• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking?

    2021-06-26 03:29:24ZheHu胡哲WenQiangHua滑文強(qiáng)andJieWang王劼
    Chinese Physics B 2021年6期

    Zhe Hu(胡哲) Wen-Qiang Hua(滑文強(qiáng)) and Jie Wang(王劼)

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3SSRF,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201204,China

    Keywords: phase contrast imaging,near field speckle,grating splitter

    1. Introduction

    While conventional x-ray imaging is based on the local attenuation of a photon beam,[1,2]phase contrast imaging detects the real part of complex refraction index of a sample.[3–5]In x-ray field, the real part is several orders larger in magnitude than the imaginary part,leading to a higher sensitivity to small density differences,which also can significantly increase the contrast in imaging.[3]

    Currently, various methods such as coherent diffraction imaging,[6]transport of intensity equation,[7]Hartmann wavefront sensing,[8]and propagation-based (in-line)methods,[9]grating-based method,[10,11]as well as Talbot grating interferometry[12]are available to quantitatively measure the phase of a beam or sample. One of the latest additions to the group of differential phase-contrast methods is the x-ray near field speckle based technique.[13–15]It has drawn significant attention due to its simple and flexible experimental arrangement and high angular accuracy, amongst others. The best reported angular accuracy in the literature is 2 nrad.[15]

    In general, two or more frames of speckle patterns are the prerequisite of phase retrieval processing. Therefore, so far,sequential patterns measurements are applied,for instance,patterns of sample-in and-out or scanning of the speckle mask are acquired. Current speckle tracking (CST) method treats speckle patterns as functions of spatial position only.[13–15]However, no matter in single-shot way or scanning way, the requirements for moving objects, detectors, or speckle masks raise strong challenges on the external aspects such as stability of the beam, machine, etc.[16]In the synchrotron radiation, the vibration of the light source, oscillation of the vacuum pump and water cooling unit will frequently change the incident beam, leading to changes of the beam size, position,and wavefront over time. These will introduce errors that are unpredictable and difficult to eliminate in phase retrieval if the spatial position of speckle patterns is considered only. There are many ways to improve the accuracy in imaging, such as using generative adversarial network to remove background noise,[17]or using filters to remove electric noise and roundoff error.[18]However,it is difficult to find a certain rule to eliminate errors mentioned above due to the time-varying beam size and position. Usually,fast acquisition or parallel acquisition methods can reduce these kinds of errors. Yet the former one is limited by the speed of mechanical motion and acquisition time of images. So, a parallel acquisition speckle tracking (PAST) method is proposed in this paper. It combines near field speckle and property of grating splitter[19]to collect sample and reference images simultaneously. In this case,errors introduced by external fluctuations will be recorded in all images and can be eliminated naturally by our algorithm,leading to more robust and accurate results. It should be mentioned that the method proposed here is somehow similar to the previous method described in Ref. [14], which uses two detectors along the optical path to quantitatively analyze x-ray pulsed wavefronts.The differences lie in the following two aspects. Firstly,the proposed method not only can work like the method in Ref. [14] to perform on-line beam phase sensing,but also can recover the phase of the sample alone,depending on the relative position of the two detectors. Secondly, combining the property of grating and Fourier based solver[16]for propagation-based method, the resolution can be a pixel size rather than the average speckle grain size.

    2. Method

    To combine near field speckle with grating splitter,working principle of these two methods needs to be clarified here.Firstly,the size and shape of the near field speckle grains will not change within a critical distance defined aszc=D2/λ(Dis the transversal coherence size andλis the wavelength).[13]This property allows the near field speckle to be used as a wavefront marker for phase retrieval. Any phase object introduced into the beam path will distort the wavefront and modulate the speckle pattern. The differential phase shift of the x-ray wavefront can be obtained by tracking modulations of the speckle pattern using the digital imaging correlation(DIC)algorithm[20]or geometric flow method.[16]The relative displacement of every pixelP(x0,y0)in the unitary base(x,y)is obtained(Fig.1(a))as

    where ?t=t1?t2is the time interval between the collection of two images,δtis exposure time, andε(?t,δt,x0,y0),τ(?t,δt,x0,y0) reflect the time-varying displacement of the target subset from the reference subset centered onP(x0,y0).For methods with angular accuracy of nanoradians, the extra displacement contained inεandτwill degrade the imaging quality and accuracy strongly. So, temporal features need to be eliminated to get more accurate results.

