window.In addition, the average emissivity is as high as 98.7% near the atmospheric window,which enables the structure to radiative cool maximally. Yellow and cyan colored spectra indicate AM1.5 solar power density and atmospheric transmittance in the atmospheric transparency window for reference. It illustrates that the radiative cooler has a broad near-unit absorptivity region in the atmospheric window embodying high performance for daytime radiative cooling.

    Fig.3. (a)The absorption spectra of the thermal metamaterial with the resonant positions are marked with I,II,III,IV,and V.(b)The electric field distributions at(I)8.1μm,(II)8.7μm,(III)9.3μm,(IV)10.0μm,(V)11.1μm. Parameters: w1=7μm,θ =63?,h2=2.6μm.

    Fig.2. Absorptivity of the hollow zigzag SiO2 thermal metamaterials in the wavelength from 0.3μm to 15μm. Parameters: w1 =7μm,h2 =2.6μm,θ =63?. Emissivity curve of the radiative cooler (red), the scaled AM1.5 solar spectrum(yellow)and the atmospheric absorption spectrum(cyan)are plotted for reference.

    To fully explore the physical origin of the high absorption in the atmospheric window,the resonant positions are marked in the absorptivity spectrum in Fig.3(a). It is clearly found the minimum absorptivity is still around 0.95 in the atmospheric window. The electric field distribution at resonant positions of 8.1μm,8.7μm,9.3μm,10.0μm and 11.1μm are illustrated in Fig.3(b)(I–V). The electric field mainly focuses on the top of the hollow zigzag structure at 8.1μm in Fig.3(I).It moves to the lateral sides of the hollow zigzag structure in the lower position as shown in Fig. 3(II). The electric field is confined around the two lateral regions in Fig. 3(III) at the resonant peak 10.0μm. However,it penetrates the cavity in Fig.3(IV).At a larger resonant wavelength of 11.1μm,the electric field intensity in the cavity gradually decreases. The intensity at resonant peak position V is less than that of(I,II,III and IV),indicating that the hollow zigzag structure plays a major role in the overall enhanced absorption. The graded refractive index(moth eye effects) can be employed to explain the high absorptivity in the atmospheric window.[29]The hollow zigzag structure can be viewed as an infinite number of thin layers.The index of each thin layer is lower than the lower adjacent layer when the groove width of the air decreases. Thus, the effective refractive index of the material changes continuously along the depth direction and a multilayer antireflective constitution occurs.[45–48]The imaginary part of the dielectric constant in Si3N4and SiO2is extremely low in the solar region.Therefore, the reflectivity is not affected by the thickness of SiO2.

    Fig.4. (a)Absorptivity with different depths h2. (b)The emissivity in relation with different depths. (c)Net cooling power with different depths.Parameters: w1 =7 μm, θ =63?. (d) Absorptivity with different angles θ. (e) The emissivity with different angle θ. (f) Net cooling power in relation with different angles θ. Parameters: w1=7μm,h2=2.6μm. (g)Absorptivity with different widths w1. (h)The emissivity with different widths w1. (i)Net cooling power with different widths w1. Parameters: h2=2.6μm,θ =63?. The ambient temperature is 300 K.

    Figure 4 presents the absorptivity in our designed metamaterials with different geometric parameters. Here the structure width is taken as 7 μm andθ=63?. With the increase ofh2from 2.0 μm to 2.4 μm, the absorption spectrums shift to the high frequency region. To better reflect the tendency of the absorptivity, the average emissivity with different depths is shown in Fig. 4(b). With a largerh2, the average emissivity first increases and then decreases. It reaches a maximum value at 2.6 μm. The relevant net cooling power at different depths is shown in Fig. 4(c). The trend of cooling power is consistent with the average emissivity and reaches the highest value of 100.6 W·m?2at 2.6μm. The dependence of the absorption spectrum with differentθis shown in Fig.4(d). The absorptivity is above 92% in the atmospheric window. With a larger angle, the enhanced electric field around the edges is no longer the same. The electric field inside the cavity varies as well. Therefore, the absorptivity no longer overlaps in the wavelength ranging from 8μm to 13μm.To clearly reveal the influence of the angleθ,the average emissivity with differentθis illustrated in Fig.4(e). The average emissivity increases from 50?to 63?and then decreases from 63?to 70?with an angle interval of 2?. The average emissivity and cooling power of the absorber are closely related to the widthw1in Fig.4(g).Whenw1is taken from 3μm to 7μm,the emissivity is getting larger in Fig. 4(h). The net cooling power with differentw1follows the same trend in Fig.4(i). Whenw1is getting larger,the emissivity increases as well. Therefore,the optical geometry parameters can be obtained to get the desired emissivity in the atmospheric transparency window.

