• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stationary response of colored noise excited vibro-impact system?

    2021-06-26 03:03:26JianLongWang王劍龍XiaoLeiLeng冷小磊andXianBinLiu劉先斌
    Chinese Physics B 2021年6期
    關(guān)鍵詞:劍龍

    Jian-Long Wang(王劍龍), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(劉先斌)

    State Key Laboratory of Mechanics and Control of Mechanical Structure,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    Keywords: vibro-impact system,stationary probability density function,stochastic averaging method,generalized cell mapping method

    1. Introduction

    The vibro-impact system is an essential kind of non-linear dynamic system,which has attracted considerable attention in the past few decades.[1–6]Owing to its non-smooth characteristics,some interesting and distinguishing phenomena such as gazing bifurcation,tour bifurcation,chatter,and sticking motions are observed in the deterministic system.[7–12]In terms of stochastic dynamics, efforts are made to derive the stationary response of the vibro-impact system under the excitation of various noises. The most common ways are the stochastic averaging method and path integration method.[13–15]Huang[16]developed a stochastic averaging method to obtain the stationary response of a multi-degree-freedom vibro-impact system under the white Gaussian noise excitation. Recently, a solution procedure consisting of Zhuravlev non-smooth transformation and exponential polynomial closure method has been proposed to obtain the probability density function(PDF)of a lightly vibro-impact system excited by different white Gaussian noises.[16]In Ref. [17], the path integration was greatly simplified to accurately obtain the stationary response by introducing a suitable transformation of the state space to deal with the vibration systems’ discontinuities with strong inelastic impact. More recently, an iterative weighted residual method was employed to obtain the approximate closed-form solution of the random response of a single-degree-freedom vibro-impact system under the white Gaussian noise.[18]More recent efforts dedicated to the vibro-impact system’s stationary responses under various random excitations are available in Refs.[19–27].

    For the stochastic averaging method, one important step is to transfer the physical process to the Ito diffusion process.Because the existing theory can only obtain the accurate drift coefficient and diffusion coefficient for the system under the physical white noise or the wide-band noise,the application of the stochastic averaging method is limited.[28]It can be seen that almost all the excitations in the above researches are in white or wide-band. However, in nature, the real noises always have a finite correlation time. When the noises’correlation time is considerably long,there are no effective methods to obtain the stationary response.

    In recent years, the stochastic GCM method has been wildly used to obtain the response PDFs for systems subjected to white excitations.[29–36]In this paper, based on the Khasminskii limit theorem, the GCM method is improved to obtain the stationary response of a vibro-impact system under a colored noise excitation. Owing to no need to obtain the precise drift coefficient or diffusion coefficient of the approximated Markov process but the process’s evolution law, the GCM method can be applied to both the wide-band noise excited system and the narrow-band noise excited system.

    The rest of the paper is organized as follows.In Section 2,the model of the vibro-impact system is described. The procedure of the stochastic averaging method for the system is presented in Section 3. In Section 4,the GCM method for the white noise excited system is introduced,and its applicability to the colored noise excited system is investigated. In Section 5, both the methods are tested for wide-band noise and narrow-band noise, and the results are verified by the Monte Carlo simulation. Finally, the conclusions are summarized in Section 6.

    2. Vibro-impact system

    Vibro-impact systems are encountered in many engineering applications such as structures and machines with rigid barriers,clearance,and gaps. Therefore,it is essential to study the dynamics of the vibro-impact system. Here we consider a vibro-impact system with a clearance type nonlinearity as shown in Fig. 1. The motion equation of the system is given as[37]

    wherexis the system displacement and overhead dot denotes differentiation with respect to timet;ζis the linear damping coefficient;kis the linear stiffness;blis the distance between the equilibrium position of the mass and the lift barrier;bris for the right barrier;Fis the contact force governed by Hertz contact model when the mass crashes to the barriers[38]and it is expressed as

    whereηlandηrrepresent contact stiffness between the mass and the barriers on both sides respectively,and they are dependent on their geometries and material properties;the excitationfin Eq. (1) is assumed to represent a stationary and ergodic process,which is generated by a white noise passing through a second-order linear filter,and it satisfies the following equation:

    LetS(ω)be the rational spectral density and can be presented as

    whereζ1,ω1, andDare constants, and they determine the bandwidth of the noise;W(t) is a standard white Gaussian noise,which can be either a wide-band noise or a narrow-band noise.

    Fig.1. Schematic model of vibro-impact oscillator.