    The relationship between the speckle displacement, angular offsetΘmof the beam and the phase differential can be described as below:[13]

    where ?lis the distance of sample to detector andΦ(x,y) is the phase function of the sample. Once displacement of every pixel is obtained,we can use the partial derivatives in two directions to recover the phase. The theoretic accuracy[13]can be described asσ=s×δa/?l, whereδais the pixel accuracy of the cross correlation function,srepresents pixel size for single shot methods or scanning step size for scanning-based technique.

    Secondly, as shown in Fig. 1(b), when a grating splitter is inserted into a beam path,a series of diffracted light will be produced. According to Ref. [19], the intensity distribution,coherence,and wavefront of the first-order diffracted beam of a grating preserves the properties of the incident beam. This needs to be achieved in the far-field corresponding to the grating to separate the diffracted light. The distance can be described byzp=p2/λ,wherepis the period of the grating.The influence of the grating imperfection cannot be neglected for its direct participation in optical process. ?n/n(nis the linear density of a grating)is used to describe the density variation of the grating, which influences the diffraction angle. Consider the commercial x-ray grating whose ?n/ncan be 10?5,and letλ=0.1 nm,n=500/mm. According to the diffraction formula,sinθ ?sinθ0=nλ(θis the diffraction angle andθ0is the incident angle),the corresponding diffraction angle deviation caused by grating imperfection is 0.5 nrad,which can be basically neglected.

    Fig.1.(a)Principle of near-field speckle tracking.The displacement of every speckle grain is tracked from two images. The red arrow indicates displacement of the subset. (b)Demonstration of diffraction of grating splitter.

    Comparingzcwithzpmakes requests for experiments that the transverse coherent lengthDshould be larger in magnitude than the grating periodpif we combine near field speckle with the property of grating splitter. The incident beam first passes through a speckle mask to create speckle. Then, a grating splitter will split it into a series of diffraction beams. Samples will be put into the zeroth order beam. Due to the property of the grating splitter,[19]we can record the zeroth and first order beams as reference and sample image,respectively.In this way, errors caused by time-varying fluctuations will be recorded in both images. These errors can be naturally removed because they contribute the same shift of speckle grains in each image and can be recognized by algorithms

    wheree1(δt,x0,y0)ande2(δt,x0,y0)are speckle displacement errors introduced by time-varying fluctuations during the exposure time. Equations (3) and (1) are essentially the same except thatεandτno longer change with time,which means the proposed method eliminates errors related to temporal features of the speckle patterns. In this case,the values ofεandτare only related to the phase of samples, leading to a great improvement to the accuracy and robustness of the phase retrieval results.

    3. Simulations

    Simulations of two frameworks shown in Figs. 2(a) and 2(b)were performed to test the proposed method. Firstly,two sets of speckle patterns about a preset sample were obtained using the two configurations. The same algorithm was used to process the data to recover phases. Then,the results obtained were compared to the preset sample to get residual error maps and root mean square error (RMSE), and RMSE is used to quantify the accuracy of phase retrieved.

    Fig.2. Experiment configurations of(a)the proposed method and(b)CST.

    First of all, we setA=1 to see the performance of the two methods. Two retrieved phases corresponding to CST and PAST with RMSE values of 0.0672 and 0.0005 are recovered,and the residual error maps are shown in Figs. 3(c) and 3(d).We can see that the proposed method performs better in the presence of external fluctuations.

    Fig.3. (a)The preset sample. (b)Incident wavefront. (c)–(d)Residual error maps of CST and PAST,respectively.

    Then, we set those external disturbance functions unchanged except their amplitudes increase from 0 to 1 to see how the phase errors will change. By repeating the procedure mentioned above,we get a series of recovered phases.And the RMSE values are summarized in Fig.4(a).

    We can conclude from Fig.4(a)that when the amplitude of fluctuations increases linearly,the RMSE of CST increases almost linearly as well. This means the effects of fluctuations at different times on the CST are linearly superimposed.Meanwhile,the errors of the proposed method remain almost unchanged in Fig.4(a),meaning the significant error reduction capability of the proposed method. We compare the two sets of RMSE values and find that PAST can reduce errors to about 1%at most compared with CST.It is reasonable to predict that this gap will continue to grow asAincreases.

