• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aperture-averaged scintillation index and fade statistics in weak oceanic turbulence?

    2021-06-26 03:03:54HaoWang王昊FuZengKang康福增XuanWang王瑄WeiZhao趙衛(wèi)andShuWeiSun孫樞為
    Chinese Physics B 2021年6期

    Hao Wang(王昊) Fu-Zeng Kang(康福增) Xuan Wang(王瑄)Wei Zhao(趙衛(wèi)) and Shu-Wei Sun(孫樞為)

    1State Key Laboratory of Transient Optics and Photonics,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an 710119,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: underwater optical communication(UOC),aperture-averaged scintillation index,fade statistics

    1. Introduction

    Underwater optical communication(UOC)has gained increasing attention in recent years for the increasing demand of military applications.[1–3]It has obvious advantage over the underwater acoustic communication in many aspects,etc.,large data capacity, and low-time delay in short to medium distance. However,propagation of a laser beam used in UOC is seriously limited by oceanic turbulence,causing the degradation of UOC performance. To tackle this issue, Nikishov and Nikishov firstly proposed an oceanic turbulence spectrum, providing a foundation for further analysis of oceanic turbulence.[4]Since then,there have been some studies on“the aperture-averaged scintillation index”(SI)and performance of UOC in oceanic turbulence based on Nikishov’s spectrum.For example, Korotkova presented numerical simulation of SI of both plane and spherical waves in weak oceanic turbulence.[5]Wanget al.[6]gave an analytical expression of SI by geometrical optics approximation. Yiet al.[7,8]also analyzed SI of both plane and spherical waves in weak oceanic turbulence and showed that using large-aperture receiver can remarkably decrease SI and consequently improve the system performance significantly. Recently,Gokce and Baykal[9,10]systematically studied how the aperture’s size of the receiver affects SI in strong oceanic turbulence.

    Although much progress has been made in this field,the validity of them in real situation is strongly restricted by Nikishov’s spectrum,which is over-simplified in describing turbulence in several aspects. For example,it assumes that seawater has a stable stratification,that is,the larger the density is,the lower it lies,so that the eddy diffusivity ratio is equal to unity.However, because the surface water is affected by winds and heat exchanges with atmosphere, it is usually neither stable nor layered. Especially at medium and high latitude on earth,the density stratification is reduced or even disappeared.[11]Awareness of such a problem in Nikishov’s spectrum, Yueet al.[12]proposed a modified power spectrum model,which took the instability of stratification into account. Furthermore,their spectrum considered the outer scale of the turbulence as a variable rather than setting it to be infinite. Based on this new model,they investigated how laser beam wanders in weak turbulence. Their results are very different from those using Nikishov’s spectrum. They also showed that the wander of a laser beam with Gaussian intensity profile is significantly reduced by decreasing the outer scale of turbulence. It seems promising that Yue’s spectrum can bring new insight to the theoretical studies of UOC systems. However,to our knowledge,no such research of UOC systems by applying Yue’s spectrum is available yet.

    In this study, we present an improved model of a UOC system in weak oceanic turbulence based on Yue’s spectrum.[12]We derive the analytic expressions of SI in weak oceanic turbulence and carry out a numerical simulation. It is found that spherical wave is preferable in the UOC system in weak turbulence compared to plane wave,and the apertureaveraged effect has a significant impact on UOC system’s performance. We further discuss some typical fade statistics of the UOC system including the probability of fade, the expected number of fades per time and the mean fade time,signal-to-noise ratio(SNR)and bit error rate(BER),according to the numerical simulation. Particularly,the eddy diffusivity ratio and the outer scale of the turbulence are considered[11]in our model and their effect on SI is discussed.

    2. Theory

    2.1. The oceanic turbulence power spectrum with the eddy diffusivity ratio and the outer scale

    Let us firstly briefly introduce Yue’s spectrum used in our model. In 2019,Yueet al.[12]presented an oceanic turbulence power spectrumΦn(κ),which includes the temperature spectrumΦT(κ), the salinity spectrumΦS(κ), and the coupling spectrumΦTS(κ). The power spectrum of oceanic turbulence is expressed as

    whereκis the magnitude of the spatial frequency;αis the thermal expansion coefficient,which is related to the temperature and salinity of the marine environment;κ0=2π/L0(L0is the outer scale of turbulence);εis the dissipation rate of turbulent kinetic energy per unit mass of fluid in the range from 10?1m2/s3to 10?10m2/s3.C0is a constant equal to 0.72.In Eqs. (2)–(4),ηis Kolmogorov microscale length (inner scale);χTis the dissipation rate of mean-squared temperature,varying from 10?4K2/s to 10?10K2/s;wis a dimensionless parameter providing the ratio between temperature and salinity that contributions to the refractive index spectrum ranging from?5 to 0.PT,PSandPTSare the Prandtl number of temperature,salinity,and the coupled temperature salinity,respectively,wherePTS=2PTPS/(PT+PS).Ci(i=T,S or TS)is a constant related toΦi.Niis a function of the Prandtl numberPi, governing the upper bound for the inertial-diffusive range ofΦi,which can be written as

    From Eq.(7),it can be seen thatdris a segmented function ofw.However,in previous studies using Nikishov’s spectrum,dris treated as unity,independent ofw.

