• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aperture-averaged scintillation index and fade statistics in weak oceanic turbulence?

    2021-06-26 03:03:54HaoWang王昊FuZengKang康福增XuanWang王瑄WeiZhao趙衛(wèi)andShuWeiSun孫樞為
    Chinese Physics B 2021年6期

    Hao Wang(王昊) Fu-Zeng Kang(康福增) Xuan Wang(王瑄)Wei Zhao(趙衛(wèi)) and Shu-Wei Sun(孫樞為)

    1State Key Laboratory of Transient Optics and Photonics,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an 710119,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: underwater optical communication(UOC),aperture-averaged scintillation index,fade statistics

    1. Introduction

    Underwater optical communication(UOC)has gained increasing attention in recent years for the increasing demand of military applications.[1–3]It has obvious advantage over the underwater acoustic communication in many aspects,etc.,large data capacity, and low-time delay in short to medium distance. However,propagation of a laser beam used in UOC is seriously limited by oceanic turbulence,causing the degradation of UOC performance. To tackle this issue, Nikishov and Nikishov firstly proposed an oceanic turbulence spectrum, providing a foundation for further analysis of oceanic turbulence.[4]Since then,there have been some studies on“the aperture-averaged scintillation index”(SI)and performance of UOC in oceanic turbulence based on Nikishov’s spectrum.For example, Korotkova presented numerical simulation of SI of both plane and spherical waves in weak oceanic turbulence.[5]Wanget al.[6]gave an analytical expression of SI by geometrical optics approximation. Yiet al.[7,8]also analyzed SI of both plane and spherical waves in weak oceanic turbulence and showed that using large-aperture receiver can remarkably decrease SI and consequently improve the system performance significantly. Recently,Gokce and Baykal[9,10]systematically studied how the aperture’s size of the receiver affects SI in strong oceanic turbulence.

    Although much progress has been made in this field,the validity of them in real situation is strongly restricted by Nikishov’s spectrum,which is over-simplified in describing turbulence in several aspects. For example,it assumes that seawater has a stable stratification,that is,the larger the density is,the lower it lies,so that the eddy diffusivity ratio is equal to unity.However, because the surface water is affected by winds and heat exchanges with atmosphere, it is usually neither stable nor layered. Especially at medium and high latitude on earth,the density stratification is reduced or even disappeared.[11]Awareness of such a problem in Nikishov’s spectrum, Yueet al.[12]proposed a modified power spectrum model,which took the instability of stratification into account. Furthermore,their spectrum considered the outer scale of the turbulence as a variable rather than setting it to be infinite. Based on this new model,they investigated how laser beam wanders in weak turbulence. Their results are very different from those using Nikishov’s spectrum. They also showed that the wander of a laser beam with Gaussian intensity profile is significantly reduced by decreasing the outer scale of turbulence. It seems promising that Yue’s spectrum can bring new insight to the theoretical studies of UOC systems. However,to our knowledge,no such research of UOC systems by applying Yue’s spectrum is available yet.

    In this study, we present an improved model of a UOC system in weak oceanic turbulence based on Yue’s spectrum.[12]We derive the analytic expressions of SI in weak oceanic turbulence and carry out a numerical simulation. It is found that spherical wave is preferable in the UOC system in weak turbulence compared to plane wave,and the apertureaveraged effect has a significant impact on UOC system’s performance. We further discuss some typical fade statistics of the UOC system including the probability of fade, the expected number of fades per time and the mean fade time,signal-to-noise ratio(SNR)and bit error rate(BER),according to the numerical simulation. Particularly,the eddy diffusivity ratio and the outer scale of the turbulence are considered[11]in our model and their effect on SI is discussed.

    2. Theory

    2.1. The oceanic turbulence power spectrum with the eddy diffusivity ratio and the outer scale

    Let us firstly briefly introduce Yue’s spectrum used in our model. In 2019,Yueet al.[12]presented an oceanic turbulence power spectrumΦn(κ),which includes the temperature spectrumΦT(κ), the salinity spectrumΦS(κ), and the coupling spectrumΦTS(κ). The power spectrum of oceanic turbulence is expressed as

    whereκis the magnitude of the spatial frequency;αis the thermal expansion coefficient,which is related to the temperature and salinity of the marine environment;κ0=2π/L0(L0is the outer scale of turbulence);εis the dissipation rate of turbulent kinetic energy per unit mass of fluid in the range from 10?1m2/s3to 10?10m2/s3.C0is a constant equal to 0.72.In Eqs. (2)–(4),ηis Kolmogorov microscale length (inner scale);χTis the dissipation rate of mean-squared temperature,varying from 10?4K2/s to 10?10K2/s;wis a dimensionless parameter providing the ratio between temperature and salinity that contributions to the refractive index spectrum ranging from?5 to 0.PT,PSandPTSare the Prandtl number of temperature,salinity,and the coupled temperature salinity,respectively,wherePTS=2PTPS/(PT+PS).Ci(i=T,S or TS)is a constant related toΦi.Niis a function of the Prandtl numberPi, governing the upper bound for the inertial-diffusive range ofΦi,which can be written as

    From Eq.(7),it can be seen thatdris a segmented function ofw.However,in previous studies using Nikishov’s spectrum,dris treated as unity,independent ofw.