    It should be pointed out that the tunable emissivity can be achieved with different incident angle. Thus,the effect of incident angle on emissivity is taken into consideration in Fig.5.This is more in line with the fact that the position of the sun changes every day. The high average emissivity is approaching 1.0 and it keeps as a constant between 0?and 30?. When the incident angle exceeds 60?, the average emissivity drops gradually. However, the average emissivity remains above 0.83. Namely,the emissivity can persist above 0.83 for angles of incidence less than 80?. Our results demonstrate that the proposed emitter can absorb the energy of incident wave almost perfectly with incident angle smaller than 80?,embodying excellent radiation performance in the atmospheric transparency window.

    Fig.5.Emissivity as a function of various incident angles in the atmospheric transparency window.

    The net cooling power of our proposed structure as a function of emitter surface temperatureTis demonstrated in Fig. 6. The influence of parasitic convection and conduction are in the absence (red curve). The net cooling power of the radiative cooler is 100.6 W·m?2at the ambient temperature 300 K, which is due to its near-ideal emissivity and excellent heat dissipation performance in the atmospheric window. Moreover, the radiative cooler can reach an extremely low equilibrium temperature at 257 K. The influence of the non-radiative heat exchange coefficients is also taken into consideration. Here the coefficient is taken ashc= 3, 6,9(W·m?2·K?1). With the increasedhc,the cooling power decreases rapidly when it is lower than the ambient temperature.Especially,the cooling effect persists even with a largerhc.

    Fig.6. The net cooling power of the proposed cooler with different hc.

    The net cooling power of the proposed cooler with different non-radiative heat exchange coefficients in Fig.6 represents a steady-state process. However,the transient process of the radiative cooler under ambient temperature conditions is demonstrated in Fig.7,which can be obtained by solving the differential equation[49]

    whereCcoolerrepresents the heat capacitance and determined from the sum rule of multilayer design. The initial temperatures of the radiative cooler and ambient temperature are taken as the same. Herehcis set as 6 W·m?2·K?1. The temperature variation of the radiative cooler as a function of time at different ambient temperatures is shown in Fig. 7(a). When the ambient temperature is 280 K,the cooling capacity of the radiative cooler is very limited. With the increase of the ambient temperature to 300 K,the cooling capacity of the radiative cooler increases to a value of 13?C. An obvious drop of the temperature is found when the ambient temperature is 320 K.It indicates that the surface temperature of the radiant cooler finally decreases to 287 K,verifying the cooling ability of our designed cooler. Considering the transient process,the radiative cooling power versus time is considered in Fig. 7(b). It verifies that our designed emitter has excellent cooling performance. Meanwhile, the net radiative cooling power (Pnet)shown with the blue line and radiative power(Prad)in red gradually decrease with time. When the equilibrium process is approached, the net radiative cooling power becomes 0 and the radiative power is 165 W·m?2,which is employed to eliminate the non-radiative radiation and the absorbed sun power.

    Fig.7. Temperature evolution of the radiative cooler versus time at 280 K,300 K and 320 K ambient temperature. (b) Prad and Pnet of the radiative cooler versus time under 300 K ambient temperature.

    4. Conclusions

    In summary, we have numerically described and investigated the emission properties of hollow zigzag SiO2metamaterials to achieve efficient daytime radiative cooling. A broadband absorption in the atmospheric window and a high reflectivity in the solar spectral can be simultaneously achieved.It can be analyzed with electric distribution and it originates from the graded refractive index of the hollow zigzag structure. The effects of the structure widthw1, the depth of the grooveh2, the degree of zigzagθand incident angle on the absorptivity are fully analyzed. Moreover,tunable ideal emissivity can be maintained at large angles, which is a desirable feature in maximizing the cooling power. The hollow zigzag SiO2metamaterial structure can achieve 100.6 W·m?2and a drop of 13?C for daytime cooling. When non-radiative exchange is considered, the proposed radiative cooler can still achieve effective cooling. Therefore, the designed structure not only provides potential applications in the radiative cooling system of buildings, solar cells and sensors, but also provides an insight into designing radiative coolers and related photonic structures.