    Combining the contact forceFwith the spring forcekx,equation(1)can be rewritten as

    whereg(x)is a restoring force of the system and it is expressed as

    The potential energy function and the total energy function of the system can be obtained as

    3. Stochastic averaging method

    In this section, the stochastic averaging method is conducted to obtain the stationary responses of the system.Before moving on, it should be noted that equation (5) is a strongly nonlinear oscillator and does not meet the requirement of the stochastic averaging method. According to Ref.[39],the generalized harmonic transformation should be used to modify the system into a correct form.

    Assuming that the damping coefficient is slight and the external random excitation is weak, the motion of Eq. (5) is nearly periodic and can be written as

    where

    withBbeing a deviation process,Aan amplitude process,Φ,ψ, andθthe phase processes, andvthe instantaneous frequency of the oscillator.AandBare related toHby

    Transform the variable fromxandyintoAandθrespectively,then equation(5)will become

    where

    On the assumption that the damping coefficient is slight and the random excitation is weak, the terms on the righthand side of transformed equation (12) are indeed small;hence,the transformed equation(12)is a standard form for the Stratonovich–Khasminskii limit theorem,Aandθwill converge weakly to a two-dimensional diffusive Markov process asζ,D →0. Furthermore, when the random excitation is in the wide-band,the Markov process can be represented by the following Ito stochastic differential function

    whereBr(t) represents the standard Wiener process.iandij=irjrare called drift coefficient and diffusion coefficient, respectively. They can be obtained from the following formula:

    whereRfis the correlation function of the random noise.

    Considering the fact that theAandθare the slowly varying variables, the drift and diffusion coefficient in Eq. (14)can be smoothened by time-averaging. Denoting the timeaveraged drift and diffusion coefficient by

    the Ito equation becomes

    It can be seen that the smoothedAprocess becomes independent ofθ. Hence it can be presented by the following onedimensional Ito equation:

    The associated FPK equation has the form

    wherep=p(A,t|A0)is the transition probability density ofAwith the initial condition

    Assuming that the boundary conditionpatA=0 is finite,and

    the stationary solution of FPK equation can be derived analytically as

    whereCis the normalization constant.

    As the stationaryp(A) is solved, the stationary PDF of the total energyp(H)can be derived fromp(A)as

    whereA=V?1(H) is the inverse function ofH=V(A+B(A)).

    The stationary joint PDF of displacement and velocity can be further obtained as

    whereTis the instantaneous period of the system and expressed as

    The stationary PDFs of displacement and velocity can be expressed as

    Finally, it is mentioned that as the stochastic averaging method isoperated,v,mi,andσiin Eqs.(10)and(13)are usually approximated by only the first 6 terms of the Fourier series to simplify the computation procedure with a relative error of less than 0.03%[39]

    4. Generalized cell mapping method

    In recent years,the stochastic GCM method is greatly developed to obtain the response PDFs for systems subjected to random excitations.[29–36]Compared with the traditional numerical methods, the GCM can greatly reduce the simulation time and achieve a very accurate result. However, the application of the GCM method requires the response process of the random excited system to be a Markov process. Hence its application is limited only to the white noise excited system.So far,no work has been done on the applicability of the GCM method to the colored noise excited system.

    In this section,we introduce the GCM method for the systems subjected to the white noise, then the possibility of extending the GCM method to our colored noise excited vibroimpact system is investigated.

    4.1. GCM for system with white noise

    First, we give the theoretical mechanism for the GCM method. As is well known, the responsex=(x,y) in Eq. (5)will form a Markov process if the excitationfis a white noise.Therefore according to the Markov property, for any finite value 0≤t1<t2<···<tn,the following equations hold

    wheret0≤t'≤t,?is the state space forx. Dividing the interval[t,t0]intonsubintervalt0<t1<···<tn=t,equation(32)can be rewritten as

    Note that equation (5) is the time-homogenousp(xn,tn|xn?1,tn?1)=p(xn,tn ?tn?1|xn?1,0)andti?ti?1=?t,?i ∈1,...,n. Then the PDFp(x,t) at any timetcan be obtained as

    Now, we give the detailed procedure of operating the GCM method. First, we discretize the continuous state spaceDintoNsmall cellsCi(i=1,2,...,N)as shown in Fig.2. Letpi(n)denote the probability of the cellCiatn-th step in steps of mapping length ?t, andpij, the one-step transition probability from cellCjto cellCiis

    Then the probability evolution of the system can be described by a homogeneous Markov chain

    wherep(0) denotes the initial probability distribution andPis the one-step transition probability matrix with elementspij.Thus,once the one-step transition probability matrixPand the initial probability distributionp(0)are given,the transient and the stationary PDF can be computed.

    Fig.2. Schematic diagram for GCM method.