    2.2. Aperture-averaged SI and fade statistics

    SI of plane and spherical waves in weak turbulence is defined as[13]

    Substituting Eq.(1)into Eqs.(8)and(9),SI of plane and spherical waves can be expressed as

    We leave the detailed calculation of SI in the Appendix.

    Referring to the mathematical model for the probability density function(PDF)of the randomly fading irradiance signal,we discuss the probability of fade,the expected number of fades per time,the mean fade time below a prescribed threshold,SNR and BER.

    The probability of fade can be expressed as[13]

    wherej=pl or sp represents plane and spherical waves, respectively; erf(x) is the error function. The fade parameterFT, given in decibels (dB), represents the dB level below the on-axis mean irradiance.

    The number of negative crossing of a prescribed threshold〈n(IT)〉characterizes the expected number of fades per time,which can be expressed as

    where〈···〉represents the ensemble average andv0is the quasi-frequency.

    Mean fade time〈t(IT)〉can be written as

    For a shot-noise-limited system,the SNR at the output of the detector can be written as[5,7,8]

    where SNR0is the SNR in the absence of turbulence.

    In the presence of oceanic turbulence, the probability of error is considered to be a conditional probability that must be averaged over the PDF of the random signal to determine the unconditional mean BER.In terms of a normalized signal with unit mean,it leads to the expression[5,7,8]

    3. Result and discussion

    In this section, we present some numerical results based on our model. All the expressions developed in the paper are restricted to weak turbulence,so we limit the SI below 1.[7]A typical marine environment is considered,in which the salinity is 35% and temperature is 20?C,[10]α=2.56×10?4L/?C,PT= 7,PS=700,PTS=13.86,CT= 2.18,CS= 2.22 andCTS=2.21,[10]χT=10?7K2/s,ε=10?4m2/s3. We set the wavelengthλ= 532 nm in the calculation, which is in the range of light window[14](470–580 nm)for the seawater.

    Notably,although we introduce outer scaleL0in the analytical expression of SI for both plane and spherical waves in Eqs. (10) and (11),L0has negligible effect on SI (details are not shown here)similar to that in atmosphere turbulence. This justifies setting it to be infinite in previous studies.[15]

    Fig. 1. SI of plane wave (a) and spherical wave (b) versus w for various receive aperture diameters. The solid lines are with dr calculated by Eq.(7),while dotted lines are with dr=1. The red solid/dotted lines represent D=0 mm,the green solid/dotted lines represent D=1 mm,the blue solid/dotted lines represent D=3 mm and the magenta lines represent D=5 mm, respectively. For all the curves, L=20 m and η =10?3 m.

    Firstly, we study how SI varies according tow,ηandLone by one.Figure 1 showsσ2I,plandσ2I,spas functions ofwfor variousDin two cases (drcalculated by Eq. (7) anddr=1).D=0 mm corresponds to the point receiver. Sincedris separated into three pieces in Eq.(7),the curves ofσ2I,plandσ2I,sp(solid line)in this case can also be divided into three sections.In the first section,σ2I,plandσ2I,spinitially increase aswincreases,reaching a maximum whenwis about 1.15,and then decreases aswapproaches?1. However,the overall changes ofσ2I,plandσ2I,spare small.The second section is fromw=?1 tow=?0.5,whereσ2I,plandσ2I,spdecrease parabolically. The third section is fromw=?0.5 tow=0,whereσ2I,plandσ2I,spincrease sharply with the increase ofw. Since?5<w <?1 and?1<w <0 are dominated by temperature fluctuations and salinity fluctuations, respectively, from these curves, we may conclude that salinity fluctuations have greater impact than temperature fluctuations on oceanic turbulence.However,their influences onσ2I,plandσ2I,spare not trivial particularly in the second section. In addition,increasingDwill reduceσ2I,plandσ2I,sp, which is more noticeable when the salinity fluctuations dominate the underwater turbulence (?1<w <0). On the other hand,σ2I,plandσ2I,spwithdr=1 show different trends,namely, they monotonically increase aswincreases from?5 to 0,though from these two curves,it also seems that salinity fluctuations have greater impact than temperature fluctuations on oceanic turbulence. At a fixed receive aperture diameter,Nikishov’s spectrum underestimates turbulence strength than Yue’s spectrum with?1<w <0, while it overestimates turbulence strength with?5<w <?1.[15]In both the cases,SI of plane wave is larger than that of spherical wave indicating that spherical wave is less affected by oceanic turbulence.

    Fig.2. SI of plane wave(a)and spherical wave(b)versus Kolmogorov microscale length for various receive aperture diameters. For all the curves,L=20 m and w=?1.