    猜你喜歡
    高勇懷遠(yuǎn)
    懷遠(yuǎn) 學(xué)習(xí)貫徹二十大 巾幗奮進(jìn)新征程
    你就別裝了
    你就別裝了
    汲古懷遠(yuǎn)造物歸真
    高勇,記者的好朋友
    高且勇兮
    高勇印象
    肖懷遠(yuǎn)主任深入河?xùn)|區(qū)專題調(diào)研圖片報道
    天津人大(2017年4期)2017-06-22 14:22:59
    有事短信說
    “義氣”救人也害人
    老熟妇仑乱视频hdxx| 亚洲内射少妇av| 99热只有精品国产| or卡值多少钱| 精品乱码久久久久久99久播| avwww免费| 亚洲综合色惰| 激情 狠狠 欧美| 观看美女的网站| 日日干狠狠操夜夜爽| 日韩av在线大香蕉| 97热精品久久久久久| 99国产精品一区二区蜜桃av| 99久久精品国产国产毛片| av女优亚洲男人天堂| 国产精品一区www在线观看| 99热全是精品| 99久久成人亚洲精品观看| 日本一本二区三区精品| 成人鲁丝片一二三区免费| 国产黄色视频一区二区在线观看 | 在线观看一区二区三区| 最近在线观看免费完整版| 校园人妻丝袜中文字幕| 99国产极品粉嫩在线观看| 国产精品国产高清国产av| 精品久久久久久成人av| av女优亚洲男人天堂| 性色avwww在线观看| 熟女人妻精品中文字幕| av黄色大香蕉| 国产精品电影一区二区三区| 赤兔流量卡办理| 看免费成人av毛片| 少妇人妻一区二区三区视频| 一区福利在线观看| 久久精品国产亚洲av香蕉五月| 久久久久久久久久黄片| 国国产精品蜜臀av免费| 插阴视频在线观看视频| 如何舔出高潮| 国内精品久久久久精免费| 欧美国产日韩亚洲一区| 亚洲中文日韩欧美视频| 色综合色国产| 欧美+亚洲+日韩+国产| 91av网一区二区| 日日撸夜夜添| 中国国产av一级| 狂野欧美激情性xxxx在线观看| 精品免费久久久久久久清纯| 午夜免费激情av| 一级黄片播放器| 成人亚洲精品av一区二区| 国产成人a区在线观看| 赤兔流量卡办理| h日本视频在线播放| 成人av一区二区三区在线看| 日韩欧美精品v在线| 国产精品久久久久久精品电影| 综合色av麻豆| 日韩亚洲欧美综合| 直男gayav资源| 天堂av国产一区二区熟女人妻| 久久精品国产亚洲av涩爱 | 久久精品国产亚洲av香蕉五月| 午夜激情福利司机影院| 岛国在线免费视频观看| 日本精品一区二区三区蜜桃| 男人舔女人下体高潮全视频| 成人亚洲精品av一区二区| 99久久精品国产国产毛片| 日韩高清综合在线| 一区二区三区四区激情视频 | 午夜免费男女啪啪视频观看 | 国内精品一区二区在线观看| 欧美潮喷喷水| 99热这里只有是精品50| 日韩欧美国产在线观看| 国产在线男女| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品日韩在线中文字幕 | 黑人高潮一二区| 亚洲婷婷狠狠爱综合网| 亚洲精品乱码久久久v下载方式| 波多野结衣巨乳人妻| 亚洲一区二区三区色噜噜| 国产一区亚洲一区在线观看| 99久国产av精品国产电影| 国产又黄又爽又无遮挡在线| 亚洲中文字幕日韩| 少妇的逼好多水| 欧美色视频一区免费| 亚洲欧美日韩高清在线视频| 国产免费一级a男人的天堂| 天堂动漫精品| 国产黄色视频一区二区在线观看 | 免费看av在线观看网站| 看十八女毛片水多多多| 精华霜和精华液先用哪个| 长腿黑丝高跟| 午夜亚洲福利在线播放| 综合色丁香网| 国产亚洲av嫩草精品影院| 日韩 亚洲 欧美在线| 99久久精品一区二区三区| 老熟妇仑乱视频hdxx| 97在线视频观看| 三级毛片av免费| 人妻丰满熟妇av一区二区三区| 白带黄色成豆腐渣| 不卡一级毛片| 久久久久久九九精品二区国产| 18禁黄网站禁片免费观看直播| 日本 av在线| 少妇的逼好多水| 桃色一区二区三区在线观看| 直男gayav资源| 99久久精品一区二区三区| 天天一区二区日本电影三级| 在线观看66精品国产| .