    Finally, we takepijfor example to show how to obtain the matrixPby using the GCM method. First,Qjinner points are uniformly selected in the cellCjandsrandom sample trajectories are generated from each point. In this manner,there are totalS=sQjtrajectories constructed in the cellCj.It is assumed that there areSitrajectories of time duration ?tfalling into cellCi, then the one-step transition probability from cellCjto cellCican be calculated frompij=Si/S.

    4.2. GCM for colored noise excited system

    The method mentioned above is based on the fact that the response process under white noise is a homogenous Markov process. Hence, equation (31) is always tenable whatever?t=tn ?tn?1is chosen. However, when the excitation is a colored noise in our system,the response process of Eq.(5)is no longer a Markov process. Therefore,will the GCM method not be applicable to our system anymore? The following analysis will indicate that the answer is yes.

    For the systems having the following form:

    where thefjandgjrare deterministic functions andξrare stationary random excitations with zero means,the Khasminskii limit theorem[40]shows that the processX(t) will converge weakly to a Markov diffusion process in a semi-infinite time interval asε →0. Furthermore, supposing thatX(t) is not observed continuously, but discretely, beginning fromtin time intervals of ?t'. Then, if the observation time interval ?t'≥τrs,whereτrsis the correlation time betweenξrandξs, the authors in Refs.[28,41]show that the observed incrementX(t+?t')?X(t) between those time intervals will become independent.The stochastic averaging method is exactly based on this theory and uses the time-averaged first and second increment moments as the drift coefficient and diffusion coefficient as follows:[28]

    Especially when the noise is wide-band(τrs?1),the observation time interval can be chosen as 0<τrs<?t' ?1;in this short interval, the variation of thefjandgjrare very slight, the drift coefficient and the diffusion coefficient of the diffusion process can be given accurately as[28]

    5. Examples

    In this section,both the Stochastic averaging method and the generalized cell mapping method are tested by using concrete examples, and the MC simulation is conducted to validate their effectiveness.

    The system parameters are given asζ=0.1,k=1,ηl=ηr=80,bl=0.2, andbr=0.1. In the first case, the noise’s parameters are chosen asζ1=0.6,ω1=6,andD=0.4. With such specified parameters,the excitation is in wide band. The excitation’s correlation function is shown in Fig. 3. It can be seen that when the absolute value of the time differenceτis greater than 2 s,the two forcesf(t)andf(t+τ)become uncorrelatedE[f(t)f(t+τ)]≈0.

    Fig.3. Correlation function of excitation f.

    The concrete steps of the GCM method are given as follows. First, we choose the domain of interest,Z={?0.4<x <0.4,?0.4<y <0.4}, in the state space and divide the domainZinto 80×80 cells. After that, 5×5 interior points are uniformly selected within each cell,and 1000 sample trajectories with the time duration ?tare generated from each of these points. Hence,the one-step transition probability matrixPis constructed by the total 2.5×104sample trajectories in each cell. The initial probability is assumed to be a uniform distribution, then the stationary PDF of the response process can be computed according to Eq.(37).

    The stationary PDFs of amplitude,total energy,displacement,and velocity derived by the stochastic averaging method are shown in Fig. 4 with the solid lines; those of the GCM method with different one-step mapping times are shown with dot-dash lines. From Fig. 4, we can see that the results obtained by the averaging method agree well with those from the MC simulation method. Meanwhile, the results of the GCM method gradually converge to those of the averaging method as the one-step mapping time ?tincreases. When ?tis chosen to be greater than 5 s,it is sufficient to have a good result with a high accuracy.The joint probability densities of velocity and displacement shown in Fig.5 are also in good agreement with the results from all the methods.

    Now,we choose another set of noise parametersζ1=0.6,ω1=0.5,D=0.0005, andD=0.002. The low frequencyω1=0.5 in Eq. (3) ensures that the noise is a narrow-band noise, while the smallDensures that the noise is weak. The excitation’s correlation function is shown in Fig.6,and when the time differenceτis greater than 20 s,E[f(t)f(t+τ)]≈0.Hence, when the GCM method is applied, the one-step mapping time ?tmust be chosen to be greater than 20 s,and here we chose ?t=30 s.

    The stationary PDFs of amplitude,total energy,displacement, and velocity derived by both the stochastic averaging method and the GCM method are shown in Fig. 7. In this case, the stochastic averaging method is not valid anymore.The reason is that as the correlation time of the noise increases,the observation time gap should also be increased,leading the drift coefficient and diffusion coefficient of the Markov diffusion process l not to be in the form of Eq. (40) anymore. In contrast, since the GCM method does not need to calculate those specific quantities but only to obtain the evolution law of the process,it can still predict the results well.