    2.2. Aperture-averaged SI and fade statistics

    SI of plane and spherical waves in weak turbulence is defined as[13]

    Substituting Eq.(1)into Eqs.(8)and(9),SI of plane and spherical waves can be expressed as

    We leave the detailed calculation of SI in the Appendix.

    Referring to the mathematical model for the probability density function(PDF)of the randomly fading irradiance signal,we discuss the probability of fade,the expected number of fades per time,the mean fade time below a prescribed threshold,SNR and BER.

    The probability of fade can be expressed as[13]

    wherej=pl or sp represents plane and spherical waves, respectively; erf(x) is the error function. The fade parameterFT, given in decibels (dB), represents the dB level below the on-axis mean irradiance.

    The number of negative crossing of a prescribed threshold〈n(IT)〉characterizes the expected number of fades per time,which can be expressed as

    where〈···〉represents the ensemble average andv0is the quasi-frequency.

    Mean fade time〈t(IT)〉can be written as

    For a shot-noise-limited system,the SNR at the output of the detector can be written as[5,7,8]

    where SNR0is the SNR in the absence of turbulence.

    In the presence of oceanic turbulence, the probability of error is considered to be a conditional probability that must be averaged over the PDF of the random signal to determine the unconditional mean BER.In terms of a normalized signal with unit mean,it leads to the expression[5,7,8]

    3. Result and discussion

    In this section, we present some numerical results based on our model. All the expressions developed in the paper are restricted to weak turbulence,so we limit the SI below 1.[7]A typical marine environment is considered,in which the salinity is 35% and temperature is 20?C,[10]α=2.56×10?4L/?C,PT= 7,PS=700,PTS=13.86,CT= 2.18,CS= 2.22 andCTS=2.21,[10]χT=10?7K2/s,ε=10?4m2/s3. We set the wavelengthλ= 532 nm in the calculation, which is in the range of light window[14](470–580 nm)for the seawater.

    Notably,although we introduce outer scaleL0in the analytical expression of SI for both plane and spherical waves in Eqs. (10) and (11),L0has negligible effect on SI (details are not shown here)similar to that in atmosphere turbulence. This justifies setting it to be infinite in previous studies.[15]

    Fig. 1. SI of plane wave (a) and spherical wave (b) versus w for various receive aperture diameters. The solid lines are with dr calculated by Eq.(7),while dotted lines are with dr=1. The red solid/dotted lines represent D=0 mm,the green solid/dotted lines represent D=1 mm,the blue solid/dotted lines represent D=3 mm and the magenta lines represent D=5 mm, respectively. For all the curves, L=20 m and η =10?3 m.

    Firstly, we study how SI varies according tow,ηandLone by one.Figure 1 showsσ2I,plandσ2I,spas functions ofwfor variousDin two cases (drcalculated by Eq. (7) anddr=1).D=0 mm corresponds to the point receiver. Sincedris separated into three pieces in Eq.(7),the curves ofσ2I,plandσ2I,sp(solid line)in this case can also be divided into three sections.In the first section,σ2I,plandσ2I,spinitially increase aswincreases,reaching a maximum whenwis about 1.15,and then decreases aswapproaches?1. However,the overall changes ofσ2I,plandσ2I,spare small.The second section is fromw=?1 tow=?0.5,whereσ2I,plandσ2I,spdecrease parabolically. The third section is fromw=?0.5 tow=0,whereσ2I,plandσ2I,spincrease sharply with the increase ofw. Since?5<w <?1 and?1<w <0 are dominated by temperature fluctuations and salinity fluctuations, respectively, from these curves, we may conclude that salinity fluctuations have greater impact than temperature fluctuations on oceanic turbulence.However,their influences onσ2I,plandσ2I,spare not trivial particularly in the second section. In addition,increasingDwill reduceσ2I,plandσ2I,sp, which is more noticeable when the salinity fluctuations dominate the underwater turbulence (?1<w <0). On the other hand,σ2I,plandσ2I,spwithdr=1 show different trends,namely, they monotonically increase aswincreases from?5 to 0,though from these two curves,it also seems that salinity fluctuations have greater impact than temperature fluctuations on oceanic turbulence. At a fixed receive aperture diameter,Nikishov’s spectrum underestimates turbulence strength than Yue’s spectrum with?1<w <0, while it overestimates turbulence strength with?5<w <?1.[15]In both the cases,SI of plane wave is larger than that of spherical wave indicating that spherical wave is less affected by oceanic turbulence.

    Fig.2. SI of plane wave(a)and spherical wave(b)versus Kolmogorov microscale length for various receive aperture diameters. For all the curves,L=20 m and w=?1.