    Next, we showσ2I,plandσ2I,spas a function ofηat certainDin Fig. 2. For eachD,σ2I,plandσ2I,spfirst increase and then decrease with increasingη,and finally saturate at a level commonly described as the saturation regime.[5,13]The peak values ofσ2I,plandσ2I,spshould occur when the random focusing due to large-scale inhomogeneities achieves its strongest effect.[13,14]Then such a focusing effect reduces due to multiple scattering asηfurther increases. Whenηis fixed, lowerσ2I,plandσ2I,spare observed for largerD. Such a trend is most obvious whenσ2I,plandσ2I,spare around their peak values. Plane wave is quite sensitive to theη,leading to a higher value ofσ2I,plthan the correspondingσ2I,sp. This is consistent with the case of atmosphere turbulence.[6]

    Figure 3 presents SI of plane and spherical wave through oceanic turbulence with respect toLfor variousD. It can be seen that for eachD,σ2I,plandσ2I,spincrease quadratically with increasingL, indicating that UOC system works well only in short to medium distance. There is a significant drop inσ2I,plandσ2I,spwhenDincreases from 0 mm to 5 mm due to the effect of aperture averaging, especially in long propagation distance, because an increase inLcauses a decrease in the receiver intensity correlation and thus the receiver aperture successfully averages all the intensity fluctuations. Given the sameLandD,σ2I,plis larger thanσ2I,sp,which means spherical wave is less affected by oceanic turbulence than plane wave.Particularly,σ2I,plwith point receiver is about 2.5 timesσ2I,sp.The result is similar to that in atmosphere turbulence.[6]

    Fig.3. SI of plane wave(a)and spherical wave(b)versus propagation distance for various receive aperture diameters. For all curves,w=?1 and η =10?3 m.

    In order to demonstrate the validity of our analytic method, SI of plane wave withD=0 mm at different propagation distances is simulated by Monte Carlo simulation,[5]as shown in Fig. 4 (spherical wave is difficult to simulate by Monte Carlo because its infinite beam width). Table 1 gives a comparison between the SI’s extracted from the analytic method and the Monte Carlo method. The relative error between the them is less than 10%,proving the rationality of our analytic method.

    Next, performance of the UOC system is evaluated for different aperture diameters by investigating typical fade statistics includingPr(I ≤IT),〈n(IT)〉and〈t(IT)〉as functions ofFTfor variousDbased on the SI.We chooseυ0=550 Hz in our analysis for the convenience of making comparison between different conditions.[13,16,17]

    Fig.4. Plane wave at 0 m(a),10 m(b),20 m(c),30 m(d),40 m(e)and 50 m(f).

    Table 1.SI of plane wave at different propagation distances(SI1 is from this paper and SI2 is calculated by the Monte Carlo method).

    As shown in Fig.5,Pr(I ≤IT)decreases with increasingFTandD. Particularly, increasingFTby several dB can substantially reducePr(I ≤IT) by several orders of magnitude,especially with largeD.[18]Pr(I ≤IT) of spherical wave is lower than that of plane wave under the sameFTandD. To achieve the samePr(I ≤IT)of 10?6under the sameD,FTfor spherical wave is again lower than the plane wave. These results indicate that spherical wave is better than the plane wave for UOC.

    Fig. 5. Probability of fade of plane wave (a) and spherical wave (b)versus FT for various receive aperture diameters. For all the curves,L=20 m,w=?1 and η =10?3 m.

    Next,the effect of receiving aperture diameter on〈n(IT)〉for plane and spherical wave is shown in Fig.6. It can be seen that〈n(IT)〉firstly reaches the peak value with increasingFT,then rapidly decreases to low level; and〈n(IT)〉of the point receiver is the smallest whenFTis set to less than 1dB. On the contrary,if anFTof more than 1dB is chosen,〈n(IT)〉decreases with increasingD. To achieve the same〈n(IT)〉, the requiredFTvalue decreases with an increase inD, consistent with the previous studies.[19–22]For example, to achieve the〈n(IT)〉of 100,FTof 4.3, 6.1, 8.1 and 9 dB are required forD=0, 1, 3 and 5 mm for plane wave, respectively, where it reduces to 2.8, 4, 5.1 and 5.5 dB, forD=0, 1, 3 and 5 mm for spherical wave, respectively. This means that under the same oceanic turbulence and system parameters,the UOC system with spherical wave has the lower requirement forFTthan that with plane wave. These results also indicate that spherical wave is better than the plane wave for UOC.

    Fig.6.Expected number of fades versus FT of plane wave(a)and spherical wave (b) for various receive aperture diameters. For all curves,L=20 m,w=?1 and η =10?3 m.