    Fig.4. Stationary probability densities: (a)amplitude,(b)total energy,(c)displacement,and(d)velocity. (dash line: stochastic averaging; solid line:generalized cell mapping;Cross×: Monte Carlo simulation).

    Fig.5. Joint probability density of velocity and displacement(a)stochastic averaging,(b)generalized cell mapping with ?t=5 s,and(c)Monte Carlo simulation.

    Fig.6. Correlation function of the excitation f for(a)D=0.0005 and(b)0.002.

    Fig. 7. Probability densities (red, D=0.0005; black, D=0.002): (a) amplitude, (b) total energy, (c) displacement, (d) velocity. The dash line is stochastic averaging;solid line is generalized cell mapping ?t=30 s;cross×: Monte Carlo simulation.

    6. Conclusions

    Based on the Hertz impact model, the response of a single-degree-of-freedom vibro-impact system under the random colored noise is investigated. First,the stochastic averaging method is carried out routinely. Then the GCM method,which is theoretically only applicable to the Markov process,is also tried for this colored noise excited system. The results show that if the one-step mapping time is chosen to be greater than the correlation time of the noise, the probability evolution of the system can be approximated by the onestep transition probability matrix. The application examples show that the GCM method can well predict the results no matter whether the noise is wide-band or narrow-band, while the stochastic averaging method is valid only for the wideband noise. Hence, the GCM method’s application is greatly extended.It is no longer limited to the white noise excited system,but still to the colored noise excited system. On the other hand,due to the successful prediction of the GCM method,if we accurately work out the drift coefficient and diffusion coefficient of the approximated Markov process,the application of the stochastic averaging method to a narrow-band noise excited system still seems possible.