    Next, we showσ2I,plandσ2I,spas a function ofηat certainDin Fig. 2. For eachD,σ2I,plandσ2I,spfirst increase and then decrease with increasingη,and finally saturate at a level commonly described as the saturation regime.[5,13]The peak values ofσ2I,plandσ2I,spshould occur when the random focusing due to large-scale inhomogeneities achieves its strongest effect.[13,14]Then such a focusing effect reduces due to multiple scattering asηfurther increases. Whenηis fixed, lowerσ2I,plandσ2I,spare observed for largerD. Such a trend is most obvious whenσ2I,plandσ2I,spare around their peak values. Plane wave is quite sensitive to theη,leading to a higher value ofσ2I,plthan the correspondingσ2I,sp. This is consistent with the case of atmosphere turbulence.[6]

    Figure 3 presents SI of plane and spherical wave through oceanic turbulence with respect toLfor variousD. It can be seen that for eachD,σ2I,plandσ2I,spincrease quadratically with increasingL, indicating that UOC system works well only in short to medium distance. There is a significant drop inσ2I,plandσ2I,spwhenDincreases from 0 mm to 5 mm due to the effect of aperture averaging, especially in long propagation distance, because an increase inLcauses a decrease in the receiver intensity correlation and thus the receiver aperture successfully averages all the intensity fluctuations. Given the sameLandD,σ2I,plis larger thanσ2I,sp,which means spherical wave is less affected by oceanic turbulence than plane wave.Particularly,σ2I,plwith point receiver is about 2.5 timesσ2I,sp.The result is similar to that in atmosphere turbulence.[6]

    Fig.3. SI of plane wave(a)and spherical wave(b)versus propagation distance for various receive aperture diameters. For all curves,w=?1 and η =10?3 m.

    In order to demonstrate the validity of our analytic method, SI of plane wave withD=0 mm at different propagation distances is simulated by Monte Carlo simulation,[5]as shown in Fig. 4 (spherical wave is difficult to simulate by Monte Carlo because its infinite beam width). Table 1 gives a comparison between the SI’s extracted from the analytic method and the Monte Carlo method. The relative error between the them is less than 10%,proving the rationality of our analytic method.

    Next, performance of the UOC system is evaluated for different aperture diameters by investigating typical fade statistics includingPr(I ≤IT),〈n(IT)〉and〈t(IT)〉as functions ofFTfor variousDbased on the SI.We chooseυ0=550 Hz in our analysis for the convenience of making comparison between different conditions.[13,16,17]

    Fig.4. Plane wave at 0 m(a),10 m(b),20 m(c),30 m(d),40 m(e)and 50 m(f).

    Table 1.SI of plane wave at different propagation distances(SI1 is from this paper and SI2 is calculated by the Monte Carlo method).

    As shown in Fig.5,Pr(I ≤IT)decreases with increasingFTandD. Particularly, increasingFTby several dB can substantially reducePr(I ≤IT) by several orders of magnitude,especially with largeD.[18]Pr(I ≤IT) of spherical wave is lower than that of plane wave under the sameFTandD. To achieve the samePr(I ≤IT)of 10?6under the sameD,FTfor spherical wave is again lower than the plane wave. These results indicate that spherical wave is better than the plane wave for UOC.

    Fig. 5. Probability of fade of plane wave (a) and spherical wave (b)versus FT for various receive aperture diameters. For all the curves,L=20 m,w=?1 and η =10?3 m.

    Next,the effect of receiving aperture diameter on〈n(IT)〉for plane and spherical wave is shown in Fig.6. It can be seen that〈n(IT)〉firstly reaches the peak value with increasingFT,then rapidly decreases to low level; and〈n(IT)〉of the point receiver is the smallest whenFTis set to less than 1dB. On the contrary,if anFTof more than 1dB is chosen,〈n(IT)〉decreases with increasingD. To achieve the same〈n(IT)〉, the requiredFTvalue decreases with an increase inD, consistent with the previous studies.[19–22]For example, to achieve the〈n(IT)〉of 100,FTof 4.3, 6.1, 8.1 and 9 dB are required forD=0, 1, 3 and 5 mm for plane wave, respectively, where it reduces to 2.8, 4, 5.1 and 5.5 dB, forD=0, 1, 3 and 5 mm for spherical wave, respectively. This means that under the same oceanic turbulence and system parameters,the UOC system with spherical wave has the lower requirement forFTthan that with plane wave. These results also indicate that spherical wave is better than the plane wave for UOC.

    Fig.6.Expected number of fades versus FT of plane wave(a)and spherical wave (b) for various receive aperture diameters. For all curves,L=20 m,w=?1 and η =10?3 m.