    Finally, we plot〈t(IT)〉againstFTwith variousDin Fig. 7. We can see that〈t(IT)〉monotonically decreases withFT. ForDless than 1 mm, increasingFThas no significant impact on〈t(IT)〉. However, whenDis larger than 3 mm,〈t(IT)〉reduces several orders of magnitude by increasingFT.To achieve a targeted〈t(IT)〉of 10?6s, theFTvalues of 4.3 and 6.9 dB are required forD=0 and 1 mm in the case of plane wave,respectively,while they reduce to 1.7 and 3.4 dB,respectively, forD= 0 and 1 mm in the case of spherical wave. If we want to achieve an acceptable〈t(IT)〉(for example, 10?6s)[23,24]atFT=5 dB,Dmust be larger than 5 mm and 3 mm for plane wave and spherical wave, respectively.This means that spherical wave for UOC can achieve the same〈t(IT)〉with less difficulty and lower cost than plane wave.These results again indicate that spherical wave is better than the plane wave for UOC.

    Fig. 7. Mean fade time versus of plane wave (a) and spherical wave for various receive aperture diameters. For all the curves, L=20 m,w=?1 and η =10?3 m.

    In Fig. 8, we plot the SNR in dB as a function ofLfor variousD. SNR0is set as 10 dB[25]in our analysis for convenience of making comparison between different conditions.Unsurprisingly,turbulence causes a drop in SNR.[7,8]Particularly,SNR decreases with increasingLand decreasingD. Under the same oceanic condition,the SNR of spherical wave is only slightly better than that of plane wave.

    Finally, numerical calculation of the BER against theLfor variousDleads to the results shown in Fig. 9. These results indicate that to achieve an acceptable level of BER(typically around 10?6)[7,8,26]with a receive diameter of 5 mm in the presence of oceanic turbulence,Lis required to be limited in 40 m for spherical wave, while it reduces to 15 m for plane wave. This means that under the same BER, spherical wave for UOC can work in longer distance than plane wave,indicating that spherical wave is better than the plane wave for UOC.

    It is concluded that the performance of UOC with spherical wave is superior to that of plane wave due to the fact that lower SI leads to lower fade statistics.[27,28]We believe that our results provide a guidance for future UOC systems to choose best parameters such as propagation distance, receiving aperture diameter and fade threshold parameter to fit different ocean conditions.

    Fig.8. SNR of plane wave(a)and spherical wave(b)versus propagation distance for various receive aperture diameters. For all the curves,w=?1 and η =10?3 m.

    Fig.9. BER of plane wave(a)and spherical wave(b)versus propagation distance for various receive aperture diameters. For all the curves,w=?1 and η =10?3 m.

    4. Conclusion and perspectives

    In summary, we have adopted a spatial power spectrum model that considers the eddy diffusivity ratio and outer scale of turbulence and derived the analytical expressions of SI for plane and spherical waves based on the Rytov theory in weak turbulence.The numerical results show thatw,η,LandDplay an importance role in SI,whileL0does not. In many cases,SI based on our model is very different from that based on Nikishov’s spectrum.Based on SI,the typical fade statistics of the UOC system including thePr(I ≤IT),〈n(IT)〉,〈t(IT)〉, SNR and BER are discussed,clearly showing that the UOC system with spherical wave has advantage over that with plane wave.These results are helpful for design of UOC systems in future.

    Acknowledgement

    We would like to thank Professor Xiang Yi(Xidian University)and Professor Haiping Mei(Anhui Institute of Optics and Fine Mechanics)for helpful discussion and valuable suggestions.

    Appendix A

    Here, we would show how to calculateσ2I,plandσ2I,spin details based on Yue’s spectrum.The results are valid for weak oceanic turbulence where SI is below 1.

    SI of plane wave is expressed as[13]

    where Γ(···)represents the gamma function andU(···)represents the confluent hypergeometric function of the second kind.