    We also explore the influence of the incident waveforms under PAST. Different incident wavefronts of randomly distributed (Fig. 3(b)), planar, spherical, and Gaussian are simulated. Figure 4(b) presents the RMSE values obtained as a functionAfor four wavefronts. It can be seen clearly that the plane wave has the optimal performance under the disturbed environment comparing to the others. Nonetheless, the quality of phase recovered does not change significantly within a broad range for all kinds of wavefronts, which implies the requirements for speckle-based experiments on the incident wavefront can be relaxed.

    We introduceσeto describe the accuracy deterioration caused by the coupling results of the time-varying fluctuations during the time interval between the collection of two images and the exposure time. Andσeis defined as the root mean square of the difference of the residual error maps whenA/=0 andA=0. Here,we treat the residual error map whenA=0 as the true value because of its invariance. Theσeof the two methods under different waveforms are plotted in Figs. 4(c)and 4(d) as a function ofA. It can be seen clearly that the lines representing different waveforms are overlapped for both methods,indicating that the waveforms do not affect the accuracy of the experiments. On the contrary, the increase of the magnitude ofAaffects the accuracy linearly,which means the larger the coupling result of fluctuations is, the worse the experimental accuracy is. This linear characteristic, in turn, illustrates the rationality of taking the residual error map whenA=0 as the true value. We can see that the maximumσeof the proposed method is 0.03 nrad,while more than 60 nrad for that of CST, meaning the high theoretical accuracy can only be realized by the proposed method.

    Fig.4. (a)The RMSE values of the two methods plotted as a function of the amplitude of time-varying fluctuations. (b) Influence of four different incident wavefronts on PAST.(c)–(d)Angular accuracy deterioration σe of PAST and CST as a function of amplitude of time-varying fluctuations,respectively.

    In conclusion,we have proved that the proposed method can provide robust and much more accurate results than the conventional speckle tracking method in the presence of external fluctuations.

    4. Experiments

    Due to the lack of grating for x-ray in our laboratory currently,[21]we carried out experiments with visible light.The experimental layout of the proposed method is shown in Fig.5. The illumination system is consisted of a He–Ne laser beam with central wave length of 632.8 nm, a collector lens,a circular aperture,and a condenser lens. The images are captured by CCD cameras(Hamamatsu C11440-36U,19201200,pixel sizespix=5.86 μm, 125 fps). Calibrated laser beam passes the frosted glass with grain size of 15 μm to generate speckle pattern. A grating with period of 9μm is used to produce diffraction beam. We used a lens with focus length of

    100 mm as the sample.The distance between the grating splitter and sample is 20 cm. And the sample to detector distance is 1 cm. The acquisition time of each image is 1 ms.

    Fig.5. Experimental layout of PAST with visible light.

    In the first step,we checked the phase retrieval capability of the proposed method. Two sets of data corresponding to the two methods were obtained and processed to get two recovered phases (Figs. 6(a) and 6(b)). Then, a residual error map(Fig.6(c))was obtained by subtract the two phase maps. The corresponding RMSE value is 0.11. So, the phase retrieval ability of the proposed method is validated. The spatial resolution of PAST and CST is 5.86μm, the theoretical angular accuracy of the two methods is the same, which is 30 μrad according to the equation mentioned above.

    Then, we examined if the proposed method can reduce errors under a disturbed environment comparing to CST. To simulate the instability of the x-ray beam,machinery vibration in x-ray field, we used the air fluctuations caused by the heat of a lit candle to change the incident wavefront. We noticed during the experiments that when the acquisition time is long,the influence of external fluctuations to images is smoothed out,despite there still exist errors. However,at the acquisition time of 1 ms, the influences become visible even to a naked eye. We repeated the procedural mentioned above and set the result of CST in the first step as a standard. By comparing it with two newly retrieved phases, we got two residual error maps corresponding to PAST and CST (Figs. 6(d) and 6(e)).And the RMSE values are 0.37 and 13.81,which indicates the phase recovered by the proposed is almost unaffected by timevarying fluctuations while big error appears in the result of CST.We repeated the experiments 20 times and got the standard deviation of RMSE values of the proposed method and CST,0.089 and 2.16,which implies the good stability and accuracy of the results recovered by PAST despite the presence of strong external fluctuations. Meanwhile we can use the root mean square of the subtraction of Figs. 6(d) and 6(e) to get the accuracy deteriorationσeof CST.The result is 13.01 rad,which means the angular accuracy of CST is completely ruined by the external fluctuations.