    Finally, we plot〈t(IT)〉againstFTwith variousDin Fig. 7. We can see that〈t(IT)〉monotonically decreases withFT. ForDless than 1 mm, increasingFThas no significant impact on〈t(IT)〉. However, whenDis larger than 3 mm,〈t(IT)〉reduces several orders of magnitude by increasingFT.To achieve a targeted〈t(IT)〉of 10?6s, theFTvalues of 4.3 and 6.9 dB are required forD=0 and 1 mm in the case of plane wave,respectively,while they reduce to 1.7 and 3.4 dB,respectively, forD= 0 and 1 mm in the case of spherical wave. If we want to achieve an acceptable〈t(IT)〉(for example, 10?6s)[23,24]atFT=5 dB,Dmust be larger than 5 mm and 3 mm for plane wave and spherical wave, respectively.This means that spherical wave for UOC can achieve the same〈t(IT)〉with less difficulty and lower cost than plane wave.These results again indicate that spherical wave is better than the plane wave for UOC.

    Fig. 7. Mean fade time versus of plane wave (a) and spherical wave for various receive aperture diameters. For all the curves, L=20 m,w=?1 and η =10?3 m.

    In Fig. 8, we plot the SNR in dB as a function ofLfor variousD. SNR0is set as 10 dB[25]in our analysis for convenience of making comparison between different conditions.Unsurprisingly,turbulence causes a drop in SNR.[7,8]Particularly,SNR decreases with increasingLand decreasingD. Under the same oceanic condition,the SNR of spherical wave is only slightly better than that of plane wave.

    Finally, numerical calculation of the BER against theLfor variousDleads to the results shown in Fig. 9. These results indicate that to achieve an acceptable level of BER(typically around 10?6)[7,8,26]with a receive diameter of 5 mm in the presence of oceanic turbulence,Lis required to be limited in 40 m for spherical wave, while it reduces to 15 m for plane wave. This means that under the same BER, spherical wave for UOC can work in longer distance than plane wave,indicating that spherical wave is better than the plane wave for UOC.

    It is concluded that the performance of UOC with spherical wave is superior to that of plane wave due to the fact that lower SI leads to lower fade statistics.[27,28]We believe that our results provide a guidance for future UOC systems to choose best parameters such as propagation distance, receiving aperture diameter and fade threshold parameter to fit different ocean conditions.

    Fig.8. SNR of plane wave(a)and spherical wave(b)versus propagation distance for various receive aperture diameters. For all the curves,w=?1 and η =10?3 m.

    Fig.9. BER of plane wave(a)and spherical wave(b)versus propagation distance for various receive aperture diameters. For all the curves,w=?1 and η =10?3 m.

    4. Conclusion and perspectives

    In summary, we have adopted a spatial power spectrum model that considers the eddy diffusivity ratio and outer scale of turbulence and derived the analytical expressions of SI for plane and spherical waves based on the Rytov theory in weak turbulence.The numerical results show thatw,η,LandDplay an importance role in SI,whileL0does not. In many cases,SI based on our model is very different from that based on Nikishov’s spectrum.Based on SI,the typical fade statistics of the UOC system including thePr(I ≤IT),〈n(IT)〉,〈t(IT)〉, SNR and BER are discussed,clearly showing that the UOC system with spherical wave has advantage over that with plane wave.These results are helpful for design of UOC systems in future.

    Acknowledgement

    We would like to thank Professor Xiang Yi(Xidian University)and Professor Haiping Mei(Anhui Institute of Optics and Fine Mechanics)for helpful discussion and valuable suggestions.

    Appendix A

    Here, we would show how to calculateσ2I,plandσ2I,spin details based on Yue’s spectrum.The results are valid for weak oceanic turbulence where SI is below 1.

    SI of plane wave is expressed as[13]

    where Γ(···)represents the gamma function andU(···)represents the confluent hypergeometric function of the second kind.