国产精品久久| 在线观看av片永久免费下载| a级毛片a级免费在线| 免费在线观看成人毛片| 人妻制服诱惑在线中文字幕| 久久这里只有精品中国| 在现免费观看毛片| 麻豆一二三区av精品| 欧美+亚洲+日韩+国产| 俄罗斯特黄特色一大片| 亚洲精品456在线播放app| 欧美不卡视频在线免费观看| www.色视频.com| 99riav亚洲国产免费| 精品一区二区三区av网在线观看| 日韩欧美 国产精品| 成年女人永久免费观看视频| 99热这里只有是精品在线观看| 熟妇人妻久久中文字幕3abv| 国内揄拍国产精品人妻在线| 最后的刺客免费高清国语| 国产精品一区二区免费欧美| 日韩欧美 国产精品| 国产精品爽爽va在线观看网站| 97超级碰碰碰精品色视频在线观看| 赤兔流量卡办理| 欧美绝顶高潮抽搐喷水| 99久国产av精品国产电影| 免费搜索国产男女视频| 国产中年淑女户外野战色| 在线免费观看不下载黄p国产| 一级黄片播放器| 亚洲人成网站在线播| 老师上课跳d突然被开到最大视频| 少妇的逼水好多| 三级男女做爰猛烈吃奶摸视频| 免费观看在线日韩| av国产免费在线观看| 免费高清视频大片| 69人妻影院| 精品人妻熟女av久视频| 国产在线精品亚洲第一网站| 国产精品1区2区在线观看.| 国产一区二区三区av在线 | 一级a爱片免费观看的视频| 亚洲av熟女| 亚洲第一电影网av| 国内精品美女久久久久久| 欧美性猛交黑人性爽| 欧美中文日本在线观看视频| 小说图片视频综合网站| 日韩中字成人| 日韩欧美三级三区| 国产精品1区2区在线观看.| 国产午夜福利久久久久久| 深夜a级毛片| 久久久成人免费电影| 少妇的逼好多水| 亚洲婷婷狠狠爱综合网| a级毛色黄片| 免费人成在线观看视频色| 亚洲中文字幕日韩| 国产成年人精品一区二区| 精品人妻熟女av久视频| 亚洲专区国产一区二区| or卡值多少钱| 日本一本二区三区精品| 亚洲成人中文字幕在线播放| 女生性感内裤真人,穿戴方法视频| 97超级碰碰碰精品色视频在线观看| 久久久久国产网址| 97在线视频观看| 精品日产1卡2卡| 国产熟女欧美一区二区| 男女之事视频高清在线观看| 精品久久久久久久久久免费视频| 午夜影院日韩av| 国产精品久久视频播放| 国产亚洲精品综合一区在线观看| 日韩精品有码人妻一区| 可以在线观看的亚洲视频| 国产免费男女视频| 国产欧美日韩精品亚洲av| 免费看av在线观看网站| 九九在线视频观看精品| 免费看美女性在线毛片视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人久久性| 日韩欧美免费精品| 可以在线观看毛片的网站| 一级a爱片免费观看的视频| 春色校园在线视频观看| 亚洲人成网站在线观看播放| avwww免费| 别揉我奶头~嗯~啊~动态视频| 精品少妇黑人巨大在线播放 | 春色校园在线视频观看| 少妇丰满av| 午夜福利在线在线| 女生性感内裤真人,穿戴方法视频| 老司机影院成人| 亚洲性久久影院| 久久久久久久久大av| 国产美女午夜福利| 日本成人三级电影网站| 深爱激情五月婷婷| 国产在视频线在精品| 日韩一本色道免费dvd| 欧美激情在线99| 午夜精品一区二区三区免费看| 国产午夜精品久久久久久一区二区三区 | 久久久午夜欧美精品| 欧美zozozo另类| 99精品在免费线老司机午夜| 在线观看一区二区三区| 欧美色欧美亚洲另类二区| 一级黄色大片毛片| 我要搜黄色片| 精品久久久噜噜| 国产午夜精品久久久久久一区二区三区 | 亚洲av电影不卡..