    Fig.6. (a)–(b)Phase recovered by PAST and CST.(c)Residual error map. (d)–(e)Residual error maps corresponding to PAST and CST under a disturbed environment.

    5. Conclusion

    In summary, we have demonstrated a real-time, high accuracy method for speckle-based phase contrast imaging.Through simulations and experiments, we show that this method can reduce errors introduced by time dependent fluctuations to 1% when compared with current speckle tracking method. Meanwhile, it can preserve high theoretic accuracy,which implies a huge increase of fidelity and robustness to the experiments. Meanwhile, it has two other major advantages.First,due to the simultaneous collection of reference and sample images, it can recover the phase functions at any instant,which may be useful for on-line beam monitoring of x-ray free electron laser. Second,by combining with the FFT based solver,[14]our method can provide a real time rapid imaging,which is suitable for imaging living patients and dynamic samples. Nevertheless, when used in x-ray field, this method requires grating with high linear density, which poses high requirements on grating processing technology. In future work,we will try to change wavefront of the incident beam in some ways in x-ray field and collect two first order diffraction beams to monitor it. It can be used in fields such as super resolution of phase retrieval.[22]We will demonstrate it in the future investigation.

    Acknowledgement

    Authors wish to thank Dr. Feixiang Wang and Dr.Haipeng Zhang for helpful discussions.