    By performing the integral overκin Eq.(A3),we obtain

    久久精品国产自在天天线| 国产欧美日韩一区二区精品| 中文字幕人成人乱码亚洲影| 又黄又爽又免费观看的视频| av黄色大香蕉| 好男人在线观看高清免费视频| 国产精品精品国产色婷婷| 日韩欧美一区二区三区在线观看| h日本视频在线播放| 淫妇啪啪啪对白视频| 午夜激情欧美在线| 亚洲激情在线av| 91午夜精品亚洲一区二区三区 | 亚洲欧美日韩高清专用| 99riav亚洲国产免费| 一个人观看的视频www高清免费观看| 观看美女的网站| 噜噜噜噜噜久久久久久91| 国产成人福利小说| 国产精品亚洲一级av第二区| 亚洲人成网站高清观看| 午夜激情福利司机影院| 欧美成狂野欧美在线观看| 毛片一级片免费看久久久久 | 可以在线观看毛片的网站| 一本精品99久久精品77| 久久伊人香网站| 国产69精品久久久久777片| 成人性生交大片免费视频hd| 成年人黄色毛片网站| 日本黄色片子视频| 九九久久精品国产亚洲av麻豆| 免费av观看视频| 特大巨黑吊av在线直播| 特大巨黑吊av在线直播| 欧美成狂野欧美在线观看| 在线观看一区二区三区| 啦啦啦观看免费观看视频高清| 亚洲av免费高清在线观看| 91麻豆精品激情在线观看国产| av欧美777| 午夜福利18| 2021天堂中文幕一二区在线观| 亚洲av成人不卡在线观看播放网| 99久久久亚洲精品蜜臀av| 午夜福利在线观看免费完整高清在 | av天堂在线播放| 精品一区二区三区人妻视频| 久久久久久久久久成人| 如何舔出高潮| 最近中文字幕高清免费大全6 | 一卡2卡三卡四卡精品乱码亚洲| 十八禁人妻一区二区| 九九热线精品视视频播放| 一进一出好大好爽视频| 深夜a级毛片| 日本免费一区二区三区高清不卡| 夜夜看夜夜爽夜夜摸| 国产免费男女视频| 亚洲av成人精品一区久久| 女人被狂操c到高潮| 国产真实乱freesex| 欧美一区二区亚洲| 国产黄a三级三级三级人| 97超视频在线观看视频| 精品乱码久久久久久99久播| 亚洲,欧美精品.| 精品乱码久久久久久99久播| 国产欧美日韩精品亚洲av| 亚洲国产欧美人成| 88av欧美| 亚洲精品成人久久久久久| 三级国产精品欧美在线观看| 白带黄色成豆腐渣| 成人国产综合亚洲| 国产精品国产高清国产av| 免费观看精品视频网站| 久久久精品大字幕| 日本一本二区三区精品| 日韩大尺度精品在线看网址| 国产探花在线观看一区二区| 啦啦啦韩国在线观看视频| 小蜜桃在线观看免费完整版高清| 国产精品不卡视频一区二区 | 色噜噜av男人的天堂激情| 婷婷色综合大香蕉| 一区福利在线观看| 伦理电影大哥的女人| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲av嫩草精品影院| 国产黄a三级三级三级人| 日韩人妻高清精品专区| 真人做人爱边吃奶动态| 久久99热6这里只有精品| 国产成人影院久久av| 两个人视频免费观看高清| 噜噜噜噜噜久久久久久91| 观看美女的网站| 最近最新免费中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 俺也久久电影网| 亚洲最大成人手机在线| 午夜精品在线福利| 99热6这里只有精品| 欧美黄色淫秽网站| 老司机福利观看| 国产成人aa在线观看| 噜噜噜噜噜久久久久久91| 国产蜜桃级精品一区二区三区| 成人特级黄色片久久久久久久| 欧美+日韩+精品| 中文字幕av在线有码专区| 国产精品一区二区免费欧美| 一卡2卡三卡四卡精品乱码亚洲| 在线看三级毛片| 美女 人体艺术 gogo| 国模一区二区三区四区视频| 亚洲五月天丁香| 色播亚洲综合网| 免费搜索国产男女视频| 亚洲七黄色美女视频| 99久久无色码亚洲精品果冻| 中亚洲国语对白在线视频| 欧美xxxx黑人xx丫x性爽| 欧美成人a在线观看| 性插视频无遮挡在线免费观看| 床上黄色一级片| 中文字幕人成人乱码亚洲影| 丰满人妻一区二区三区视频av| 国产一区二区激情短视频| 一个人免费在线观看电影| 亚洲精品影视一区二区三区av| 午夜精品在线福利| 两人在一起打扑克的视频| 亚洲精品乱码久久久v下载方式| 赤兔流量卡办理| 国产伦精品一区二区三区四那| 成人欧美大片| 亚洲中文日韩欧美视频| 成人欧美大片| 亚洲一区二区三区不卡视频| 99国产精品一区二区三区| 国产精品国产高清国产av| 成人特级黄色片久久久久久久| 日韩人妻高清精品专区| 人人妻人人澡欧美一区二区| 