在线观看| 国产精品一区二区性色av| 亚洲欧美日韩卡通动漫| 亚洲在线观看片| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频| 色5月婷婷丁香| 国产蜜桃级精品一区二区三区| 少妇人妻精品综合一区二区 | 日本成人三级电影网站| 69人妻影院| 国内精品久久久久精免费| 亚洲成人中文字幕在线播放| 日韩 亚洲 欧美在线| h日本视频在线播放| 久久久久久久午夜电影| 午夜久久久久精精品| 91午夜精品亚洲一区二区三区| 免费人成视频x8x8入口观看| 天堂av国产一区二区熟女人妻| 国产精品av视频在线免费观看| 在线免费观看不下载黄p国产| 国产老妇女一区| 免费大片18禁| 人人妻人人看人人澡| 国产私拍福利视频在线观看| 成人二区视频| 波多野结衣高清无吗| 成人无遮挡网站| 18+在线观看网站| 97超视频在线观看视频| 高清毛片免费看| 97碰自拍视频| 好男人在线观看高清免费视频| 国产精品一区二区三区四区免费观看 | 一卡2卡三卡四卡精品乱码亚洲| 不卡一级毛片| 99riav亚洲国产免费| 亚洲国产日韩欧美精品在线观看| 亚洲精品色激情综合| 欧美成人免费av一区二区三区| 精品人妻偷拍中文字幕| 性色avwww在线观看| 不卡视频在线观看欧美| av在线天堂中文字幕| 真实男女啪啪啪动态图| 精品国产三级普通话版| 干丝袜人妻中文字幕| 麻豆久久精品国产亚洲av| 欧美zozozo另类| 在线国产一区二区在线| 日韩欧美三级三区| 又爽又黄a免费视频| 国产精品无大码| 99在线视频只有这里精品首页| 婷婷亚洲欧美| 在线观看美女被高潮喷水网站| 成人综合一区亚洲| 亚洲精品亚洲一区二区| 丰满人妻一区二区三区视频av| 在线观看一区二区三区| 99九九线精品视频在线观看视频| 精品一区二区三区视频在线| 亚洲av成人精品一区久久| 日韩av不卡免费在线播放| 91久久精品国产一区二区三区| 非洲黑人性xxxx精品又粗又长| 看黄色毛片网站| 成人av一区二区三区在线看| 成人漫画全彩无遮挡| 亚洲三级黄色毛片| 美女黄网站色视频| 亚洲国产精品国产精品| 午夜福利在线在线| 男女之事视频高清在线观看| 亚洲一区高清亚洲精品| 久久久久国内视频| 性欧美人与动物交配| 99热精品在线国产| av中文乱码字幕在线| 最近中文字幕高清免费大全6| 欧美中文日本在线观看视频| 亚洲欧美成人精品一区二区| av中文乱码字幕在线| 亚洲欧美日韩卡通动漫| 老师上课跳d突然被开到最大视频| 12—13女人毛片做爰片一| 久久久久久大精品| 精品午夜福利视频在线观看一区| 国产精品久久久久久亚洲av鲁大| 熟女人妻精品中文字幕| 欧美一区二区精品小视频在线| 午夜老司机福利剧场| 成人高潮视频无遮挡免费网站| 欧美一区二区国产精品久久精品| 中文字幕久久专区| 五月玫瑰六月丁香| 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 亚洲美女搞黄在线观看 | 精品一区二区三区视频在线| 国产成人精品久久久久久| 亚洲五月天丁香| 天天一区二区日本电影三级| 偷拍熟女少妇极品色| av专区在线播放| 日本精品一区二区三区蜜桃| 99热这里只有是精品50| 国产成年人精品一区二区| 久久久久久久久久久丰满| 看非洲黑人一级黄片| 国产69精品久久久久777片| ponron亚洲| 国产亚洲91精品色在线| 成熟少妇高潮喷水视频| 欧美日韩精品成人综合77777| 