    xxxhd国产人妻xxx| 亚洲久久久国产精品| 99精国产麻豆久久婷婷| 两性夫妻黄色片 | 亚洲精品成人av观看孕妇| 精品一区二区三卡| 边亲边吃奶的免费视频| 国产精品人妻久久久影院| 亚洲 欧美一区二区三区| 免费黄色在线免费观看| 亚洲精品久久成人aⅴ小说| 99视频精品全部免费 在线| 中文字幕人妻熟女乱码| 久久 成人 亚洲| 另类精品久久| 免费在线观看完整版高清| 亚洲精品aⅴ在线观看| av免费在线看不卡| 春色校园在线视频观看| 乱人伦中国视频| 大香蕉久久网| 26uuu在线亚洲综合色| 日本av手机在线免费观看| 欧美成人午夜精品| 国产精品不卡视频一区二区| 91国产中文字幕| 激情五月婷婷亚洲| 国产亚洲一区二区精品| 伦精品一区二区三区| 亚洲精品日韩在线中文字幕| 成人18禁高潮啪啪吃奶动态图| 亚洲人与动物交配视频| 欧美老熟妇乱子伦牲交| 婷婷色麻豆天堂久久| 国产男女内射视频| a 毛片基地| 亚洲第一av免费看| 母亲3免费完整高清在线观看 | 亚洲精品国产色婷婷电影| av女优亚洲男人天堂| 久久久a久久爽久久v久久| 国产精品一区二区在线观看99| 欧美精品一区二区免费开放| 啦啦啦中文免费视频观看日本| 国产亚洲一区二区精品| 国产成人精品福利久久| 人人妻人人澡人人看| 亚洲精品av麻豆狂野| 欧美 日韩 精品 国产| 十八禁网站网址无遮挡| 人妻 亚洲 视频| 免费高清在线观看日韩| 亚洲成国产人片在线观看| 一区二区三区乱码不卡18| 精品亚洲成a人片在线观看| 免费av不卡在线播放| 欧美日韩成人在线一区二区| 看免费av毛片| 十八禁高潮呻吟视频| 波野结衣二区三区在线| 日韩中文字幕视频在线看片| 亚洲欧美一区二区三区国产| 色5月婷婷丁香| 中文欧美无线码| 国产综合精华液| a级毛色黄片| 久久精品熟女亚洲av麻豆精品| 在线看a的网站| xxx大片免费视频| 国产精品熟女久久久久浪| 国产精品久久久av美女十八| 久久免费观看电影| 综合色丁香网| av在线app专区| 最近中文字幕2019免费版| 99热网站在线观看| 国产片特级美女逼逼视频| 国产色婷婷99| 日产精品乱码卡一卡2卡三| 欧美另类一区| 香蕉精品网在线| 欧美日本中文国产一区发布| 又大又黄又爽视频免费| 夜夜骑夜夜射夜夜干| av在线老鸭窝| 亚洲精品乱码久久久久久按摩| 丰满乱子伦码专区| 亚洲国产成人一精品久久久| videosex国产| 啦啦啦在线观看免费高清www| 美女国产高潮福利片在线看| 色5月婷婷丁香| 一区在线观看完整版| 一区二区三区四区激情视频| 乱码一卡2卡4卡精品| 你懂的网址亚洲精品在线观看| 一本色道久久久久久精品综合| 大香蕉97超碰在线| 久久精品国产a三级三级三级| a级片在线免费高清观看视频| 全区人妻精品视频| 亚洲熟女精品中文字幕| 欧美另类一区| 最近的中文字幕免费完整| 乱人伦中国视频| 尾随美女入室| 欧美日韩综合久久久久久| 国产成人91sexporn| 午夜福利影视在线免费观看| 考比视频在线观看| av福利片在线| 国产精品嫩草影院av在线观看| 久久精品熟女亚洲av麻豆精品| 日韩av不卡免费在线播放| 一本—道久久a久久精品蜜桃钙片| 国产日韩一区二区三区精品不卡| 视频中文字幕在线观看| 又黄又粗又硬又大视频| 亚洲av综合色区一区| 18+在线观看网站| 国产黄频视频在线观看| 久久国产亚洲av麻豆专区| 精品人妻一区二区三区麻豆| 91午夜精品亚洲一区二区三区| 搡老乐熟女国产| 美女视频免费永久观看网站| 一级毛片黄色毛片免费观看视频| 狂野欧美激情性xxxx在线观看| 亚洲av综合色区一区| 久久精品人人爽人人爽视色| 免费av中文字幕在线| 国产精品一二三区在线看| 亚洲精品美女久久av网站| 亚洲国产av新网站| 最近2019中文字幕mv第一页| 日韩成人伦理影院| 99热网站在线观看| 国产精品国产三级国产专区5o| 看免费成人av毛片| 中文精品一卡2卡3卡4更新| 欧美xxxx性猛交bbbb| 久久av网站| 久久久久精品久久久久真实原创| 亚洲欧美中文字幕日韩二区| 亚洲国产日韩一区二区| 久久久国产一区二区| 少妇 在线观看| 亚洲成av片中文字幕在线观看 | 亚洲欧美成人综合另类久久久| 亚洲综合精品二区| 尾随美女入室| 日韩不卡一区二区三区视频在线| 在线免费观看不下载黄p国产| 精品少妇黑人巨大在线播放| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 国产精品人妻久久久久久| 五月伊人婷婷丁香| 9热在线视频观看99| 亚洲,欧美精品.