99久久精品热视频| 88av欧美| 亚洲av一区综合| 日本 欧美在线| 麻豆国产av国片精品| 日本撒尿小便嘘嘘汇集6| 亚洲欧美精品综合久久99| 亚洲精品乱码久久久v下载方式| 男人和女人高潮做爰伦理| 成人午夜高清在线视频| 亚洲黑人精品在线| 天堂动漫精品| 欧美bdsm另类| 国产精品一及| 老熟妇仑乱视频hdxx| 欧美激情久久久久久爽电影| 亚洲国产日韩欧美精品在线观看| 亚洲,欧美,日韩| 精品福利观看| 精品一区二区三区人妻视频| 91av网一区二区| 88av欧美| 国产黄色小视频在线观看| 99riav亚洲国产免费| 别揉我奶头~嗯~啊~动态视频| 热99re8久久精品国产| 亚洲av电影不卡..在线观看| 国产av一区在线观看免费| 成熟少妇高潮喷水视频| 桃红色精品国产亚洲av| 亚洲七黄色美女视频| 久久6这里有精品| 少妇的逼好多水| 一个人免费在线观看的高清视频| 中文字幕熟女人妻在线| 偷拍熟女少妇极品色| 51午夜福利影视在线观看| 女人十人毛片免费观看3o分钟| 国产精品久久视频播放| 成年人黄色毛片网站| 夜夜夜夜夜久久久久| 亚洲男人的天堂狠狠| 亚洲久久久久久中文字幕| 欧美最黄视频在线播放免费| 国产精品不卡视频一区二区 | 日韩精品青青久久久久久| 久久国产乱子伦精品免费另类| 美女大奶头视频| 国产成人福利小说| 嫩草影院入口| 美女 人体艺术 gogo| 午夜久久久久精精品| 亚洲,欧美,日韩| 精品人妻偷拍中文字幕| 亚洲成人精品中文字幕电影| 我的女老师完整版在线观看| 日本精品一区二区三区蜜桃| 超碰av人人做人人爽久久| 亚洲国产精品成人综合色| 免费观看的影片在线观看| 无人区码免费观看不卡| 内地一区二区视频在线| 国产精品野战在线观看| 波野结衣二区三区在线| 国产野战对白在线观看| 国产一区二区在线av高清观看| 久久午夜福利片| 精品日产1卡2卡| 18+在线观看网站| 亚洲成人免费电影在线观看| 久久国产乱子伦精品免费另类| 男女床上黄色一级片免费看| 日韩欧美免费精品| 欧美午夜高清在线| 亚洲 国产 在线| 午夜福利18| 神马国产精品三级电影在线观看| 亚洲 欧美 日韩 在线 免费| 三级国产精品欧美在线观看| 男人舔女人下体高潮全视频| 国产蜜桃级精品一区二区三区| 精品久久久久久,| 两个人的视频大全免费| 老熟妇仑乱视频hdxx| 三级国产精品欧美在线观看| 人人妻人人澡欧美一区二区| 国产伦精品一区二区三区视频9| 久久精品影院6| а√天堂www在线а√下载| 一本一本综合久久| 亚洲av不卡在线观看| 国产精品电影一区二区三区| av福利片在线观看| 日韩成人在线观看一区二区三区| 变态另类丝袜制服| 男女视频在线观看网站免费| 久久久国产成人精品二区| 午夜精品一区二区三区免费看| 窝窝影院91人妻| 熟妇人妻久久中文字幕3abv| 少妇熟女aⅴ在线视频| 精品一区二区三区视频在线观看免费| 亚洲 国产 在线| 久久精品国产清高在天天线| 免费看美女性在线毛片视频| 日韩亚洲欧美综合| 久久精品国产99精品国产亚洲性色| 国产大屁股一区二区在线视频| 亚洲国产日韩欧美精品在线观看| 一区二区三区激情视频| 亚洲精品日韩av片在线观看| 国产成人福利小说| 国产精品久久视频播放| 两人在一起打扑克的视频| 国产激情偷乱视频一区二区| 国产乱人伦免费视频| 三级国产精品欧美在线观看| 九九久久精品国产亚洲av麻豆| 极品教师在线免费播放| 一级作爱视频免费观看| 国产av一区在线观看免费| 18+在线观看网站| 悠悠久久av| 亚洲精品色激情综合| 性插视频无遮挡在线免费观看| 亚洲欧美精品综合久久99| 国产成+人综合+亚洲专区| 日韩精品青青久久久久久| 久久精品综合一区二区三区| 亚洲国产色片| 国产成人a区在线观看| 亚洲,欧美,日韩| 久久精品91蜜桃| 日韩欧美精品v在线| 听说在线观看完整版免费高清| 真人一进一出gif抽搐免费| 国产成人啪精品午夜网站| 欧美日韩国产亚洲二区| 午夜两性在线视频| 成人三级黄色视频| 俄罗斯特黄特色一大片| 狂野欧美白嫩少妇大欣赏| 国产成人a区在线观看| 国产乱人伦免费视频| 免费看a级黄色片| 亚洲av电影在线进入| 在线免费观看不下载黄p国产 | 成年人黄色毛片网站| 国内久久婷婷六月综合欲色啪| 国产毛片a区久久久久| 国产精品一区二区三区四区免费观看 | 日韩国内少妇激情av| 伦理电影大哥的女人| 在线观看免费视频日本深夜| 午夜福利18| 久久精品夜夜夜夜夜久久蜜豆| 亚洲18禁久久av| 九九热线精品视视频播放| 男插女下体视频免费在线播放| 国产单亲对白刺激| 中文字幕久久专区| 国产精品久久久久久久电影| 免费电影在线观看免费观看| 亚洲精品久久国产高清桃花| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品一区二区三区人妻视频| www.999成人在线观看| 嫁个100分男人电影在线观看| 亚洲国产精品久久男人天堂| 国产精品1区2区在线观看.