    By performing the integral overκin Eq.(A3),we obtain

    精品无人区乱码1区二区| 久久久久性生活片| 一个人免费在线观看的高清视频| 午夜福利在线观看吧| 国产日本99.免费观看| 啦啦啦韩国在线观看视频| 黄色成人免费大全| 他把我摸到了高潮在线观看| a级毛片在线看网站| 特大巨黑吊av在线直播| 亚洲欧美日韩东京热| 婷婷精品国产亚洲av在线| 天堂√8在线中文| 俺也久久电影网| 欧美国产日韩亚洲一区| 欧美激情久久久久久爽电影| avwww免费| 搡老妇女老女人老熟妇| 特大巨黑吊av在线直播| 搞女人的毛片| 亚洲午夜精品一区,二区,三区| 50天的宝宝边吃奶边哭怎么回事| 女人被狂操c到高潮| 99久久综合精品五月天人人| 国产精华一区二区三区| 麻豆国产av国片精品| 中文在线观看免费www的网站 | 美女高潮喷水抽搐中文字幕| 久9热在线精品视频| 国产又黄又爽又无遮挡在线| 亚洲一区二区三区色噜噜| 国产精品,欧美在线| 日本 欧美在线| 亚洲男人的天堂狠狠| 成人高潮视频无遮挡免费网站| 人人妻人人澡欧美一区二区| 国产精品av久久久久免费| 三级毛片av免费| 麻豆一二三区av精品| 每晚都被弄得嗷嗷叫到高潮| 亚洲无线在线观看| 三级毛片av免费| 久久久久久久久中文| 欧美+亚洲+日韩+国产| 国产亚洲欧美在线一区二区| 国产视频内射| 亚洲一区中文字幕在线| 国产免费av片在线观看野外av| 国产成人精品无人区| 亚洲第一欧美日韩一区二区三区| 亚洲色图av天堂| 国产又色又爽无遮挡免费看| 亚洲av第一区精品v没综合| 啪啪无遮挡十八禁网站| 精品免费久久久久久久清纯| 欧美成人一区二区免费高清观看 | 欧美黑人欧美精品刺激| 久久人人精品亚洲av| 亚洲精品在线观看二区| 一级黄色大片毛片| 一边摸一边做爽爽视频免费| 亚洲专区国产一区二区| 亚洲午夜精品一区,二区,三区| 99国产精品99久久久久| 最新美女视频免费是黄的| 窝窝影院91人妻| 亚洲欧美精品综合一区二区三区| 亚洲一区二区三区色噜噜| 亚洲专区中文字幕在线| 黄色 视频免费看| av天堂在线播放| 一级a爱片免费观看的视频| 男女做爰动态图高潮gif福利片| 国产欧美日韩一区二区三| 精品国产乱码久久久久久男人| e午夜精品久久久久久久| 亚洲中文日韩欧美视频| 美女大奶头视频| 最近最新中文字幕大全免费视频| 亚洲第一电影网av| 一区二区三区激情视频| 国产精品日韩av在线免费观看| 18禁黄网站禁片午夜丰满| 一级毛片高清免费大全| 亚洲自拍偷在线| av超薄肉色丝袜交足视频| 国产久久久一区二区三区| 午夜激情av网站| 色综合亚洲欧美另类图片| 免费看十八禁软件| 99精品在免费线老司机午夜| 日韩成人在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 高清在线国产一区| 久久久久久免费高清国产稀缺| 88av欧美| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| 搡老岳熟女国产| 久久亚洲真实| 日日夜夜操网爽| 97碰自拍视频| 69av精品久久久久久| 蜜桃久久精品国产亚洲av| 老司机在亚洲福利影院| 九色成人免费人妻av| 狂野欧美白嫩少妇大欣赏| 日韩欧美在线乱码| 久久精品aⅴ一区二区三区四区| a级毛片在线看网站| 日本一本二区三区精品| 日韩欧美国产一区二区入口| 69av精品久久久久久| 国产人伦9x9x在线观看| 黄色 视频免费看| 午夜福利免费观看在线| 法律面前人人平等表现在哪些方面| 一边摸一边做爽爽视频免费| 嫩草影院精品99| 国产69精品久久久久777片 | av国产免费在线观看| 一级片免费观看大全| 欧美大码av| 亚洲一区二区三区色噜噜| 日本 av在线| 日韩欧美三级三区| 国产欧美日韩精品亚洲av| 成人午夜高清在线视频| 久久精品91无色码中文字幕| 久9热在线精品视频| 国产视频内射| 精品久久蜜臀av无| 日本三级黄在线观看| 免费看日本二区| 国内久久婷婷六月综合欲色啪| 一卡2卡三卡四卡精品乱码亚洲| 欧美中文综合在线视频| 日本在线视频免费播放| 精品久久久久久久久久久久久| 精品欧美一区二区三区在线| 国产成人av激情在线播放| 久久国产精品影院| 久久国产乱子伦精品免费另类| 亚洲成人中文字幕在线播放| 国产黄a三级三级三级人| 国产熟女午夜一区二区三区| 精品日产1卡2卡| 国产高清videossex| 黑人操中国人逼视频| 成人高潮视频无遮挡免费网站| 久久欧美精品欧美久久欧美| 亚洲av熟女| 