    猜你喜歡
    劍龍
    五色之光
    三角洲(2024年5期)2024-04-22 01:10:14
    劍龍大比拼
    劍龍與甲龍:誰的裝甲更厲害
    劍龍的狂歡派對
    團結(jié)奮戰(zhàn)的劍龍
    背上“插劍”的劍龍類
    劍龍
    我的寵物是恐龍——劍龍
    中華家教(2017年3期)2017-04-12 18:05:33
    劍龍是武士嗎?
    劍龍是武士嗎
    搡老熟女国产l中国老女人| 亚洲av成人不卡在线观看播放网| 99久久九九国产精品国产免费| 搡老熟女国产l中国老女人| 国产精品一区二区三区四区免费观看 | 2021天堂中文幕一二区在线观| 久久久久久人人人人人| 我的老师免费观看完整版| 欧美激情久久久久久爽电影| 婷婷亚洲欧美| 国产精品99久久99久久久不卡| 久久精品亚洲精品国产色婷小说| 国产精品国产高清国产av| 在线十欧美十亚洲十日本专区| 又黄又粗又硬又大视频| 一本综合久久免费| 搞女人的毛片| 手机成人av网站| 国产精品久久久久久久电影 | 啦啦啦免费观看视频1| 欧美日韩综合久久久久久 | 国产精品 国内视频| 久久久久九九精品影院| 夜夜夜夜夜久久久久| 蜜桃久久精品国产亚洲av| 制服人妻中文乱码| 国产成人a区在线观看| 国产伦精品一区二区三区四那| 一个人看视频在线观看www免费 | 欧美成人a在线观看| 国产麻豆成人av免费视频| 在线看三级毛片| 久久久国产成人精品二区| 97超级碰碰碰精品色视频在线观看| 中文字幕精品亚洲无线码一区| 女人被狂操c到高潮| 国产av一区在线观看免费| 久久久久精品国产欧美久久久| 国产精品 欧美亚洲| 欧美3d第一页| 99在线视频只有这里精品首页| 精品熟女少妇八av免费久了| 夜夜爽天天搞| 久久久精品欧美日韩精品| 一夜夜www| 一本久久中文字幕| 亚洲人与动物交配视频| 中文字幕精品亚洲无线码一区| 特大巨黑吊av在线直播| 久久久久久久亚洲中文字幕 | 欧美绝顶高潮抽搐喷水| 国产乱人伦免费视频| 国产一区二区三区视频了| 日韩人妻高清精品专区| 国产亚洲av嫩草精品影院| 色精品久久人妻99蜜桃| 色播亚洲综合网| 观看美女的网站| 成人午夜高清在线视频| 国产精品久久视频播放| 欧美日韩福利视频一区二区| 久久伊人香网站| 日本熟妇午夜| 亚洲精品在线观看二区| 亚洲内射少妇av| 欧美乱妇无乱码| 级片在线观看| 国产精品久久久久久久电影 | 啦啦啦观看免费观看视频高清| 岛国在线观看网站| 欧美av亚洲av综合av国产av| 亚洲欧美日韩卡通动漫| 欧美成人免费av一区二区三区| 欧美绝顶高潮抽搐喷水| 亚洲美女黄片视频| 18禁在线播放成人免费| 在线观看日韩欧美| 免费观看精品视频网站| 身体一侧抽搐| 亚洲精品粉嫩美女一区| 亚洲国产色片| 在线播放无遮挡| 男人舔奶头视频| 国产一区二区亚洲精品在线观看| e午夜精品久久久久久久| 看黄色毛片网站| 成人国产一区最新在线观看| 琪琪午夜伦伦电影理论片6080| 久9热在线精品视频| 淫妇啪啪啪对白视频| 亚洲成人免费电影在线观看| 精品乱码久久久久久99久播| 熟女人妻精品中文字幕| 成人欧美大片| 午夜福利18| 欧美一区二区亚洲| 日本撒尿小便嘘嘘汇集6| 中文在线观看免费www的网站| a级一级毛片免费在线观看| 亚洲 欧美 日韩 在线 免费| 国产三级黄色录像| 俺也久久电影网| 国产真实乱freesex| 男女那种视频在线观看| 国产欧美日韩精品一区二区| 国产精品综合久久久久久久免费| 亚洲av电影在线进入| 黄色片一级片一级黄色片| 亚洲人成网站高清观看| 757午夜福利合集在线观看| 精品电影一区二区在线| 男人舔女人下体高潮全视频| 亚洲av成人av| 综合色av麻豆| 国产精品久久视频播放| 欧美成狂野欧美在线观看| 很黄的视频免费| 国产在视频线在精品| 窝窝影院91人妻| www日本在线高清视频| 国产乱人伦免费视频| 老熟妇仑乱视频hdxx| 成人三级黄色视频| 亚洲熟妇熟女久久| 嫩草影院入口| 可以在线观看的亚洲视频| 欧美黄色淫秽网站| svipshipincom国产片| 午夜久久久久精精品| 欧美高清成人免费视频www| 国产精品99久久99久久久不卡| 亚洲av成人不卡在线观看播放网| 99久久精品热视频| 久久天躁狠狠躁夜夜2o2o| 在线播放国产精品三级| 女同久久另类99精品国产91| 十八禁网站免费在线| 国产成人aa在线观看| 午夜视频国产福利| 国产av在哪里看| 男女之事视频高清在线观看| 精品久久久久久久久久久久久| 全区人妻精品视频| 一二三四社区在线视频社区8| 