| 26uuu在线亚洲综合色| 国产在视频线精品| 色5月婷婷丁香| 菩萨蛮人人尽说江南好唐韦庄| 国产精品嫩草影院av在线观看| 欧美老熟妇乱子伦牲交| 人人妻人人澡人人看| www日本在线高清视频| 免费看不卡的av| 五月伊人婷婷丁香| 最近2019中文字幕mv第一页| 成人亚洲欧美一区二区av| 久久久国产一区二区| 超碰97精品在线观看| 久久久久久久久久久免费av| 高清av免费在线| 国产精品久久久久久精品古装| 波野结衣二区三区在线| 亚洲情色 制服丝袜| 亚洲精品一区蜜桃| 一级,二级,三级黄色视频| 久久精品久久精品一区二区三区| 久久精品aⅴ一区二区三区四区 | 国产成人精品婷婷| 妹子高潮喷水视频| 夫妻性生交免费视频一级片| 精品第一国产精品| 巨乳人妻的诱惑在线观看| 蜜臀久久99精品久久宅男| 国产成人免费无遮挡视频| 日韩视频在线欧美| 日韩精品有码人妻一区| 一级黄片播放器| 国产精品.久久久| 亚洲av福利一区| 久久99热6这里只有精品| 国产精品一区二区在线观看99| 日本猛色少妇xxxxx猛交久久| 亚洲精品中文字幕在线视频| 人成视频在线观看免费观看| 国产免费一区二区三区四区乱码| av视频免费观看在线观看| 最黄视频免费看| 男人爽女人下面视频在线观看| 尾随美女入室| 午夜久久久在线观看| 久热久热在线精品观看| 22中文网久久字幕| 日韩免费高清中文字幕av| 国产精品人妻久久久久久| 亚洲伊人久久精品综合| 免费黄色在线免费观看| 大话2 男鬼变身卡| 久久精品国产综合久久久 | 国精品久久久久久国模美| 在线观看一区二区三区激情| 亚洲美女黄色视频免费看| 国产在视频线精品| 看十八女毛片水多多多| 大码成人一级视频| 亚洲精品中文字幕在线视频| 午夜日本视频在线| 日韩免费高清中文字幕av| 国产成人一区二区在线| 亚洲内射少妇av| 飞空精品影院首页| 免费高清在线观看视频在线观看| 下体分泌物呈黄色| 免费女性裸体啪啪无遮挡网站| 精品第一国产精品| 亚洲国产毛片av蜜桃av| 亚洲国产av新网站| 女的被弄到高潮叫床怎么办| 日韩一本色道免费dvd| 毛片一级片免费看久久久久| 国产探花极品一区二区| 亚洲精品国产色婷婷电影| 国产亚洲精品第一综合不卡 | 黑人巨大精品欧美一区二区蜜桃 | 欧美成人午夜免费资源| 欧美日韩视频精品一区| 亚洲欧美日韩另类电影网站| 人体艺术视频欧美日本| 伦理电影免费视频| 国产精品麻豆人妻色哟哟久久| 国产精品无大码| 欧美国产精品va在线观看不卡| av有码第一页| 在线观看美女被高潮喷水网站| 午夜影院在线不卡| 搡女人真爽免费视频火全软件| 亚洲精品成人av观看孕妇| 人体艺术视频欧美日本| 热re99久久国产66热| 18+在线观看网站| 爱豆传媒免费全集在线观看| 十八禁高潮呻吟视频| 香蕉国产在线看| 色婷婷久久久亚洲欧美| 五月开心婷婷网| 精品一区二区三区四区五区乱码 | 国产69精品久久久久777片| 国产日韩欧美亚洲二区| 18禁国产床啪视频网站| 2022亚洲国产成人精品| 天堂8中文在线网| 如何舔出高潮| 欧美日本中文国产一区发布| 桃花免费在线播放| 日本欧美国产在线视频| 少妇的逼水好多| 久久精品久久久久久噜噜老黄| 美女国产高潮福利片在线看| 捣出白浆h1v1| 一级毛片 在线播放| 国产精品久久久久成人av| 精品国产一区二区三区四区第35| 午夜福利网站1000一区二区三区| 免费观看性生交大片5| 精品一区二区三卡| 久久精品久久久久久噜噜老黄| 日韩 亚洲 欧美在线| 国产高清不卡午夜福利| 午夜久久久在线观看| 丰满饥渴人妻一区二区三| 精品少妇黑人巨大在线播放| www.色视频.com| 欧美成人午夜精品| 免费女性裸体啪啪无遮挡网站| 人人妻人人添人人爽欧美一区卜| 免费少妇av软件| 香蕉国产在线看| 在线观看免费高清a一片| 久久精品国产亚洲av天美| 国产在线视频一区二区| 2022亚洲国产成人精品| 男男h啪啪无遮挡| 精品亚洲成国产av| 女人久久www免费人成看片| 各种免费的搞黄视频| 侵犯人妻中文字幕一二三四区| 久久女婷五月综合色啪小说| 久久久国产一区二区| 国产成人欧美| 最近中文字幕2019免费版| 国产精品三级大全| 中文字幕制服av| 欧美日韩一区二区视频在线观看视频在线| 国产精品欧美亚洲77777| 999精品在线视频| 精品国产露脸久久av麻豆| 久久午夜综合久久蜜桃| 亚洲精华国产精华液的使用体验| 