观看免费一级毛片| 搡老岳熟女国产| 一本久久中文字幕| 国产亚洲精品一区二区www| 亚洲国产精品999在线| 五月玫瑰六月丁香| 首页视频小说图片口味搜索| 久久精品成人免费网站| 国内精品久久久久久久电影| 免费观看精品视频网站| 动漫黄色视频在线观看| 国产免费av片在线观看野外av| 国产一区在线观看成人免费| 性色av乱码一区二区三区2| 色av中文字幕| 亚洲精品国产一区二区精华液| 无限看片的www在线观看| 亚洲精品一区av在线观看| 国产亚洲欧美在线一区二区| 久久亚洲真实| 丰满人妻熟妇乱又伦精品不卡| 国产1区2区3区精品| 成人一区二区视频在线观看| 欧美一区二区精品小视频在线| 天天躁夜夜躁狠狠躁躁| 国产三级黄色录像| 国产区一区二久久| 日本一本二区三区精品| 国产精品亚洲一级av第二区| 精品国产美女av久久久久小说| 中亚洲国语对白在线视频| 国产精品亚洲av一区麻豆| 99久久精品国产亚洲精品| 久久久久精品国产欧美久久久| 好看av亚洲va欧美ⅴa在| 国产精品国产高清国产av| 在线观看一区二区三区| 老鸭窝网址在线观看| 黄色丝袜av网址大全| 国产乱人伦免费视频| 午夜免费观看网址| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 国产精品影院久久| 最近视频中文字幕2019在线8| 国产日本99.免费观看| 久久精品国产综合久久久| 最好的美女福利视频网| 一二三四社区在线视频社区8| 日本撒尿小便嘘嘘汇集6| 国产人伦9x9x在线观看| 黄色成人免费大全| 欧美午夜高清在线| 日韩大码丰满熟妇| 精品第一国产精品| 久久香蕉精品热| 免费在线观看完整版高清| 一本一本综合久久| 国产激情偷乱视频一区二区| 18禁国产床啪视频网站| 一级片免费观看大全| 亚洲国产精品久久男人天堂| 日本熟妇午夜| 国产精品av视频在线免费观看| 欧美在线一区亚洲| 老司机福利观看| 丁香六月欧美| 神马国产精品三级电影在线观看 | 禁无遮挡网站| 最新美女视频免费是黄的| 身体一侧抽搐| 欧美日韩中文字幕国产精品一区二区三区| 久久久久性生活片| 亚洲自偷自拍图片 自拍| 久久人人精品亚洲av| 欧美黑人欧美精品刺激| 在线观看免费日韩欧美大片| 国产高清videossex| 亚洲精品在线美女| 长腿黑丝高跟| av超薄肉色丝袜交足视频| 无人区码免费观看不卡| 可以在线观看毛片的网站| 亚洲真实伦在线观看| 俄罗斯特黄特色一大片| x7x7x7水蜜桃| 99精品在免费线老司机午夜| 亚洲精品中文字幕在线视频| 久久精品国产亚洲av香蕉五月| 一个人观看的视频www高清免费观看 | 女人爽到高潮嗷嗷叫在线视频| 在线观看www视频免费| 丰满的人妻完整版| 亚洲精品久久国产高清桃花| 淫妇啪啪啪对白视频| 欧美一区二区精品小视频在线| 亚洲av第一区精品v没综合| 国产成人欧美在线观看| 国产成人精品久久二区二区免费| 亚洲专区中文字幕在线| 九九热线精品视视频播放| 成年免费大片在线观看| 熟妇人妻久久中文字幕3abv| www日本黄色视频网| 亚洲av第一区精品v没综合| 一卡2卡三卡四卡精品乱码亚洲| 不卡av一区二区三区| www日本黄色视频网| 亚洲av熟女| 亚洲欧洲精品一区二区精品久久久| 一级黄色大片毛片| 亚洲18禁久久av| 可以在线观看的亚洲视频| 精品久久久久久久久久免费视频| 日韩欧美国产一区二区入口| 我要搜黄色片| 非洲黑人性xxxx精品又粗又长| 中文在线观看免费www的网站 | 禁无遮挡网站| 91九色精品人成在线观看| 国产又色又爽无遮挡免费看| 一个人观看的视频www高清免费观看 | 亚洲精品在线美女| 嫩草影院精品99| 国产精品久久电影中文字幕| 日韩中文字幕欧美一区二区| 亚洲精品国产精品久久久不卡| 久久久精品国产亚洲av高清涩受| 亚洲自偷自拍图片 自拍| 一级a爱片免费观看的视频| 日本一二三区视频观看| 在线国产一区二区在线| 人人妻,人人澡人人爽秒播| 亚洲人成77777在线视频| 国产精品美女特级片免费视频播放器 | 国产精品免费一区二区三区在线| a在线观看视频网站| 91大片在线观看| 亚洲专区中文字幕在线| 午夜亚洲福利在线播放| 最新在线观看一区二区三区| 岛国在线观看网站| 欧美av亚洲av综合av国产av| 国产高清视频在线观看网站| 日本一区二区免费在线视频| 在线观看舔阴道视频| 宅男免费午夜| 欧美日韩福利视频一区二区| 国产1区2区3区精品| 亚洲美女黄片视频| 免费人成视频x8x8入口观看| 亚洲免费av在线视频| 不卡av一区二区三区| 