真人一进一出gif抽搐免费| 精品久久久久久久人妻蜜臀av| 日韩精品青青久久久久久| 国产精品精品国产色婷婷| e午夜精品久久久久久久| 在线十欧美十亚洲十日本专区| 国产主播在线观看一区二区| 别揉我奶头~嗯~啊~动态视频| 成人精品一区二区免费| 日本五十路高清| 国产高清有码在线观看视频| 国产成人啪精品午夜网站| 在线天堂最新版资源| 哪里可以看免费的av片| 一进一出抽搐动态| 国产午夜精品论理片| 国产一区二区在线观看日韩 | xxxwww97欧美| 99久久成人亚洲精品观看| 欧美高清成人免费视频www| 激情在线观看视频在线高清| 国内少妇人妻偷人精品xxx网站| 亚洲成人中文字幕在线播放| 一二三四社区在线视频社区8| 黄色视频,在线免费观看| 中亚洲国语对白在线视频| 色视频www国产| 天堂网av新在线| 在线a可以看的网站| 欧美bdsm另类| 成人av在线播放网站| 国产熟女xx| 午夜a级毛片| 青草久久国产| 中国美女看黄片| 亚洲在线自拍视频| 嫩草影视91久久| 在线观看美女被高潮喷水网站 | 蜜桃久久精品国产亚洲av| 成人特级黄色片久久久久久久| 国产黄a三级三级三级人| 日本撒尿小便嘘嘘汇集6| 色老头精品视频在线观看| 久久久久久久久大av| 99在线视频只有这里精品首页| 国产亚洲精品av在线| 亚洲精品成人久久久久久| 在线观看午夜福利视频| 欧美最黄视频在线播放免费| 一区福利在线观看| 免费观看的影片在线观看| 麻豆一二三区av精品| 一级a爱片免费观看的视频| 亚洲精品久久国产高清桃花| 最近最新中文字幕大全电影3| 亚洲人成网站在线播放欧美日韩| 五月伊人婷婷丁香| 成年女人永久免费观看视频| 美女cb高潮喷水在线观看| 人妻久久中文字幕网| 久久久久久久久中文| 亚洲精品在线美女| 久久人人精品亚洲av| 欧美黑人欧美精品刺激| 成人午夜高清在线视频| 欧美色欧美亚洲另类二区| av专区在线播放| 中文亚洲av片在线观看爽| avwww免费| 在线观看美女被高潮喷水网站 | 久久亚洲真实| 欧美国产日韩亚洲一区| 亚洲欧美日韩东京热| 日韩精品青青久久久久久| 香蕉丝袜av| 最新美女视频免费是黄的| av中文乱码字幕在线| 最后的刺客免费高清国语| 在线国产一区二区在线| 色综合亚洲欧美另类图片| 国产成人aa在线观看| 欧美不卡视频在线免费观看| 舔av片在线| 尤物成人国产欧美一区二区三区| 国产成人系列免费观看| 1024手机看黄色片| 天天一区二区日本电影三级| 中文字幕人妻丝袜一区二区| 久久伊人香网站| 在线观看av片永久免费下载| 成人无遮挡网站| 国产亚洲精品综合一区在线观看| 亚洲,欧美精品.| 色视频www国产| 精品国产亚洲在线| 国产黄色小视频在线观看| 亚洲av成人精品一区久久| 亚洲成人精品中文字幕电影| 黄色片一级片一级黄色片| 亚洲专区国产一区二区| 亚洲性夜色夜夜综合| 真实男女啪啪啪动态图| 欧美日本亚洲视频在线播放| 别揉我奶头~嗯~啊~动态视频| 手机成人av网站| 欧美性猛交黑人性爽| 国产精品永久免费网站| 人人妻人人澡欧美一区二区| 国产淫片久久久久久久久 | 国产精品99久久久久久久久| 国产真实伦视频高清在线观看 | 中文字幕av在线有码专区| 久久久久久九九精品二区国产| 五月玫瑰六月丁香| 男插女下体视频免费在线播放| 久久久久久久亚洲中文字幕 | 一区福利在线观看| 无人区码免费观看不卡| 精品不卡国产一区二区三区| 91久久精品国产一区二区成人 | 国产免费av片在线观看野外av| 成人无遮挡网站| 偷拍熟女少妇极品色| 十八禁人妻一区二区| 午夜福利成人在线免费观看| a级一级毛片免费在线观看| 欧美日韩国产亚洲二区| 亚洲精品亚洲一区二区| 老汉色av国产亚洲站长工具| 一本一本综合久久| 99久久精品一区二区三区| 97碰自拍视频| 俄罗斯特黄特色一大片| x7x7x7水蜜桃| 国产精品99久久久久久久久| 最新中文字幕久久久久| 亚洲18禁久久av| 哪里可以看免费的av片| 在线观看日韩欧美| 久久精品国产综合久久久| 精品久久久久久,| 嫩草影院入口| 国产色爽女视频免费观看| 国内少妇人妻偷人精品xxx网站| 长腿黑丝高跟| 国内精品久久久久久久电影| 欧美乱码精品一区二区三区| 无遮挡黄片免费观看| 亚洲七黄色美女视频| 成人18禁在线播放| 国产亚洲精品久久久久久毛片| 亚洲熟妇熟女久久| 日本黄色片子视频| 国产探花极品一区二区| 欧美在线黄色| 日本 欧美在线| 日韩大尺度精品在线看网址| 男人舔奶头视频| 免费大片18禁| 久久伊人香网站| 免费在线观看影片大全网站| or卡值多少钱| 