免费av中文字幕在线| 夜夜爽夜夜爽视频| 99热网站在线观看| videos熟女内射| 亚洲美女黄色视频免费看| 亚洲av免费高清在线观看| 国产男女超爽视频在线观看| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 黄色怎么调成土黄色| a级片在线免费高清观看视频| 日韩av免费高清视频| tube8黄色片| 美女国产视频在线观看| 十八禁高潮呻吟视频| 亚洲欧美成人综合另类久久久| 欧美 日韩 精品 国产| 亚洲美女黄色视频免费看| 亚洲精品成人av观看孕妇| 国产精品 国内视频| 亚洲精品日本国产第一区| 插逼视频在线观看| 日韩免费高清中文字幕av| 亚洲av电影在线进入| 91精品国产国语对白视频| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| 久久鲁丝午夜福利片| 亚洲情色 制服丝袜| 蜜桃在线观看..| 男女边吃奶边做爰视频| 两个人免费观看高清视频| 国产男女内射视频| 少妇的逼水好多| 欧美国产精品一级二级三级| 精品99又大又爽又粗少妇毛片| 边亲边吃奶的免费视频| 日韩 亚洲 欧美在线| 欧美精品一区二区大全| 九色亚洲精品在线播放| 亚洲av中文av极速乱| 少妇 在线观看| 男女边摸边吃奶| 欧美日韩av久久| 一级毛片黄色毛片免费观看视频| 亚洲av免费高清在线观看| 久久人妻熟女aⅴ| 我要看黄色一级片免费的| 欧美日韩综合久久久久久| 99九九在线精品视频| 亚洲经典国产精华液单| 9191精品国产免费久久| 成人亚洲欧美一区二区av| av国产久精品久网站免费入址| 看十八女毛片水多多多| 成人无遮挡网站| 欧美日韩综合久久久久久| 欧美日韩国产mv在线观看视频| 色94色欧美一区二区| 黄色毛片三级朝国网站| 成人亚洲欧美一区二区av| 午夜91福利影院| 人体艺术视频欧美日本| 老司机亚洲免费影院| 最近最新中文字幕大全免费视频 | 天堂中文最新版在线下载| 最后的刺客免费高清国语| 插逼视频在线观看| 欧美 亚洲 国产 日韩一| 永久网站在线| 最近2019中文字幕mv第一页| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩另类电影网站| 日本av免费视频播放| 热re99久久精品国产66热6| 91国产中文字幕| 亚洲成人一二三区av| 哪个播放器可以免费观看大片| 免费看av在线观看网站| 日韩伦理黄色片| 成年av动漫网址| 最新中文字幕久久久久| 欧美亚洲日本最大视频资源| 精品福利永久在线观看| 18禁在线无遮挡免费观看视频| 亚洲精品第二区| 亚洲av综合色区一区| 18在线观看网站| 51国产日韩欧美| 国产av一区二区精品久久| 天天操日日干夜夜撸| 午夜老司机福利剧场| 亚洲久久久国产精品| 欧美精品一区二区免费开放| 我要看黄色一级片免费的| 九草在线视频观看| 久久ye,这里只有精品| av在线老鸭窝| 日本色播在线视频| 99久久综合免费| 男女无遮挡免费网站观看| 成人国产av品久久久| 亚洲欧美清纯卡通| 亚洲欧美精品自产自拍| 一二三四在线观看免费中文在 | 一级毛片我不卡| 中文字幕人妻丝袜制服| 久久久久精品性色| 日产精品乱码卡一卡2卡三| 蜜桃国产av成人99| 亚洲美女视频黄频| 亚洲国产毛片av蜜桃av| 男女高潮啪啪啪动态图| 久久精品国产亚洲av涩爱| 国产免费视频播放在线视频| 狠狠婷婷综合久久久久久88av| 亚洲av免费高清在线观看| 精品福利永久在线观看| 国产69精品久久久久777片| 最黄视频免费看| 极品少妇高潮喷水抽搐| 大片电影免费在线观看免费| 蜜桃在线观看..| 黄色怎么调成土黄色| 久久久国产精品麻豆| 亚洲精品国产av成人精品| 日本黄大片高清| 狂野欧美激情性bbbbbb| 国产av码专区亚洲av| 91在线精品国自产拍蜜月| 侵犯人妻中文字幕一二三四区| 亚洲av免费高清在线观看| 国产成人精品在线电影| 国产一区亚洲一区在线观看| 在线亚洲精品国产二区图片欧美| 如日韩欧美国产精品一区二区三区| 免费黄色在线免费观看| 在线天堂中文资源库| 国产国语露脸激情在线看| 国产精品久久久久久精品古装| 日本黄大片高清| 美国免费a级毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产一区二区三区综合在线观看 | 亚洲国产看品久久| 桃花免费在线播放| 久久久国产欧美日韩av| 一级毛片 在线播放| 国产老妇伦熟女老妇高清| 