99久久精品国产国产毛片| 97超碰精品成人国产| 欧美精品国产亚洲| 国产成人a区在线观看| 久久99热这里只有精品18| 人妻少妇偷人精品九色| 中文字幕av成人在线电影| 久久久国产成人免费| 成年女人看的毛片在线观看| 亚洲精品国产av成人精品 | 久久久色成人| 国产一级毛片七仙女欲春2| 成人无遮挡网站| 日本成人三级电影网站| 俺也久久电影网| 成人亚洲欧美一区二区av| 天天躁日日操中文字幕| 国产黄片美女视频| 一区二区三区免费毛片| av福利片在线观看| 久久午夜福利片| 国产精品国产高清国产av| 日日干狠狠操夜夜爽| 欧美绝顶高潮抽搐喷水| 两个人视频免费观看高清| 欧美人与善性xxx| 91久久精品国产一区二区三区| 天堂av国产一区二区熟女人妻| 亚洲精品粉嫩美女一区| 99久久精品一区二区三区| 亚洲内射少妇av| 免费人成在线观看视频色| 久久精品影院6| 精品国内亚洲2022精品成人| 亚洲精品粉嫩美女一区| 亚洲人成网站在线观看播放| 亚洲性夜色夜夜综合| 久久久久久久久中文| 久久久久久大精品| 国产成人一区二区在线| 国产黄色小视频在线观看| 熟妇人妻久久中文字幕3abv| 狠狠狠狠99中文字幕| 黄色配什么色好看| 男女视频在线观看网站免费| .国产精品久久| videossex国产| 亚洲成人av在线免费| 18禁在线无遮挡免费观看视频 | 俺也久久电影网| 国产精品久久久久久久电影| 人妻制服诱惑在线中文字幕| 国产黄色小视频在线观看| 国产在线男女| 嫩草影院精品99| 亚洲欧美日韩高清在线视频| 亚洲18禁久久av| 日韩大尺度精品在线看网址| 欧美性猛交黑人性爽| 久久久久免费精品人妻一区二区| 欧美zozozo另类| av福利片在线观看| 好男人在线观看高清免费视频| 国产爱豆传媒在线观看| 国产视频内射| 久久精品国产自在天天线| 日本在线视频免费播放| 亚洲av美国av| 真人做人爱边吃奶动态| 国产黄色小视频在线观看| 欧美不卡视频在线免费观看| 春色校园在线视频观看| 欧美+亚洲+日韩+国产| 最新在线观看一区二区三区| 欧美bdsm另类| 国产精品一区二区免费欧美| a级毛片免费高清观看在线播放| 久久亚洲国产成人精品v| 一个人免费在线观看电影| 成年版毛片免费区| 毛片女人毛片| 日韩一本色道免费dvd| 日本黄色片子视频| 九九久久精品国产亚洲av麻豆| 十八禁国产超污无遮挡网站| 丰满乱子伦码专区| 成人高潮视频无遮挡免费网站| 18禁在线无遮挡免费观看视频 | 麻豆av噜噜一区二区三区| 97人妻精品一区二区三区麻豆| 午夜福利成人在线免费观看| 97超视频在线观看视频| 午夜免费男女啪啪视频观看 | 女同久久另类99精品国产91| 成人性生交大片免费视频hd| 国产一区二区三区av在线 | 国产精品一区二区三区四区免费观看 | 亚洲最大成人av| 99久久无色码亚洲精品果冻| 日韩精品中文字幕看吧| 俺也久久电影网| 成年版毛片免费区| а√天堂www在线а√下载| 亚洲国产精品国产精品| 色在线成人网| 成人鲁丝片一二三区免费| 伦精品一区二区三区| 男女之事视频高清在线观看| 中国美白少妇内射xxxbb| 亚洲欧美日韩卡通动漫| 免费看光身美女| 最后的刺客免费高清国语| 波野结衣二区三区在线| 国产亚洲精品久久久com| av天堂中文字幕网| 久久久色成人| 亚洲第一区二区三区不卡| 69人妻影院| 一个人看视频在线观看www免费| 一夜夜www| 熟妇人妻久久中文字幕3abv| 免费搜索国产男女视频| 日韩精品中文字幕看吧| 男人和女人高潮做爰伦理| 国产高清不卡午夜福利| 简卡轻食公司| 一进一出抽搐gif免费好疼| 给我免费播放毛片高清在线观看| 