欧美另类亚洲清纯唯美| 久久精品91蜜桃| 国产一区二区激情短视频| 最新中文字幕久久久久| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久| 99久久久亚洲精品蜜臀av| 极品教师在线免费播放| 亚洲av不卡在线观看| 国产精品99久久99久久久不卡| 美女高潮喷水抽搐中文字幕| 热99re8久久精品国产| 国产熟女xx| 亚洲片人在线观看| 免费搜索国产男女视频| 亚洲av成人精品一区久久| 97碰自拍视频| 久久6这里有精品| 人妻丰满熟妇av一区二区三区| 亚洲美女视频黄频| 99久久综合精品五月天人人| 亚洲国产精品999在线| 免费在线观看成人毛片| 日本免费一区二区三区高清不卡| 欧美日韩福利视频一区二区| 久久久久久人人人人人| 桃红色精品国产亚洲av| 岛国在线观看网站| 中文字幕人妻丝袜一区二区| 老司机午夜福利在线观看视频| 三级男女做爰猛烈吃奶摸视频| 国产精品一区二区三区四区久久| 首页视频小说图片口味搜索| 成人特级黄色片久久久久久久| 久久久久久久午夜电影| 99久久综合精品五月天人人| 99久久久亚洲精品蜜臀av| 欧美日韩乱码在线| 尤物成人国产欧美一区二区三区| 人人妻,人人澡人人爽秒播| 丝袜美腿在线中文| 国产色婷婷99| 一a级毛片在线观看| 国产亚洲精品久久久com| 91在线观看av| 99热只有精品国产| 成年免费大片在线观看| 亚洲人成网站在线播放欧美日韩| 在线观看美女被高潮喷水网站 | 首页视频小说图片口味搜索| 不卡一级毛片| 夜夜爽天天搞| 国产精品亚洲一级av第二区| 国产亚洲av嫩草精品影院| 国产精品久久久久久久电影 | 日韩精品青青久久久久久| 精品熟女少妇八av免费久了| 在线观看av片永久免费下载| 亚洲人成伊人成综合网2020| 精品电影一区二区在线| 国产精品美女特级片免费视频播放器| 此物有八面人人有两片| 在线免费观看不下载黄p国产 | 欧美三级亚洲精品| 嫁个100分男人电影在线观看| 黄色日韩在线| a在线观看视频网站| 中文亚洲av片在线观看爽| 俺也久久电影网| 九九在线视频观看精品| 男人的好看免费观看在线视频| 在线观看66精品国产| 18美女黄网站色大片免费观看| 又紧又爽又黄一区二区| 午夜免费激情av| 99视频精品全部免费 在线| www.www免费av| 亚洲中文字幕日韩| 日韩av在线大香蕉| 日韩欧美在线乱码| 亚洲18禁久久av| 国产精品嫩草影院av在线观看 | 日韩欧美三级三区| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院| 男女床上黄色一级片免费看| 97超级碰碰碰精品色视频在线观看| 久久国产精品影院| 国产精品女同一区二区软件 | 日本a在线网址| 免费人成在线观看视频色| 国产蜜桃级精品一区二区三区| aaaaa片日本免费| 欧美三级亚洲精品| 在线a可以看的网站| 99在线人妻在线中文字幕| 亚洲国产中文字幕在线视频| 动漫黄色视频在线观看| 90打野战视频偷拍视频| 午夜久久久久精精品| 午夜福利高清视频| 搡老妇女老女人老熟妇| 久久久精品大字幕| 久久国产乱子伦精品免费另类| 久久精品91无色码中文字幕| 国产精品电影一区二区三区| 色噜噜av男人的天堂激情| bbb黄色大片| 在线观看66精品国产| 亚洲av一区综合| 人妻丰满熟妇av一区二区三区| 欧美黑人欧美精品刺激| 国产av麻豆久久久久久久| 久久久国产精品麻豆| 搡老熟女国产l中国老女人| 国产黄色小视频在线观看| 欧美不卡视频在线免费观看| a在线观看视频网站| 三级国产精品欧美在线观看| 午夜激情欧美在线| 日韩欧美精品v在线| 熟女少妇亚洲综合色aaa.| 国产精品av视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美 | 欧美国产日韩亚洲一区| 久久久久久久久久黄片| 日日夜夜操网爽| 嫩草影院精品99| 一个人看视频在线观看www免费 | 亚洲成人久久性| 国产成人aa在线观看| 国产三级在线视频| 成人亚洲精品av一区二区| 精品国产美女av久久久久小说| xxx96com| 国产精品日韩av在线免费观看| 国产精品99久久99久久久不卡| 欧美黄色片欧美黄色片| 欧美极品一区二区三区四区| 老熟妇仑乱视频hdxx| a在线观看视频网站| 又黄又爽又免费观看的视频| АⅤ资源中文在线天堂| 亚洲国产精品久久男人天堂| 久久人人精品亚洲av| 欧美日本视频| 日日干狠狠操夜夜爽| 在线观看66精品国产| 欧美成狂野欧美在线观看| 不卡一级毛片| av片东京热男人的天堂| 亚洲片人在线观看| 