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区| 日本成人三级电影网站| 日韩精品免费视频一区二区三区| 亚洲国产欧美一区二区综合| 亚洲一区高清亚洲精品| 国产一级毛片七仙女欲春2| 日本a在线网址| 久久久久精品国产欧美久久久| 欧美一区二区精品小视频在线| 久久久久久久精品吃奶| 国产精品一区二区免费欧美| 国产精品影院久久| 久久精品91无色码中文字幕| 中文资源天堂在线| 99re在线观看精品视频| 亚洲国产欧美一区二区综合| 看黄色毛片网站| 久久精品aⅴ一区二区三区四区| 国产成人一区二区三区免费视频网站| 国语自产精品视频在线第100页| 亚洲国产欧美人成| 成熟少妇高潮喷水视频| 999久久久精品免费观看国产| 国产亚洲精品久久久久5区| 国产麻豆成人av免费视频| 欧美精品亚洲一区二区| 亚洲av电影在线进入| 亚洲精品国产一区二区精华液| 757午夜福利合集在线观看| 午夜福利在线在线| 免费人成视频x8x8入口观看| 日韩欧美在线乱码| 日本精品一区二区三区蜜桃| 国产精品久久电影中文字幕| 亚洲美女黄片视频| 欧美高清成人免费视频www| 日本黄大片高清| 日本a在线网址| 99国产精品99久久久久| 岛国视频午夜一区免费看| 国产97色在线日韩免费| 麻豆成人av在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲欧美激情综合另类| 国产亚洲精品av在线| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 国语自产精品视频在线第100页| 99在线人妻在线中文字幕| 国产成人欧美在线观看| 国产一级毛片七仙女欲春2| 日本免费一区二区三区高清不卡| 一个人观看的视频www高清免费观看 | 深夜精品福利| 成人av在线播放网站| 精品福利观看| 听说在线观看完整版免费高清| 制服人妻中文乱码| 欧美av亚洲av综合av国产av| 啪啪无遮挡十八禁网站| 国产av一区在线观看免费| 老熟妇仑乱视频hdxx| 在线观看午夜福利视频| 国内精品一区二区在线观看| 久久精品影院6| 欧美中文综合在线视频| 国产av在哪里看| 成年人黄色毛片网站| 国产亚洲精品av在线| 一区福利在线观看| bbb黄色大片| 精品国产超薄肉色丝袜足j| 国产高清视频在线观看网站| 99久久综合精品五月天人人| 国产99白浆流出| 69av精品久久久久久| 超碰成人久久| 美女黄网站色视频| 国产精品亚洲av一区麻豆| 黄色 视频免费看| 国产精品爽爽va在线观看网站| 久久热在线av| 国产三级在线视频| 成年人黄色毛片网站| 国产免费男女视频| 欧美一区二区国产精品久久精品 | 国产99白浆流出| 两个人视频免费观看高清| 国产99久久九九免费精品| 丰满的人妻完整版| 亚洲免费av在线视频| 国产爱豆传媒在线观看 | 日本黄色视频三级网站网址| 国产欧美日韩精品亚洲av| 亚洲国产精品久久男人天堂| 18禁黄网站禁片免费观看直播| tocl精华| 午夜激情av网站| 日本免费a在线| 精品久久久久久久久久免费视频| 国产精品av视频在线免费观看| 首页视频小说图片口味搜索| 此物有八面人人有两片| 国产熟女午夜一区二区三区| 久久国产精品影院| 亚洲狠狠婷婷综合久久图片| 制服人妻中文乱码| avwww免费| 欧美色视频一区免费| 成年版毛片免费区| 久久久久久国产a免费观看| 国产高清videossex| 少妇人妻一区二区三区视频| 好男人在线观看高清免费视频| 亚洲色图av天堂| 国内毛片毛片毛片毛片毛片| 日韩大尺度精品在线看网址| 日韩精品免费视频一区二区三区| 国产视频内射| 欧美一区二区精品小视频在线| 午夜激情福利司机影院| 精华霜和精华液先用哪个| √禁漫天堂资源中文www| 国产免费av片在线观看野外av| 久久热在线av| 淫秽高清视频在线观看| 国产精品乱码一区二三区的特点| 国模一区二区三区四区视频 | 亚洲男人天堂网一区| 日日爽夜夜爽网站| 黄频高清免费视频| 国产亚洲av高清不卡| 后天国语完整版免费观看| 特大巨黑吊av在线直播| 两个人免费观看高清视频| 国产又黄又爽又无遮挡在线| 女生性感内裤真人,穿戴方法视频| 黑人操中国人逼视频| 日本a在线网址| 久久国产精品影院| 99精品久久久久人妻精品| 嫩草影视91久久| 久久草成人影院| 国产免费av片在线观看野外av| 国产成人av激情在线播放| 亚洲无线在线观看| 又黄又爽又免费观看的视频| 日韩大码丰满熟妇| 久久精品人妻少妇| 精品久久蜜臀av无| 精品乱码久久久久久99久播| 在线国产一区二区在线| 欧美在线一区亚洲| 