免费人成在线观看视频色| 成人国语在线视频| 日日啪夜夜爽| 一区二区av电影网| 丝袜在线中文字幕| 母亲3免费完整高清在线观看 | 亚洲av.av天堂| 精品99又大又爽又粗少妇毛片| 制服诱惑二区| 99热这里只有是精品在线观看| 亚洲激情五月婷婷啪啪| 欧美日韩av久久| 亚洲国产精品一区二区三区在线| 午夜老司机福利剧场| 久久久国产精品麻豆| 最近中文字幕高清免费大全6| 国产伦理片在线播放av一区| 男女国产视频网站| 日韩一区二区视频免费看| 亚洲综合色网址| 夜夜爽夜夜爽视频| 国产精品人妻久久久影院| 乱码一卡2卡4卡精品| 精品久久久久久电影网| 亚洲国产精品国产精品| 99热国产这里只有精品6| 久久精品国产亚洲av天美| 一级片'在线观看视频| 高清视频免费观看一区二区| 大片免费播放器 马上看| 亚洲精品aⅴ在线观看| 超碰97精品在线观看| 国产成人91sexporn| 精品人妻在线不人妻| av国产精品久久久久影院| 九九在线视频观看精品| 韩国av在线不卡| 亚洲美女视频黄频| 精品人妻在线不人妻| 国精品久久久久久国模美| 亚洲欧美精品自产自拍| 亚洲成人一二三区av| av免费在线看不卡| 久久亚洲国产成人精品v| 91精品国产国语对白视频| 永久免费av网站大全| 久久久久人妻精品一区果冻| 五月开心婷婷网| 精品一区二区三区视频在线| 日本av免费视频播放| 免费黄频网站在线观看国产| 成人影院久久| 人人妻人人澡人人爽人人夜夜| 欧美日韩av久久| av福利片在线| 久久狼人影院| 亚洲 欧美一区二区三区| 国产免费福利视频在线观看| 亚洲精品456在线播放app| 亚洲av男天堂| 夜夜爽夜夜爽视频| √禁漫天堂资源中文www| 欧美变态另类bdsm刘玥| 热re99久久国产66热| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站| 91国产中文字幕| 免费黄网站久久成人精品| 国产亚洲欧美精品永久| 久久鲁丝午夜福利片| 亚洲精品日本国产第一区| 欧美人与性动交α欧美精品济南到 | 国产片内射在线| videosex国产| 欧美xxxx性猛交bbbb| 草草在线视频免费看| 欧美变态另类bdsm刘玥| videossex国产| 一级,二级,三级黄色视频| 老熟女久久久| 一级毛片电影观看| 国产高清不卡午夜福利| 建设人人有责人人尽责人人享有的| 国产成人免费观看mmmm| a级片在线免费高清观看视频| 国语对白做爰xxxⅹ性视频网站| 久久99精品国语久久久| 国产日韩欧美亚洲二区| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久电影| 欧美3d第一页| 国产成人精品婷婷| av有码第一页| 51国产日韩欧美| 亚洲伊人久久精品综合| 国产伦理片在线播放av一区| 欧美人与性动交α欧美软件 | 免费黄频网站在线观看国产| 午夜免费鲁丝| 大话2 男鬼变身卡| 精品99又大又爽又粗少妇毛片| 免费av中文字幕在线| 夫妻性生交免费视频一级片| 建设人人有责人人尽责人人享有的| 亚洲一级一片aⅴ在线观看| 精品少妇黑人巨大在线播放| 精品一区二区三区视频在线| 亚洲欧洲国产日韩| 宅男免费午夜| 婷婷色综合www| 免费观看a级毛片全部| 成人综合一区亚洲| 日日爽夜夜爽网站| 午夜日本视频在线| 又黄又爽又刺激的免费视频.| 久久99热这里只频精品6学生| 国产女主播在线喷水免费视频网站| 久久久久久人妻| av天堂久久9| 欧美xxⅹ黑人| 男人舔女人的私密视频| 丰满乱子伦码专区| 最近中文字幕2019免费版| 亚洲av综合色区一区| 少妇的逼好多水| 亚洲人成77777在线视频| 麻豆乱淫一区二区| 在线观看三级黄色| 少妇高潮的动态图| 麻豆精品久久久久久蜜桃| 18禁裸乳无遮挡动漫免费视频| 国产在线视频一区二区| 国产黄色视频一区二区在线观看| 亚洲av.av天堂| 久久久久精品人妻al黑| 9热在线视频观看99| 久久久久久伊人网av| 精品少妇黑人巨大在线播放| 欧美精品亚洲一区二区| 亚洲av.av天堂| 亚洲国产日韩一区二区| 免费黄色在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 精品人妻熟女毛片av久久网站| 国产成人aa在线观看| 99热网站在线观看| 久久久久精品人妻al黑| 最近的中文字幕免费完整| 亚洲精品乱久久久久久| 亚洲中文av在线| 一边摸一边做爽爽视频免费| 五月玫瑰六月丁香| 五月开心婷婷网|