国产色婷婷99| 欧美性感艳星| 免费av不卡在线播放| 久久午夜亚洲精品久久| 此物有八面人人有两片| 校园春色视频在线观看| 亚洲18禁久久av| 欧美高清成人免费视频www| 亚洲欧美一区二区三区黑人| 亚洲成人免费电影在线观看| 国产成人aa在线观看| 国产真实伦视频高清在线观看 | 午夜激情福利司机影院| 国产一区二区在线观看日韩 | 精品久久久久久,| 亚洲精品乱码久久久v下载方式 | 韩国av一区二区三区四区| 日韩av在线大香蕉| 我的老师免费观看完整版| 国产视频内射| 国产精品久久久人人做人人爽| 午夜精品一区二区三区免费看| 露出奶头的视频| 国产亚洲精品一区二区www| 69人妻影院| 99视频精品全部免费 在线| 日韩有码中文字幕| eeuss影院久久| 久久久久久久亚洲中文字幕 | 日本撒尿小便嘘嘘汇集6| 国内揄拍国产精品人妻在线| 国产 一区 欧美 日韩| 十八禁网站免费在线| 99久久99久久久精品蜜桃| 91久久精品国产一区二区成人 | 午夜福利在线观看吧| 老司机在亚洲福利影院| 中亚洲国语对白在线视频| 全区人妻精品视频| 日本撒尿小便嘘嘘汇集6| 99久久精品热视频| 亚洲av中文字字幕乱码综合| 偷拍熟女少妇极品色| 麻豆成人av在线观看| 在线观看日韩欧美| 午夜福利欧美成人| 精品国内亚洲2022精品成人| 国产高清有码在线观看视频| 亚洲一区二区三区色噜噜| e午夜精品久久久久久久| www.色视频.com| 少妇的逼水好多| 免费搜索国产男女视频| 国内少妇人妻偷人精品xxx网站| 国产v大片淫在线免费观看| 国产成年人精品一区二区| 好看av亚洲va欧美ⅴa在| 我要搜黄色片| 天天一区二区日本电影三级| 69av精品久久久久久| 国产精品国产高清国产av| 欧美一区二区亚洲| 国产精品亚洲美女久久久| 国产主播在线观看一区二区| 欧美另类亚洲清纯唯美| 一a级毛片在线观看| 法律面前人人平等表现在哪些方面| 美女大奶头视频| 美女高潮的动态| 亚洲乱码一区二区免费版| 久久久国产成人精品二区| 色综合亚洲欧美另类图片| 亚洲中文日韩欧美视频| 免费看十八禁软件| 国产精品影院久久| 亚洲天堂国产精品一区在线| 99国产综合亚洲精品| 在线观看66精品国产| 中文字幕精品亚洲无线码一区| 九九久久精品国产亚洲av麻豆| 国产色婷婷99| 欧美zozozo另类| 成人av一区二区三区在线看| 色av中文字幕| 变态另类丝袜制服| 国内精品一区二区在线观看| 亚洲欧美日韩高清专用| 国产一区在线观看成人免费| 夜夜躁狠狠躁天天躁| 性色av乱码一区二区三区2| 欧美三级亚洲精品| 久久草成人影院| АⅤ资源中文在线天堂| 国产毛片a区久久久久| 久9热在线精品视频| 美女大奶头视频| 高潮久久久久久久久久久不卡| 搡老妇女老女人老熟妇| 我的老师免费观看完整版| 一卡2卡三卡四卡精品乱码亚洲| 深夜精品福利| 日韩国内少妇激情av| 青草久久国产| 中文字幕人成人乱码亚洲影| 免费在线观看日本一区| 久久久久久久精品吃奶| 日韩人妻高清精品专区| 国产高清videossex| 噜噜噜噜噜久久久久久91| 女同久久另类99精品国产91| 欧美色欧美亚洲另类二区| 亚洲av美国av| 久久久久国产精品人妻aⅴ院| 欧美日韩一级在线毛片| 久久亚洲精品不卡| 免费av观看视频| 国产精华一区二区三区| 亚洲成人中文字幕在线播放| 99久久精品一区二区三区| 亚洲精品影视一区二区三区av| 男人舔奶头视频| 欧美一级毛片孕妇| 日韩欧美一区二区三区在线观看| 最新美女视频免费是黄的| 国产国拍精品亚洲av在线观看 | 动漫黄色视频在线观看| 狂野欧美白嫩少妇大欣赏| 免费看a级黄色片| 免费人成视频x8x8入口观看| 两个人看的免费小视频| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 天堂动漫精品| 中文资源天堂在线| 亚洲七黄色美女视频| 日本成人三级电影网站| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 欧美黑人欧美精品刺激| 在线观看舔阴道视频| 午夜老司机福利剧场| 成人av一区二区三区在线看| 女人被狂操c到高潮| 久久精品国产清高在天天线| 两个人看的免费小视频| av在线天堂中文字幕| 黄色成人免费大全| 午夜激情福利司机影院| 国产精品av视频在线免费观看| 美女被艹到高潮喷水动态| 69av精品久久久久久| 久久久久久人人人人人| 色综合欧美亚洲国产小说| 国产高清视频在线观看网站| 熟妇人妻久久中文字幕3abv| 国产精华一区二区三区| 此物有八面人人有两片|