| 日本五十路高清| 亚洲国产欧美人成| 日韩高清综合在线| 国产视频内射| 乱码一卡2卡4卡精品| 国产免费男女视频| 亚洲真实伦在线观看| a级毛片免费高清观看在线播放| 国产精品嫩草影院av在线观看 | 一夜夜www| 国产成人欧美在线观看| 99久久99久久久精品蜜桃| 又粗又爽又猛毛片免费看| 天天躁日日操中文字幕| 成人亚洲精品av一区二区| 91九色精品人成在线观看| 免费在线观看影片大全网站| 波多野结衣高清作品| 嫁个100分男人电影在线观看| 亚洲第一电影网av| 国产精品99久久久久久久久| 日本与韩国留学比较| 久久午夜福利片| 中文字幕久久专区| 91字幕亚洲| 欧美一区二区国产精品久久精品| 男人和女人高潮做爰伦理| 亚洲欧美日韩高清在线视频| 欧美又色又爽又黄视频| 俄罗斯特黄特色一大片| 蜜桃亚洲精品一区二区三区| 看十八女毛片水多多多| 婷婷六月久久综合丁香| 日韩高清综合在线| 脱女人内裤的视频| 久久人人精品亚洲av| 偷拍熟女少妇极品色| 国产成人aa在线观看| 赤兔流量卡办理| 日韩欧美国产一区二区入口| av在线天堂中文字幕| 亚洲第一欧美日韩一区二区三区| 成人国产综合亚洲| 丰满的人妻完整版| 男女视频在线观看网站免费| 国产69精品久久久久777片| 欧美精品啪啪一区二区三区| 黄色女人牲交| 青草久久国产| 午夜免费男女啪啪视频观看 | 久久亚洲真实| 国产 一区 欧美 日韩| 午夜福利在线观看免费完整高清在 | 欧美激情久久久久久爽电影| 久久国产乱子伦精品免费另类| 精品乱码久久久久久99久播| 久9热在线精品视频| 蜜桃久久精品国产亚洲av| 欧美日韩瑟瑟在线播放| 亚洲第一区二区三区不卡| 久久精品国产亚洲av香蕉五月| 黄色视频,在线免费观看| 国产成人影院久久av| 亚洲av不卡在线观看| 国产aⅴ精品一区二区三区波| 亚洲第一电影网av| 伦理电影大哥的女人| 国产伦精品一区二区三区视频9| 18禁在线播放成人免费| 久久性视频一级片| 日日摸夜夜添夜夜添小说| 国产精品1区2区在线观看.| 男人舔女人下体高潮全视频| 一本久久中文字幕| 脱女人内裤的视频| 国产男靠女视频免费网站| 女人十人毛片免费观看3o分钟| 国内久久婷婷六月综合欲色啪| 欧美三级亚洲精品| 露出奶头的视频| 亚洲第一欧美日韩一区二区三区| 色5月婷婷丁香| 国产精品综合久久久久久久免费| 美女高潮喷水抽搐中文字幕| 性色avwww在线观看| 99久久成人亚洲精品观看| .国产精品久久| 色吧在线观看| 午夜福利视频1000在线观看| 国产色婷婷99| 亚洲精品亚洲一区二区| 国内毛片毛片毛片毛片毛片| 老司机午夜福利在线观看视频| 在线十欧美十亚洲十日本专区| 亚洲片人在线观看| 欧美成人a在线观看| 亚洲美女搞黄在线观看 | 国产精品乱码一区二三区的特点| 一级a爱片免费观看的视频| 色播亚洲综合网| 精品99又大又爽又粗少妇毛片 | 免费看日本二区| 国产精品99久久久久久久久| av国产免费在线观看| 欧美成人a在线观看| 日本三级黄在线观看| 国产毛片a区久久久久| avwww免费| www.www免费av| 成人美女网站在线观看视频| 色哟哟哟哟哟哟| 国产欧美日韩一区二区三| 99在线视频只有这里精品首页| 伊人久久精品亚洲午夜| 97超视频在线观看视频| 亚洲成a人片在线一区二区| 久久精品国产亚洲av涩爱 | 悠悠久久av| 九九热线精品视视频播放| 久久久久九九精品影院| 日本a在线网址| 中文字幕免费在线视频6| 精品福利观看| 精品一区二区免费观看| 首页视频小说图片口味搜索| 少妇熟女aⅴ在线视频| 麻豆国产97在线/欧美| 黄色丝袜av网址大全| 国产精品综合久久久久久久免费| 99在线人妻在线中文字幕| 校园春色视频在线观看| 成年版毛片免费区| 精品国产三级普通话版| 午夜免费激情av| 亚洲在线观看片| 亚洲精品亚洲一区二区| 一本久久中文字幕| 久久久久久久久久成人| 亚洲18禁久久av| 亚洲不卡免费看| 91字幕亚洲| 欧美xxxx黑人xx丫x性爽| 麻豆一二三区av精品| 搡老岳熟女国产| 麻豆成人午夜福利视频| 欧美激情久久久久久爽电影| 