看十八女毛片水多多多| 国产精品嫩草影院av在线观看| 插逼视频在线观看| 欧美xxxx性猛交bbbb| 精品一区二区三区人妻视频| 久久精品国产亚洲网站| 国产精品久久久久久亚洲av鲁大| 欧美高清性xxxxhd video| 国产真实伦视频高清在线观看| 高清毛片免费看| 久久精品影院6| 直男gayav资源| 国产一区二区在线av高清观看| 亚洲性久久影院| 最近视频中文字幕2019在线8| 欧美激情久久久久久爽电影| 成人漫画全彩无遮挡| 人妻制服诱惑在线中文字幕| 久久久色成人| 国内精品美女久久久久久| 美女高潮的动态| 国内精品美女久久久久久| 啦啦啦啦在线视频资源| 国产精品久久久久久精品电影| 亚洲美女搞黄在线观看 | 91精品国产九色| 香蕉av资源在线| 老女人水多毛片| 在线免费观看的www视频| 国产精品人妻久久久久久| 国产成人91sexporn| 赤兔流量卡办理| 国产精品日韩av在线免费观看| 成人高潮视频无遮挡免费网站| 91久久精品国产一区二区三区| 看十八女毛片水多多多| 欧美成人a在线观看| 日本免费一区二区三区高清不卡| 国产国拍精品亚洲av在线观看| 国产成人一区二区在线| 激情 狠狠 欧美| 三级经典国产精品| 国产一区二区在线av高清观看| 日韩精品中文字幕看吧| 九九热线精品视视频播放| 伦精品一区二区三区| 国产一区二区三区在线臀色熟女| 国产高清不卡午夜福利| 精品免费久久久久久久清纯| 身体一侧抽搐| 极品教师在线视频| 美女免费视频网站| 亚洲人成网站高清观看| 亚洲av成人av| 日韩国内少妇激情av| 日日干狠狠操夜夜爽| 1000部很黄的大片| 1024手机看黄色片| 国产 一区精品| 欧美成人精品欧美一级黄| 国产一区亚洲一区在线观看| 亚洲人成网站高清观看| 少妇裸体淫交视频免费看高清| 日日摸夜夜添夜夜添av毛片| 春色校园在线视频观看| 国产一级毛片七仙女欲春2| 又爽又黄无遮挡网站| 18禁黄网站禁片免费观看直播| 啦啦啦观看免费观看视频高清| 精品乱码久久久久久99久播| 国产精品99久久久久久久久| 午夜亚洲福利在线播放| 免费在线观看影片大全网站| 亚洲精品久久国产高清桃花| 国产av在哪里看| 老女人水多毛片| 国产欧美日韩精品亚洲av| 青春草视频在线免费观看| 欧美在线一区亚洲| 国内少妇人妻偷人精品xxx网站| 亚洲va在线va天堂va国产| 2021天堂中文幕一二区在线观| 午夜久久久久精精品| 国产一区亚洲一区在线观看| 少妇熟女aⅴ在线视频| av在线播放精品| 国产乱人视频| 毛片女人毛片| 一级a爱片免费观看的视频| 久久精品国产亚洲网站| 五月伊人婷婷丁香| 亚洲av中文字字幕乱码综合| 久久久久久久午夜电影| 在线观看免费视频日本深夜| 一本久久中文字幕| 五月伊人婷婷丁香| 直男gayav资源| 久久综合国产亚洲精品| 中文资源天堂在线| 日本一二三区视频观看| 日韩中字成人| 尤物成人国产欧美一区二区三区| 我要搜黄色片| 老熟妇乱子伦视频在线观看| 免费在线观看成人毛片| 亚洲精品一区av在线观看| 国产又黄又爽又无遮挡在线| 日本a在线网址| 亚洲,欧美,日韩| 久久久色成人| 亚洲激情五月婷婷啪啪| 国产乱人偷精品视频| 日本精品一区二区三区蜜桃| 老熟妇乱子伦视频在线观看| 一级毛片我不卡| 久久国产乱子免费精品| 男人狂女人下面高潮的视频| 亚洲熟妇熟女久久| 国语自产精品视频在线第100页| 一本久久中文字幕| 看非洲黑人一级黄片| 久久久久精品国产欧美久久久| 欧美日韩乱码在线| 欧美绝顶高潮抽搐喷水| 日韩 亚洲 欧美在线| 嫩草影视91久久| 久久久a久久爽久久v久久| 我要搜黄色片| 国产乱人视频| 99热这里只有是精品50|