动漫黄色视频在线观看| 日本撒尿小便嘘嘘汇集6| 国产一区在线观看成人免费| 国产精品一区二区免费欧美| 舔av片在线| 国内精品一区二区在线观看| 毛片女人毛片| 国产av在哪里看| 精品久久久久久成人av| 亚洲精品美女久久久久99蜜臀| 99久久99久久久精品蜜桃| cao死你这个sao货| 国产午夜福利久久久久久| 精品一区二区三区四区五区乱码| 国产精品久久久av美女十八| 国产又黄又爽又无遮挡在线| 91成年电影在线观看| 欧美日韩瑟瑟在线播放| 制服诱惑二区| 日韩成人在线观看一区二区三区| 中文在线观看免费www的网站 | 国产精品一区二区三区四区免费观看 | 麻豆久久精品国产亚洲av| 免费在线观看亚洲国产| 婷婷六月久久综合丁香| 国产激情欧美一区二区| 少妇裸体淫交视频免费看高清 | 日日干狠狠操夜夜爽| 亚洲中文字幕日韩| 免费在线观看亚洲国产| 婷婷六月久久综合丁香| 免费一级毛片在线播放高清视频| 最近最新中文字幕大全免费视频| 999久久久精品免费观看国产| 在线看三级毛片| 久久精品国产亚洲av香蕉五月| 免费在线观看日本一区| 亚洲精品中文字幕一二三四区| 日韩中文字幕欧美一区二区| 在线观看日韩欧美| 巨乳人妻的诱惑在线观看| 国产高清videossex| 欧美日韩中文字幕国产精品一区二区三区| 国产精品一区二区三区四区免费观看 | 久久精品国产亚洲av香蕉五月| 欧美最黄视频在线播放免费| 国产精品自产拍在线观看55亚洲| 一二三四在线观看免费中文在| 久99久视频精品免费| av国产免费在线观看| 精品久久久久久久久久免费视频| 精品国产乱码久久久久久男人| 国产视频一区二区在线看| 非洲黑人性xxxx精品又粗又长| 国内揄拍国产精品人妻在线| 一级毛片精品| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区色噜噜| 国产精品亚洲av一区麻豆| 丰满人妻一区二区三区视频av | e午夜精品久久久久久久| 国产精品久久久久久精品电影| 中文字幕高清在线视频| 啪啪无遮挡十八禁网站| 亚洲全国av大片| www.精华液| 国产精品日韩av在线免费观看| 欧美不卡视频在线免费观看 | 精华霜和精华液先用哪个| 夜夜躁狠狠躁天天躁| 黄频高清免费视频| 我的老师免费观看完整版| 精品久久蜜臀av无| 国产av不卡久久| 久久久久国产精品人妻aⅴ院| www.www免费av| 免费看a级黄色片| 欧美大码av| 国内毛片毛片毛片毛片毛片| 亚洲精品在线美女| 精品欧美一区二区三区在线| 99在线人妻在线中文字幕| 又黄又爽又免费观看的视频| 操出白浆在线播放| 久久精品aⅴ一区二区三区四区| 99国产精品99久久久久| 麻豆av在线久日| 精品人妻1区二区| 久久人妻av系列| 欧美日韩乱码在线| 我的老师免费观看完整版| 老司机福利观看| 亚洲国产欧美人成| 一级黄色大片毛片| 夜夜夜夜夜久久久久| 亚洲av美国av| www日本在线高清视频| 国产真实乱freesex| 亚洲片人在线观看| 一区二区三区国产精品乱码| 丝袜人妻中文字幕| 在线视频色国产色| 高潮久久久久久久久久久不卡| 欧美zozozo另类| 大型黄色视频在线免费观看| 国内久久婷婷六月综合欲色啪| 舔av片在线| 动漫黄色视频在线观看| 欧美成人免费av一区二区三区| 黄色视频不卡| 国产精品一区二区精品视频观看| 免费在线观看亚洲国产| 丰满人妻一区二区三区视频av | 99热这里只有精品一区 | 午夜福利在线观看吧| 国产精品久久久久久亚洲av鲁大| 国产又黄又爽又无遮挡在线| 18禁美女被吸乳视频| 久久婷婷成人综合色麻豆| 亚洲精品国产一区二区精华液| 九九热线精品视视频播放| 国产亚洲精品久久久久久毛片| 少妇的丰满在线观看| 黄色视频不卡| 小说图片视频综合网站| 女人被狂操c到高潮| 亚洲熟妇熟女久久| 精品福利观看| 夜夜夜夜夜久久久久| 免费高清视频大片| 午夜激情av网站| 国产视频内射| 老汉色av国产亚洲站长工具| 亚洲精品一卡2卡三卡4卡5卡| 国产区一区二久久| 亚洲熟妇熟女久久| 又紧又爽又黄一区二区| www国产在线视频色| 亚洲中文av在线| 久久国产精品影院| 久久草成人影院| 久久久久久久午夜电影| 日韩中文字幕欧美一区二区| 成人三级做爰电影| or卡值多少钱| 日本成人三级电影网站| 可以免费在线观看a视频的电影网站| 亚洲精品国产精品久久久不卡| 黑人巨大精品欧美一区二区mp4| 精品久久蜜臀av无| 久久久国产精品麻豆| 精品一区二区三区视频在线观看免费| 婷婷丁香在线五月| 亚洲人成77777在线视频| 三级国产精品欧美在线观看 | 中文亚洲av片在线观看爽|