久久久久久国产a免费观看| 亚洲久久久久久中文字幕| 精品人妻偷拍中文字幕| 欧美成人一区二区免费高清观看| 99久久99久久久精品蜜桃| 国产精品av视频在线免费观看| 国内精品久久久久久久电影| 国产亚洲精品久久久久久毛片| 国内毛片毛片毛片毛片毛片| 日韩欧美国产在线观看| 午夜福利在线在线| 91久久精品国产一区二区成人| 亚洲在线观看片| 久久国产乱子免费精品| 99riav亚洲国产免费| 亚洲中文日韩欧美视频| 最新中文字幕久久久久| 久99久视频精品免费| 老熟妇乱子伦视频在线观看| 99热只有精品国产| 国产单亲对白刺激| 日本黄大片高清| 51午夜福利影视在线观看| 日韩大尺度精品在线看网址| 少妇被粗大猛烈的视频| 国产真实乱freesex| av福利片在线观看| 欧美性猛交╳xxx乱大交人| 久久久久久久亚洲中文字幕 | 两个人视频免费观看高清| 久久久久久久亚洲中文字幕 | 精品久久久久久久末码| 色综合欧美亚洲国产小说| 久久国产精品影院| 精品免费久久久久久久清纯| 国产探花在线观看一区二区| 欧美日本亚洲视频在线播放| 美女大奶头视频| 久久久久久久精品吃奶| 日韩欧美在线乱码| 在线免费观看的www视频| 人妻久久中文字幕网| 国产av在哪里看| 国产麻豆成人av免费视频| 永久网站在线| 国模一区二区三区四区视频| 日本熟妇午夜| a级毛片a级免费在线| www.熟女人妻精品国产| av在线观看视频网站免费| 亚洲人成电影免费在线| 久久精品91蜜桃| 欧美成人a在线观看| 亚洲一区二区三区不卡视频| 长腿黑丝高跟| 国产又黄又爽又无遮挡在线| av国产免费在线观看| 亚洲欧美激情综合另类| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频| 在线播放无遮挡| 床上黄色一级片| 真实男女啪啪啪动态图| 国内揄拍国产精品人妻在线| 最新在线观看一区二区三区| 91字幕亚洲| 好男人在线观看高清免费视频| 麻豆成人av在线观看| 女人十人毛片免费观看3o分钟| 搡老熟女国产l中国老女人| 国产成人福利小说| 国产高清三级在线| 日本 av在线| 免费看日本二区| 日本五十路高清| 51国产日韩欧美| 中文亚洲av片在线观看爽| 最近视频中文字幕2019在线8| 99热这里只有是精品50| 丁香欧美五月| bbb黄色大片| 国产午夜福利久久久久久| 亚洲av第一区精品v没综合| 免费人成在线观看视频色| 草草在线视频免费看| 99久久精品国产亚洲精品| 日韩欧美 国产精品| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片 | 此物有八面人人有两片| 欧美乱妇无乱码| 动漫黄色视频在线观看| 一边摸一边抽搐一进一小说| 少妇高潮的动态图| 欧美zozozo另类| 少妇熟女aⅴ在线视频| 男女之事视频高清在线观看| 韩国av一区二区三区四区| 嫩草影院精品99| 色综合婷婷激情| 90打野战视频偷拍视频| 成人精品一区二区免费| 亚洲国产欧美人成| 成人欧美大片| 精品久久久久久久久av| 国产精品电影一区二区三区| 变态另类丝袜制服| 美女被艹到高潮喷水动态| 亚洲内射少妇av| 成人一区二区视频在线观看| 亚洲精品粉嫩美女一区| 成人美女网站在线观看视频| 长腿黑丝高跟| 精品久久久久久久人妻蜜臀av| 欧美日韩中文字幕国产精品一区二区三区| 日日摸夜夜添夜夜添小说| 精品久久久久久久久av| av专区在线播放| 国产精品三级大全| 国产精品电影一区二区三区| 国产精品三级大全| 欧美潮喷喷水| 亚洲熟妇熟女久久| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 99热这里只有是精品50| 亚洲国产欧洲综合997久久,| 午夜精品一区二区三区免费看| 国产高清视频在线观看网站| 亚洲在线自拍视频| 久久香蕉精品热| 久久午夜福利片| 99视频精品全部免费 在线| 午夜老司机福利剧场| 动漫黄色视频在线观看| 国产欧美日韩一区二区精品| 国内少妇人妻偷人精品xxx网站| 能在线免费观看的黄片| 波多野结衣高清无吗| 国产69精品久久久久777片| 一级a爱片免费观看的视频| 欧美日韩亚洲国产一区二区在线观看| 精品国产三级普通话版| 九色国产91popny在线| 国产精品三级大全| 亚洲中文日韩欧美视频| 国产精品自产拍在线观看55亚洲| 欧美精品啪啪一区二区三区| 两个人视频免费观看高清| 看十八女毛片水多多多| 一边摸一边抽搐一进一小说| 亚洲国产高清在线一区二区三| 男人的好看免费观看在线视频|